xref: /openbmc/linux/fs/nfs/file.c (revision 2fe60ec9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/nfs/file.c
4  *
5  *  Copyright (C) 1992  Rick Sladkey
6  *
7  *  Changes Copyright (C) 1994 by Florian La Roche
8  *   - Do not copy data too often around in the kernel.
9  *   - In nfs_file_read the return value of kmalloc wasn't checked.
10  *   - Put in a better version of read look-ahead buffering. Original idea
11  *     and implementation by Wai S Kok elekokws@ee.nus.sg.
12  *
13  *  Expire cache on write to a file by Wai S Kok (Oct 1994).
14  *
15  *  Total rewrite of read side for new NFS buffer cache.. Linus.
16  *
17  *  nfs regular file handling functions
18  */
19 
20 #include <linux/module.h>
21 #include <linux/time.h>
22 #include <linux/kernel.h>
23 #include <linux/errno.h>
24 #include <linux/fcntl.h>
25 #include <linux/stat.h>
26 #include <linux/nfs_fs.h>
27 #include <linux/nfs_mount.h>
28 #include <linux/mm.h>
29 #include <linux/pagemap.h>
30 #include <linux/gfp.h>
31 #include <linux/swap.h>
32 
33 #include <linux/uaccess.h>
34 
35 #include "delegation.h"
36 #include "internal.h"
37 #include "iostat.h"
38 #include "fscache.h"
39 #include "pnfs.h"
40 
41 #include "nfstrace.h"
42 
43 #define NFSDBG_FACILITY		NFSDBG_FILE
44 
45 static const struct vm_operations_struct nfs_file_vm_ops;
46 
47 int nfs_check_flags(int flags)
48 {
49 	if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
50 		return -EINVAL;
51 
52 	return 0;
53 }
54 EXPORT_SYMBOL_GPL(nfs_check_flags);
55 
56 /*
57  * Open file
58  */
59 static int
60 nfs_file_open(struct inode *inode, struct file *filp)
61 {
62 	int res;
63 
64 	dprintk("NFS: open file(%pD2)\n", filp);
65 
66 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
67 	res = nfs_check_flags(filp->f_flags);
68 	if (res)
69 		return res;
70 
71 	res = nfs_open(inode, filp);
72 	if (res == 0)
73 		filp->f_mode |= FMODE_CAN_ODIRECT;
74 	return res;
75 }
76 
77 int
78 nfs_file_release(struct inode *inode, struct file *filp)
79 {
80 	dprintk("NFS: release(%pD2)\n", filp);
81 
82 	nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
83 	nfs_file_clear_open_context(filp);
84 	nfs_fscache_release_file(inode, filp);
85 	return 0;
86 }
87 EXPORT_SYMBOL_GPL(nfs_file_release);
88 
89 /**
90  * nfs_revalidate_file_size - Revalidate the file size
91  * @inode: pointer to inode struct
92  * @filp: pointer to struct file
93  *
94  * Revalidates the file length. This is basically a wrapper around
95  * nfs_revalidate_inode() that takes into account the fact that we may
96  * have cached writes (in which case we don't care about the server's
97  * idea of what the file length is), or O_DIRECT (in which case we
98  * shouldn't trust the cache).
99  */
100 static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
101 {
102 	struct nfs_server *server = NFS_SERVER(inode);
103 
104 	if (filp->f_flags & O_DIRECT)
105 		goto force_reval;
106 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_SIZE))
107 		goto force_reval;
108 	return 0;
109 force_reval:
110 	return __nfs_revalidate_inode(server, inode);
111 }
112 
113 loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
114 {
115 	dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
116 			filp, offset, whence);
117 
118 	/*
119 	 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
120 	 * the cached file length
121 	 */
122 	if (whence != SEEK_SET && whence != SEEK_CUR) {
123 		struct inode *inode = filp->f_mapping->host;
124 
125 		int retval = nfs_revalidate_file_size(inode, filp);
126 		if (retval < 0)
127 			return (loff_t)retval;
128 	}
129 
130 	return generic_file_llseek(filp, offset, whence);
131 }
132 EXPORT_SYMBOL_GPL(nfs_file_llseek);
133 
134 /*
135  * Flush all dirty pages, and check for write errors.
136  */
137 static int
138 nfs_file_flush(struct file *file, fl_owner_t id)
139 {
140 	struct inode	*inode = file_inode(file);
141 	errseq_t since;
142 
143 	dprintk("NFS: flush(%pD2)\n", file);
144 
145 	nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
146 	if ((file->f_mode & FMODE_WRITE) == 0)
147 		return 0;
148 
149 	/* Flush writes to the server and return any errors */
150 	since = filemap_sample_wb_err(file->f_mapping);
151 	nfs_wb_all(inode);
152 	return filemap_check_wb_err(file->f_mapping, since);
153 }
154 
155 ssize_t
156 nfs_file_read(struct kiocb *iocb, struct iov_iter *to)
157 {
158 	struct inode *inode = file_inode(iocb->ki_filp);
159 	ssize_t result;
160 
161 	if (iocb->ki_flags & IOCB_DIRECT)
162 		return nfs_file_direct_read(iocb, to, false);
163 
164 	dprintk("NFS: read(%pD2, %zu@%lu)\n",
165 		iocb->ki_filp,
166 		iov_iter_count(to), (unsigned long) iocb->ki_pos);
167 
168 	nfs_start_io_read(inode);
169 	result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
170 	if (!result) {
171 		result = generic_file_read_iter(iocb, to);
172 		if (result > 0)
173 			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
174 	}
175 	nfs_end_io_read(inode);
176 	return result;
177 }
178 EXPORT_SYMBOL_GPL(nfs_file_read);
179 
180 int
181 nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
182 {
183 	struct inode *inode = file_inode(file);
184 	int	status;
185 
186 	dprintk("NFS: mmap(%pD2)\n", file);
187 
188 	/* Note: generic_file_mmap() returns ENOSYS on nommu systems
189 	 *       so we call that before revalidating the mapping
190 	 */
191 	status = generic_file_mmap(file, vma);
192 	if (!status) {
193 		vma->vm_ops = &nfs_file_vm_ops;
194 		status = nfs_revalidate_mapping(inode, file->f_mapping);
195 	}
196 	return status;
197 }
198 EXPORT_SYMBOL_GPL(nfs_file_mmap);
199 
200 /*
201  * Flush any dirty pages for this process, and check for write errors.
202  * The return status from this call provides a reliable indication of
203  * whether any write errors occurred for this process.
204  */
205 static int
206 nfs_file_fsync_commit(struct file *file, int datasync)
207 {
208 	struct inode *inode = file_inode(file);
209 	int ret;
210 
211 	dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync);
212 
213 	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
214 	ret = nfs_commit_inode(inode, FLUSH_SYNC);
215 	if (ret < 0)
216 		return ret;
217 	return file_check_and_advance_wb_err(file);
218 }
219 
220 int
221 nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
222 {
223 	struct nfs_open_context *ctx = nfs_file_open_context(file);
224 	struct inode *inode = file_inode(file);
225 	int ret;
226 
227 	trace_nfs_fsync_enter(inode);
228 
229 	for (;;) {
230 		ret = file_write_and_wait_range(file, start, end);
231 		if (ret != 0)
232 			break;
233 		ret = nfs_file_fsync_commit(file, datasync);
234 		if (ret != 0)
235 			break;
236 		ret = pnfs_sync_inode(inode, !!datasync);
237 		if (ret != 0)
238 			break;
239 		if (!test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags))
240 			break;
241 		/*
242 		 * If nfs_file_fsync_commit detected a server reboot, then
243 		 * resend all dirty pages that might have been covered by
244 		 * the NFS_CONTEXT_RESEND_WRITES flag
245 		 */
246 		start = 0;
247 		end = LLONG_MAX;
248 	}
249 
250 	trace_nfs_fsync_exit(inode, ret);
251 	return ret;
252 }
253 EXPORT_SYMBOL_GPL(nfs_file_fsync);
254 
255 /*
256  * Decide whether a read/modify/write cycle may be more efficient
257  * then a modify/write/read cycle when writing to a page in the
258  * page cache.
259  *
260  * Some pNFS layout drivers can only read/write at a certain block
261  * granularity like all block devices and therefore we must perform
262  * read/modify/write whenever a page hasn't read yet and the data
263  * to be written there is not aligned to a block boundary and/or
264  * smaller than the block size.
265  *
266  * The modify/write/read cycle may occur if a page is read before
267  * being completely filled by the writer.  In this situation, the
268  * page must be completely written to stable storage on the server
269  * before it can be refilled by reading in the page from the server.
270  * This can lead to expensive, small, FILE_SYNC mode writes being
271  * done.
272  *
273  * It may be more efficient to read the page first if the file is
274  * open for reading in addition to writing, the page is not marked
275  * as Uptodate, it is not dirty or waiting to be committed,
276  * indicating that it was previously allocated and then modified,
277  * that there were valid bytes of data in that range of the file,
278  * and that the new data won't completely replace the old data in
279  * that range of the file.
280  */
281 static bool nfs_full_page_write(struct page *page, loff_t pos, unsigned int len)
282 {
283 	unsigned int pglen = nfs_page_length(page);
284 	unsigned int offset = pos & (PAGE_SIZE - 1);
285 	unsigned int end = offset + len;
286 
287 	return !pglen || (end >= pglen && !offset);
288 }
289 
290 static bool nfs_want_read_modify_write(struct file *file, struct page *page,
291 			loff_t pos, unsigned int len)
292 {
293 	/*
294 	 * Up-to-date pages, those with ongoing or full-page write
295 	 * don't need read/modify/write
296 	 */
297 	if (PageUptodate(page) || PagePrivate(page) ||
298 	    nfs_full_page_write(page, pos, len))
299 		return false;
300 
301 	if (pnfs_ld_read_whole_page(file->f_mapping->host))
302 		return true;
303 	/* Open for reading too? */
304 	if (file->f_mode & FMODE_READ)
305 		return true;
306 	return false;
307 }
308 
309 /*
310  * This does the "real" work of the write. We must allocate and lock the
311  * page to be sent back to the generic routine, which then copies the
312  * data from user space.
313  *
314  * If the writer ends up delaying the write, the writer needs to
315  * increment the page use counts until he is done with the page.
316  */
317 static int nfs_write_begin(struct file *file, struct address_space *mapping,
318 			loff_t pos, unsigned len, unsigned flags,
319 			struct page **pagep, void **fsdata)
320 {
321 	int ret;
322 	pgoff_t index = pos >> PAGE_SHIFT;
323 	struct page *page;
324 	int once_thru = 0;
325 
326 	dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n",
327 		file, mapping->host->i_ino, len, (long long) pos);
328 
329 start:
330 	page = grab_cache_page_write_begin(mapping, index, flags);
331 	if (!page)
332 		return -ENOMEM;
333 	*pagep = page;
334 
335 	ret = nfs_flush_incompatible(file, page);
336 	if (ret) {
337 		unlock_page(page);
338 		put_page(page);
339 	} else if (!once_thru &&
340 		   nfs_want_read_modify_write(file, page, pos, len)) {
341 		once_thru = 1;
342 		ret = nfs_readpage(file, page);
343 		put_page(page);
344 		if (!ret)
345 			goto start;
346 	}
347 	return ret;
348 }
349 
350 static int nfs_write_end(struct file *file, struct address_space *mapping,
351 			loff_t pos, unsigned len, unsigned copied,
352 			struct page *page, void *fsdata)
353 {
354 	unsigned offset = pos & (PAGE_SIZE - 1);
355 	struct nfs_open_context *ctx = nfs_file_open_context(file);
356 	int status;
357 
358 	dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n",
359 		file, mapping->host->i_ino, len, (long long) pos);
360 
361 	/*
362 	 * Zero any uninitialised parts of the page, and then mark the page
363 	 * as up to date if it turns out that we're extending the file.
364 	 */
365 	if (!PageUptodate(page)) {
366 		unsigned pglen = nfs_page_length(page);
367 		unsigned end = offset + copied;
368 
369 		if (pglen == 0) {
370 			zero_user_segments(page, 0, offset,
371 					end, PAGE_SIZE);
372 			SetPageUptodate(page);
373 		} else if (end >= pglen) {
374 			zero_user_segment(page, end, PAGE_SIZE);
375 			if (offset == 0)
376 				SetPageUptodate(page);
377 		} else
378 			zero_user_segment(page, pglen, PAGE_SIZE);
379 	}
380 
381 	status = nfs_updatepage(file, page, offset, copied);
382 
383 	unlock_page(page);
384 	put_page(page);
385 
386 	if (status < 0)
387 		return status;
388 	NFS_I(mapping->host)->write_io += copied;
389 
390 	if (nfs_ctx_key_to_expire(ctx, mapping->host)) {
391 		status = nfs_wb_all(mapping->host);
392 		if (status < 0)
393 			return status;
394 	}
395 
396 	return copied;
397 }
398 
399 /*
400  * Partially or wholly invalidate a page
401  * - Release the private state associated with a page if undergoing complete
402  *   page invalidation
403  * - Called if either PG_private or PG_fscache is set on the page
404  * - Caller holds page lock
405  */
406 static void nfs_invalidate_folio(struct folio *folio, size_t offset,
407 				size_t length)
408 {
409 	dfprintk(PAGECACHE, "NFS: invalidate_folio(%lu, %zu, %zu)\n",
410 		 folio->index, offset, length);
411 
412 	if (offset != 0 || length < folio_size(folio))
413 		return;
414 	/* Cancel any unstarted writes on this page */
415 	nfs_wb_folio_cancel(folio->mapping->host, folio);
416 	folio_wait_fscache(folio);
417 }
418 
419 /*
420  * Attempt to release the private state associated with a page
421  * - Called if either PG_private or PG_fscache is set on the page
422  * - Caller holds page lock
423  * - Return true (may release page) or false (may not)
424  */
425 static int nfs_release_page(struct page *page, gfp_t gfp)
426 {
427 	dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
428 
429 	/* If PagePrivate() is set, then the page is not freeable */
430 	if (PagePrivate(page))
431 		return 0;
432 	return nfs_fscache_release_page(page, gfp);
433 }
434 
435 static void nfs_check_dirty_writeback(struct page *page,
436 				bool *dirty, bool *writeback)
437 {
438 	struct nfs_inode *nfsi;
439 	struct address_space *mapping = page_file_mapping(page);
440 
441 	if (!mapping || PageSwapCache(page))
442 		return;
443 
444 	/*
445 	 * Check if an unstable page is currently being committed and
446 	 * if so, have the VM treat it as if the page is under writeback
447 	 * so it will not block due to pages that will shortly be freeable.
448 	 */
449 	nfsi = NFS_I(mapping->host);
450 	if (atomic_read(&nfsi->commit_info.rpcs_out)) {
451 		*writeback = true;
452 		return;
453 	}
454 
455 	/*
456 	 * If PagePrivate() is set, then the page is not freeable and as the
457 	 * inode is not being committed, it's not going to be cleaned in the
458 	 * near future so treat it as dirty
459 	 */
460 	if (PagePrivate(page))
461 		*dirty = true;
462 }
463 
464 /*
465  * Attempt to clear the private state associated with a page when an error
466  * occurs that requires the cached contents of an inode to be written back or
467  * destroyed
468  * - Called if either PG_private or fscache is set on the page
469  * - Caller holds page lock
470  * - Return 0 if successful, -error otherwise
471  */
472 static int nfs_launder_folio(struct folio *folio)
473 {
474 	struct inode *inode = folio->mapping->host;
475 
476 	dfprintk(PAGECACHE, "NFS: launder_folio(%ld, %llu)\n",
477 		inode->i_ino, folio_pos(folio));
478 
479 	folio_wait_fscache(folio);
480 	return nfs_wb_page(inode, &folio->page);
481 }
482 
483 static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
484 						sector_t *span)
485 {
486 	unsigned long blocks;
487 	long long isize;
488 	int ret;
489 	struct inode *inode = file_inode(file);
490 	struct rpc_clnt *clnt = NFS_CLIENT(inode);
491 	struct nfs_client *cl = NFS_SERVER(inode)->nfs_client;
492 
493 	spin_lock(&inode->i_lock);
494 	blocks = inode->i_blocks;
495 	isize = inode->i_size;
496 	spin_unlock(&inode->i_lock);
497 	if (blocks*512 < isize) {
498 		pr_warn("swap activate: swapfile has holes\n");
499 		return -EINVAL;
500 	}
501 
502 	ret = rpc_clnt_swap_activate(clnt);
503 	if (ret)
504 		return ret;
505 	ret = add_swap_extent(sis, 0, sis->max, 0);
506 	if (ret < 0) {
507 		rpc_clnt_swap_deactivate(clnt);
508 		return ret;
509 	}
510 
511 	*span = sis->pages;
512 
513 	if (cl->rpc_ops->enable_swap)
514 		cl->rpc_ops->enable_swap(inode);
515 
516 	sis->flags |= SWP_FS_OPS;
517 	return ret;
518 }
519 
520 static void nfs_swap_deactivate(struct file *file)
521 {
522 	struct inode *inode = file_inode(file);
523 	struct rpc_clnt *clnt = NFS_CLIENT(inode);
524 	struct nfs_client *cl = NFS_SERVER(inode)->nfs_client;
525 
526 	rpc_clnt_swap_deactivate(clnt);
527 	if (cl->rpc_ops->disable_swap)
528 		cl->rpc_ops->disable_swap(file_inode(file));
529 }
530 
531 const struct address_space_operations nfs_file_aops = {
532 	.readpage = nfs_readpage,
533 	.readahead = nfs_readahead,
534 	.dirty_folio = filemap_dirty_folio,
535 	.writepage = nfs_writepage,
536 	.writepages = nfs_writepages,
537 	.write_begin = nfs_write_begin,
538 	.write_end = nfs_write_end,
539 	.invalidate_folio = nfs_invalidate_folio,
540 	.releasepage = nfs_release_page,
541 #ifdef CONFIG_MIGRATION
542 	.migratepage = nfs_migrate_page,
543 #endif
544 	.launder_folio = nfs_launder_folio,
545 	.is_dirty_writeback = nfs_check_dirty_writeback,
546 	.error_remove_page = generic_error_remove_page,
547 	.swap_activate = nfs_swap_activate,
548 	.swap_deactivate = nfs_swap_deactivate,
549 	.swap_rw = nfs_swap_rw,
550 };
551 
552 /*
553  * Notification that a PTE pointing to an NFS page is about to be made
554  * writable, implying that someone is about to modify the page through a
555  * shared-writable mapping
556  */
557 static vm_fault_t nfs_vm_page_mkwrite(struct vm_fault *vmf)
558 {
559 	struct page *page = vmf->page;
560 	struct file *filp = vmf->vma->vm_file;
561 	struct inode *inode = file_inode(filp);
562 	unsigned pagelen;
563 	vm_fault_t ret = VM_FAULT_NOPAGE;
564 	struct address_space *mapping;
565 
566 	dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n",
567 		filp, filp->f_mapping->host->i_ino,
568 		(long long)page_offset(page));
569 
570 	sb_start_pagefault(inode->i_sb);
571 
572 	/* make sure the cache has finished storing the page */
573 	if (PageFsCache(page) &&
574 	    wait_on_page_fscache_killable(vmf->page) < 0) {
575 		ret = VM_FAULT_RETRY;
576 		goto out;
577 	}
578 
579 	wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING,
580 			nfs_wait_bit_killable, TASK_KILLABLE);
581 
582 	lock_page(page);
583 	mapping = page_file_mapping(page);
584 	if (mapping != inode->i_mapping)
585 		goto out_unlock;
586 
587 	wait_on_page_writeback(page);
588 
589 	pagelen = nfs_page_length(page);
590 	if (pagelen == 0)
591 		goto out_unlock;
592 
593 	ret = VM_FAULT_LOCKED;
594 	if (nfs_flush_incompatible(filp, page) == 0 &&
595 	    nfs_updatepage(filp, page, 0, pagelen) == 0)
596 		goto out;
597 
598 	ret = VM_FAULT_SIGBUS;
599 out_unlock:
600 	unlock_page(page);
601 out:
602 	sb_end_pagefault(inode->i_sb);
603 	return ret;
604 }
605 
606 static const struct vm_operations_struct nfs_file_vm_ops = {
607 	.fault = filemap_fault,
608 	.map_pages = filemap_map_pages,
609 	.page_mkwrite = nfs_vm_page_mkwrite,
610 };
611 
612 static int nfs_need_check_write(struct file *filp, struct inode *inode,
613 				int error)
614 {
615 	struct nfs_open_context *ctx;
616 
617 	ctx = nfs_file_open_context(filp);
618 	if (nfs_error_is_fatal_on_server(error) ||
619 	    nfs_ctx_key_to_expire(ctx, inode))
620 		return 1;
621 	return 0;
622 }
623 
624 ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from)
625 {
626 	struct file *file = iocb->ki_filp;
627 	struct inode *inode = file_inode(file);
628 	unsigned int mntflags = NFS_SERVER(inode)->flags;
629 	ssize_t result, written;
630 	errseq_t since;
631 	int error;
632 
633 	result = nfs_key_timeout_notify(file, inode);
634 	if (result)
635 		return result;
636 
637 	if (iocb->ki_flags & IOCB_DIRECT)
638 		return nfs_file_direct_write(iocb, from, false);
639 
640 	dprintk("NFS: write(%pD2, %zu@%Ld)\n",
641 		file, iov_iter_count(from), (long long) iocb->ki_pos);
642 
643 	if (IS_SWAPFILE(inode))
644 		goto out_swapfile;
645 	/*
646 	 * O_APPEND implies that we must revalidate the file length.
647 	 */
648 	if (iocb->ki_flags & IOCB_APPEND || iocb->ki_pos > i_size_read(inode)) {
649 		result = nfs_revalidate_file_size(inode, file);
650 		if (result)
651 			goto out;
652 	}
653 
654 	nfs_clear_invalid_mapping(file->f_mapping);
655 
656 	since = filemap_sample_wb_err(file->f_mapping);
657 	nfs_start_io_write(inode);
658 	result = generic_write_checks(iocb, from);
659 	if (result > 0) {
660 		current->backing_dev_info = inode_to_bdi(inode);
661 		result = generic_perform_write(iocb, from);
662 		current->backing_dev_info = NULL;
663 	}
664 	nfs_end_io_write(inode);
665 	if (result <= 0)
666 		goto out;
667 
668 	written = result;
669 	iocb->ki_pos += written;
670 
671 	if (mntflags & NFS_MOUNT_WRITE_EAGER) {
672 		result = filemap_fdatawrite_range(file->f_mapping,
673 						  iocb->ki_pos - written,
674 						  iocb->ki_pos - 1);
675 		if (result < 0)
676 			goto out;
677 	}
678 	if (mntflags & NFS_MOUNT_WRITE_WAIT) {
679 		result = filemap_fdatawait_range(file->f_mapping,
680 						 iocb->ki_pos - written,
681 						 iocb->ki_pos - 1);
682 		if (result < 0)
683 			goto out;
684 	}
685 	result = generic_write_sync(iocb, written);
686 	if (result < 0)
687 		goto out;
688 
689 	/* Return error values */
690 	error = filemap_check_wb_err(file->f_mapping, since);
691 	if (nfs_need_check_write(file, inode, error)) {
692 		int err = nfs_wb_all(inode);
693 		if (err < 0)
694 			result = err;
695 	}
696 	nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
697 out:
698 	return result;
699 
700 out_swapfile:
701 	printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
702 	return -ETXTBSY;
703 }
704 EXPORT_SYMBOL_GPL(nfs_file_write);
705 
706 static int
707 do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
708 {
709 	struct inode *inode = filp->f_mapping->host;
710 	int status = 0;
711 	unsigned int saved_type = fl->fl_type;
712 
713 	/* Try local locking first */
714 	posix_test_lock(filp, fl);
715 	if (fl->fl_type != F_UNLCK) {
716 		/* found a conflict */
717 		goto out;
718 	}
719 	fl->fl_type = saved_type;
720 
721 	if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
722 		goto out_noconflict;
723 
724 	if (is_local)
725 		goto out_noconflict;
726 
727 	status = NFS_PROTO(inode)->lock(filp, cmd, fl);
728 out:
729 	return status;
730 out_noconflict:
731 	fl->fl_type = F_UNLCK;
732 	goto out;
733 }
734 
735 static int
736 do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
737 {
738 	struct inode *inode = filp->f_mapping->host;
739 	struct nfs_lock_context *l_ctx;
740 	int status;
741 
742 	/*
743 	 * Flush all pending writes before doing anything
744 	 * with locks..
745 	 */
746 	nfs_wb_all(inode);
747 
748 	l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
749 	if (!IS_ERR(l_ctx)) {
750 		status = nfs_iocounter_wait(l_ctx);
751 		nfs_put_lock_context(l_ctx);
752 		/*  NOTE: special case
753 		 * 	If we're signalled while cleaning up locks on process exit, we
754 		 * 	still need to complete the unlock.
755 		 */
756 		if (status < 0 && !(fl->fl_flags & FL_CLOSE))
757 			return status;
758 	}
759 
760 	/*
761 	 * Use local locking if mounted with "-onolock" or with appropriate
762 	 * "-olocal_lock="
763 	 */
764 	if (!is_local)
765 		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
766 	else
767 		status = locks_lock_file_wait(filp, fl);
768 	return status;
769 }
770 
771 static int
772 do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
773 {
774 	struct inode *inode = filp->f_mapping->host;
775 	int status;
776 
777 	/*
778 	 * Flush all pending writes before doing anything
779 	 * with locks..
780 	 */
781 	status = nfs_sync_mapping(filp->f_mapping);
782 	if (status != 0)
783 		goto out;
784 
785 	/*
786 	 * Use local locking if mounted with "-onolock" or with appropriate
787 	 * "-olocal_lock="
788 	 */
789 	if (!is_local)
790 		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
791 	else
792 		status = locks_lock_file_wait(filp, fl);
793 	if (status < 0)
794 		goto out;
795 
796 	/*
797 	 * Invalidate cache to prevent missing any changes.  If
798 	 * the file is mapped, clear the page cache as well so
799 	 * those mappings will be loaded.
800 	 *
801 	 * This makes locking act as a cache coherency point.
802 	 */
803 	nfs_sync_mapping(filp->f_mapping);
804 	if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) {
805 		nfs_zap_caches(inode);
806 		if (mapping_mapped(filp->f_mapping))
807 			nfs_revalidate_mapping(inode, filp->f_mapping);
808 	}
809 out:
810 	return status;
811 }
812 
813 /*
814  * Lock a (portion of) a file
815  */
816 int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
817 {
818 	struct inode *inode = filp->f_mapping->host;
819 	int ret = -ENOLCK;
820 	int is_local = 0;
821 
822 	dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
823 			filp, fl->fl_type, fl->fl_flags,
824 			(long long)fl->fl_start, (long long)fl->fl_end);
825 
826 	nfs_inc_stats(inode, NFSIOS_VFSLOCK);
827 
828 	if (fl->fl_flags & FL_RECLAIM)
829 		return -ENOGRACE;
830 
831 	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
832 		is_local = 1;
833 
834 	if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
835 		ret = NFS_PROTO(inode)->lock_check_bounds(fl);
836 		if (ret < 0)
837 			goto out_err;
838 	}
839 
840 	if (IS_GETLK(cmd))
841 		ret = do_getlk(filp, cmd, fl, is_local);
842 	else if (fl->fl_type == F_UNLCK)
843 		ret = do_unlk(filp, cmd, fl, is_local);
844 	else
845 		ret = do_setlk(filp, cmd, fl, is_local);
846 out_err:
847 	return ret;
848 }
849 EXPORT_SYMBOL_GPL(nfs_lock);
850 
851 /*
852  * Lock a (portion of) a file
853  */
854 int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
855 {
856 	struct inode *inode = filp->f_mapping->host;
857 	int is_local = 0;
858 
859 	dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
860 			filp, fl->fl_type, fl->fl_flags);
861 
862 	if (!(fl->fl_flags & FL_FLOCK))
863 		return -ENOLCK;
864 
865 	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
866 		is_local = 1;
867 
868 	/* We're simulating flock() locks using posix locks on the server */
869 	if (fl->fl_type == F_UNLCK)
870 		return do_unlk(filp, cmd, fl, is_local);
871 	return do_setlk(filp, cmd, fl, is_local);
872 }
873 EXPORT_SYMBOL_GPL(nfs_flock);
874 
875 const struct file_operations nfs_file_operations = {
876 	.llseek		= nfs_file_llseek,
877 	.read_iter	= nfs_file_read,
878 	.write_iter	= nfs_file_write,
879 	.mmap		= nfs_file_mmap,
880 	.open		= nfs_file_open,
881 	.flush		= nfs_file_flush,
882 	.release	= nfs_file_release,
883 	.fsync		= nfs_file_fsync,
884 	.lock		= nfs_lock,
885 	.flock		= nfs_flock,
886 	.splice_read	= generic_file_splice_read,
887 	.splice_write	= iter_file_splice_write,
888 	.check_flags	= nfs_check_flags,
889 	.setlease	= simple_nosetlease,
890 };
891 EXPORT_SYMBOL_GPL(nfs_file_operations);
892