1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/nfs/file.c 4 * 5 * Copyright (C) 1992 Rick Sladkey 6 * 7 * Changes Copyright (C) 1994 by Florian La Roche 8 * - Do not copy data too often around in the kernel. 9 * - In nfs_file_read the return value of kmalloc wasn't checked. 10 * - Put in a better version of read look-ahead buffering. Original idea 11 * and implementation by Wai S Kok elekokws@ee.nus.sg. 12 * 13 * Expire cache on write to a file by Wai S Kok (Oct 1994). 14 * 15 * Total rewrite of read side for new NFS buffer cache.. Linus. 16 * 17 * nfs regular file handling functions 18 */ 19 20 #include <linux/module.h> 21 #include <linux/time.h> 22 #include <linux/kernel.h> 23 #include <linux/errno.h> 24 #include <linux/fcntl.h> 25 #include <linux/stat.h> 26 #include <linux/nfs_fs.h> 27 #include <linux/nfs_mount.h> 28 #include <linux/mm.h> 29 #include <linux/pagemap.h> 30 #include <linux/gfp.h> 31 #include <linux/swap.h> 32 33 #include <linux/uaccess.h> 34 35 #include "delegation.h" 36 #include "internal.h" 37 #include "iostat.h" 38 #include "fscache.h" 39 #include "pnfs.h" 40 41 #include "nfstrace.h" 42 43 #define NFSDBG_FACILITY NFSDBG_FILE 44 45 static const struct vm_operations_struct nfs_file_vm_ops; 46 47 /* Hack for future NFS swap support */ 48 #ifndef IS_SWAPFILE 49 # define IS_SWAPFILE(inode) (0) 50 #endif 51 52 int nfs_check_flags(int flags) 53 { 54 if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT)) 55 return -EINVAL; 56 57 return 0; 58 } 59 EXPORT_SYMBOL_GPL(nfs_check_flags); 60 61 /* 62 * Open file 63 */ 64 static int 65 nfs_file_open(struct inode *inode, struct file *filp) 66 { 67 int res; 68 69 dprintk("NFS: open file(%pD2)\n", filp); 70 71 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 72 res = nfs_check_flags(filp->f_flags); 73 if (res) 74 return res; 75 76 res = nfs_open(inode, filp); 77 return res; 78 } 79 80 int 81 nfs_file_release(struct inode *inode, struct file *filp) 82 { 83 dprintk("NFS: release(%pD2)\n", filp); 84 85 nfs_inc_stats(inode, NFSIOS_VFSRELEASE); 86 nfs_file_clear_open_context(filp); 87 return 0; 88 } 89 EXPORT_SYMBOL_GPL(nfs_file_release); 90 91 /** 92 * nfs_revalidate_size - Revalidate the file size 93 * @inode: pointer to inode struct 94 * @filp: pointer to struct file 95 * 96 * Revalidates the file length. This is basically a wrapper around 97 * nfs_revalidate_inode() that takes into account the fact that we may 98 * have cached writes (in which case we don't care about the server's 99 * idea of what the file length is), or O_DIRECT (in which case we 100 * shouldn't trust the cache). 101 */ 102 static int nfs_revalidate_file_size(struct inode *inode, struct file *filp) 103 { 104 struct nfs_server *server = NFS_SERVER(inode); 105 106 if (filp->f_flags & O_DIRECT) 107 goto force_reval; 108 if (nfs_check_cache_invalid(inode, NFS_INO_REVAL_PAGECACHE)) 109 goto force_reval; 110 return 0; 111 force_reval: 112 return __nfs_revalidate_inode(server, inode); 113 } 114 115 loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence) 116 { 117 dprintk("NFS: llseek file(%pD2, %lld, %d)\n", 118 filp, offset, whence); 119 120 /* 121 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate 122 * the cached file length 123 */ 124 if (whence != SEEK_SET && whence != SEEK_CUR) { 125 struct inode *inode = filp->f_mapping->host; 126 127 int retval = nfs_revalidate_file_size(inode, filp); 128 if (retval < 0) 129 return (loff_t)retval; 130 } 131 132 return generic_file_llseek(filp, offset, whence); 133 } 134 EXPORT_SYMBOL_GPL(nfs_file_llseek); 135 136 /* 137 * Flush all dirty pages, and check for write errors. 138 */ 139 static int 140 nfs_file_flush(struct file *file, fl_owner_t id) 141 { 142 struct inode *inode = file_inode(file); 143 144 dprintk("NFS: flush(%pD2)\n", file); 145 146 nfs_inc_stats(inode, NFSIOS_VFSFLUSH); 147 if ((file->f_mode & FMODE_WRITE) == 0) 148 return 0; 149 150 /* Flush writes to the server and return any errors */ 151 return nfs_wb_all(inode); 152 } 153 154 ssize_t 155 nfs_file_read(struct kiocb *iocb, struct iov_iter *to) 156 { 157 struct inode *inode = file_inode(iocb->ki_filp); 158 ssize_t result; 159 160 if (iocb->ki_flags & IOCB_DIRECT) 161 return nfs_file_direct_read(iocb, to); 162 163 dprintk("NFS: read(%pD2, %zu@%lu)\n", 164 iocb->ki_filp, 165 iov_iter_count(to), (unsigned long) iocb->ki_pos); 166 167 nfs_start_io_read(inode); 168 result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping); 169 if (!result) { 170 result = generic_file_read_iter(iocb, to); 171 if (result > 0) 172 nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result); 173 } 174 nfs_end_io_read(inode); 175 return result; 176 } 177 EXPORT_SYMBOL_GPL(nfs_file_read); 178 179 int 180 nfs_file_mmap(struct file * file, struct vm_area_struct * vma) 181 { 182 struct inode *inode = file_inode(file); 183 int status; 184 185 dprintk("NFS: mmap(%pD2)\n", file); 186 187 /* Note: generic_file_mmap() returns ENOSYS on nommu systems 188 * so we call that before revalidating the mapping 189 */ 190 status = generic_file_mmap(file, vma); 191 if (!status) { 192 vma->vm_ops = &nfs_file_vm_ops; 193 status = nfs_revalidate_mapping(inode, file->f_mapping); 194 } 195 return status; 196 } 197 EXPORT_SYMBOL_GPL(nfs_file_mmap); 198 199 /* 200 * Flush any dirty pages for this process, and check for write errors. 201 * The return status from this call provides a reliable indication of 202 * whether any write errors occurred for this process. 203 */ 204 static int 205 nfs_file_fsync_commit(struct file *file, int datasync) 206 { 207 struct nfs_open_context *ctx = nfs_file_open_context(file); 208 struct inode *inode = file_inode(file); 209 int do_resend, status; 210 int ret = 0; 211 212 dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync); 213 214 nfs_inc_stats(inode, NFSIOS_VFSFSYNC); 215 do_resend = test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags); 216 status = nfs_commit_inode(inode, FLUSH_SYNC); 217 if (status == 0) 218 status = file_check_and_advance_wb_err(file); 219 if (status < 0) { 220 ret = status; 221 goto out; 222 } 223 do_resend |= test_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags); 224 if (do_resend) 225 ret = -EAGAIN; 226 out: 227 return ret; 228 } 229 230 int 231 nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync) 232 { 233 int ret; 234 struct inode *inode = file_inode(file); 235 236 trace_nfs_fsync_enter(inode); 237 238 do { 239 ret = file_write_and_wait_range(file, start, end); 240 if (ret != 0) 241 break; 242 ret = nfs_file_fsync_commit(file, datasync); 243 if (!ret) 244 ret = pnfs_sync_inode(inode, !!datasync); 245 /* 246 * If nfs_file_fsync_commit detected a server reboot, then 247 * resend all dirty pages that might have been covered by 248 * the NFS_CONTEXT_RESEND_WRITES flag 249 */ 250 start = 0; 251 end = LLONG_MAX; 252 } while (ret == -EAGAIN); 253 254 trace_nfs_fsync_exit(inode, ret); 255 return ret; 256 } 257 EXPORT_SYMBOL_GPL(nfs_file_fsync); 258 259 /* 260 * Decide whether a read/modify/write cycle may be more efficient 261 * then a modify/write/read cycle when writing to a page in the 262 * page cache. 263 * 264 * Some pNFS layout drivers can only read/write at a certain block 265 * granularity like all block devices and therefore we must perform 266 * read/modify/write whenever a page hasn't read yet and the data 267 * to be written there is not aligned to a block boundary and/or 268 * smaller than the block size. 269 * 270 * The modify/write/read cycle may occur if a page is read before 271 * being completely filled by the writer. In this situation, the 272 * page must be completely written to stable storage on the server 273 * before it can be refilled by reading in the page from the server. 274 * This can lead to expensive, small, FILE_SYNC mode writes being 275 * done. 276 * 277 * It may be more efficient to read the page first if the file is 278 * open for reading in addition to writing, the page is not marked 279 * as Uptodate, it is not dirty or waiting to be committed, 280 * indicating that it was previously allocated and then modified, 281 * that there were valid bytes of data in that range of the file, 282 * and that the new data won't completely replace the old data in 283 * that range of the file. 284 */ 285 static bool nfs_full_page_write(struct page *page, loff_t pos, unsigned int len) 286 { 287 unsigned int pglen = nfs_page_length(page); 288 unsigned int offset = pos & (PAGE_SIZE - 1); 289 unsigned int end = offset + len; 290 291 return !pglen || (end >= pglen && !offset); 292 } 293 294 static bool nfs_want_read_modify_write(struct file *file, struct page *page, 295 loff_t pos, unsigned int len) 296 { 297 /* 298 * Up-to-date pages, those with ongoing or full-page write 299 * don't need read/modify/write 300 */ 301 if (PageUptodate(page) || PagePrivate(page) || 302 nfs_full_page_write(page, pos, len)) 303 return false; 304 305 if (pnfs_ld_read_whole_page(file->f_mapping->host)) 306 return true; 307 /* Open for reading too? */ 308 if (file->f_mode & FMODE_READ) 309 return true; 310 return false; 311 } 312 313 /* 314 * This does the "real" work of the write. We must allocate and lock the 315 * page to be sent back to the generic routine, which then copies the 316 * data from user space. 317 * 318 * If the writer ends up delaying the write, the writer needs to 319 * increment the page use counts until he is done with the page. 320 */ 321 static int nfs_write_begin(struct file *file, struct address_space *mapping, 322 loff_t pos, unsigned len, unsigned flags, 323 struct page **pagep, void **fsdata) 324 { 325 int ret; 326 pgoff_t index = pos >> PAGE_SHIFT; 327 struct page *page; 328 int once_thru = 0; 329 330 dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n", 331 file, mapping->host->i_ino, len, (long long) pos); 332 333 start: 334 page = grab_cache_page_write_begin(mapping, index, flags); 335 if (!page) 336 return -ENOMEM; 337 *pagep = page; 338 339 ret = nfs_flush_incompatible(file, page); 340 if (ret) { 341 unlock_page(page); 342 put_page(page); 343 } else if (!once_thru && 344 nfs_want_read_modify_write(file, page, pos, len)) { 345 once_thru = 1; 346 ret = nfs_readpage(file, page); 347 put_page(page); 348 if (!ret) 349 goto start; 350 } 351 return ret; 352 } 353 354 static int nfs_write_end(struct file *file, struct address_space *mapping, 355 loff_t pos, unsigned len, unsigned copied, 356 struct page *page, void *fsdata) 357 { 358 unsigned offset = pos & (PAGE_SIZE - 1); 359 struct nfs_open_context *ctx = nfs_file_open_context(file); 360 int status; 361 362 dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n", 363 file, mapping->host->i_ino, len, (long long) pos); 364 365 /* 366 * Zero any uninitialised parts of the page, and then mark the page 367 * as up to date if it turns out that we're extending the file. 368 */ 369 if (!PageUptodate(page)) { 370 unsigned pglen = nfs_page_length(page); 371 unsigned end = offset + copied; 372 373 if (pglen == 0) { 374 zero_user_segments(page, 0, offset, 375 end, PAGE_SIZE); 376 SetPageUptodate(page); 377 } else if (end >= pglen) { 378 zero_user_segment(page, end, PAGE_SIZE); 379 if (offset == 0) 380 SetPageUptodate(page); 381 } else 382 zero_user_segment(page, pglen, PAGE_SIZE); 383 } 384 385 status = nfs_updatepage(file, page, offset, copied); 386 387 unlock_page(page); 388 put_page(page); 389 390 if (status < 0) 391 return status; 392 NFS_I(mapping->host)->write_io += copied; 393 394 if (nfs_ctx_key_to_expire(ctx, mapping->host)) { 395 status = nfs_wb_all(mapping->host); 396 if (status < 0) 397 return status; 398 } 399 400 return copied; 401 } 402 403 /* 404 * Partially or wholly invalidate a page 405 * - Release the private state associated with a page if undergoing complete 406 * page invalidation 407 * - Called if either PG_private or PG_fscache is set on the page 408 * - Caller holds page lock 409 */ 410 static void nfs_invalidate_page(struct page *page, unsigned int offset, 411 unsigned int length) 412 { 413 dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n", 414 page, offset, length); 415 416 if (offset != 0 || length < PAGE_SIZE) 417 return; 418 /* Cancel any unstarted writes on this page */ 419 nfs_wb_page_cancel(page_file_mapping(page)->host, page); 420 421 nfs_fscache_invalidate_page(page, page->mapping->host); 422 } 423 424 /* 425 * Attempt to release the private state associated with a page 426 * - Called if either PG_private or PG_fscache is set on the page 427 * - Caller holds page lock 428 * - Return true (may release page) or false (may not) 429 */ 430 static int nfs_release_page(struct page *page, gfp_t gfp) 431 { 432 dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page); 433 434 /* If PagePrivate() is set, then the page is not freeable */ 435 if (PagePrivate(page)) 436 return 0; 437 return nfs_fscache_release_page(page, gfp); 438 } 439 440 static void nfs_check_dirty_writeback(struct page *page, 441 bool *dirty, bool *writeback) 442 { 443 struct nfs_inode *nfsi; 444 struct address_space *mapping = page_file_mapping(page); 445 446 if (!mapping || PageSwapCache(page)) 447 return; 448 449 /* 450 * Check if an unstable page is currently being committed and 451 * if so, have the VM treat it as if the page is under writeback 452 * so it will not block due to pages that will shortly be freeable. 453 */ 454 nfsi = NFS_I(mapping->host); 455 if (atomic_read(&nfsi->commit_info.rpcs_out)) { 456 *writeback = true; 457 return; 458 } 459 460 /* 461 * If PagePrivate() is set, then the page is not freeable and as the 462 * inode is not being committed, it's not going to be cleaned in the 463 * near future so treat it as dirty 464 */ 465 if (PagePrivate(page)) 466 *dirty = true; 467 } 468 469 /* 470 * Attempt to clear the private state associated with a page when an error 471 * occurs that requires the cached contents of an inode to be written back or 472 * destroyed 473 * - Called if either PG_private or fscache is set on the page 474 * - Caller holds page lock 475 * - Return 0 if successful, -error otherwise 476 */ 477 static int nfs_launder_page(struct page *page) 478 { 479 struct inode *inode = page_file_mapping(page)->host; 480 struct nfs_inode *nfsi = NFS_I(inode); 481 482 dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n", 483 inode->i_ino, (long long)page_offset(page)); 484 485 nfs_fscache_wait_on_page_write(nfsi, page); 486 return nfs_wb_page(inode, page); 487 } 488 489 static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file, 490 sector_t *span) 491 { 492 struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host); 493 494 *span = sis->pages; 495 496 return rpc_clnt_swap_activate(clnt); 497 } 498 499 static void nfs_swap_deactivate(struct file *file) 500 { 501 struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host); 502 503 rpc_clnt_swap_deactivate(clnt); 504 } 505 506 const struct address_space_operations nfs_file_aops = { 507 .readpage = nfs_readpage, 508 .readpages = nfs_readpages, 509 .set_page_dirty = __set_page_dirty_nobuffers, 510 .writepage = nfs_writepage, 511 .writepages = nfs_writepages, 512 .write_begin = nfs_write_begin, 513 .write_end = nfs_write_end, 514 .invalidatepage = nfs_invalidate_page, 515 .releasepage = nfs_release_page, 516 .direct_IO = nfs_direct_IO, 517 #ifdef CONFIG_MIGRATION 518 .migratepage = nfs_migrate_page, 519 #endif 520 .launder_page = nfs_launder_page, 521 .is_dirty_writeback = nfs_check_dirty_writeback, 522 .error_remove_page = generic_error_remove_page, 523 .swap_activate = nfs_swap_activate, 524 .swap_deactivate = nfs_swap_deactivate, 525 }; 526 527 /* 528 * Notification that a PTE pointing to an NFS page is about to be made 529 * writable, implying that someone is about to modify the page through a 530 * shared-writable mapping 531 */ 532 static vm_fault_t nfs_vm_page_mkwrite(struct vm_fault *vmf) 533 { 534 struct page *page = vmf->page; 535 struct file *filp = vmf->vma->vm_file; 536 struct inode *inode = file_inode(filp); 537 unsigned pagelen; 538 vm_fault_t ret = VM_FAULT_NOPAGE; 539 struct address_space *mapping; 540 541 dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n", 542 filp, filp->f_mapping->host->i_ino, 543 (long long)page_offset(page)); 544 545 sb_start_pagefault(inode->i_sb); 546 547 /* make sure the cache has finished storing the page */ 548 nfs_fscache_wait_on_page_write(NFS_I(inode), page); 549 550 wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING, 551 nfs_wait_bit_killable, TASK_KILLABLE); 552 553 lock_page(page); 554 mapping = page_file_mapping(page); 555 if (mapping != inode->i_mapping) 556 goto out_unlock; 557 558 wait_on_page_writeback(page); 559 560 pagelen = nfs_page_length(page); 561 if (pagelen == 0) 562 goto out_unlock; 563 564 ret = VM_FAULT_LOCKED; 565 if (nfs_flush_incompatible(filp, page) == 0 && 566 nfs_updatepage(filp, page, 0, pagelen) == 0) 567 goto out; 568 569 ret = VM_FAULT_SIGBUS; 570 out_unlock: 571 unlock_page(page); 572 out: 573 sb_end_pagefault(inode->i_sb); 574 return ret; 575 } 576 577 static const struct vm_operations_struct nfs_file_vm_ops = { 578 .fault = filemap_fault, 579 .map_pages = filemap_map_pages, 580 .page_mkwrite = nfs_vm_page_mkwrite, 581 }; 582 583 static int nfs_need_check_write(struct file *filp, struct inode *inode) 584 { 585 struct nfs_open_context *ctx; 586 587 ctx = nfs_file_open_context(filp); 588 if (nfs_ctx_key_to_expire(ctx, inode)) 589 return 1; 590 return 0; 591 } 592 593 ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from) 594 { 595 struct file *file = iocb->ki_filp; 596 struct inode *inode = file_inode(file); 597 unsigned long written = 0; 598 ssize_t result; 599 600 result = nfs_key_timeout_notify(file, inode); 601 if (result) 602 return result; 603 604 if (iocb->ki_flags & IOCB_DIRECT) 605 return nfs_file_direct_write(iocb, from); 606 607 dprintk("NFS: write(%pD2, %zu@%Ld)\n", 608 file, iov_iter_count(from), (long long) iocb->ki_pos); 609 610 if (IS_SWAPFILE(inode)) 611 goto out_swapfile; 612 /* 613 * O_APPEND implies that we must revalidate the file length. 614 */ 615 if (iocb->ki_flags & IOCB_APPEND) { 616 result = nfs_revalidate_file_size(inode, file); 617 if (result) 618 goto out; 619 } 620 if (iocb->ki_pos > i_size_read(inode)) 621 nfs_revalidate_mapping(inode, file->f_mapping); 622 623 nfs_start_io_write(inode); 624 result = generic_write_checks(iocb, from); 625 if (result > 0) { 626 current->backing_dev_info = inode_to_bdi(inode); 627 result = generic_perform_write(file, from, iocb->ki_pos); 628 current->backing_dev_info = NULL; 629 } 630 nfs_end_io_write(inode); 631 if (result <= 0) 632 goto out; 633 634 written = result; 635 iocb->ki_pos += written; 636 result = generic_write_sync(iocb, written); 637 if (result < 0) 638 goto out; 639 640 /* Return error values */ 641 if (nfs_need_check_write(file, inode)) { 642 int err = nfs_wb_all(inode); 643 if (err < 0) 644 result = err; 645 } 646 nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written); 647 out: 648 return result; 649 650 out_swapfile: 651 printk(KERN_INFO "NFS: attempt to write to active swap file!\n"); 652 return -EBUSY; 653 } 654 EXPORT_SYMBOL_GPL(nfs_file_write); 655 656 static int 657 do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local) 658 { 659 struct inode *inode = filp->f_mapping->host; 660 int status = 0; 661 unsigned int saved_type = fl->fl_type; 662 663 /* Try local locking first */ 664 posix_test_lock(filp, fl); 665 if (fl->fl_type != F_UNLCK) { 666 /* found a conflict */ 667 goto out; 668 } 669 fl->fl_type = saved_type; 670 671 if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) 672 goto out_noconflict; 673 674 if (is_local) 675 goto out_noconflict; 676 677 status = NFS_PROTO(inode)->lock(filp, cmd, fl); 678 out: 679 return status; 680 out_noconflict: 681 fl->fl_type = F_UNLCK; 682 goto out; 683 } 684 685 static int 686 do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local) 687 { 688 struct inode *inode = filp->f_mapping->host; 689 struct nfs_lock_context *l_ctx; 690 int status; 691 692 /* 693 * Flush all pending writes before doing anything 694 * with locks.. 695 */ 696 nfs_wb_all(inode); 697 698 l_ctx = nfs_get_lock_context(nfs_file_open_context(filp)); 699 if (!IS_ERR(l_ctx)) { 700 status = nfs_iocounter_wait(l_ctx); 701 nfs_put_lock_context(l_ctx); 702 /* NOTE: special case 703 * If we're signalled while cleaning up locks on process exit, we 704 * still need to complete the unlock. 705 */ 706 if (status < 0 && !(fl->fl_flags & FL_CLOSE)) 707 return status; 708 } 709 710 /* 711 * Use local locking if mounted with "-onolock" or with appropriate 712 * "-olocal_lock=" 713 */ 714 if (!is_local) 715 status = NFS_PROTO(inode)->lock(filp, cmd, fl); 716 else 717 status = locks_lock_file_wait(filp, fl); 718 return status; 719 } 720 721 static int 722 do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local) 723 { 724 struct inode *inode = filp->f_mapping->host; 725 int status; 726 727 /* 728 * Flush all pending writes before doing anything 729 * with locks.. 730 */ 731 status = nfs_sync_mapping(filp->f_mapping); 732 if (status != 0) 733 goto out; 734 735 /* 736 * Use local locking if mounted with "-onolock" or with appropriate 737 * "-olocal_lock=" 738 */ 739 if (!is_local) 740 status = NFS_PROTO(inode)->lock(filp, cmd, fl); 741 else 742 status = locks_lock_file_wait(filp, fl); 743 if (status < 0) 744 goto out; 745 746 /* 747 * Invalidate cache to prevent missing any changes. If 748 * the file is mapped, clear the page cache as well so 749 * those mappings will be loaded. 750 * 751 * This makes locking act as a cache coherency point. 752 */ 753 nfs_sync_mapping(filp->f_mapping); 754 if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) { 755 nfs_zap_caches(inode); 756 if (mapping_mapped(filp->f_mapping)) 757 nfs_revalidate_mapping(inode, filp->f_mapping); 758 } 759 out: 760 return status; 761 } 762 763 /* 764 * Lock a (portion of) a file 765 */ 766 int nfs_lock(struct file *filp, int cmd, struct file_lock *fl) 767 { 768 struct inode *inode = filp->f_mapping->host; 769 int ret = -ENOLCK; 770 int is_local = 0; 771 772 dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n", 773 filp, fl->fl_type, fl->fl_flags, 774 (long long)fl->fl_start, (long long)fl->fl_end); 775 776 nfs_inc_stats(inode, NFSIOS_VFSLOCK); 777 778 /* No mandatory locks over NFS */ 779 if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK) 780 goto out_err; 781 782 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL) 783 is_local = 1; 784 785 if (NFS_PROTO(inode)->lock_check_bounds != NULL) { 786 ret = NFS_PROTO(inode)->lock_check_bounds(fl); 787 if (ret < 0) 788 goto out_err; 789 } 790 791 if (IS_GETLK(cmd)) 792 ret = do_getlk(filp, cmd, fl, is_local); 793 else if (fl->fl_type == F_UNLCK) 794 ret = do_unlk(filp, cmd, fl, is_local); 795 else 796 ret = do_setlk(filp, cmd, fl, is_local); 797 out_err: 798 return ret; 799 } 800 EXPORT_SYMBOL_GPL(nfs_lock); 801 802 /* 803 * Lock a (portion of) a file 804 */ 805 int nfs_flock(struct file *filp, int cmd, struct file_lock *fl) 806 { 807 struct inode *inode = filp->f_mapping->host; 808 int is_local = 0; 809 810 dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n", 811 filp, fl->fl_type, fl->fl_flags); 812 813 if (!(fl->fl_flags & FL_FLOCK)) 814 return -ENOLCK; 815 816 /* 817 * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of 818 * any standard. In principle we might be able to support LOCK_MAND 819 * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the 820 * NFS code is not set up for it. 821 */ 822 if (fl->fl_type & LOCK_MAND) 823 return -EINVAL; 824 825 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK) 826 is_local = 1; 827 828 /* We're simulating flock() locks using posix locks on the server */ 829 if (fl->fl_type == F_UNLCK) 830 return do_unlk(filp, cmd, fl, is_local); 831 return do_setlk(filp, cmd, fl, is_local); 832 } 833 EXPORT_SYMBOL_GPL(nfs_flock); 834 835 const struct file_operations nfs_file_operations = { 836 .llseek = nfs_file_llseek, 837 .read_iter = nfs_file_read, 838 .write_iter = nfs_file_write, 839 .mmap = nfs_file_mmap, 840 .open = nfs_file_open, 841 .flush = nfs_file_flush, 842 .release = nfs_file_release, 843 .fsync = nfs_file_fsync, 844 .lock = nfs_lock, 845 .flock = nfs_flock, 846 .splice_read = generic_file_splice_read, 847 .splice_write = iter_file_splice_write, 848 .check_flags = nfs_check_flags, 849 .setlease = simple_nosetlease, 850 }; 851 EXPORT_SYMBOL_GPL(nfs_file_operations); 852