1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/nfs/file.c 4 * 5 * Copyright (C) 1992 Rick Sladkey 6 * 7 * Changes Copyright (C) 1994 by Florian La Roche 8 * - Do not copy data too often around in the kernel. 9 * - In nfs_file_read the return value of kmalloc wasn't checked. 10 * - Put in a better version of read look-ahead buffering. Original idea 11 * and implementation by Wai S Kok elekokws@ee.nus.sg. 12 * 13 * Expire cache on write to a file by Wai S Kok (Oct 1994). 14 * 15 * Total rewrite of read side for new NFS buffer cache.. Linus. 16 * 17 * nfs regular file handling functions 18 */ 19 20 #include <linux/module.h> 21 #include <linux/time.h> 22 #include <linux/kernel.h> 23 #include <linux/errno.h> 24 #include <linux/fcntl.h> 25 #include <linux/stat.h> 26 #include <linux/nfs_fs.h> 27 #include <linux/nfs_mount.h> 28 #include <linux/mm.h> 29 #include <linux/pagemap.h> 30 #include <linux/gfp.h> 31 #include <linux/swap.h> 32 33 #include <linux/uaccess.h> 34 35 #include "delegation.h" 36 #include "internal.h" 37 #include "iostat.h" 38 #include "fscache.h" 39 #include "pnfs.h" 40 41 #include "nfstrace.h" 42 43 #define NFSDBG_FACILITY NFSDBG_FILE 44 45 static const struct vm_operations_struct nfs_file_vm_ops; 46 47 /* Hack for future NFS swap support */ 48 #ifndef IS_SWAPFILE 49 # define IS_SWAPFILE(inode) (0) 50 #endif 51 52 int nfs_check_flags(int flags) 53 { 54 if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT)) 55 return -EINVAL; 56 57 return 0; 58 } 59 EXPORT_SYMBOL_GPL(nfs_check_flags); 60 61 /* 62 * Open file 63 */ 64 static int 65 nfs_file_open(struct inode *inode, struct file *filp) 66 { 67 int res; 68 69 dprintk("NFS: open file(%pD2)\n", filp); 70 71 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 72 res = nfs_check_flags(filp->f_flags); 73 if (res) 74 return res; 75 76 res = nfs_open(inode, filp); 77 return res; 78 } 79 80 int 81 nfs_file_release(struct inode *inode, struct file *filp) 82 { 83 dprintk("NFS: release(%pD2)\n", filp); 84 85 nfs_inc_stats(inode, NFSIOS_VFSRELEASE); 86 inode_dio_wait(inode); 87 nfs_file_clear_open_context(filp); 88 return 0; 89 } 90 EXPORT_SYMBOL_GPL(nfs_file_release); 91 92 /** 93 * nfs_revalidate_size - Revalidate the file size 94 * @inode: pointer to inode struct 95 * @filp: pointer to struct file 96 * 97 * Revalidates the file length. This is basically a wrapper around 98 * nfs_revalidate_inode() that takes into account the fact that we may 99 * have cached writes (in which case we don't care about the server's 100 * idea of what the file length is), or O_DIRECT (in which case we 101 * shouldn't trust the cache). 102 */ 103 static int nfs_revalidate_file_size(struct inode *inode, struct file *filp) 104 { 105 struct nfs_server *server = NFS_SERVER(inode); 106 107 if (filp->f_flags & O_DIRECT) 108 goto force_reval; 109 if (nfs_check_cache_invalid(inode, NFS_INO_REVAL_PAGECACHE)) 110 goto force_reval; 111 return 0; 112 force_reval: 113 return __nfs_revalidate_inode(server, inode); 114 } 115 116 loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence) 117 { 118 dprintk("NFS: llseek file(%pD2, %lld, %d)\n", 119 filp, offset, whence); 120 121 /* 122 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate 123 * the cached file length 124 */ 125 if (whence != SEEK_SET && whence != SEEK_CUR) { 126 struct inode *inode = filp->f_mapping->host; 127 128 int retval = nfs_revalidate_file_size(inode, filp); 129 if (retval < 0) 130 return (loff_t)retval; 131 } 132 133 return generic_file_llseek(filp, offset, whence); 134 } 135 EXPORT_SYMBOL_GPL(nfs_file_llseek); 136 137 /* 138 * Flush all dirty pages, and check for write errors. 139 */ 140 static int 141 nfs_file_flush(struct file *file, fl_owner_t id) 142 { 143 struct inode *inode = file_inode(file); 144 145 dprintk("NFS: flush(%pD2)\n", file); 146 147 nfs_inc_stats(inode, NFSIOS_VFSFLUSH); 148 if ((file->f_mode & FMODE_WRITE) == 0) 149 return 0; 150 151 /* Flush writes to the server and return any errors */ 152 return nfs_wb_all(inode); 153 } 154 155 ssize_t 156 nfs_file_read(struct kiocb *iocb, struct iov_iter *to) 157 { 158 struct inode *inode = file_inode(iocb->ki_filp); 159 ssize_t result; 160 161 if (iocb->ki_flags & IOCB_DIRECT) 162 return nfs_file_direct_read(iocb, to); 163 164 dprintk("NFS: read(%pD2, %zu@%lu)\n", 165 iocb->ki_filp, 166 iov_iter_count(to), (unsigned long) iocb->ki_pos); 167 168 nfs_start_io_read(inode); 169 result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping); 170 if (!result) { 171 result = generic_file_read_iter(iocb, to); 172 if (result > 0) 173 nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result); 174 } 175 nfs_end_io_read(inode); 176 return result; 177 } 178 EXPORT_SYMBOL_GPL(nfs_file_read); 179 180 int 181 nfs_file_mmap(struct file * file, struct vm_area_struct * vma) 182 { 183 struct inode *inode = file_inode(file); 184 int status; 185 186 dprintk("NFS: mmap(%pD2)\n", file); 187 188 /* Note: generic_file_mmap() returns ENOSYS on nommu systems 189 * so we call that before revalidating the mapping 190 */ 191 status = generic_file_mmap(file, vma); 192 if (!status) { 193 vma->vm_ops = &nfs_file_vm_ops; 194 status = nfs_revalidate_mapping(inode, file->f_mapping); 195 } 196 return status; 197 } 198 EXPORT_SYMBOL_GPL(nfs_file_mmap); 199 200 /* 201 * Flush any dirty pages for this process, and check for write errors. 202 * The return status from this call provides a reliable indication of 203 * whether any write errors occurred for this process. 204 */ 205 static int 206 nfs_file_fsync_commit(struct file *file, int datasync) 207 { 208 struct inode *inode = file_inode(file); 209 int ret; 210 211 dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync); 212 213 nfs_inc_stats(inode, NFSIOS_VFSFSYNC); 214 ret = nfs_commit_inode(inode, FLUSH_SYNC); 215 if (ret < 0) 216 return ret; 217 return file_check_and_advance_wb_err(file); 218 } 219 220 int 221 nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync) 222 { 223 struct nfs_open_context *ctx = nfs_file_open_context(file); 224 struct inode *inode = file_inode(file); 225 int ret; 226 227 trace_nfs_fsync_enter(inode); 228 229 for (;;) { 230 ret = file_write_and_wait_range(file, start, end); 231 if (ret != 0) 232 break; 233 ret = nfs_file_fsync_commit(file, datasync); 234 if (ret != 0) 235 break; 236 ret = pnfs_sync_inode(inode, !!datasync); 237 if (ret != 0) 238 break; 239 if (!test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags)) 240 break; 241 /* 242 * If nfs_file_fsync_commit detected a server reboot, then 243 * resend all dirty pages that might have been covered by 244 * the NFS_CONTEXT_RESEND_WRITES flag 245 */ 246 start = 0; 247 end = LLONG_MAX; 248 } 249 250 trace_nfs_fsync_exit(inode, ret); 251 return ret; 252 } 253 EXPORT_SYMBOL_GPL(nfs_file_fsync); 254 255 /* 256 * Decide whether a read/modify/write cycle may be more efficient 257 * then a modify/write/read cycle when writing to a page in the 258 * page cache. 259 * 260 * Some pNFS layout drivers can only read/write at a certain block 261 * granularity like all block devices and therefore we must perform 262 * read/modify/write whenever a page hasn't read yet and the data 263 * to be written there is not aligned to a block boundary and/or 264 * smaller than the block size. 265 * 266 * The modify/write/read cycle may occur if a page is read before 267 * being completely filled by the writer. In this situation, the 268 * page must be completely written to stable storage on the server 269 * before it can be refilled by reading in the page from the server. 270 * This can lead to expensive, small, FILE_SYNC mode writes being 271 * done. 272 * 273 * It may be more efficient to read the page first if the file is 274 * open for reading in addition to writing, the page is not marked 275 * as Uptodate, it is not dirty or waiting to be committed, 276 * indicating that it was previously allocated and then modified, 277 * that there were valid bytes of data in that range of the file, 278 * and that the new data won't completely replace the old data in 279 * that range of the file. 280 */ 281 static bool nfs_full_page_write(struct page *page, loff_t pos, unsigned int len) 282 { 283 unsigned int pglen = nfs_page_length(page); 284 unsigned int offset = pos & (PAGE_SIZE - 1); 285 unsigned int end = offset + len; 286 287 return !pglen || (end >= pglen && !offset); 288 } 289 290 static bool nfs_want_read_modify_write(struct file *file, struct page *page, 291 loff_t pos, unsigned int len) 292 { 293 /* 294 * Up-to-date pages, those with ongoing or full-page write 295 * don't need read/modify/write 296 */ 297 if (PageUptodate(page) || PagePrivate(page) || 298 nfs_full_page_write(page, pos, len)) 299 return false; 300 301 if (pnfs_ld_read_whole_page(file->f_mapping->host)) 302 return true; 303 /* Open for reading too? */ 304 if (file->f_mode & FMODE_READ) 305 return true; 306 return false; 307 } 308 309 /* 310 * This does the "real" work of the write. We must allocate and lock the 311 * page to be sent back to the generic routine, which then copies the 312 * data from user space. 313 * 314 * If the writer ends up delaying the write, the writer needs to 315 * increment the page use counts until he is done with the page. 316 */ 317 static int nfs_write_begin(struct file *file, struct address_space *mapping, 318 loff_t pos, unsigned len, unsigned flags, 319 struct page **pagep, void **fsdata) 320 { 321 int ret; 322 pgoff_t index = pos >> PAGE_SHIFT; 323 struct page *page; 324 int once_thru = 0; 325 326 dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n", 327 file, mapping->host->i_ino, len, (long long) pos); 328 329 start: 330 page = grab_cache_page_write_begin(mapping, index, flags); 331 if (!page) 332 return -ENOMEM; 333 *pagep = page; 334 335 ret = nfs_flush_incompatible(file, page); 336 if (ret) { 337 unlock_page(page); 338 put_page(page); 339 } else if (!once_thru && 340 nfs_want_read_modify_write(file, page, pos, len)) { 341 once_thru = 1; 342 ret = nfs_readpage(file, page); 343 put_page(page); 344 if (!ret) 345 goto start; 346 } 347 return ret; 348 } 349 350 static int nfs_write_end(struct file *file, struct address_space *mapping, 351 loff_t pos, unsigned len, unsigned copied, 352 struct page *page, void *fsdata) 353 { 354 unsigned offset = pos & (PAGE_SIZE - 1); 355 struct nfs_open_context *ctx = nfs_file_open_context(file); 356 int status; 357 358 dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n", 359 file, mapping->host->i_ino, len, (long long) pos); 360 361 /* 362 * Zero any uninitialised parts of the page, and then mark the page 363 * as up to date if it turns out that we're extending the file. 364 */ 365 if (!PageUptodate(page)) { 366 unsigned pglen = nfs_page_length(page); 367 unsigned end = offset + copied; 368 369 if (pglen == 0) { 370 zero_user_segments(page, 0, offset, 371 end, PAGE_SIZE); 372 SetPageUptodate(page); 373 } else if (end >= pglen) { 374 zero_user_segment(page, end, PAGE_SIZE); 375 if (offset == 0) 376 SetPageUptodate(page); 377 } else 378 zero_user_segment(page, pglen, PAGE_SIZE); 379 } 380 381 status = nfs_updatepage(file, page, offset, copied); 382 383 unlock_page(page); 384 put_page(page); 385 386 if (status < 0) 387 return status; 388 NFS_I(mapping->host)->write_io += copied; 389 390 if (nfs_ctx_key_to_expire(ctx, mapping->host)) { 391 status = nfs_wb_all(mapping->host); 392 if (status < 0) 393 return status; 394 } 395 396 return copied; 397 } 398 399 /* 400 * Partially or wholly invalidate a page 401 * - Release the private state associated with a page if undergoing complete 402 * page invalidation 403 * - Called if either PG_private or PG_fscache is set on the page 404 * - Caller holds page lock 405 */ 406 static void nfs_invalidate_page(struct page *page, unsigned int offset, 407 unsigned int length) 408 { 409 dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n", 410 page, offset, length); 411 412 if (offset != 0 || length < PAGE_SIZE) 413 return; 414 /* Cancel any unstarted writes on this page */ 415 nfs_wb_page_cancel(page_file_mapping(page)->host, page); 416 417 nfs_fscache_invalidate_page(page, page->mapping->host); 418 } 419 420 /* 421 * Attempt to release the private state associated with a page 422 * - Called if either PG_private or PG_fscache is set on the page 423 * - Caller holds page lock 424 * - Return true (may release page) or false (may not) 425 */ 426 static int nfs_release_page(struct page *page, gfp_t gfp) 427 { 428 dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page); 429 430 /* If PagePrivate() is set, then the page is not freeable */ 431 if (PagePrivate(page)) 432 return 0; 433 return nfs_fscache_release_page(page, gfp); 434 } 435 436 static void nfs_check_dirty_writeback(struct page *page, 437 bool *dirty, bool *writeback) 438 { 439 struct nfs_inode *nfsi; 440 struct address_space *mapping = page_file_mapping(page); 441 442 if (!mapping || PageSwapCache(page)) 443 return; 444 445 /* 446 * Check if an unstable page is currently being committed and 447 * if so, have the VM treat it as if the page is under writeback 448 * so it will not block due to pages that will shortly be freeable. 449 */ 450 nfsi = NFS_I(mapping->host); 451 if (atomic_read(&nfsi->commit_info.rpcs_out)) { 452 *writeback = true; 453 return; 454 } 455 456 /* 457 * If PagePrivate() is set, then the page is not freeable and as the 458 * inode is not being committed, it's not going to be cleaned in the 459 * near future so treat it as dirty 460 */ 461 if (PagePrivate(page)) 462 *dirty = true; 463 } 464 465 /* 466 * Attempt to clear the private state associated with a page when an error 467 * occurs that requires the cached contents of an inode to be written back or 468 * destroyed 469 * - Called if either PG_private or fscache is set on the page 470 * - Caller holds page lock 471 * - Return 0 if successful, -error otherwise 472 */ 473 static int nfs_launder_page(struct page *page) 474 { 475 struct inode *inode = page_file_mapping(page)->host; 476 struct nfs_inode *nfsi = NFS_I(inode); 477 478 dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n", 479 inode->i_ino, (long long)page_offset(page)); 480 481 nfs_fscache_wait_on_page_write(nfsi, page); 482 return nfs_wb_page(inode, page); 483 } 484 485 static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file, 486 sector_t *span) 487 { 488 unsigned long blocks; 489 long long isize; 490 struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host); 491 struct inode *inode = file->f_mapping->host; 492 493 spin_lock(&inode->i_lock); 494 blocks = inode->i_blocks; 495 isize = inode->i_size; 496 spin_unlock(&inode->i_lock); 497 if (blocks*512 < isize) { 498 pr_warn("swap activate: swapfile has holes\n"); 499 return -EINVAL; 500 } 501 502 *span = sis->pages; 503 504 return rpc_clnt_swap_activate(clnt); 505 } 506 507 static void nfs_swap_deactivate(struct file *file) 508 { 509 struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host); 510 511 rpc_clnt_swap_deactivate(clnt); 512 } 513 514 const struct address_space_operations nfs_file_aops = { 515 .readpage = nfs_readpage, 516 .readpages = nfs_readpages, 517 .set_page_dirty = __set_page_dirty_nobuffers, 518 .writepage = nfs_writepage, 519 .writepages = nfs_writepages, 520 .write_begin = nfs_write_begin, 521 .write_end = nfs_write_end, 522 .invalidatepage = nfs_invalidate_page, 523 .releasepage = nfs_release_page, 524 .direct_IO = nfs_direct_IO, 525 #ifdef CONFIG_MIGRATION 526 .migratepage = nfs_migrate_page, 527 #endif 528 .launder_page = nfs_launder_page, 529 .is_dirty_writeback = nfs_check_dirty_writeback, 530 .error_remove_page = generic_error_remove_page, 531 .swap_activate = nfs_swap_activate, 532 .swap_deactivate = nfs_swap_deactivate, 533 }; 534 535 /* 536 * Notification that a PTE pointing to an NFS page is about to be made 537 * writable, implying that someone is about to modify the page through a 538 * shared-writable mapping 539 */ 540 static vm_fault_t nfs_vm_page_mkwrite(struct vm_fault *vmf) 541 { 542 struct page *page = vmf->page; 543 struct file *filp = vmf->vma->vm_file; 544 struct inode *inode = file_inode(filp); 545 unsigned pagelen; 546 vm_fault_t ret = VM_FAULT_NOPAGE; 547 struct address_space *mapping; 548 549 dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n", 550 filp, filp->f_mapping->host->i_ino, 551 (long long)page_offset(page)); 552 553 sb_start_pagefault(inode->i_sb); 554 555 /* make sure the cache has finished storing the page */ 556 nfs_fscache_wait_on_page_write(NFS_I(inode), page); 557 558 wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING, 559 nfs_wait_bit_killable, TASK_KILLABLE); 560 561 lock_page(page); 562 mapping = page_file_mapping(page); 563 if (mapping != inode->i_mapping) 564 goto out_unlock; 565 566 wait_on_page_writeback(page); 567 568 pagelen = nfs_page_length(page); 569 if (pagelen == 0) 570 goto out_unlock; 571 572 ret = VM_FAULT_LOCKED; 573 if (nfs_flush_incompatible(filp, page) == 0 && 574 nfs_updatepage(filp, page, 0, pagelen) == 0) 575 goto out; 576 577 ret = VM_FAULT_SIGBUS; 578 out_unlock: 579 unlock_page(page); 580 out: 581 sb_end_pagefault(inode->i_sb); 582 return ret; 583 } 584 585 static const struct vm_operations_struct nfs_file_vm_ops = { 586 .fault = filemap_fault, 587 .map_pages = filemap_map_pages, 588 .page_mkwrite = nfs_vm_page_mkwrite, 589 }; 590 591 static int nfs_need_check_write(struct file *filp, struct inode *inode) 592 { 593 struct nfs_open_context *ctx; 594 595 ctx = nfs_file_open_context(filp); 596 if (nfs_ctx_key_to_expire(ctx, inode)) 597 return 1; 598 return 0; 599 } 600 601 ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from) 602 { 603 struct file *file = iocb->ki_filp; 604 struct inode *inode = file_inode(file); 605 unsigned long written = 0; 606 ssize_t result; 607 608 result = nfs_key_timeout_notify(file, inode); 609 if (result) 610 return result; 611 612 if (iocb->ki_flags & IOCB_DIRECT) 613 return nfs_file_direct_write(iocb, from); 614 615 dprintk("NFS: write(%pD2, %zu@%Ld)\n", 616 file, iov_iter_count(from), (long long) iocb->ki_pos); 617 618 if (IS_SWAPFILE(inode)) 619 goto out_swapfile; 620 /* 621 * O_APPEND implies that we must revalidate the file length. 622 */ 623 if (iocb->ki_flags & IOCB_APPEND) { 624 result = nfs_revalidate_file_size(inode, file); 625 if (result) 626 goto out; 627 } 628 if (iocb->ki_pos > i_size_read(inode)) 629 nfs_revalidate_mapping(inode, file->f_mapping); 630 631 nfs_start_io_write(inode); 632 result = generic_write_checks(iocb, from); 633 if (result > 0) { 634 current->backing_dev_info = inode_to_bdi(inode); 635 result = generic_perform_write(file, from, iocb->ki_pos); 636 current->backing_dev_info = NULL; 637 } 638 nfs_end_io_write(inode); 639 if (result <= 0) 640 goto out; 641 642 written = result; 643 iocb->ki_pos += written; 644 result = generic_write_sync(iocb, written); 645 if (result < 0) 646 goto out; 647 648 /* Return error values */ 649 if (nfs_need_check_write(file, inode)) { 650 int err = nfs_wb_all(inode); 651 if (err < 0) 652 result = err; 653 } 654 nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written); 655 out: 656 return result; 657 658 out_swapfile: 659 printk(KERN_INFO "NFS: attempt to write to active swap file!\n"); 660 return -ETXTBSY; 661 } 662 EXPORT_SYMBOL_GPL(nfs_file_write); 663 664 static int 665 do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local) 666 { 667 struct inode *inode = filp->f_mapping->host; 668 int status = 0; 669 unsigned int saved_type = fl->fl_type; 670 671 /* Try local locking first */ 672 posix_test_lock(filp, fl); 673 if (fl->fl_type != F_UNLCK) { 674 /* found a conflict */ 675 goto out; 676 } 677 fl->fl_type = saved_type; 678 679 if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) 680 goto out_noconflict; 681 682 if (is_local) 683 goto out_noconflict; 684 685 status = NFS_PROTO(inode)->lock(filp, cmd, fl); 686 out: 687 return status; 688 out_noconflict: 689 fl->fl_type = F_UNLCK; 690 goto out; 691 } 692 693 static int 694 do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local) 695 { 696 struct inode *inode = filp->f_mapping->host; 697 struct nfs_lock_context *l_ctx; 698 int status; 699 700 /* 701 * Flush all pending writes before doing anything 702 * with locks.. 703 */ 704 nfs_wb_all(inode); 705 706 l_ctx = nfs_get_lock_context(nfs_file_open_context(filp)); 707 if (!IS_ERR(l_ctx)) { 708 status = nfs_iocounter_wait(l_ctx); 709 nfs_put_lock_context(l_ctx); 710 /* NOTE: special case 711 * If we're signalled while cleaning up locks on process exit, we 712 * still need to complete the unlock. 713 */ 714 if (status < 0 && !(fl->fl_flags & FL_CLOSE)) 715 return status; 716 } 717 718 /* 719 * Use local locking if mounted with "-onolock" or with appropriate 720 * "-olocal_lock=" 721 */ 722 if (!is_local) 723 status = NFS_PROTO(inode)->lock(filp, cmd, fl); 724 else 725 status = locks_lock_file_wait(filp, fl); 726 return status; 727 } 728 729 static int 730 do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local) 731 { 732 struct inode *inode = filp->f_mapping->host; 733 int status; 734 735 /* 736 * Flush all pending writes before doing anything 737 * with locks.. 738 */ 739 status = nfs_sync_mapping(filp->f_mapping); 740 if (status != 0) 741 goto out; 742 743 /* 744 * Use local locking if mounted with "-onolock" or with appropriate 745 * "-olocal_lock=" 746 */ 747 if (!is_local) 748 status = NFS_PROTO(inode)->lock(filp, cmd, fl); 749 else 750 status = locks_lock_file_wait(filp, fl); 751 if (status < 0) 752 goto out; 753 754 /* 755 * Invalidate cache to prevent missing any changes. If 756 * the file is mapped, clear the page cache as well so 757 * those mappings will be loaded. 758 * 759 * This makes locking act as a cache coherency point. 760 */ 761 nfs_sync_mapping(filp->f_mapping); 762 if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) { 763 nfs_zap_caches(inode); 764 if (mapping_mapped(filp->f_mapping)) 765 nfs_revalidate_mapping(inode, filp->f_mapping); 766 } 767 out: 768 return status; 769 } 770 771 /* 772 * Lock a (portion of) a file 773 */ 774 int nfs_lock(struct file *filp, int cmd, struct file_lock *fl) 775 { 776 struct inode *inode = filp->f_mapping->host; 777 int ret = -ENOLCK; 778 int is_local = 0; 779 780 dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n", 781 filp, fl->fl_type, fl->fl_flags, 782 (long long)fl->fl_start, (long long)fl->fl_end); 783 784 nfs_inc_stats(inode, NFSIOS_VFSLOCK); 785 786 /* No mandatory locks over NFS */ 787 if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK) 788 goto out_err; 789 790 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL) 791 is_local = 1; 792 793 if (NFS_PROTO(inode)->lock_check_bounds != NULL) { 794 ret = NFS_PROTO(inode)->lock_check_bounds(fl); 795 if (ret < 0) 796 goto out_err; 797 } 798 799 if (IS_GETLK(cmd)) 800 ret = do_getlk(filp, cmd, fl, is_local); 801 else if (fl->fl_type == F_UNLCK) 802 ret = do_unlk(filp, cmd, fl, is_local); 803 else 804 ret = do_setlk(filp, cmd, fl, is_local); 805 out_err: 806 return ret; 807 } 808 EXPORT_SYMBOL_GPL(nfs_lock); 809 810 /* 811 * Lock a (portion of) a file 812 */ 813 int nfs_flock(struct file *filp, int cmd, struct file_lock *fl) 814 { 815 struct inode *inode = filp->f_mapping->host; 816 int is_local = 0; 817 818 dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n", 819 filp, fl->fl_type, fl->fl_flags); 820 821 if (!(fl->fl_flags & FL_FLOCK)) 822 return -ENOLCK; 823 824 /* 825 * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of 826 * any standard. In principle we might be able to support LOCK_MAND 827 * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the 828 * NFS code is not set up for it. 829 */ 830 if (fl->fl_type & LOCK_MAND) 831 return -EINVAL; 832 833 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK) 834 is_local = 1; 835 836 /* We're simulating flock() locks using posix locks on the server */ 837 if (fl->fl_type == F_UNLCK) 838 return do_unlk(filp, cmd, fl, is_local); 839 return do_setlk(filp, cmd, fl, is_local); 840 } 841 EXPORT_SYMBOL_GPL(nfs_flock); 842 843 const struct file_operations nfs_file_operations = { 844 .llseek = nfs_file_llseek, 845 .read_iter = nfs_file_read, 846 .write_iter = nfs_file_write, 847 .mmap = nfs_file_mmap, 848 .open = nfs_file_open, 849 .flush = nfs_file_flush, 850 .release = nfs_file_release, 851 .fsync = nfs_file_fsync, 852 .lock = nfs_lock, 853 .flock = nfs_flock, 854 .splice_read = generic_file_splice_read, 855 .splice_write = iter_file_splice_write, 856 .check_flags = nfs_check_flags, 857 .setlease = simple_nosetlease, 858 }; 859 EXPORT_SYMBOL_GPL(nfs_file_operations); 860