1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/nfs/file.c 4 * 5 * Copyright (C) 1992 Rick Sladkey 6 * 7 * Changes Copyright (C) 1994 by Florian La Roche 8 * - Do not copy data too often around in the kernel. 9 * - In nfs_file_read the return value of kmalloc wasn't checked. 10 * - Put in a better version of read look-ahead buffering. Original idea 11 * and implementation by Wai S Kok elekokws@ee.nus.sg. 12 * 13 * Expire cache on write to a file by Wai S Kok (Oct 1994). 14 * 15 * Total rewrite of read side for new NFS buffer cache.. Linus. 16 * 17 * nfs regular file handling functions 18 */ 19 20 #include <linux/module.h> 21 #include <linux/time.h> 22 #include <linux/kernel.h> 23 #include <linux/errno.h> 24 #include <linux/fcntl.h> 25 #include <linux/stat.h> 26 #include <linux/nfs_fs.h> 27 #include <linux/nfs_mount.h> 28 #include <linux/mm.h> 29 #include <linux/pagemap.h> 30 #include <linux/gfp.h> 31 #include <linux/swap.h> 32 33 #include <linux/uaccess.h> 34 35 #include "delegation.h" 36 #include "internal.h" 37 #include "iostat.h" 38 #include "fscache.h" 39 #include "pnfs.h" 40 41 #include "nfstrace.h" 42 43 #define NFSDBG_FACILITY NFSDBG_FILE 44 45 static const struct vm_operations_struct nfs_file_vm_ops; 46 47 /* Hack for future NFS swap support */ 48 #ifndef IS_SWAPFILE 49 # define IS_SWAPFILE(inode) (0) 50 #endif 51 52 int nfs_check_flags(int flags) 53 { 54 if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT)) 55 return -EINVAL; 56 57 return 0; 58 } 59 EXPORT_SYMBOL_GPL(nfs_check_flags); 60 61 /* 62 * Open file 63 */ 64 static int 65 nfs_file_open(struct inode *inode, struct file *filp) 66 { 67 int res; 68 69 dprintk("NFS: open file(%pD2)\n", filp); 70 71 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 72 res = nfs_check_flags(filp->f_flags); 73 if (res) 74 return res; 75 76 res = nfs_open(inode, filp); 77 return res; 78 } 79 80 int 81 nfs_file_release(struct inode *inode, struct file *filp) 82 { 83 dprintk("NFS: release(%pD2)\n", filp); 84 85 nfs_inc_stats(inode, NFSIOS_VFSRELEASE); 86 nfs_file_clear_open_context(filp); 87 return 0; 88 } 89 EXPORT_SYMBOL_GPL(nfs_file_release); 90 91 /** 92 * nfs_revalidate_file_size - Revalidate the file size 93 * @inode: pointer to inode struct 94 * @filp: pointer to struct file 95 * 96 * Revalidates the file length. This is basically a wrapper around 97 * nfs_revalidate_inode() that takes into account the fact that we may 98 * have cached writes (in which case we don't care about the server's 99 * idea of what the file length is), or O_DIRECT (in which case we 100 * shouldn't trust the cache). 101 */ 102 static int nfs_revalidate_file_size(struct inode *inode, struct file *filp) 103 { 104 struct nfs_server *server = NFS_SERVER(inode); 105 106 if (filp->f_flags & O_DIRECT) 107 goto force_reval; 108 if (nfs_check_cache_invalid(inode, NFS_INO_REVAL_PAGECACHE)) 109 goto force_reval; 110 return 0; 111 force_reval: 112 return __nfs_revalidate_inode(server, inode); 113 } 114 115 loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence) 116 { 117 dprintk("NFS: llseek file(%pD2, %lld, %d)\n", 118 filp, offset, whence); 119 120 /* 121 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate 122 * the cached file length 123 */ 124 if (whence != SEEK_SET && whence != SEEK_CUR) { 125 struct inode *inode = filp->f_mapping->host; 126 127 int retval = nfs_revalidate_file_size(inode, filp); 128 if (retval < 0) 129 return (loff_t)retval; 130 } 131 132 return generic_file_llseek(filp, offset, whence); 133 } 134 EXPORT_SYMBOL_GPL(nfs_file_llseek); 135 136 /* 137 * Flush all dirty pages, and check for write errors. 138 */ 139 static int 140 nfs_file_flush(struct file *file, fl_owner_t id) 141 { 142 struct inode *inode = file_inode(file); 143 errseq_t since; 144 145 dprintk("NFS: flush(%pD2)\n", file); 146 147 nfs_inc_stats(inode, NFSIOS_VFSFLUSH); 148 if ((file->f_mode & FMODE_WRITE) == 0) 149 return 0; 150 151 /* Flush writes to the server and return any errors */ 152 since = filemap_sample_wb_err(file->f_mapping); 153 nfs_wb_all(inode); 154 return filemap_check_wb_err(file->f_mapping, since); 155 } 156 157 ssize_t 158 nfs_file_read(struct kiocb *iocb, struct iov_iter *to) 159 { 160 struct inode *inode = file_inode(iocb->ki_filp); 161 ssize_t result; 162 163 if (iocb->ki_flags & IOCB_DIRECT) 164 return nfs_file_direct_read(iocb, to); 165 166 dprintk("NFS: read(%pD2, %zu@%lu)\n", 167 iocb->ki_filp, 168 iov_iter_count(to), (unsigned long) iocb->ki_pos); 169 170 nfs_start_io_read(inode); 171 result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping); 172 if (!result) { 173 result = generic_file_read_iter(iocb, to); 174 if (result > 0) 175 nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result); 176 } 177 nfs_end_io_read(inode); 178 return result; 179 } 180 EXPORT_SYMBOL_GPL(nfs_file_read); 181 182 int 183 nfs_file_mmap(struct file * file, struct vm_area_struct * vma) 184 { 185 struct inode *inode = file_inode(file); 186 int status; 187 188 dprintk("NFS: mmap(%pD2)\n", file); 189 190 /* Note: generic_file_mmap() returns ENOSYS on nommu systems 191 * so we call that before revalidating the mapping 192 */ 193 status = generic_file_mmap(file, vma); 194 if (!status) { 195 vma->vm_ops = &nfs_file_vm_ops; 196 status = nfs_revalidate_mapping(inode, file->f_mapping); 197 } 198 return status; 199 } 200 EXPORT_SYMBOL_GPL(nfs_file_mmap); 201 202 /* 203 * Flush any dirty pages for this process, and check for write errors. 204 * The return status from this call provides a reliable indication of 205 * whether any write errors occurred for this process. 206 */ 207 static int 208 nfs_file_fsync_commit(struct file *file, int datasync) 209 { 210 struct inode *inode = file_inode(file); 211 int ret; 212 213 dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync); 214 215 nfs_inc_stats(inode, NFSIOS_VFSFSYNC); 216 ret = nfs_commit_inode(inode, FLUSH_SYNC); 217 if (ret < 0) 218 return ret; 219 return file_check_and_advance_wb_err(file); 220 } 221 222 int 223 nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync) 224 { 225 struct nfs_open_context *ctx = nfs_file_open_context(file); 226 struct inode *inode = file_inode(file); 227 int ret; 228 229 trace_nfs_fsync_enter(inode); 230 231 for (;;) { 232 ret = file_write_and_wait_range(file, start, end); 233 if (ret != 0) 234 break; 235 ret = nfs_file_fsync_commit(file, datasync); 236 if (ret != 0) 237 break; 238 ret = pnfs_sync_inode(inode, !!datasync); 239 if (ret != 0) 240 break; 241 if (!test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags)) 242 break; 243 /* 244 * If nfs_file_fsync_commit detected a server reboot, then 245 * resend all dirty pages that might have been covered by 246 * the NFS_CONTEXT_RESEND_WRITES flag 247 */ 248 start = 0; 249 end = LLONG_MAX; 250 } 251 252 trace_nfs_fsync_exit(inode, ret); 253 return ret; 254 } 255 EXPORT_SYMBOL_GPL(nfs_file_fsync); 256 257 /* 258 * Decide whether a read/modify/write cycle may be more efficient 259 * then a modify/write/read cycle when writing to a page in the 260 * page cache. 261 * 262 * Some pNFS layout drivers can only read/write at a certain block 263 * granularity like all block devices and therefore we must perform 264 * read/modify/write whenever a page hasn't read yet and the data 265 * to be written there is not aligned to a block boundary and/or 266 * smaller than the block size. 267 * 268 * The modify/write/read cycle may occur if a page is read before 269 * being completely filled by the writer. In this situation, the 270 * page must be completely written to stable storage on the server 271 * before it can be refilled by reading in the page from the server. 272 * This can lead to expensive, small, FILE_SYNC mode writes being 273 * done. 274 * 275 * It may be more efficient to read the page first if the file is 276 * open for reading in addition to writing, the page is not marked 277 * as Uptodate, it is not dirty or waiting to be committed, 278 * indicating that it was previously allocated and then modified, 279 * that there were valid bytes of data in that range of the file, 280 * and that the new data won't completely replace the old data in 281 * that range of the file. 282 */ 283 static bool nfs_full_page_write(struct page *page, loff_t pos, unsigned int len) 284 { 285 unsigned int pglen = nfs_page_length(page); 286 unsigned int offset = pos & (PAGE_SIZE - 1); 287 unsigned int end = offset + len; 288 289 return !pglen || (end >= pglen && !offset); 290 } 291 292 static bool nfs_want_read_modify_write(struct file *file, struct page *page, 293 loff_t pos, unsigned int len) 294 { 295 /* 296 * Up-to-date pages, those with ongoing or full-page write 297 * don't need read/modify/write 298 */ 299 if (PageUptodate(page) || PagePrivate(page) || 300 nfs_full_page_write(page, pos, len)) 301 return false; 302 303 if (pnfs_ld_read_whole_page(file->f_mapping->host)) 304 return true; 305 /* Open for reading too? */ 306 if (file->f_mode & FMODE_READ) 307 return true; 308 return false; 309 } 310 311 /* 312 * This does the "real" work of the write. We must allocate and lock the 313 * page to be sent back to the generic routine, which then copies the 314 * data from user space. 315 * 316 * If the writer ends up delaying the write, the writer needs to 317 * increment the page use counts until he is done with the page. 318 */ 319 static int nfs_write_begin(struct file *file, struct address_space *mapping, 320 loff_t pos, unsigned len, unsigned flags, 321 struct page **pagep, void **fsdata) 322 { 323 int ret; 324 pgoff_t index = pos >> PAGE_SHIFT; 325 struct page *page; 326 int once_thru = 0; 327 328 dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n", 329 file, mapping->host->i_ino, len, (long long) pos); 330 331 start: 332 page = grab_cache_page_write_begin(mapping, index, flags); 333 if (!page) 334 return -ENOMEM; 335 *pagep = page; 336 337 ret = nfs_flush_incompatible(file, page); 338 if (ret) { 339 unlock_page(page); 340 put_page(page); 341 } else if (!once_thru && 342 nfs_want_read_modify_write(file, page, pos, len)) { 343 once_thru = 1; 344 ret = nfs_readpage(file, page); 345 put_page(page); 346 if (!ret) 347 goto start; 348 } 349 return ret; 350 } 351 352 static int nfs_write_end(struct file *file, struct address_space *mapping, 353 loff_t pos, unsigned len, unsigned copied, 354 struct page *page, void *fsdata) 355 { 356 unsigned offset = pos & (PAGE_SIZE - 1); 357 struct nfs_open_context *ctx = nfs_file_open_context(file); 358 int status; 359 360 dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n", 361 file, mapping->host->i_ino, len, (long long) pos); 362 363 /* 364 * Zero any uninitialised parts of the page, and then mark the page 365 * as up to date if it turns out that we're extending the file. 366 */ 367 if (!PageUptodate(page)) { 368 unsigned pglen = nfs_page_length(page); 369 unsigned end = offset + copied; 370 371 if (pglen == 0) { 372 zero_user_segments(page, 0, offset, 373 end, PAGE_SIZE); 374 SetPageUptodate(page); 375 } else if (end >= pglen) { 376 zero_user_segment(page, end, PAGE_SIZE); 377 if (offset == 0) 378 SetPageUptodate(page); 379 } else 380 zero_user_segment(page, pglen, PAGE_SIZE); 381 } 382 383 status = nfs_updatepage(file, page, offset, copied); 384 385 unlock_page(page); 386 put_page(page); 387 388 if (status < 0) 389 return status; 390 NFS_I(mapping->host)->write_io += copied; 391 392 if (nfs_ctx_key_to_expire(ctx, mapping->host)) { 393 status = nfs_wb_all(mapping->host); 394 if (status < 0) 395 return status; 396 } 397 398 return copied; 399 } 400 401 /* 402 * Partially or wholly invalidate a page 403 * - Release the private state associated with a page if undergoing complete 404 * page invalidation 405 * - Called if either PG_private or PG_fscache is set on the page 406 * - Caller holds page lock 407 */ 408 static void nfs_invalidate_page(struct page *page, unsigned int offset, 409 unsigned int length) 410 { 411 dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n", 412 page, offset, length); 413 414 if (offset != 0 || length < PAGE_SIZE) 415 return; 416 /* Cancel any unstarted writes on this page */ 417 nfs_wb_page_cancel(page_file_mapping(page)->host, page); 418 419 nfs_fscache_invalidate_page(page, page->mapping->host); 420 } 421 422 /* 423 * Attempt to release the private state associated with a page 424 * - Called if either PG_private or PG_fscache is set on the page 425 * - Caller holds page lock 426 * - Return true (may release page) or false (may not) 427 */ 428 static int nfs_release_page(struct page *page, gfp_t gfp) 429 { 430 dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page); 431 432 /* If PagePrivate() is set, then the page is not freeable */ 433 if (PagePrivate(page)) 434 return 0; 435 return nfs_fscache_release_page(page, gfp); 436 } 437 438 static void nfs_check_dirty_writeback(struct page *page, 439 bool *dirty, bool *writeback) 440 { 441 struct nfs_inode *nfsi; 442 struct address_space *mapping = page_file_mapping(page); 443 444 if (!mapping || PageSwapCache(page)) 445 return; 446 447 /* 448 * Check if an unstable page is currently being committed and 449 * if so, have the VM treat it as if the page is under writeback 450 * so it will not block due to pages that will shortly be freeable. 451 */ 452 nfsi = NFS_I(mapping->host); 453 if (atomic_read(&nfsi->commit_info.rpcs_out)) { 454 *writeback = true; 455 return; 456 } 457 458 /* 459 * If PagePrivate() is set, then the page is not freeable and as the 460 * inode is not being committed, it's not going to be cleaned in the 461 * near future so treat it as dirty 462 */ 463 if (PagePrivate(page)) 464 *dirty = true; 465 } 466 467 /* 468 * Attempt to clear the private state associated with a page when an error 469 * occurs that requires the cached contents of an inode to be written back or 470 * destroyed 471 * - Called if either PG_private or fscache is set on the page 472 * - Caller holds page lock 473 * - Return 0 if successful, -error otherwise 474 */ 475 static int nfs_launder_page(struct page *page) 476 { 477 struct inode *inode = page_file_mapping(page)->host; 478 struct nfs_inode *nfsi = NFS_I(inode); 479 480 dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n", 481 inode->i_ino, (long long)page_offset(page)); 482 483 nfs_fscache_wait_on_page_write(nfsi, page); 484 return nfs_wb_page(inode, page); 485 } 486 487 static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file, 488 sector_t *span) 489 { 490 unsigned long blocks; 491 long long isize; 492 struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host); 493 struct inode *inode = file->f_mapping->host; 494 495 spin_lock(&inode->i_lock); 496 blocks = inode->i_blocks; 497 isize = inode->i_size; 498 spin_unlock(&inode->i_lock); 499 if (blocks*512 < isize) { 500 pr_warn("swap activate: swapfile has holes\n"); 501 return -EINVAL; 502 } 503 504 *span = sis->pages; 505 506 return rpc_clnt_swap_activate(clnt); 507 } 508 509 static void nfs_swap_deactivate(struct file *file) 510 { 511 struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host); 512 513 rpc_clnt_swap_deactivate(clnt); 514 } 515 516 const struct address_space_operations nfs_file_aops = { 517 .readpage = nfs_readpage, 518 .readpages = nfs_readpages, 519 .set_page_dirty = __set_page_dirty_nobuffers, 520 .writepage = nfs_writepage, 521 .writepages = nfs_writepages, 522 .write_begin = nfs_write_begin, 523 .write_end = nfs_write_end, 524 .invalidatepage = nfs_invalidate_page, 525 .releasepage = nfs_release_page, 526 .direct_IO = nfs_direct_IO, 527 #ifdef CONFIG_MIGRATION 528 .migratepage = nfs_migrate_page, 529 #endif 530 .launder_page = nfs_launder_page, 531 .is_dirty_writeback = nfs_check_dirty_writeback, 532 .error_remove_page = generic_error_remove_page, 533 .swap_activate = nfs_swap_activate, 534 .swap_deactivate = nfs_swap_deactivate, 535 }; 536 537 /* 538 * Notification that a PTE pointing to an NFS page is about to be made 539 * writable, implying that someone is about to modify the page through a 540 * shared-writable mapping 541 */ 542 static vm_fault_t nfs_vm_page_mkwrite(struct vm_fault *vmf) 543 { 544 struct page *page = vmf->page; 545 struct file *filp = vmf->vma->vm_file; 546 struct inode *inode = file_inode(filp); 547 unsigned pagelen; 548 vm_fault_t ret = VM_FAULT_NOPAGE; 549 struct address_space *mapping; 550 551 dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n", 552 filp, filp->f_mapping->host->i_ino, 553 (long long)page_offset(page)); 554 555 sb_start_pagefault(inode->i_sb); 556 557 /* make sure the cache has finished storing the page */ 558 nfs_fscache_wait_on_page_write(NFS_I(inode), page); 559 560 wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING, 561 nfs_wait_bit_killable, TASK_KILLABLE); 562 563 lock_page(page); 564 mapping = page_file_mapping(page); 565 if (mapping != inode->i_mapping) 566 goto out_unlock; 567 568 wait_on_page_writeback(page); 569 570 pagelen = nfs_page_length(page); 571 if (pagelen == 0) 572 goto out_unlock; 573 574 ret = VM_FAULT_LOCKED; 575 if (nfs_flush_incompatible(filp, page) == 0 && 576 nfs_updatepage(filp, page, 0, pagelen) == 0) 577 goto out; 578 579 ret = VM_FAULT_SIGBUS; 580 out_unlock: 581 unlock_page(page); 582 out: 583 sb_end_pagefault(inode->i_sb); 584 return ret; 585 } 586 587 static const struct vm_operations_struct nfs_file_vm_ops = { 588 .fault = filemap_fault, 589 .map_pages = filemap_map_pages, 590 .page_mkwrite = nfs_vm_page_mkwrite, 591 }; 592 593 static int nfs_need_check_write(struct file *filp, struct inode *inode, 594 int error) 595 { 596 struct nfs_open_context *ctx; 597 598 ctx = nfs_file_open_context(filp); 599 if (nfs_error_is_fatal_on_server(error) || 600 nfs_ctx_key_to_expire(ctx, inode)) 601 return 1; 602 return 0; 603 } 604 605 ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from) 606 { 607 struct file *file = iocb->ki_filp; 608 struct inode *inode = file_inode(file); 609 unsigned int mntflags = NFS_SERVER(inode)->flags; 610 ssize_t result, written; 611 errseq_t since; 612 int error; 613 614 result = nfs_key_timeout_notify(file, inode); 615 if (result) 616 return result; 617 618 if (iocb->ki_flags & IOCB_DIRECT) 619 return nfs_file_direct_write(iocb, from); 620 621 dprintk("NFS: write(%pD2, %zu@%Ld)\n", 622 file, iov_iter_count(from), (long long) iocb->ki_pos); 623 624 if (IS_SWAPFILE(inode)) 625 goto out_swapfile; 626 /* 627 * O_APPEND implies that we must revalidate the file length. 628 */ 629 if (iocb->ki_flags & IOCB_APPEND || iocb->ki_pos > i_size_read(inode)) { 630 result = nfs_revalidate_file_size(inode, file); 631 if (result) 632 goto out; 633 } 634 635 nfs_clear_invalid_mapping(file->f_mapping); 636 637 since = filemap_sample_wb_err(file->f_mapping); 638 nfs_start_io_write(inode); 639 result = generic_write_checks(iocb, from); 640 if (result > 0) { 641 current->backing_dev_info = inode_to_bdi(inode); 642 result = generic_perform_write(file, from, iocb->ki_pos); 643 current->backing_dev_info = NULL; 644 } 645 nfs_end_io_write(inode); 646 if (result <= 0) 647 goto out; 648 649 written = result; 650 iocb->ki_pos += written; 651 652 if (mntflags & NFS_MOUNT_WRITE_EAGER) { 653 result = filemap_fdatawrite_range(file->f_mapping, 654 iocb->ki_pos - written, 655 iocb->ki_pos - 1); 656 if (result < 0) 657 goto out; 658 } 659 if (mntflags & NFS_MOUNT_WRITE_WAIT) { 660 result = filemap_fdatawait_range(file->f_mapping, 661 iocb->ki_pos - written, 662 iocb->ki_pos - 1); 663 if (result < 0) 664 goto out; 665 } 666 result = generic_write_sync(iocb, written); 667 if (result < 0) 668 goto out; 669 670 /* Return error values */ 671 error = filemap_check_wb_err(file->f_mapping, since); 672 if (nfs_need_check_write(file, inode, error)) { 673 int err = nfs_wb_all(inode); 674 if (err < 0) 675 result = err; 676 } 677 nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written); 678 out: 679 return result; 680 681 out_swapfile: 682 printk(KERN_INFO "NFS: attempt to write to active swap file!\n"); 683 return -ETXTBSY; 684 } 685 EXPORT_SYMBOL_GPL(nfs_file_write); 686 687 static int 688 do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local) 689 { 690 struct inode *inode = filp->f_mapping->host; 691 int status = 0; 692 unsigned int saved_type = fl->fl_type; 693 694 /* Try local locking first */ 695 posix_test_lock(filp, fl); 696 if (fl->fl_type != F_UNLCK) { 697 /* found a conflict */ 698 goto out; 699 } 700 fl->fl_type = saved_type; 701 702 if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) 703 goto out_noconflict; 704 705 if (is_local) 706 goto out_noconflict; 707 708 status = NFS_PROTO(inode)->lock(filp, cmd, fl); 709 out: 710 return status; 711 out_noconflict: 712 fl->fl_type = F_UNLCK; 713 goto out; 714 } 715 716 static int 717 do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local) 718 { 719 struct inode *inode = filp->f_mapping->host; 720 struct nfs_lock_context *l_ctx; 721 int status; 722 723 /* 724 * Flush all pending writes before doing anything 725 * with locks.. 726 */ 727 nfs_wb_all(inode); 728 729 l_ctx = nfs_get_lock_context(nfs_file_open_context(filp)); 730 if (!IS_ERR(l_ctx)) { 731 status = nfs_iocounter_wait(l_ctx); 732 nfs_put_lock_context(l_ctx); 733 /* NOTE: special case 734 * If we're signalled while cleaning up locks on process exit, we 735 * still need to complete the unlock. 736 */ 737 if (status < 0 && !(fl->fl_flags & FL_CLOSE)) 738 return status; 739 } 740 741 /* 742 * Use local locking if mounted with "-onolock" or with appropriate 743 * "-olocal_lock=" 744 */ 745 if (!is_local) 746 status = NFS_PROTO(inode)->lock(filp, cmd, fl); 747 else 748 status = locks_lock_file_wait(filp, fl); 749 return status; 750 } 751 752 static int 753 do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local) 754 { 755 struct inode *inode = filp->f_mapping->host; 756 int status; 757 758 /* 759 * Flush all pending writes before doing anything 760 * with locks.. 761 */ 762 status = nfs_sync_mapping(filp->f_mapping); 763 if (status != 0) 764 goto out; 765 766 /* 767 * Use local locking if mounted with "-onolock" or with appropriate 768 * "-olocal_lock=" 769 */ 770 if (!is_local) 771 status = NFS_PROTO(inode)->lock(filp, cmd, fl); 772 else 773 status = locks_lock_file_wait(filp, fl); 774 if (status < 0) 775 goto out; 776 777 /* 778 * Invalidate cache to prevent missing any changes. If 779 * the file is mapped, clear the page cache as well so 780 * those mappings will be loaded. 781 * 782 * This makes locking act as a cache coherency point. 783 */ 784 nfs_sync_mapping(filp->f_mapping); 785 if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) { 786 nfs_zap_caches(inode); 787 if (mapping_mapped(filp->f_mapping)) 788 nfs_revalidate_mapping(inode, filp->f_mapping); 789 } 790 out: 791 return status; 792 } 793 794 /* 795 * Lock a (portion of) a file 796 */ 797 int nfs_lock(struct file *filp, int cmd, struct file_lock *fl) 798 { 799 struct inode *inode = filp->f_mapping->host; 800 int ret = -ENOLCK; 801 int is_local = 0; 802 803 dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n", 804 filp, fl->fl_type, fl->fl_flags, 805 (long long)fl->fl_start, (long long)fl->fl_end); 806 807 nfs_inc_stats(inode, NFSIOS_VFSLOCK); 808 809 /* No mandatory locks over NFS */ 810 if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK) 811 goto out_err; 812 813 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL) 814 is_local = 1; 815 816 if (NFS_PROTO(inode)->lock_check_bounds != NULL) { 817 ret = NFS_PROTO(inode)->lock_check_bounds(fl); 818 if (ret < 0) 819 goto out_err; 820 } 821 822 if (IS_GETLK(cmd)) 823 ret = do_getlk(filp, cmd, fl, is_local); 824 else if (fl->fl_type == F_UNLCK) 825 ret = do_unlk(filp, cmd, fl, is_local); 826 else 827 ret = do_setlk(filp, cmd, fl, is_local); 828 out_err: 829 return ret; 830 } 831 EXPORT_SYMBOL_GPL(nfs_lock); 832 833 /* 834 * Lock a (portion of) a file 835 */ 836 int nfs_flock(struct file *filp, int cmd, struct file_lock *fl) 837 { 838 struct inode *inode = filp->f_mapping->host; 839 int is_local = 0; 840 841 dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n", 842 filp, fl->fl_type, fl->fl_flags); 843 844 if (!(fl->fl_flags & FL_FLOCK)) 845 return -ENOLCK; 846 847 /* 848 * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of 849 * any standard. In principle we might be able to support LOCK_MAND 850 * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the 851 * NFS code is not set up for it. 852 */ 853 if (fl->fl_type & LOCK_MAND) 854 return -EINVAL; 855 856 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK) 857 is_local = 1; 858 859 /* We're simulating flock() locks using posix locks on the server */ 860 if (fl->fl_type == F_UNLCK) 861 return do_unlk(filp, cmd, fl, is_local); 862 return do_setlk(filp, cmd, fl, is_local); 863 } 864 EXPORT_SYMBOL_GPL(nfs_flock); 865 866 const struct file_operations nfs_file_operations = { 867 .llseek = nfs_file_llseek, 868 .read_iter = nfs_file_read, 869 .write_iter = nfs_file_write, 870 .mmap = nfs_file_mmap, 871 .open = nfs_file_open, 872 .flush = nfs_file_flush, 873 .release = nfs_file_release, 874 .fsync = nfs_file_fsync, 875 .lock = nfs_lock, 876 .flock = nfs_flock, 877 .splice_read = generic_file_splice_read, 878 .splice_write = iter_file_splice_write, 879 .check_flags = nfs_check_flags, 880 .setlease = simple_nosetlease, 881 }; 882 EXPORT_SYMBOL_GPL(nfs_file_operations); 883