xref: /openbmc/linux/fs/nfs/file.c (revision 4464005a12b5c79e1a364e6272ee10a83413f928)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/nfs/file.c
4  *
5  *  Copyright (C) 1992  Rick Sladkey
6  *
7  *  Changes Copyright (C) 1994 by Florian La Roche
8  *   - Do not copy data too often around in the kernel.
9  *   - In nfs_file_read the return value of kmalloc wasn't checked.
10  *   - Put in a better version of read look-ahead buffering. Original idea
11  *     and implementation by Wai S Kok elekokws@ee.nus.sg.
12  *
13  *  Expire cache on write to a file by Wai S Kok (Oct 1994).
14  *
15  *  Total rewrite of read side for new NFS buffer cache.. Linus.
16  *
17  *  nfs regular file handling functions
18  */
19 
20 #include <linux/module.h>
21 #include <linux/time.h>
22 #include <linux/kernel.h>
23 #include <linux/errno.h>
24 #include <linux/fcntl.h>
25 #include <linux/stat.h>
26 #include <linux/nfs_fs.h>
27 #include <linux/nfs_mount.h>
28 #include <linux/mm.h>
29 #include <linux/pagemap.h>
30 #include <linux/gfp.h>
31 #include <linux/swap.h>
32 
33 #include <linux/uaccess.h>
34 
35 #include "delegation.h"
36 #include "internal.h"
37 #include "iostat.h"
38 #include "fscache.h"
39 #include "pnfs.h"
40 
41 #include "nfstrace.h"
42 
43 #define NFSDBG_FACILITY		NFSDBG_FILE
44 
45 static const struct vm_operations_struct nfs_file_vm_ops;
46 
47 /* Hack for future NFS swap support */
48 #ifndef IS_SWAPFILE
49 # define IS_SWAPFILE(inode)	(0)
50 #endif
51 
52 int nfs_check_flags(int flags)
53 {
54 	if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
55 		return -EINVAL;
56 
57 	return 0;
58 }
59 EXPORT_SYMBOL_GPL(nfs_check_flags);
60 
61 /*
62  * Open file
63  */
64 static int
65 nfs_file_open(struct inode *inode, struct file *filp)
66 {
67 	int res;
68 
69 	dprintk("NFS: open file(%pD2)\n", filp);
70 
71 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
72 	res = nfs_check_flags(filp->f_flags);
73 	if (res)
74 		return res;
75 
76 	res = nfs_open(inode, filp);
77 	return res;
78 }
79 
80 int
81 nfs_file_release(struct inode *inode, struct file *filp)
82 {
83 	dprintk("NFS: release(%pD2)\n", filp);
84 
85 	nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
86 	nfs_file_clear_open_context(filp);
87 	return 0;
88 }
89 EXPORT_SYMBOL_GPL(nfs_file_release);
90 
91 /**
92  * nfs_revalidate_size - Revalidate the file size
93  * @inode: pointer to inode struct
94  * @filp: pointer to struct file
95  *
96  * Revalidates the file length. This is basically a wrapper around
97  * nfs_revalidate_inode() that takes into account the fact that we may
98  * have cached writes (in which case we don't care about the server's
99  * idea of what the file length is), or O_DIRECT (in which case we
100  * shouldn't trust the cache).
101  */
102 static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
103 {
104 	struct nfs_server *server = NFS_SERVER(inode);
105 
106 	if (filp->f_flags & O_DIRECT)
107 		goto force_reval;
108 	if (nfs_check_cache_invalid(inode, NFS_INO_REVAL_PAGECACHE))
109 		goto force_reval;
110 	return 0;
111 force_reval:
112 	return __nfs_revalidate_inode(server, inode);
113 }
114 
115 loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
116 {
117 	dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
118 			filp, offset, whence);
119 
120 	/*
121 	 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
122 	 * the cached file length
123 	 */
124 	if (whence != SEEK_SET && whence != SEEK_CUR) {
125 		struct inode *inode = filp->f_mapping->host;
126 
127 		int retval = nfs_revalidate_file_size(inode, filp);
128 		if (retval < 0)
129 			return (loff_t)retval;
130 	}
131 
132 	return generic_file_llseek(filp, offset, whence);
133 }
134 EXPORT_SYMBOL_GPL(nfs_file_llseek);
135 
136 /*
137  * Flush all dirty pages, and check for write errors.
138  */
139 static int
140 nfs_file_flush(struct file *file, fl_owner_t id)
141 {
142 	struct inode	*inode = file_inode(file);
143 
144 	dprintk("NFS: flush(%pD2)\n", file);
145 
146 	nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
147 	if ((file->f_mode & FMODE_WRITE) == 0)
148 		return 0;
149 
150 	/* Flush writes to the server and return any errors */
151 	return nfs_wb_all(inode);
152 }
153 
154 ssize_t
155 nfs_file_read(struct kiocb *iocb, struct iov_iter *to)
156 {
157 	struct inode *inode = file_inode(iocb->ki_filp);
158 	ssize_t result;
159 
160 	if (iocb->ki_flags & IOCB_DIRECT)
161 		return nfs_file_direct_read(iocb, to);
162 
163 	dprintk("NFS: read(%pD2, %zu@%lu)\n",
164 		iocb->ki_filp,
165 		iov_iter_count(to), (unsigned long) iocb->ki_pos);
166 
167 	nfs_start_io_read(inode);
168 	result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
169 	if (!result) {
170 		result = generic_file_read_iter(iocb, to);
171 		if (result > 0)
172 			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
173 	}
174 	nfs_end_io_read(inode);
175 	return result;
176 }
177 EXPORT_SYMBOL_GPL(nfs_file_read);
178 
179 int
180 nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
181 {
182 	struct inode *inode = file_inode(file);
183 	int	status;
184 
185 	dprintk("NFS: mmap(%pD2)\n", file);
186 
187 	/* Note: generic_file_mmap() returns ENOSYS on nommu systems
188 	 *       so we call that before revalidating the mapping
189 	 */
190 	status = generic_file_mmap(file, vma);
191 	if (!status) {
192 		vma->vm_ops = &nfs_file_vm_ops;
193 		status = nfs_revalidate_mapping(inode, file->f_mapping);
194 	}
195 	return status;
196 }
197 EXPORT_SYMBOL_GPL(nfs_file_mmap);
198 
199 /*
200  * Flush any dirty pages for this process, and check for write errors.
201  * The return status from this call provides a reliable indication of
202  * whether any write errors occurred for this process.
203  */
204 static int
205 nfs_file_fsync_commit(struct file *file, int datasync)
206 {
207 	struct inode *inode = file_inode(file);
208 	int ret;
209 
210 	dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync);
211 
212 	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
213 	ret = nfs_commit_inode(inode, FLUSH_SYNC);
214 	if (ret < 0)
215 		return ret;
216 	return file_check_and_advance_wb_err(file);
217 }
218 
219 int
220 nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
221 {
222 	struct nfs_open_context *ctx = nfs_file_open_context(file);
223 	struct inode *inode = file_inode(file);
224 	int ret;
225 
226 	trace_nfs_fsync_enter(inode);
227 
228 	for (;;) {
229 		ret = file_write_and_wait_range(file, start, end);
230 		if (ret != 0)
231 			break;
232 		ret = nfs_file_fsync_commit(file, datasync);
233 		if (ret != 0)
234 			break;
235 		ret = pnfs_sync_inode(inode, !!datasync);
236 		if (ret != 0)
237 			break;
238 		if (!test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags))
239 			break;
240 		/*
241 		 * If nfs_file_fsync_commit detected a server reboot, then
242 		 * resend all dirty pages that might have been covered by
243 		 * the NFS_CONTEXT_RESEND_WRITES flag
244 		 */
245 		start = 0;
246 		end = LLONG_MAX;
247 	}
248 
249 	trace_nfs_fsync_exit(inode, ret);
250 	return ret;
251 }
252 EXPORT_SYMBOL_GPL(nfs_file_fsync);
253 
254 /*
255  * Decide whether a read/modify/write cycle may be more efficient
256  * then a modify/write/read cycle when writing to a page in the
257  * page cache.
258  *
259  * Some pNFS layout drivers can only read/write at a certain block
260  * granularity like all block devices and therefore we must perform
261  * read/modify/write whenever a page hasn't read yet and the data
262  * to be written there is not aligned to a block boundary and/or
263  * smaller than the block size.
264  *
265  * The modify/write/read cycle may occur if a page is read before
266  * being completely filled by the writer.  In this situation, the
267  * page must be completely written to stable storage on the server
268  * before it can be refilled by reading in the page from the server.
269  * This can lead to expensive, small, FILE_SYNC mode writes being
270  * done.
271  *
272  * It may be more efficient to read the page first if the file is
273  * open for reading in addition to writing, the page is not marked
274  * as Uptodate, it is not dirty or waiting to be committed,
275  * indicating that it was previously allocated and then modified,
276  * that there were valid bytes of data in that range of the file,
277  * and that the new data won't completely replace the old data in
278  * that range of the file.
279  */
280 static bool nfs_full_page_write(struct page *page, loff_t pos, unsigned int len)
281 {
282 	unsigned int pglen = nfs_page_length(page);
283 	unsigned int offset = pos & (PAGE_SIZE - 1);
284 	unsigned int end = offset + len;
285 
286 	return !pglen || (end >= pglen && !offset);
287 }
288 
289 static bool nfs_want_read_modify_write(struct file *file, struct page *page,
290 			loff_t pos, unsigned int len)
291 {
292 	/*
293 	 * Up-to-date pages, those with ongoing or full-page write
294 	 * don't need read/modify/write
295 	 */
296 	if (PageUptodate(page) || PagePrivate(page) ||
297 	    nfs_full_page_write(page, pos, len))
298 		return false;
299 
300 	if (pnfs_ld_read_whole_page(file->f_mapping->host))
301 		return true;
302 	/* Open for reading too? */
303 	if (file->f_mode & FMODE_READ)
304 		return true;
305 	return false;
306 }
307 
308 /*
309  * This does the "real" work of the write. We must allocate and lock the
310  * page to be sent back to the generic routine, which then copies the
311  * data from user space.
312  *
313  * If the writer ends up delaying the write, the writer needs to
314  * increment the page use counts until he is done with the page.
315  */
316 static int nfs_write_begin(struct file *file, struct address_space *mapping,
317 			loff_t pos, unsigned len, unsigned flags,
318 			struct page **pagep, void **fsdata)
319 {
320 	int ret;
321 	pgoff_t index = pos >> PAGE_SHIFT;
322 	struct page *page;
323 	int once_thru = 0;
324 
325 	dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n",
326 		file, mapping->host->i_ino, len, (long long) pos);
327 
328 start:
329 	page = grab_cache_page_write_begin(mapping, index, flags);
330 	if (!page)
331 		return -ENOMEM;
332 	*pagep = page;
333 
334 	ret = nfs_flush_incompatible(file, page);
335 	if (ret) {
336 		unlock_page(page);
337 		put_page(page);
338 	} else if (!once_thru &&
339 		   nfs_want_read_modify_write(file, page, pos, len)) {
340 		once_thru = 1;
341 		ret = nfs_readpage(file, page);
342 		put_page(page);
343 		if (!ret)
344 			goto start;
345 	}
346 	return ret;
347 }
348 
349 static int nfs_write_end(struct file *file, struct address_space *mapping,
350 			loff_t pos, unsigned len, unsigned copied,
351 			struct page *page, void *fsdata)
352 {
353 	unsigned offset = pos & (PAGE_SIZE - 1);
354 	struct nfs_open_context *ctx = nfs_file_open_context(file);
355 	int status;
356 
357 	dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n",
358 		file, mapping->host->i_ino, len, (long long) pos);
359 
360 	/*
361 	 * Zero any uninitialised parts of the page, and then mark the page
362 	 * as up to date if it turns out that we're extending the file.
363 	 */
364 	if (!PageUptodate(page)) {
365 		unsigned pglen = nfs_page_length(page);
366 		unsigned end = offset + copied;
367 
368 		if (pglen == 0) {
369 			zero_user_segments(page, 0, offset,
370 					end, PAGE_SIZE);
371 			SetPageUptodate(page);
372 		} else if (end >= pglen) {
373 			zero_user_segment(page, end, PAGE_SIZE);
374 			if (offset == 0)
375 				SetPageUptodate(page);
376 		} else
377 			zero_user_segment(page, pglen, PAGE_SIZE);
378 	}
379 
380 	status = nfs_updatepage(file, page, offset, copied);
381 
382 	unlock_page(page);
383 	put_page(page);
384 
385 	if (status < 0)
386 		return status;
387 	NFS_I(mapping->host)->write_io += copied;
388 
389 	if (nfs_ctx_key_to_expire(ctx, mapping->host)) {
390 		status = nfs_wb_all(mapping->host);
391 		if (status < 0)
392 			return status;
393 	}
394 
395 	return copied;
396 }
397 
398 /*
399  * Partially or wholly invalidate a page
400  * - Release the private state associated with a page if undergoing complete
401  *   page invalidation
402  * - Called if either PG_private or PG_fscache is set on the page
403  * - Caller holds page lock
404  */
405 static void nfs_invalidate_page(struct page *page, unsigned int offset,
406 				unsigned int length)
407 {
408 	dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n",
409 		 page, offset, length);
410 
411 	if (offset != 0 || length < PAGE_SIZE)
412 		return;
413 	/* Cancel any unstarted writes on this page */
414 	nfs_wb_page_cancel(page_file_mapping(page)->host, page);
415 
416 	nfs_fscache_invalidate_page(page, page->mapping->host);
417 }
418 
419 /*
420  * Attempt to release the private state associated with a page
421  * - Called if either PG_private or PG_fscache is set on the page
422  * - Caller holds page lock
423  * - Return true (may release page) or false (may not)
424  */
425 static int nfs_release_page(struct page *page, gfp_t gfp)
426 {
427 	dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
428 
429 	/* If PagePrivate() is set, then the page is not freeable */
430 	if (PagePrivate(page))
431 		return 0;
432 	return nfs_fscache_release_page(page, gfp);
433 }
434 
435 static void nfs_check_dirty_writeback(struct page *page,
436 				bool *dirty, bool *writeback)
437 {
438 	struct nfs_inode *nfsi;
439 	struct address_space *mapping = page_file_mapping(page);
440 
441 	if (!mapping || PageSwapCache(page))
442 		return;
443 
444 	/*
445 	 * Check if an unstable page is currently being committed and
446 	 * if so, have the VM treat it as if the page is under writeback
447 	 * so it will not block due to pages that will shortly be freeable.
448 	 */
449 	nfsi = NFS_I(mapping->host);
450 	if (atomic_read(&nfsi->commit_info.rpcs_out)) {
451 		*writeback = true;
452 		return;
453 	}
454 
455 	/*
456 	 * If PagePrivate() is set, then the page is not freeable and as the
457 	 * inode is not being committed, it's not going to be cleaned in the
458 	 * near future so treat it as dirty
459 	 */
460 	if (PagePrivate(page))
461 		*dirty = true;
462 }
463 
464 /*
465  * Attempt to clear the private state associated with a page when an error
466  * occurs that requires the cached contents of an inode to be written back or
467  * destroyed
468  * - Called if either PG_private or fscache is set on the page
469  * - Caller holds page lock
470  * - Return 0 if successful, -error otherwise
471  */
472 static int nfs_launder_page(struct page *page)
473 {
474 	struct inode *inode = page_file_mapping(page)->host;
475 	struct nfs_inode *nfsi = NFS_I(inode);
476 
477 	dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
478 		inode->i_ino, (long long)page_offset(page));
479 
480 	nfs_fscache_wait_on_page_write(nfsi, page);
481 	return nfs_wb_page(inode, page);
482 }
483 
484 static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
485 						sector_t *span)
486 {
487 	unsigned long blocks;
488 	long long isize;
489 	struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
490 	struct inode *inode = file->f_mapping->host;
491 
492 	spin_lock(&inode->i_lock);
493 	blocks = inode->i_blocks;
494 	isize = inode->i_size;
495 	spin_unlock(&inode->i_lock);
496 	if (blocks*512 < isize) {
497 		pr_warn("swap activate: swapfile has holes\n");
498 		return -EINVAL;
499 	}
500 
501 	*span = sis->pages;
502 
503 	return rpc_clnt_swap_activate(clnt);
504 }
505 
506 static void nfs_swap_deactivate(struct file *file)
507 {
508 	struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
509 
510 	rpc_clnt_swap_deactivate(clnt);
511 }
512 
513 const struct address_space_operations nfs_file_aops = {
514 	.readpage = nfs_readpage,
515 	.readpages = nfs_readpages,
516 	.set_page_dirty = __set_page_dirty_nobuffers,
517 	.writepage = nfs_writepage,
518 	.writepages = nfs_writepages,
519 	.write_begin = nfs_write_begin,
520 	.write_end = nfs_write_end,
521 	.invalidatepage = nfs_invalidate_page,
522 	.releasepage = nfs_release_page,
523 	.direct_IO = nfs_direct_IO,
524 #ifdef CONFIG_MIGRATION
525 	.migratepage = nfs_migrate_page,
526 #endif
527 	.launder_page = nfs_launder_page,
528 	.is_dirty_writeback = nfs_check_dirty_writeback,
529 	.error_remove_page = generic_error_remove_page,
530 	.swap_activate = nfs_swap_activate,
531 	.swap_deactivate = nfs_swap_deactivate,
532 };
533 
534 /*
535  * Notification that a PTE pointing to an NFS page is about to be made
536  * writable, implying that someone is about to modify the page through a
537  * shared-writable mapping
538  */
539 static vm_fault_t nfs_vm_page_mkwrite(struct vm_fault *vmf)
540 {
541 	struct page *page = vmf->page;
542 	struct file *filp = vmf->vma->vm_file;
543 	struct inode *inode = file_inode(filp);
544 	unsigned pagelen;
545 	vm_fault_t ret = VM_FAULT_NOPAGE;
546 	struct address_space *mapping;
547 
548 	dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n",
549 		filp, filp->f_mapping->host->i_ino,
550 		(long long)page_offset(page));
551 
552 	sb_start_pagefault(inode->i_sb);
553 
554 	/* make sure the cache has finished storing the page */
555 	nfs_fscache_wait_on_page_write(NFS_I(inode), page);
556 
557 	wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING,
558 			nfs_wait_bit_killable, TASK_KILLABLE);
559 
560 	lock_page(page);
561 	mapping = page_file_mapping(page);
562 	if (mapping != inode->i_mapping)
563 		goto out_unlock;
564 
565 	wait_on_page_writeback(page);
566 
567 	pagelen = nfs_page_length(page);
568 	if (pagelen == 0)
569 		goto out_unlock;
570 
571 	ret = VM_FAULT_LOCKED;
572 	if (nfs_flush_incompatible(filp, page) == 0 &&
573 	    nfs_updatepage(filp, page, 0, pagelen) == 0)
574 		goto out;
575 
576 	ret = VM_FAULT_SIGBUS;
577 out_unlock:
578 	unlock_page(page);
579 out:
580 	sb_end_pagefault(inode->i_sb);
581 	return ret;
582 }
583 
584 static const struct vm_operations_struct nfs_file_vm_ops = {
585 	.fault = filemap_fault,
586 	.map_pages = filemap_map_pages,
587 	.page_mkwrite = nfs_vm_page_mkwrite,
588 };
589 
590 static int nfs_need_check_write(struct file *filp, struct inode *inode)
591 {
592 	struct nfs_open_context *ctx;
593 
594 	ctx = nfs_file_open_context(filp);
595 	if (nfs_ctx_key_to_expire(ctx, inode))
596 		return 1;
597 	return 0;
598 }
599 
600 ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from)
601 {
602 	struct file *file = iocb->ki_filp;
603 	struct inode *inode = file_inode(file);
604 	unsigned long written = 0;
605 	ssize_t result;
606 
607 	result = nfs_key_timeout_notify(file, inode);
608 	if (result)
609 		return result;
610 
611 	if (iocb->ki_flags & IOCB_DIRECT)
612 		return nfs_file_direct_write(iocb, from);
613 
614 	dprintk("NFS: write(%pD2, %zu@%Ld)\n",
615 		file, iov_iter_count(from), (long long) iocb->ki_pos);
616 
617 	if (IS_SWAPFILE(inode))
618 		goto out_swapfile;
619 	/*
620 	 * O_APPEND implies that we must revalidate the file length.
621 	 */
622 	if (iocb->ki_flags & IOCB_APPEND) {
623 		result = nfs_revalidate_file_size(inode, file);
624 		if (result)
625 			goto out;
626 	}
627 	if (iocb->ki_pos > i_size_read(inode))
628 		nfs_revalidate_mapping(inode, file->f_mapping);
629 
630 	nfs_start_io_write(inode);
631 	result = generic_write_checks(iocb, from);
632 	if (result > 0) {
633 		current->backing_dev_info = inode_to_bdi(inode);
634 		result = generic_perform_write(file, from, iocb->ki_pos);
635 		current->backing_dev_info = NULL;
636 	}
637 	nfs_end_io_write(inode);
638 	if (result <= 0)
639 		goto out;
640 
641 	written = result;
642 	iocb->ki_pos += written;
643 	result = generic_write_sync(iocb, written);
644 	if (result < 0)
645 		goto out;
646 
647 	/* Return error values */
648 	if (nfs_need_check_write(file, inode)) {
649 		int err = nfs_wb_all(inode);
650 		if (err < 0)
651 			result = err;
652 	}
653 	nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
654 out:
655 	return result;
656 
657 out_swapfile:
658 	printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
659 	return -ETXTBSY;
660 }
661 EXPORT_SYMBOL_GPL(nfs_file_write);
662 
663 static int
664 do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
665 {
666 	struct inode *inode = filp->f_mapping->host;
667 	int status = 0;
668 	unsigned int saved_type = fl->fl_type;
669 
670 	/* Try local locking first */
671 	posix_test_lock(filp, fl);
672 	if (fl->fl_type != F_UNLCK) {
673 		/* found a conflict */
674 		goto out;
675 	}
676 	fl->fl_type = saved_type;
677 
678 	if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
679 		goto out_noconflict;
680 
681 	if (is_local)
682 		goto out_noconflict;
683 
684 	status = NFS_PROTO(inode)->lock(filp, cmd, fl);
685 out:
686 	return status;
687 out_noconflict:
688 	fl->fl_type = F_UNLCK;
689 	goto out;
690 }
691 
692 static int
693 do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
694 {
695 	struct inode *inode = filp->f_mapping->host;
696 	struct nfs_lock_context *l_ctx;
697 	int status;
698 
699 	/*
700 	 * Flush all pending writes before doing anything
701 	 * with locks..
702 	 */
703 	nfs_wb_all(inode);
704 
705 	l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
706 	if (!IS_ERR(l_ctx)) {
707 		status = nfs_iocounter_wait(l_ctx);
708 		nfs_put_lock_context(l_ctx);
709 		/*  NOTE: special case
710 		 * 	If we're signalled while cleaning up locks on process exit, we
711 		 * 	still need to complete the unlock.
712 		 */
713 		if (status < 0 && !(fl->fl_flags & FL_CLOSE))
714 			return status;
715 	}
716 
717 	/*
718 	 * Use local locking if mounted with "-onolock" or with appropriate
719 	 * "-olocal_lock="
720 	 */
721 	if (!is_local)
722 		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
723 	else
724 		status = locks_lock_file_wait(filp, fl);
725 	return status;
726 }
727 
728 static int
729 do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
730 {
731 	struct inode *inode = filp->f_mapping->host;
732 	int status;
733 
734 	/*
735 	 * Flush all pending writes before doing anything
736 	 * with locks..
737 	 */
738 	status = nfs_sync_mapping(filp->f_mapping);
739 	if (status != 0)
740 		goto out;
741 
742 	/*
743 	 * Use local locking if mounted with "-onolock" or with appropriate
744 	 * "-olocal_lock="
745 	 */
746 	if (!is_local)
747 		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
748 	else
749 		status = locks_lock_file_wait(filp, fl);
750 	if (status < 0)
751 		goto out;
752 
753 	/*
754 	 * Invalidate cache to prevent missing any changes.  If
755 	 * the file is mapped, clear the page cache as well so
756 	 * those mappings will be loaded.
757 	 *
758 	 * This makes locking act as a cache coherency point.
759 	 */
760 	nfs_sync_mapping(filp->f_mapping);
761 	if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) {
762 		nfs_zap_caches(inode);
763 		if (mapping_mapped(filp->f_mapping))
764 			nfs_revalidate_mapping(inode, filp->f_mapping);
765 	}
766 out:
767 	return status;
768 }
769 
770 /*
771  * Lock a (portion of) a file
772  */
773 int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
774 {
775 	struct inode *inode = filp->f_mapping->host;
776 	int ret = -ENOLCK;
777 	int is_local = 0;
778 
779 	dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
780 			filp, fl->fl_type, fl->fl_flags,
781 			(long long)fl->fl_start, (long long)fl->fl_end);
782 
783 	nfs_inc_stats(inode, NFSIOS_VFSLOCK);
784 
785 	/* No mandatory locks over NFS */
786 	if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
787 		goto out_err;
788 
789 	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
790 		is_local = 1;
791 
792 	if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
793 		ret = NFS_PROTO(inode)->lock_check_bounds(fl);
794 		if (ret < 0)
795 			goto out_err;
796 	}
797 
798 	if (IS_GETLK(cmd))
799 		ret = do_getlk(filp, cmd, fl, is_local);
800 	else if (fl->fl_type == F_UNLCK)
801 		ret = do_unlk(filp, cmd, fl, is_local);
802 	else
803 		ret = do_setlk(filp, cmd, fl, is_local);
804 out_err:
805 	return ret;
806 }
807 EXPORT_SYMBOL_GPL(nfs_lock);
808 
809 /*
810  * Lock a (portion of) a file
811  */
812 int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
813 {
814 	struct inode *inode = filp->f_mapping->host;
815 	int is_local = 0;
816 
817 	dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
818 			filp, fl->fl_type, fl->fl_flags);
819 
820 	if (!(fl->fl_flags & FL_FLOCK))
821 		return -ENOLCK;
822 
823 	/*
824 	 * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of
825 	 * any standard. In principle we might be able to support LOCK_MAND
826 	 * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the
827 	 * NFS code is not set up for it.
828 	 */
829 	if (fl->fl_type & LOCK_MAND)
830 		return -EINVAL;
831 
832 	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
833 		is_local = 1;
834 
835 	/* We're simulating flock() locks using posix locks on the server */
836 	if (fl->fl_type == F_UNLCK)
837 		return do_unlk(filp, cmd, fl, is_local);
838 	return do_setlk(filp, cmd, fl, is_local);
839 }
840 EXPORT_SYMBOL_GPL(nfs_flock);
841 
842 const struct file_operations nfs_file_operations = {
843 	.llseek		= nfs_file_llseek,
844 	.read_iter	= nfs_file_read,
845 	.write_iter	= nfs_file_write,
846 	.mmap		= nfs_file_mmap,
847 	.open		= nfs_file_open,
848 	.flush		= nfs_file_flush,
849 	.release	= nfs_file_release,
850 	.fsync		= nfs_file_fsync,
851 	.lock		= nfs_lock,
852 	.flock		= nfs_flock,
853 	.splice_read	= generic_file_splice_read,
854 	.splice_write	= iter_file_splice_write,
855 	.check_flags	= nfs_check_flags,
856 	.setlease	= simple_nosetlease,
857 };
858 EXPORT_SYMBOL_GPL(nfs_file_operations);
859