1 /* 2 * linux/fs/nfs/file.c 3 * 4 * Copyright (C) 1992 Rick Sladkey 5 * 6 * Changes Copyright (C) 1994 by Florian La Roche 7 * - Do not copy data too often around in the kernel. 8 * - In nfs_file_read the return value of kmalloc wasn't checked. 9 * - Put in a better version of read look-ahead buffering. Original idea 10 * and implementation by Wai S Kok elekokws@ee.nus.sg. 11 * 12 * Expire cache on write to a file by Wai S Kok (Oct 1994). 13 * 14 * Total rewrite of read side for new NFS buffer cache.. Linus. 15 * 16 * nfs regular file handling functions 17 */ 18 19 #include <linux/module.h> 20 #include <linux/time.h> 21 #include <linux/kernel.h> 22 #include <linux/errno.h> 23 #include <linux/fcntl.h> 24 #include <linux/stat.h> 25 #include <linux/nfs_fs.h> 26 #include <linux/nfs_mount.h> 27 #include <linux/mm.h> 28 #include <linux/pagemap.h> 29 #include <linux/gfp.h> 30 #include <linux/swap.h> 31 32 #include <linux/uaccess.h> 33 34 #include "delegation.h" 35 #include "internal.h" 36 #include "iostat.h" 37 #include "fscache.h" 38 #include "pnfs.h" 39 40 #include "nfstrace.h" 41 42 #define NFSDBG_FACILITY NFSDBG_FILE 43 44 static const struct vm_operations_struct nfs_file_vm_ops; 45 46 /* Hack for future NFS swap support */ 47 #ifndef IS_SWAPFILE 48 # define IS_SWAPFILE(inode) (0) 49 #endif 50 51 int nfs_check_flags(int flags) 52 { 53 if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT)) 54 return -EINVAL; 55 56 return 0; 57 } 58 EXPORT_SYMBOL_GPL(nfs_check_flags); 59 60 /* 61 * Open file 62 */ 63 static int 64 nfs_file_open(struct inode *inode, struct file *filp) 65 { 66 int res; 67 68 dprintk("NFS: open file(%pD2)\n", filp); 69 70 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 71 res = nfs_check_flags(filp->f_flags); 72 if (res) 73 return res; 74 75 res = nfs_open(inode, filp); 76 return res; 77 } 78 79 int 80 nfs_file_release(struct inode *inode, struct file *filp) 81 { 82 dprintk("NFS: release(%pD2)\n", filp); 83 84 nfs_inc_stats(inode, NFSIOS_VFSRELEASE); 85 nfs_file_clear_open_context(filp); 86 return 0; 87 } 88 EXPORT_SYMBOL_GPL(nfs_file_release); 89 90 /** 91 * nfs_revalidate_size - Revalidate the file size 92 * @inode: pointer to inode struct 93 * @filp: pointer to struct file 94 * 95 * Revalidates the file length. This is basically a wrapper around 96 * nfs_revalidate_inode() that takes into account the fact that we may 97 * have cached writes (in which case we don't care about the server's 98 * idea of what the file length is), or O_DIRECT (in which case we 99 * shouldn't trust the cache). 100 */ 101 static int nfs_revalidate_file_size(struct inode *inode, struct file *filp) 102 { 103 struct nfs_server *server = NFS_SERVER(inode); 104 105 if (filp->f_flags & O_DIRECT) 106 goto force_reval; 107 if (nfs_check_cache_invalid(inode, NFS_INO_REVAL_PAGECACHE)) 108 goto force_reval; 109 return 0; 110 force_reval: 111 return __nfs_revalidate_inode(server, inode); 112 } 113 114 loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence) 115 { 116 dprintk("NFS: llseek file(%pD2, %lld, %d)\n", 117 filp, offset, whence); 118 119 /* 120 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate 121 * the cached file length 122 */ 123 if (whence != SEEK_SET && whence != SEEK_CUR) { 124 struct inode *inode = filp->f_mapping->host; 125 126 int retval = nfs_revalidate_file_size(inode, filp); 127 if (retval < 0) 128 return (loff_t)retval; 129 } 130 131 return generic_file_llseek(filp, offset, whence); 132 } 133 EXPORT_SYMBOL_GPL(nfs_file_llseek); 134 135 /* 136 * Flush all dirty pages, and check for write errors. 137 */ 138 static int 139 nfs_file_flush(struct file *file, fl_owner_t id) 140 { 141 struct inode *inode = file_inode(file); 142 143 dprintk("NFS: flush(%pD2)\n", file); 144 145 nfs_inc_stats(inode, NFSIOS_VFSFLUSH); 146 if ((file->f_mode & FMODE_WRITE) == 0) 147 return 0; 148 149 /* Flush writes to the server and return any errors */ 150 return nfs_wb_all(inode); 151 } 152 153 ssize_t 154 nfs_file_read(struct kiocb *iocb, struct iov_iter *to) 155 { 156 struct inode *inode = file_inode(iocb->ki_filp); 157 ssize_t result; 158 159 if (iocb->ki_flags & IOCB_DIRECT) 160 return nfs_file_direct_read(iocb, to); 161 162 dprintk("NFS: read(%pD2, %zu@%lu)\n", 163 iocb->ki_filp, 164 iov_iter_count(to), (unsigned long) iocb->ki_pos); 165 166 nfs_start_io_read(inode); 167 result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping); 168 if (!result) { 169 result = generic_file_read_iter(iocb, to); 170 if (result > 0) 171 nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result); 172 } 173 nfs_end_io_read(inode); 174 return result; 175 } 176 EXPORT_SYMBOL_GPL(nfs_file_read); 177 178 int 179 nfs_file_mmap(struct file * file, struct vm_area_struct * vma) 180 { 181 struct inode *inode = file_inode(file); 182 int status; 183 184 dprintk("NFS: mmap(%pD2)\n", file); 185 186 /* Note: generic_file_mmap() returns ENOSYS on nommu systems 187 * so we call that before revalidating the mapping 188 */ 189 status = generic_file_mmap(file, vma); 190 if (!status) { 191 vma->vm_ops = &nfs_file_vm_ops; 192 status = nfs_revalidate_mapping(inode, file->f_mapping); 193 } 194 return status; 195 } 196 EXPORT_SYMBOL_GPL(nfs_file_mmap); 197 198 /* 199 * Flush any dirty pages for this process, and check for write errors. 200 * The return status from this call provides a reliable indication of 201 * whether any write errors occurred for this process. 202 */ 203 static int 204 nfs_file_fsync_commit(struct file *file, int datasync) 205 { 206 struct nfs_open_context *ctx = nfs_file_open_context(file); 207 struct inode *inode = file_inode(file); 208 int do_resend, status; 209 int ret = 0; 210 211 dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync); 212 213 nfs_inc_stats(inode, NFSIOS_VFSFSYNC); 214 do_resend = test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags); 215 status = nfs_commit_inode(inode, FLUSH_SYNC); 216 if (status == 0) 217 status = file_check_and_advance_wb_err(file); 218 if (status < 0) { 219 ret = status; 220 goto out; 221 } 222 do_resend |= test_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags); 223 if (do_resend) 224 ret = -EAGAIN; 225 out: 226 return ret; 227 } 228 229 int 230 nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync) 231 { 232 int ret; 233 struct inode *inode = file_inode(file); 234 235 trace_nfs_fsync_enter(inode); 236 237 do { 238 ret = file_write_and_wait_range(file, start, end); 239 if (ret != 0) 240 break; 241 ret = nfs_file_fsync_commit(file, datasync); 242 if (!ret) 243 ret = pnfs_sync_inode(inode, !!datasync); 244 /* 245 * If nfs_file_fsync_commit detected a server reboot, then 246 * resend all dirty pages that might have been covered by 247 * the NFS_CONTEXT_RESEND_WRITES flag 248 */ 249 start = 0; 250 end = LLONG_MAX; 251 } while (ret == -EAGAIN); 252 253 trace_nfs_fsync_exit(inode, ret); 254 return ret; 255 } 256 EXPORT_SYMBOL_GPL(nfs_file_fsync); 257 258 /* 259 * Decide whether a read/modify/write cycle may be more efficient 260 * then a modify/write/read cycle when writing to a page in the 261 * page cache. 262 * 263 * Some pNFS layout drivers can only read/write at a certain block 264 * granularity like all block devices and therefore we must perform 265 * read/modify/write whenever a page hasn't read yet and the data 266 * to be written there is not aligned to a block boundary and/or 267 * smaller than the block size. 268 * 269 * The modify/write/read cycle may occur if a page is read before 270 * being completely filled by the writer. In this situation, the 271 * page must be completely written to stable storage on the server 272 * before it can be refilled by reading in the page from the server. 273 * This can lead to expensive, small, FILE_SYNC mode writes being 274 * done. 275 * 276 * It may be more efficient to read the page first if the file is 277 * open for reading in addition to writing, the page is not marked 278 * as Uptodate, it is not dirty or waiting to be committed, 279 * indicating that it was previously allocated and then modified, 280 * that there were valid bytes of data in that range of the file, 281 * and that the new data won't completely replace the old data in 282 * that range of the file. 283 */ 284 static bool nfs_full_page_write(struct page *page, loff_t pos, unsigned int len) 285 { 286 unsigned int pglen = nfs_page_length(page); 287 unsigned int offset = pos & (PAGE_SIZE - 1); 288 unsigned int end = offset + len; 289 290 return !pglen || (end >= pglen && !offset); 291 } 292 293 static bool nfs_want_read_modify_write(struct file *file, struct page *page, 294 loff_t pos, unsigned int len) 295 { 296 /* 297 * Up-to-date pages, those with ongoing or full-page write 298 * don't need read/modify/write 299 */ 300 if (PageUptodate(page) || PagePrivate(page) || 301 nfs_full_page_write(page, pos, len)) 302 return false; 303 304 if (pnfs_ld_read_whole_page(file->f_mapping->host)) 305 return true; 306 /* Open for reading too? */ 307 if (file->f_mode & FMODE_READ) 308 return true; 309 return false; 310 } 311 312 /* 313 * This does the "real" work of the write. We must allocate and lock the 314 * page to be sent back to the generic routine, which then copies the 315 * data from user space. 316 * 317 * If the writer ends up delaying the write, the writer needs to 318 * increment the page use counts until he is done with the page. 319 */ 320 static int nfs_write_begin(struct file *file, struct address_space *mapping, 321 loff_t pos, unsigned len, unsigned flags, 322 struct page **pagep, void **fsdata) 323 { 324 int ret; 325 pgoff_t index = pos >> PAGE_SHIFT; 326 struct page *page; 327 int once_thru = 0; 328 329 dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n", 330 file, mapping->host->i_ino, len, (long long) pos); 331 332 start: 333 page = grab_cache_page_write_begin(mapping, index, flags); 334 if (!page) 335 return -ENOMEM; 336 *pagep = page; 337 338 ret = nfs_flush_incompatible(file, page); 339 if (ret) { 340 unlock_page(page); 341 put_page(page); 342 } else if (!once_thru && 343 nfs_want_read_modify_write(file, page, pos, len)) { 344 once_thru = 1; 345 ret = nfs_readpage(file, page); 346 put_page(page); 347 if (!ret) 348 goto start; 349 } 350 return ret; 351 } 352 353 static int nfs_write_end(struct file *file, struct address_space *mapping, 354 loff_t pos, unsigned len, unsigned copied, 355 struct page *page, void *fsdata) 356 { 357 unsigned offset = pos & (PAGE_SIZE - 1); 358 struct nfs_open_context *ctx = nfs_file_open_context(file); 359 int status; 360 361 dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n", 362 file, mapping->host->i_ino, len, (long long) pos); 363 364 /* 365 * Zero any uninitialised parts of the page, and then mark the page 366 * as up to date if it turns out that we're extending the file. 367 */ 368 if (!PageUptodate(page)) { 369 unsigned pglen = nfs_page_length(page); 370 unsigned end = offset + copied; 371 372 if (pglen == 0) { 373 zero_user_segments(page, 0, offset, 374 end, PAGE_SIZE); 375 SetPageUptodate(page); 376 } else if (end >= pglen) { 377 zero_user_segment(page, end, PAGE_SIZE); 378 if (offset == 0) 379 SetPageUptodate(page); 380 } else 381 zero_user_segment(page, pglen, PAGE_SIZE); 382 } 383 384 status = nfs_updatepage(file, page, offset, copied); 385 386 unlock_page(page); 387 put_page(page); 388 389 if (status < 0) 390 return status; 391 NFS_I(mapping->host)->write_io += copied; 392 393 if (nfs_ctx_key_to_expire(ctx, mapping->host)) { 394 status = nfs_wb_all(mapping->host); 395 if (status < 0) 396 return status; 397 } 398 399 return copied; 400 } 401 402 /* 403 * Partially or wholly invalidate a page 404 * - Release the private state associated with a page if undergoing complete 405 * page invalidation 406 * - Called if either PG_private or PG_fscache is set on the page 407 * - Caller holds page lock 408 */ 409 static void nfs_invalidate_page(struct page *page, unsigned int offset, 410 unsigned int length) 411 { 412 dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n", 413 page, offset, length); 414 415 if (offset != 0 || length < PAGE_SIZE) 416 return; 417 /* Cancel any unstarted writes on this page */ 418 nfs_wb_page_cancel(page_file_mapping(page)->host, page); 419 420 nfs_fscache_invalidate_page(page, page->mapping->host); 421 } 422 423 /* 424 * Attempt to release the private state associated with a page 425 * - Called if either PG_private or PG_fscache is set on the page 426 * - Caller holds page lock 427 * - Return true (may release page) or false (may not) 428 */ 429 static int nfs_release_page(struct page *page, gfp_t gfp) 430 { 431 dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page); 432 433 /* If PagePrivate() is set, then the page is not freeable */ 434 if (PagePrivate(page)) 435 return 0; 436 return nfs_fscache_release_page(page, gfp); 437 } 438 439 static void nfs_check_dirty_writeback(struct page *page, 440 bool *dirty, bool *writeback) 441 { 442 struct nfs_inode *nfsi; 443 struct address_space *mapping = page_file_mapping(page); 444 445 if (!mapping || PageSwapCache(page)) 446 return; 447 448 /* 449 * Check if an unstable page is currently being committed and 450 * if so, have the VM treat it as if the page is under writeback 451 * so it will not block due to pages that will shortly be freeable. 452 */ 453 nfsi = NFS_I(mapping->host); 454 if (atomic_read(&nfsi->commit_info.rpcs_out)) { 455 *writeback = true; 456 return; 457 } 458 459 /* 460 * If PagePrivate() is set, then the page is not freeable and as the 461 * inode is not being committed, it's not going to be cleaned in the 462 * near future so treat it as dirty 463 */ 464 if (PagePrivate(page)) 465 *dirty = true; 466 } 467 468 /* 469 * Attempt to clear the private state associated with a page when an error 470 * occurs that requires the cached contents of an inode to be written back or 471 * destroyed 472 * - Called if either PG_private or fscache is set on the page 473 * - Caller holds page lock 474 * - Return 0 if successful, -error otherwise 475 */ 476 static int nfs_launder_page(struct page *page) 477 { 478 struct inode *inode = page_file_mapping(page)->host; 479 struct nfs_inode *nfsi = NFS_I(inode); 480 481 dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n", 482 inode->i_ino, (long long)page_offset(page)); 483 484 nfs_fscache_wait_on_page_write(nfsi, page); 485 return nfs_wb_page(inode, page); 486 } 487 488 static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file, 489 sector_t *span) 490 { 491 struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host); 492 493 *span = sis->pages; 494 495 return rpc_clnt_swap_activate(clnt); 496 } 497 498 static void nfs_swap_deactivate(struct file *file) 499 { 500 struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host); 501 502 rpc_clnt_swap_deactivate(clnt); 503 } 504 505 const struct address_space_operations nfs_file_aops = { 506 .readpage = nfs_readpage, 507 .readpages = nfs_readpages, 508 .set_page_dirty = __set_page_dirty_nobuffers, 509 .writepage = nfs_writepage, 510 .writepages = nfs_writepages, 511 .write_begin = nfs_write_begin, 512 .write_end = nfs_write_end, 513 .invalidatepage = nfs_invalidate_page, 514 .releasepage = nfs_release_page, 515 .direct_IO = nfs_direct_IO, 516 #ifdef CONFIG_MIGRATION 517 .migratepage = nfs_migrate_page, 518 #endif 519 .launder_page = nfs_launder_page, 520 .is_dirty_writeback = nfs_check_dirty_writeback, 521 .error_remove_page = generic_error_remove_page, 522 .swap_activate = nfs_swap_activate, 523 .swap_deactivate = nfs_swap_deactivate, 524 }; 525 526 /* 527 * Notification that a PTE pointing to an NFS page is about to be made 528 * writable, implying that someone is about to modify the page through a 529 * shared-writable mapping 530 */ 531 static vm_fault_t nfs_vm_page_mkwrite(struct vm_fault *vmf) 532 { 533 struct page *page = vmf->page; 534 struct file *filp = vmf->vma->vm_file; 535 struct inode *inode = file_inode(filp); 536 unsigned pagelen; 537 vm_fault_t ret = VM_FAULT_NOPAGE; 538 struct address_space *mapping; 539 540 dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n", 541 filp, filp->f_mapping->host->i_ino, 542 (long long)page_offset(page)); 543 544 sb_start_pagefault(inode->i_sb); 545 546 /* make sure the cache has finished storing the page */ 547 nfs_fscache_wait_on_page_write(NFS_I(inode), page); 548 549 wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING, 550 nfs_wait_bit_killable, TASK_KILLABLE); 551 552 lock_page(page); 553 mapping = page_file_mapping(page); 554 if (mapping != inode->i_mapping) 555 goto out_unlock; 556 557 wait_on_page_writeback(page); 558 559 pagelen = nfs_page_length(page); 560 if (pagelen == 0) 561 goto out_unlock; 562 563 ret = VM_FAULT_LOCKED; 564 if (nfs_flush_incompatible(filp, page) == 0 && 565 nfs_updatepage(filp, page, 0, pagelen) == 0) 566 goto out; 567 568 ret = VM_FAULT_SIGBUS; 569 out_unlock: 570 unlock_page(page); 571 out: 572 sb_end_pagefault(inode->i_sb); 573 return ret; 574 } 575 576 static const struct vm_operations_struct nfs_file_vm_ops = { 577 .fault = filemap_fault, 578 .map_pages = filemap_map_pages, 579 .page_mkwrite = nfs_vm_page_mkwrite, 580 }; 581 582 static int nfs_need_check_write(struct file *filp, struct inode *inode) 583 { 584 struct nfs_open_context *ctx; 585 586 ctx = nfs_file_open_context(filp); 587 if (nfs_ctx_key_to_expire(ctx, inode)) 588 return 1; 589 return 0; 590 } 591 592 ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from) 593 { 594 struct file *file = iocb->ki_filp; 595 struct inode *inode = file_inode(file); 596 unsigned long written = 0; 597 ssize_t result; 598 599 result = nfs_key_timeout_notify(file, inode); 600 if (result) 601 return result; 602 603 if (iocb->ki_flags & IOCB_DIRECT) 604 return nfs_file_direct_write(iocb, from); 605 606 dprintk("NFS: write(%pD2, %zu@%Ld)\n", 607 file, iov_iter_count(from), (long long) iocb->ki_pos); 608 609 if (IS_SWAPFILE(inode)) 610 goto out_swapfile; 611 /* 612 * O_APPEND implies that we must revalidate the file length. 613 */ 614 if (iocb->ki_flags & IOCB_APPEND) { 615 result = nfs_revalidate_file_size(inode, file); 616 if (result) 617 goto out; 618 } 619 if (iocb->ki_pos > i_size_read(inode)) 620 nfs_revalidate_mapping(inode, file->f_mapping); 621 622 nfs_start_io_write(inode); 623 result = generic_write_checks(iocb, from); 624 if (result > 0) { 625 current->backing_dev_info = inode_to_bdi(inode); 626 result = generic_perform_write(file, from, iocb->ki_pos); 627 current->backing_dev_info = NULL; 628 } 629 nfs_end_io_write(inode); 630 if (result <= 0) 631 goto out; 632 633 written = result; 634 iocb->ki_pos += written; 635 result = generic_write_sync(iocb, written); 636 if (result < 0) 637 goto out; 638 639 /* Return error values */ 640 if (nfs_need_check_write(file, inode)) { 641 int err = nfs_wb_all(inode); 642 if (err < 0) 643 result = err; 644 } 645 nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written); 646 out: 647 return result; 648 649 out_swapfile: 650 printk(KERN_INFO "NFS: attempt to write to active swap file!\n"); 651 return -EBUSY; 652 } 653 EXPORT_SYMBOL_GPL(nfs_file_write); 654 655 static int 656 do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local) 657 { 658 struct inode *inode = filp->f_mapping->host; 659 int status = 0; 660 unsigned int saved_type = fl->fl_type; 661 662 /* Try local locking first */ 663 posix_test_lock(filp, fl); 664 if (fl->fl_type != F_UNLCK) { 665 /* found a conflict */ 666 goto out; 667 } 668 fl->fl_type = saved_type; 669 670 if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) 671 goto out_noconflict; 672 673 if (is_local) 674 goto out_noconflict; 675 676 status = NFS_PROTO(inode)->lock(filp, cmd, fl); 677 out: 678 return status; 679 out_noconflict: 680 fl->fl_type = F_UNLCK; 681 goto out; 682 } 683 684 static int 685 do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local) 686 { 687 struct inode *inode = filp->f_mapping->host; 688 struct nfs_lock_context *l_ctx; 689 int status; 690 691 /* 692 * Flush all pending writes before doing anything 693 * with locks.. 694 */ 695 nfs_wb_all(inode); 696 697 l_ctx = nfs_get_lock_context(nfs_file_open_context(filp)); 698 if (!IS_ERR(l_ctx)) { 699 status = nfs_iocounter_wait(l_ctx); 700 nfs_put_lock_context(l_ctx); 701 /* NOTE: special case 702 * If we're signalled while cleaning up locks on process exit, we 703 * still need to complete the unlock. 704 */ 705 if (status < 0 && !(fl->fl_flags & FL_CLOSE)) 706 return status; 707 } 708 709 /* 710 * Use local locking if mounted with "-onolock" or with appropriate 711 * "-olocal_lock=" 712 */ 713 if (!is_local) 714 status = NFS_PROTO(inode)->lock(filp, cmd, fl); 715 else 716 status = locks_lock_file_wait(filp, fl); 717 return status; 718 } 719 720 static int 721 do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local) 722 { 723 struct inode *inode = filp->f_mapping->host; 724 int status; 725 726 /* 727 * Flush all pending writes before doing anything 728 * with locks.. 729 */ 730 status = nfs_sync_mapping(filp->f_mapping); 731 if (status != 0) 732 goto out; 733 734 /* 735 * Use local locking if mounted with "-onolock" or with appropriate 736 * "-olocal_lock=" 737 */ 738 if (!is_local) 739 status = NFS_PROTO(inode)->lock(filp, cmd, fl); 740 else 741 status = locks_lock_file_wait(filp, fl); 742 if (status < 0) 743 goto out; 744 745 /* 746 * Invalidate cache to prevent missing any changes. If 747 * the file is mapped, clear the page cache as well so 748 * those mappings will be loaded. 749 * 750 * This makes locking act as a cache coherency point. 751 */ 752 nfs_sync_mapping(filp->f_mapping); 753 if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) { 754 nfs_zap_caches(inode); 755 if (mapping_mapped(filp->f_mapping)) 756 nfs_revalidate_mapping(inode, filp->f_mapping); 757 } 758 out: 759 return status; 760 } 761 762 /* 763 * Lock a (portion of) a file 764 */ 765 int nfs_lock(struct file *filp, int cmd, struct file_lock *fl) 766 { 767 struct inode *inode = filp->f_mapping->host; 768 int ret = -ENOLCK; 769 int is_local = 0; 770 771 dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n", 772 filp, fl->fl_type, fl->fl_flags, 773 (long long)fl->fl_start, (long long)fl->fl_end); 774 775 nfs_inc_stats(inode, NFSIOS_VFSLOCK); 776 777 /* No mandatory locks over NFS */ 778 if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK) 779 goto out_err; 780 781 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL) 782 is_local = 1; 783 784 if (NFS_PROTO(inode)->lock_check_bounds != NULL) { 785 ret = NFS_PROTO(inode)->lock_check_bounds(fl); 786 if (ret < 0) 787 goto out_err; 788 } 789 790 if (IS_GETLK(cmd)) 791 ret = do_getlk(filp, cmd, fl, is_local); 792 else if (fl->fl_type == F_UNLCK) 793 ret = do_unlk(filp, cmd, fl, is_local); 794 else 795 ret = do_setlk(filp, cmd, fl, is_local); 796 out_err: 797 return ret; 798 } 799 EXPORT_SYMBOL_GPL(nfs_lock); 800 801 /* 802 * Lock a (portion of) a file 803 */ 804 int nfs_flock(struct file *filp, int cmd, struct file_lock *fl) 805 { 806 struct inode *inode = filp->f_mapping->host; 807 int is_local = 0; 808 809 dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n", 810 filp, fl->fl_type, fl->fl_flags); 811 812 if (!(fl->fl_flags & FL_FLOCK)) 813 return -ENOLCK; 814 815 /* 816 * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of 817 * any standard. In principle we might be able to support LOCK_MAND 818 * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the 819 * NFS code is not set up for it. 820 */ 821 if (fl->fl_type & LOCK_MAND) 822 return -EINVAL; 823 824 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK) 825 is_local = 1; 826 827 /* We're simulating flock() locks using posix locks on the server */ 828 if (fl->fl_type == F_UNLCK) 829 return do_unlk(filp, cmd, fl, is_local); 830 return do_setlk(filp, cmd, fl, is_local); 831 } 832 EXPORT_SYMBOL_GPL(nfs_flock); 833 834 const struct file_operations nfs_file_operations = { 835 .llseek = nfs_file_llseek, 836 .read_iter = nfs_file_read, 837 .write_iter = nfs_file_write, 838 .mmap = nfs_file_mmap, 839 .open = nfs_file_open, 840 .flush = nfs_file_flush, 841 .release = nfs_file_release, 842 .fsync = nfs_file_fsync, 843 .lock = nfs_lock, 844 .flock = nfs_flock, 845 .splice_read = generic_file_splice_read, 846 .splice_write = iter_file_splice_write, 847 .check_flags = nfs_check_flags, 848 .setlease = simple_nosetlease, 849 }; 850 EXPORT_SYMBOL_GPL(nfs_file_operations); 851