1 /* 2 * linux/fs/nfs/file.c 3 * 4 * Copyright (C) 1992 Rick Sladkey 5 * 6 * Changes Copyright (C) 1994 by Florian La Roche 7 * - Do not copy data too often around in the kernel. 8 * - In nfs_file_read the return value of kmalloc wasn't checked. 9 * - Put in a better version of read look-ahead buffering. Original idea 10 * and implementation by Wai S Kok elekokws@ee.nus.sg. 11 * 12 * Expire cache on write to a file by Wai S Kok (Oct 1994). 13 * 14 * Total rewrite of read side for new NFS buffer cache.. Linus. 15 * 16 * nfs regular file handling functions 17 */ 18 19 #include <linux/module.h> 20 #include <linux/time.h> 21 #include <linux/kernel.h> 22 #include <linux/errno.h> 23 #include <linux/fcntl.h> 24 #include <linux/stat.h> 25 #include <linux/nfs_fs.h> 26 #include <linux/nfs_mount.h> 27 #include <linux/mm.h> 28 #include <linux/pagemap.h> 29 #include <linux/gfp.h> 30 #include <linux/swap.h> 31 32 #include <asm/uaccess.h> 33 34 #include "delegation.h" 35 #include "internal.h" 36 #include "iostat.h" 37 #include "fscache.h" 38 #include "pnfs.h" 39 40 #include "nfstrace.h" 41 42 #define NFSDBG_FACILITY NFSDBG_FILE 43 44 static const struct vm_operations_struct nfs_file_vm_ops; 45 46 /* Hack for future NFS swap support */ 47 #ifndef IS_SWAPFILE 48 # define IS_SWAPFILE(inode) (0) 49 #endif 50 51 int nfs_check_flags(int flags) 52 { 53 if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT)) 54 return -EINVAL; 55 56 return 0; 57 } 58 EXPORT_SYMBOL_GPL(nfs_check_flags); 59 60 /* 61 * Open file 62 */ 63 static int 64 nfs_file_open(struct inode *inode, struct file *filp) 65 { 66 int res; 67 68 dprintk("NFS: open file(%pD2)\n", filp); 69 70 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 71 res = nfs_check_flags(filp->f_flags); 72 if (res) 73 return res; 74 75 res = nfs_open(inode, filp); 76 return res; 77 } 78 79 int 80 nfs_file_release(struct inode *inode, struct file *filp) 81 { 82 dprintk("NFS: release(%pD2)\n", filp); 83 84 nfs_inc_stats(inode, NFSIOS_VFSRELEASE); 85 return nfs_release(inode, filp); 86 } 87 EXPORT_SYMBOL_GPL(nfs_file_release); 88 89 /** 90 * nfs_revalidate_size - Revalidate the file size 91 * @inode - pointer to inode struct 92 * @file - pointer to struct file 93 * 94 * Revalidates the file length. This is basically a wrapper around 95 * nfs_revalidate_inode() that takes into account the fact that we may 96 * have cached writes (in which case we don't care about the server's 97 * idea of what the file length is), or O_DIRECT (in which case we 98 * shouldn't trust the cache). 99 */ 100 static int nfs_revalidate_file_size(struct inode *inode, struct file *filp) 101 { 102 struct nfs_server *server = NFS_SERVER(inode); 103 struct nfs_inode *nfsi = NFS_I(inode); 104 105 if (nfs_have_delegated_attributes(inode)) 106 goto out_noreval; 107 108 if (filp->f_flags & O_DIRECT) 109 goto force_reval; 110 if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE) 111 goto force_reval; 112 if (nfs_attribute_timeout(inode)) 113 goto force_reval; 114 out_noreval: 115 return 0; 116 force_reval: 117 return __nfs_revalidate_inode(server, inode); 118 } 119 120 loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence) 121 { 122 dprintk("NFS: llseek file(%pD2, %lld, %d)\n", 123 filp, offset, whence); 124 125 /* 126 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate 127 * the cached file length 128 */ 129 if (whence != SEEK_SET && whence != SEEK_CUR) { 130 struct inode *inode = filp->f_mapping->host; 131 132 int retval = nfs_revalidate_file_size(inode, filp); 133 if (retval < 0) 134 return (loff_t)retval; 135 } 136 137 return generic_file_llseek(filp, offset, whence); 138 } 139 EXPORT_SYMBOL_GPL(nfs_file_llseek); 140 141 /* 142 * Flush all dirty pages, and check for write errors. 143 */ 144 int 145 nfs_file_flush(struct file *file, fl_owner_t id) 146 { 147 struct inode *inode = file_inode(file); 148 149 dprintk("NFS: flush(%pD2)\n", file); 150 151 nfs_inc_stats(inode, NFSIOS_VFSFLUSH); 152 if ((file->f_mode & FMODE_WRITE) == 0) 153 return 0; 154 155 /* 156 * If we're holding a write delegation, then just start the i/o 157 * but don't wait for completion (or send a commit). 158 */ 159 if (NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE)) 160 return filemap_fdatawrite(file->f_mapping); 161 162 /* Flush writes to the server and return any errors */ 163 return vfs_fsync(file, 0); 164 } 165 EXPORT_SYMBOL_GPL(nfs_file_flush); 166 167 ssize_t 168 nfs_file_read(struct kiocb *iocb, struct iov_iter *to) 169 { 170 struct inode *inode = file_inode(iocb->ki_filp); 171 ssize_t result; 172 173 if (iocb->ki_flags & IOCB_DIRECT) 174 return nfs_file_direct_read(iocb, to, iocb->ki_pos); 175 176 dprintk("NFS: read(%pD2, %zu@%lu)\n", 177 iocb->ki_filp, 178 iov_iter_count(to), (unsigned long) iocb->ki_pos); 179 180 result = nfs_revalidate_mapping_protected(inode, iocb->ki_filp->f_mapping); 181 if (!result) { 182 result = generic_file_read_iter(iocb, to); 183 if (result > 0) 184 nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result); 185 } 186 return result; 187 } 188 EXPORT_SYMBOL_GPL(nfs_file_read); 189 190 ssize_t 191 nfs_file_splice_read(struct file *filp, loff_t *ppos, 192 struct pipe_inode_info *pipe, size_t count, 193 unsigned int flags) 194 { 195 struct inode *inode = file_inode(filp); 196 ssize_t res; 197 198 dprintk("NFS: splice_read(%pD2, %lu@%Lu)\n", 199 filp, (unsigned long) count, (unsigned long long) *ppos); 200 201 res = nfs_revalidate_mapping_protected(inode, filp->f_mapping); 202 if (!res) { 203 res = generic_file_splice_read(filp, ppos, pipe, count, flags); 204 if (res > 0) 205 nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, res); 206 } 207 return res; 208 } 209 EXPORT_SYMBOL_GPL(nfs_file_splice_read); 210 211 int 212 nfs_file_mmap(struct file * file, struct vm_area_struct * vma) 213 { 214 struct inode *inode = file_inode(file); 215 int status; 216 217 dprintk("NFS: mmap(%pD2)\n", file); 218 219 /* Note: generic_file_mmap() returns ENOSYS on nommu systems 220 * so we call that before revalidating the mapping 221 */ 222 status = generic_file_mmap(file, vma); 223 if (!status) { 224 vma->vm_ops = &nfs_file_vm_ops; 225 status = nfs_revalidate_mapping(inode, file->f_mapping); 226 } 227 return status; 228 } 229 EXPORT_SYMBOL_GPL(nfs_file_mmap); 230 231 /* 232 * Flush any dirty pages for this process, and check for write errors. 233 * The return status from this call provides a reliable indication of 234 * whether any write errors occurred for this process. 235 * 236 * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to 237 * disk, but it retrieves and clears ctx->error after synching, despite 238 * the two being set at the same time in nfs_context_set_write_error(). 239 * This is because the former is used to notify the _next_ call to 240 * nfs_file_write() that a write error occurred, and hence cause it to 241 * fall back to doing a synchronous write. 242 */ 243 int 244 nfs_file_fsync_commit(struct file *file, loff_t start, loff_t end, int datasync) 245 { 246 struct nfs_open_context *ctx = nfs_file_open_context(file); 247 struct inode *inode = file_inode(file); 248 int have_error, do_resend, status; 249 int ret = 0; 250 251 dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync); 252 253 nfs_inc_stats(inode, NFSIOS_VFSFSYNC); 254 do_resend = test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags); 255 have_error = test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags); 256 status = nfs_commit_inode(inode, FLUSH_SYNC); 257 have_error |= test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags); 258 if (have_error) { 259 ret = xchg(&ctx->error, 0); 260 if (ret) 261 goto out; 262 } 263 if (status < 0) { 264 ret = status; 265 goto out; 266 } 267 do_resend |= test_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags); 268 if (do_resend) 269 ret = -EAGAIN; 270 out: 271 return ret; 272 } 273 EXPORT_SYMBOL_GPL(nfs_file_fsync_commit); 274 275 static int 276 nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync) 277 { 278 int ret; 279 struct inode *inode = file_inode(file); 280 281 trace_nfs_fsync_enter(inode); 282 283 nfs_inode_dio_wait(inode); 284 do { 285 ret = filemap_write_and_wait_range(inode->i_mapping, start, end); 286 if (ret != 0) 287 break; 288 mutex_lock(&inode->i_mutex); 289 ret = nfs_file_fsync_commit(file, start, end, datasync); 290 mutex_unlock(&inode->i_mutex); 291 /* 292 * If nfs_file_fsync_commit detected a server reboot, then 293 * resend all dirty pages that might have been covered by 294 * the NFS_CONTEXT_RESEND_WRITES flag 295 */ 296 start = 0; 297 end = LLONG_MAX; 298 } while (ret == -EAGAIN); 299 300 trace_nfs_fsync_exit(inode, ret); 301 return ret; 302 } 303 304 /* 305 * Decide whether a read/modify/write cycle may be more efficient 306 * then a modify/write/read cycle when writing to a page in the 307 * page cache. 308 * 309 * The modify/write/read cycle may occur if a page is read before 310 * being completely filled by the writer. In this situation, the 311 * page must be completely written to stable storage on the server 312 * before it can be refilled by reading in the page from the server. 313 * This can lead to expensive, small, FILE_SYNC mode writes being 314 * done. 315 * 316 * It may be more efficient to read the page first if the file is 317 * open for reading in addition to writing, the page is not marked 318 * as Uptodate, it is not dirty or waiting to be committed, 319 * indicating that it was previously allocated and then modified, 320 * that there were valid bytes of data in that range of the file, 321 * and that the new data won't completely replace the old data in 322 * that range of the file. 323 */ 324 static int nfs_want_read_modify_write(struct file *file, struct page *page, 325 loff_t pos, unsigned len) 326 { 327 unsigned int pglen = nfs_page_length(page); 328 unsigned int offset = pos & (PAGE_CACHE_SIZE - 1); 329 unsigned int end = offset + len; 330 331 if (pnfs_ld_read_whole_page(file->f_mapping->host)) { 332 if (!PageUptodate(page)) 333 return 1; 334 return 0; 335 } 336 337 if ((file->f_mode & FMODE_READ) && /* open for read? */ 338 !PageUptodate(page) && /* Uptodate? */ 339 !PagePrivate(page) && /* i/o request already? */ 340 pglen && /* valid bytes of file? */ 341 (end < pglen || offset)) /* replace all valid bytes? */ 342 return 1; 343 return 0; 344 } 345 346 /* 347 * This does the "real" work of the write. We must allocate and lock the 348 * page to be sent back to the generic routine, which then copies the 349 * data from user space. 350 * 351 * If the writer ends up delaying the write, the writer needs to 352 * increment the page use counts until he is done with the page. 353 */ 354 static int nfs_write_begin(struct file *file, struct address_space *mapping, 355 loff_t pos, unsigned len, unsigned flags, 356 struct page **pagep, void **fsdata) 357 { 358 int ret; 359 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 360 struct page *page; 361 int once_thru = 0; 362 363 dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n", 364 file, mapping->host->i_ino, len, (long long) pos); 365 366 start: 367 /* 368 * Prevent starvation issues if someone is doing a consistency 369 * sync-to-disk 370 */ 371 ret = wait_on_bit_action(&NFS_I(mapping->host)->flags, NFS_INO_FLUSHING, 372 nfs_wait_bit_killable, TASK_KILLABLE); 373 if (ret) 374 return ret; 375 /* 376 * Wait for O_DIRECT to complete 377 */ 378 nfs_inode_dio_wait(mapping->host); 379 380 page = grab_cache_page_write_begin(mapping, index, flags); 381 if (!page) 382 return -ENOMEM; 383 *pagep = page; 384 385 ret = nfs_flush_incompatible(file, page); 386 if (ret) { 387 unlock_page(page); 388 page_cache_release(page); 389 } else if (!once_thru && 390 nfs_want_read_modify_write(file, page, pos, len)) { 391 once_thru = 1; 392 ret = nfs_readpage(file, page); 393 page_cache_release(page); 394 if (!ret) 395 goto start; 396 } 397 return ret; 398 } 399 400 static int nfs_write_end(struct file *file, struct address_space *mapping, 401 loff_t pos, unsigned len, unsigned copied, 402 struct page *page, void *fsdata) 403 { 404 unsigned offset = pos & (PAGE_CACHE_SIZE - 1); 405 struct nfs_open_context *ctx = nfs_file_open_context(file); 406 int status; 407 408 dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n", 409 file, mapping->host->i_ino, len, (long long) pos); 410 411 /* 412 * Zero any uninitialised parts of the page, and then mark the page 413 * as up to date if it turns out that we're extending the file. 414 */ 415 if (!PageUptodate(page)) { 416 unsigned pglen = nfs_page_length(page); 417 unsigned end = offset + len; 418 419 if (pglen == 0) { 420 zero_user_segments(page, 0, offset, 421 end, PAGE_CACHE_SIZE); 422 SetPageUptodate(page); 423 } else if (end >= pglen) { 424 zero_user_segment(page, end, PAGE_CACHE_SIZE); 425 if (offset == 0) 426 SetPageUptodate(page); 427 } else 428 zero_user_segment(page, pglen, PAGE_CACHE_SIZE); 429 } 430 431 status = nfs_updatepage(file, page, offset, copied); 432 433 unlock_page(page); 434 page_cache_release(page); 435 436 if (status < 0) 437 return status; 438 NFS_I(mapping->host)->write_io += copied; 439 440 if (nfs_ctx_key_to_expire(ctx)) { 441 status = nfs_wb_all(mapping->host); 442 if (status < 0) 443 return status; 444 } 445 446 return copied; 447 } 448 449 /* 450 * Partially or wholly invalidate a page 451 * - Release the private state associated with a page if undergoing complete 452 * page invalidation 453 * - Called if either PG_private or PG_fscache is set on the page 454 * - Caller holds page lock 455 */ 456 static void nfs_invalidate_page(struct page *page, unsigned int offset, 457 unsigned int length) 458 { 459 dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n", 460 page, offset, length); 461 462 if (offset != 0 || length < PAGE_CACHE_SIZE) 463 return; 464 /* Cancel any unstarted writes on this page */ 465 nfs_wb_page_cancel(page_file_mapping(page)->host, page); 466 467 nfs_fscache_invalidate_page(page, page->mapping->host); 468 } 469 470 /* 471 * Attempt to release the private state associated with a page 472 * - Called if either PG_private or PG_fscache is set on the page 473 * - Caller holds page lock 474 * - Return true (may release page) or false (may not) 475 */ 476 static int nfs_release_page(struct page *page, gfp_t gfp) 477 { 478 struct address_space *mapping = page->mapping; 479 480 dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page); 481 482 /* Always try to initiate a 'commit' if relevant, but only 483 * wait for it if __GFP_WAIT is set. Even then, only wait 1 484 * second and only if the 'bdi' is not congested. 485 * Waiting indefinitely can cause deadlocks when the NFS 486 * server is on this machine, when a new TCP connection is 487 * needed and in other rare cases. There is no particular 488 * need to wait extensively here. A short wait has the 489 * benefit that someone else can worry about the freezer. 490 */ 491 if (mapping) { 492 struct nfs_server *nfss = NFS_SERVER(mapping->host); 493 nfs_commit_inode(mapping->host, 0); 494 if ((gfp & __GFP_WAIT) && 495 !bdi_write_congested(&nfss->backing_dev_info)) { 496 wait_on_page_bit_killable_timeout(page, PG_private, 497 HZ); 498 if (PagePrivate(page)) 499 set_bdi_congested(&nfss->backing_dev_info, 500 BLK_RW_ASYNC); 501 } 502 } 503 /* If PagePrivate() is set, then the page is not freeable */ 504 if (PagePrivate(page)) 505 return 0; 506 return nfs_fscache_release_page(page, gfp); 507 } 508 509 static void nfs_check_dirty_writeback(struct page *page, 510 bool *dirty, bool *writeback) 511 { 512 struct nfs_inode *nfsi; 513 struct address_space *mapping = page_file_mapping(page); 514 515 if (!mapping || PageSwapCache(page)) 516 return; 517 518 /* 519 * Check if an unstable page is currently being committed and 520 * if so, have the VM treat it as if the page is under writeback 521 * so it will not block due to pages that will shortly be freeable. 522 */ 523 nfsi = NFS_I(mapping->host); 524 if (test_bit(NFS_INO_COMMIT, &nfsi->flags)) { 525 *writeback = true; 526 return; 527 } 528 529 /* 530 * If PagePrivate() is set, then the page is not freeable and as the 531 * inode is not being committed, it's not going to be cleaned in the 532 * near future so treat it as dirty 533 */ 534 if (PagePrivate(page)) 535 *dirty = true; 536 } 537 538 /* 539 * Attempt to clear the private state associated with a page when an error 540 * occurs that requires the cached contents of an inode to be written back or 541 * destroyed 542 * - Called if either PG_private or fscache is set on the page 543 * - Caller holds page lock 544 * - Return 0 if successful, -error otherwise 545 */ 546 static int nfs_launder_page(struct page *page) 547 { 548 struct inode *inode = page_file_mapping(page)->host; 549 struct nfs_inode *nfsi = NFS_I(inode); 550 551 dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n", 552 inode->i_ino, (long long)page_offset(page)); 553 554 nfs_fscache_wait_on_page_write(nfsi, page); 555 return nfs_wb_page(inode, page); 556 } 557 558 #ifdef CONFIG_NFS_SWAP 559 static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file, 560 sector_t *span) 561 { 562 int ret; 563 struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host); 564 565 *span = sis->pages; 566 567 rcu_read_lock(); 568 ret = xs_swapper(rcu_dereference(clnt->cl_xprt), 1); 569 rcu_read_unlock(); 570 571 return ret; 572 } 573 574 static void nfs_swap_deactivate(struct file *file) 575 { 576 struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host); 577 578 rcu_read_lock(); 579 xs_swapper(rcu_dereference(clnt->cl_xprt), 0); 580 rcu_read_unlock(); 581 } 582 #endif 583 584 const struct address_space_operations nfs_file_aops = { 585 .readpage = nfs_readpage, 586 .readpages = nfs_readpages, 587 .set_page_dirty = __set_page_dirty_nobuffers, 588 .writepage = nfs_writepage, 589 .writepages = nfs_writepages, 590 .write_begin = nfs_write_begin, 591 .write_end = nfs_write_end, 592 .invalidatepage = nfs_invalidate_page, 593 .releasepage = nfs_release_page, 594 .direct_IO = nfs_direct_IO, 595 .migratepage = nfs_migrate_page, 596 .launder_page = nfs_launder_page, 597 .is_dirty_writeback = nfs_check_dirty_writeback, 598 .error_remove_page = generic_error_remove_page, 599 #ifdef CONFIG_NFS_SWAP 600 .swap_activate = nfs_swap_activate, 601 .swap_deactivate = nfs_swap_deactivate, 602 #endif 603 }; 604 605 /* 606 * Notification that a PTE pointing to an NFS page is about to be made 607 * writable, implying that someone is about to modify the page through a 608 * shared-writable mapping 609 */ 610 static int nfs_vm_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 611 { 612 struct page *page = vmf->page; 613 struct file *filp = vma->vm_file; 614 struct inode *inode = file_inode(filp); 615 unsigned pagelen; 616 int ret = VM_FAULT_NOPAGE; 617 struct address_space *mapping; 618 619 dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n", 620 filp, filp->f_mapping->host->i_ino, 621 (long long)page_offset(page)); 622 623 /* make sure the cache has finished storing the page */ 624 nfs_fscache_wait_on_page_write(NFS_I(inode), page); 625 626 wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING, 627 nfs_wait_bit_killable, TASK_KILLABLE); 628 629 lock_page(page); 630 mapping = page_file_mapping(page); 631 if (mapping != inode->i_mapping) 632 goto out_unlock; 633 634 wait_on_page_writeback(page); 635 636 pagelen = nfs_page_length(page); 637 if (pagelen == 0) 638 goto out_unlock; 639 640 ret = VM_FAULT_LOCKED; 641 if (nfs_flush_incompatible(filp, page) == 0 && 642 nfs_updatepage(filp, page, 0, pagelen) == 0) 643 goto out; 644 645 ret = VM_FAULT_SIGBUS; 646 out_unlock: 647 unlock_page(page); 648 out: 649 return ret; 650 } 651 652 static const struct vm_operations_struct nfs_file_vm_ops = { 653 .fault = filemap_fault, 654 .map_pages = filemap_map_pages, 655 .page_mkwrite = nfs_vm_page_mkwrite, 656 }; 657 658 static int nfs_need_sync_write(struct file *filp, struct inode *inode) 659 { 660 struct nfs_open_context *ctx; 661 662 if (IS_SYNC(inode) || (filp->f_flags & O_DSYNC)) 663 return 1; 664 ctx = nfs_file_open_context(filp); 665 if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags) || 666 nfs_ctx_key_to_expire(ctx)) 667 return 1; 668 return 0; 669 } 670 671 ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from) 672 { 673 struct file *file = iocb->ki_filp; 674 struct inode *inode = file_inode(file); 675 unsigned long written = 0; 676 ssize_t result; 677 size_t count = iov_iter_count(from); 678 679 result = nfs_key_timeout_notify(file, inode); 680 if (result) 681 return result; 682 683 if (iocb->ki_flags & IOCB_DIRECT) { 684 result = generic_write_checks(iocb, from); 685 if (result <= 0) 686 return result; 687 return nfs_file_direct_write(iocb, from); 688 } 689 690 dprintk("NFS: write(%pD2, %zu@%Ld)\n", 691 file, count, (long long) iocb->ki_pos); 692 693 result = -EBUSY; 694 if (IS_SWAPFILE(inode)) 695 goto out_swapfile; 696 /* 697 * O_APPEND implies that we must revalidate the file length. 698 */ 699 if (iocb->ki_flags & IOCB_APPEND) { 700 result = nfs_revalidate_file_size(inode, file); 701 if (result) 702 goto out; 703 } 704 705 result = count; 706 if (!count) 707 goto out; 708 709 result = generic_file_write_iter(iocb, from); 710 if (result > 0) 711 written = result; 712 713 /* Return error values for O_DSYNC and IS_SYNC() */ 714 if (result >= 0 && nfs_need_sync_write(file, inode)) { 715 int err = vfs_fsync(file, 0); 716 if (err < 0) 717 result = err; 718 } 719 if (result > 0) 720 nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written); 721 out: 722 return result; 723 724 out_swapfile: 725 printk(KERN_INFO "NFS: attempt to write to active swap file!\n"); 726 goto out; 727 } 728 EXPORT_SYMBOL_GPL(nfs_file_write); 729 730 static int 731 do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local) 732 { 733 struct inode *inode = filp->f_mapping->host; 734 int status = 0; 735 unsigned int saved_type = fl->fl_type; 736 737 /* Try local locking first */ 738 posix_test_lock(filp, fl); 739 if (fl->fl_type != F_UNLCK) { 740 /* found a conflict */ 741 goto out; 742 } 743 fl->fl_type = saved_type; 744 745 if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) 746 goto out_noconflict; 747 748 if (is_local) 749 goto out_noconflict; 750 751 status = NFS_PROTO(inode)->lock(filp, cmd, fl); 752 out: 753 return status; 754 out_noconflict: 755 fl->fl_type = F_UNLCK; 756 goto out; 757 } 758 759 static int do_vfs_lock(struct file *file, struct file_lock *fl) 760 { 761 int res = 0; 762 switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) { 763 case FL_POSIX: 764 res = posix_lock_file_wait(file, fl); 765 break; 766 case FL_FLOCK: 767 res = flock_lock_file_wait(file, fl); 768 break; 769 default: 770 BUG(); 771 } 772 return res; 773 } 774 775 static int 776 do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local) 777 { 778 struct inode *inode = filp->f_mapping->host; 779 struct nfs_lock_context *l_ctx; 780 int status; 781 782 /* 783 * Flush all pending writes before doing anything 784 * with locks.. 785 */ 786 vfs_fsync(filp, 0); 787 788 l_ctx = nfs_get_lock_context(nfs_file_open_context(filp)); 789 if (!IS_ERR(l_ctx)) { 790 status = nfs_iocounter_wait(&l_ctx->io_count); 791 nfs_put_lock_context(l_ctx); 792 if (status < 0) 793 return status; 794 } 795 796 /* NOTE: special case 797 * If we're signalled while cleaning up locks on process exit, we 798 * still need to complete the unlock. 799 */ 800 /* 801 * Use local locking if mounted with "-onolock" or with appropriate 802 * "-olocal_lock=" 803 */ 804 if (!is_local) 805 status = NFS_PROTO(inode)->lock(filp, cmd, fl); 806 else 807 status = do_vfs_lock(filp, fl); 808 return status; 809 } 810 811 static int 812 is_time_granular(struct timespec *ts) { 813 return ((ts->tv_sec == 0) && (ts->tv_nsec <= 1000)); 814 } 815 816 static int 817 do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local) 818 { 819 struct inode *inode = filp->f_mapping->host; 820 int status; 821 822 /* 823 * Flush all pending writes before doing anything 824 * with locks.. 825 */ 826 status = nfs_sync_mapping(filp->f_mapping); 827 if (status != 0) 828 goto out; 829 830 /* 831 * Use local locking if mounted with "-onolock" or with appropriate 832 * "-olocal_lock=" 833 */ 834 if (!is_local) 835 status = NFS_PROTO(inode)->lock(filp, cmd, fl); 836 else 837 status = do_vfs_lock(filp, fl); 838 if (status < 0) 839 goto out; 840 841 /* 842 * Revalidate the cache if the server has time stamps granular 843 * enough to detect subsecond changes. Otherwise, clear the 844 * cache to prevent missing any changes. 845 * 846 * This makes locking act as a cache coherency point. 847 */ 848 nfs_sync_mapping(filp->f_mapping); 849 if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) { 850 if (is_time_granular(&NFS_SERVER(inode)->time_delta)) 851 __nfs_revalidate_inode(NFS_SERVER(inode), inode); 852 else 853 nfs_zap_caches(inode); 854 } 855 out: 856 return status; 857 } 858 859 /* 860 * Lock a (portion of) a file 861 */ 862 int nfs_lock(struct file *filp, int cmd, struct file_lock *fl) 863 { 864 struct inode *inode = filp->f_mapping->host; 865 int ret = -ENOLCK; 866 int is_local = 0; 867 868 dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n", 869 filp, fl->fl_type, fl->fl_flags, 870 (long long)fl->fl_start, (long long)fl->fl_end); 871 872 nfs_inc_stats(inode, NFSIOS_VFSLOCK); 873 874 /* No mandatory locks over NFS */ 875 if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK) 876 goto out_err; 877 878 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL) 879 is_local = 1; 880 881 if (NFS_PROTO(inode)->lock_check_bounds != NULL) { 882 ret = NFS_PROTO(inode)->lock_check_bounds(fl); 883 if (ret < 0) 884 goto out_err; 885 } 886 887 if (IS_GETLK(cmd)) 888 ret = do_getlk(filp, cmd, fl, is_local); 889 else if (fl->fl_type == F_UNLCK) 890 ret = do_unlk(filp, cmd, fl, is_local); 891 else 892 ret = do_setlk(filp, cmd, fl, is_local); 893 out_err: 894 return ret; 895 } 896 EXPORT_SYMBOL_GPL(nfs_lock); 897 898 /* 899 * Lock a (portion of) a file 900 */ 901 int nfs_flock(struct file *filp, int cmd, struct file_lock *fl) 902 { 903 struct inode *inode = filp->f_mapping->host; 904 int is_local = 0; 905 906 dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n", 907 filp, fl->fl_type, fl->fl_flags); 908 909 if (!(fl->fl_flags & FL_FLOCK)) 910 return -ENOLCK; 911 912 /* 913 * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of 914 * any standard. In principle we might be able to support LOCK_MAND 915 * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the 916 * NFS code is not set up for it. 917 */ 918 if (fl->fl_type & LOCK_MAND) 919 return -EINVAL; 920 921 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK) 922 is_local = 1; 923 924 /* We're simulating flock() locks using posix locks on the server */ 925 if (fl->fl_type == F_UNLCK) 926 return do_unlk(filp, cmd, fl, is_local); 927 return do_setlk(filp, cmd, fl, is_local); 928 } 929 EXPORT_SYMBOL_GPL(nfs_flock); 930 931 const struct file_operations nfs_file_operations = { 932 .llseek = nfs_file_llseek, 933 .read_iter = nfs_file_read, 934 .write_iter = nfs_file_write, 935 .mmap = nfs_file_mmap, 936 .open = nfs_file_open, 937 .flush = nfs_file_flush, 938 .release = nfs_file_release, 939 .fsync = nfs_file_fsync, 940 .lock = nfs_lock, 941 .flock = nfs_flock, 942 .splice_read = nfs_file_splice_read, 943 .splice_write = iter_file_splice_write, 944 .check_flags = nfs_check_flags, 945 .setlease = simple_nosetlease, 946 }; 947 EXPORT_SYMBOL_GPL(nfs_file_operations); 948