1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/nfs/file.c 4 * 5 * Copyright (C) 1992 Rick Sladkey 6 * 7 * Changes Copyright (C) 1994 by Florian La Roche 8 * - Do not copy data too often around in the kernel. 9 * - In nfs_file_read the return value of kmalloc wasn't checked. 10 * - Put in a better version of read look-ahead buffering. Original idea 11 * and implementation by Wai S Kok elekokws@ee.nus.sg. 12 * 13 * Expire cache on write to a file by Wai S Kok (Oct 1994). 14 * 15 * Total rewrite of read side for new NFS buffer cache.. Linus. 16 * 17 * nfs regular file handling functions 18 */ 19 20 #include <linux/module.h> 21 #include <linux/time.h> 22 #include <linux/kernel.h> 23 #include <linux/errno.h> 24 #include <linux/fcntl.h> 25 #include <linux/stat.h> 26 #include <linux/nfs_fs.h> 27 #include <linux/nfs_mount.h> 28 #include <linux/mm.h> 29 #include <linux/pagemap.h> 30 #include <linux/gfp.h> 31 #include <linux/swap.h> 32 33 #include <linux/uaccess.h> 34 35 #include "delegation.h" 36 #include "internal.h" 37 #include "iostat.h" 38 #include "fscache.h" 39 #include "pnfs.h" 40 41 #include "nfstrace.h" 42 43 #define NFSDBG_FACILITY NFSDBG_FILE 44 45 static const struct vm_operations_struct nfs_file_vm_ops; 46 47 int nfs_check_flags(int flags) 48 { 49 if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT)) 50 return -EINVAL; 51 52 return 0; 53 } 54 EXPORT_SYMBOL_GPL(nfs_check_flags); 55 56 /* 57 * Open file 58 */ 59 static int 60 nfs_file_open(struct inode *inode, struct file *filp) 61 { 62 int res; 63 64 dprintk("NFS: open file(%pD2)\n", filp); 65 66 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 67 res = nfs_check_flags(filp->f_flags); 68 if (res) 69 return res; 70 71 res = nfs_open(inode, filp); 72 if (res == 0) 73 filp->f_mode |= FMODE_CAN_ODIRECT; 74 return res; 75 } 76 77 int 78 nfs_file_release(struct inode *inode, struct file *filp) 79 { 80 dprintk("NFS: release(%pD2)\n", filp); 81 82 nfs_inc_stats(inode, NFSIOS_VFSRELEASE); 83 nfs_file_clear_open_context(filp); 84 nfs_fscache_release_file(inode, filp); 85 return 0; 86 } 87 EXPORT_SYMBOL_GPL(nfs_file_release); 88 89 /** 90 * nfs_revalidate_file_size - Revalidate the file size 91 * @inode: pointer to inode struct 92 * @filp: pointer to struct file 93 * 94 * Revalidates the file length. This is basically a wrapper around 95 * nfs_revalidate_inode() that takes into account the fact that we may 96 * have cached writes (in which case we don't care about the server's 97 * idea of what the file length is), or O_DIRECT (in which case we 98 * shouldn't trust the cache). 99 */ 100 static int nfs_revalidate_file_size(struct inode *inode, struct file *filp) 101 { 102 struct nfs_server *server = NFS_SERVER(inode); 103 104 if (filp->f_flags & O_DIRECT) 105 goto force_reval; 106 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_SIZE)) 107 goto force_reval; 108 return 0; 109 force_reval: 110 return __nfs_revalidate_inode(server, inode); 111 } 112 113 loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence) 114 { 115 dprintk("NFS: llseek file(%pD2, %lld, %d)\n", 116 filp, offset, whence); 117 118 /* 119 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate 120 * the cached file length 121 */ 122 if (whence != SEEK_SET && whence != SEEK_CUR) { 123 struct inode *inode = filp->f_mapping->host; 124 125 int retval = nfs_revalidate_file_size(inode, filp); 126 if (retval < 0) 127 return (loff_t)retval; 128 } 129 130 return generic_file_llseek(filp, offset, whence); 131 } 132 EXPORT_SYMBOL_GPL(nfs_file_llseek); 133 134 /* 135 * Flush all dirty pages, and check for write errors. 136 */ 137 static int 138 nfs_file_flush(struct file *file, fl_owner_t id) 139 { 140 struct inode *inode = file_inode(file); 141 errseq_t since; 142 143 dprintk("NFS: flush(%pD2)\n", file); 144 145 nfs_inc_stats(inode, NFSIOS_VFSFLUSH); 146 if ((file->f_mode & FMODE_WRITE) == 0) 147 return 0; 148 149 /* Flush writes to the server and return any errors */ 150 since = filemap_sample_wb_err(file->f_mapping); 151 nfs_wb_all(inode); 152 return filemap_check_wb_err(file->f_mapping, since); 153 } 154 155 ssize_t 156 nfs_file_read(struct kiocb *iocb, struct iov_iter *to) 157 { 158 struct inode *inode = file_inode(iocb->ki_filp); 159 ssize_t result; 160 161 if (iocb->ki_flags & IOCB_DIRECT) 162 return nfs_file_direct_read(iocb, to, false); 163 164 dprintk("NFS: read(%pD2, %zu@%lu)\n", 165 iocb->ki_filp, 166 iov_iter_count(to), (unsigned long) iocb->ki_pos); 167 168 nfs_start_io_read(inode); 169 result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping); 170 if (!result) { 171 result = generic_file_read_iter(iocb, to); 172 if (result > 0) 173 nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result); 174 } 175 nfs_end_io_read(inode); 176 return result; 177 } 178 EXPORT_SYMBOL_GPL(nfs_file_read); 179 180 int 181 nfs_file_mmap(struct file * file, struct vm_area_struct * vma) 182 { 183 struct inode *inode = file_inode(file); 184 int status; 185 186 dprintk("NFS: mmap(%pD2)\n", file); 187 188 /* Note: generic_file_mmap() returns ENOSYS on nommu systems 189 * so we call that before revalidating the mapping 190 */ 191 status = generic_file_mmap(file, vma); 192 if (!status) { 193 vma->vm_ops = &nfs_file_vm_ops; 194 status = nfs_revalidate_mapping(inode, file->f_mapping); 195 } 196 return status; 197 } 198 EXPORT_SYMBOL_GPL(nfs_file_mmap); 199 200 /* 201 * Flush any dirty pages for this process, and check for write errors. 202 * The return status from this call provides a reliable indication of 203 * whether any write errors occurred for this process. 204 */ 205 static int 206 nfs_file_fsync_commit(struct file *file, int datasync) 207 { 208 struct inode *inode = file_inode(file); 209 int ret; 210 211 dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync); 212 213 nfs_inc_stats(inode, NFSIOS_VFSFSYNC); 214 ret = nfs_commit_inode(inode, FLUSH_SYNC); 215 if (ret < 0) 216 return ret; 217 return file_check_and_advance_wb_err(file); 218 } 219 220 int 221 nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync) 222 { 223 struct nfs_open_context *ctx = nfs_file_open_context(file); 224 struct inode *inode = file_inode(file); 225 int ret; 226 227 trace_nfs_fsync_enter(inode); 228 229 for (;;) { 230 ret = file_write_and_wait_range(file, start, end); 231 if (ret != 0) 232 break; 233 ret = nfs_file_fsync_commit(file, datasync); 234 if (ret != 0) 235 break; 236 ret = pnfs_sync_inode(inode, !!datasync); 237 if (ret != 0) 238 break; 239 if (!test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags)) 240 break; 241 /* 242 * If nfs_file_fsync_commit detected a server reboot, then 243 * resend all dirty pages that might have been covered by 244 * the NFS_CONTEXT_RESEND_WRITES flag 245 */ 246 start = 0; 247 end = LLONG_MAX; 248 } 249 250 trace_nfs_fsync_exit(inode, ret); 251 return ret; 252 } 253 EXPORT_SYMBOL_GPL(nfs_file_fsync); 254 255 /* 256 * Decide whether a read/modify/write cycle may be more efficient 257 * then a modify/write/read cycle when writing to a page in the 258 * page cache. 259 * 260 * Some pNFS layout drivers can only read/write at a certain block 261 * granularity like all block devices and therefore we must perform 262 * read/modify/write whenever a page hasn't read yet and the data 263 * to be written there is not aligned to a block boundary and/or 264 * smaller than the block size. 265 * 266 * The modify/write/read cycle may occur if a page is read before 267 * being completely filled by the writer. In this situation, the 268 * page must be completely written to stable storage on the server 269 * before it can be refilled by reading in the page from the server. 270 * This can lead to expensive, small, FILE_SYNC mode writes being 271 * done. 272 * 273 * It may be more efficient to read the page first if the file is 274 * open for reading in addition to writing, the page is not marked 275 * as Uptodate, it is not dirty or waiting to be committed, 276 * indicating that it was previously allocated and then modified, 277 * that there were valid bytes of data in that range of the file, 278 * and that the new data won't completely replace the old data in 279 * that range of the file. 280 */ 281 static bool nfs_full_page_write(struct page *page, loff_t pos, unsigned int len) 282 { 283 unsigned int pglen = nfs_page_length(page); 284 unsigned int offset = pos & (PAGE_SIZE - 1); 285 unsigned int end = offset + len; 286 287 return !pglen || (end >= pglen && !offset); 288 } 289 290 static bool nfs_want_read_modify_write(struct file *file, struct page *page, 291 loff_t pos, unsigned int len) 292 { 293 /* 294 * Up-to-date pages, those with ongoing or full-page write 295 * don't need read/modify/write 296 */ 297 if (PageUptodate(page) || PagePrivate(page) || 298 nfs_full_page_write(page, pos, len)) 299 return false; 300 301 if (pnfs_ld_read_whole_page(file->f_mapping->host)) 302 return true; 303 /* Open for reading too? */ 304 if (file->f_mode & FMODE_READ) 305 return true; 306 return false; 307 } 308 309 /* 310 * This does the "real" work of the write. We must allocate and lock the 311 * page to be sent back to the generic routine, which then copies the 312 * data from user space. 313 * 314 * If the writer ends up delaying the write, the writer needs to 315 * increment the page use counts until he is done with the page. 316 */ 317 static int nfs_write_begin(struct file *file, struct address_space *mapping, 318 loff_t pos, unsigned len, unsigned flags, 319 struct page **pagep, void **fsdata) 320 { 321 int ret; 322 pgoff_t index = pos >> PAGE_SHIFT; 323 struct page *page; 324 int once_thru = 0; 325 326 dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n", 327 file, mapping->host->i_ino, len, (long long) pos); 328 329 start: 330 page = grab_cache_page_write_begin(mapping, index, flags); 331 if (!page) 332 return -ENOMEM; 333 *pagep = page; 334 335 ret = nfs_flush_incompatible(file, page); 336 if (ret) { 337 unlock_page(page); 338 put_page(page); 339 } else if (!once_thru && 340 nfs_want_read_modify_write(file, page, pos, len)) { 341 once_thru = 1; 342 ret = nfs_readpage(file, page); 343 put_page(page); 344 if (!ret) 345 goto start; 346 } 347 return ret; 348 } 349 350 static int nfs_write_end(struct file *file, struct address_space *mapping, 351 loff_t pos, unsigned len, unsigned copied, 352 struct page *page, void *fsdata) 353 { 354 unsigned offset = pos & (PAGE_SIZE - 1); 355 struct nfs_open_context *ctx = nfs_file_open_context(file); 356 int status; 357 358 dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n", 359 file, mapping->host->i_ino, len, (long long) pos); 360 361 /* 362 * Zero any uninitialised parts of the page, and then mark the page 363 * as up to date if it turns out that we're extending the file. 364 */ 365 if (!PageUptodate(page)) { 366 unsigned pglen = nfs_page_length(page); 367 unsigned end = offset + copied; 368 369 if (pglen == 0) { 370 zero_user_segments(page, 0, offset, 371 end, PAGE_SIZE); 372 SetPageUptodate(page); 373 } else if (end >= pglen) { 374 zero_user_segment(page, end, PAGE_SIZE); 375 if (offset == 0) 376 SetPageUptodate(page); 377 } else 378 zero_user_segment(page, pglen, PAGE_SIZE); 379 } 380 381 status = nfs_updatepage(file, page, offset, copied); 382 383 unlock_page(page); 384 put_page(page); 385 386 if (status < 0) 387 return status; 388 NFS_I(mapping->host)->write_io += copied; 389 390 if (nfs_ctx_key_to_expire(ctx, mapping->host)) { 391 status = nfs_wb_all(mapping->host); 392 if (status < 0) 393 return status; 394 } 395 396 return copied; 397 } 398 399 /* 400 * Partially or wholly invalidate a page 401 * - Release the private state associated with a page if undergoing complete 402 * page invalidation 403 * - Called if either PG_private or PG_fscache is set on the page 404 * - Caller holds page lock 405 */ 406 static void nfs_invalidate_folio(struct folio *folio, size_t offset, 407 size_t length) 408 { 409 dfprintk(PAGECACHE, "NFS: invalidate_folio(%lu, %zu, %zu)\n", 410 folio->index, offset, length); 411 412 if (offset != 0 || length < folio_size(folio)) 413 return; 414 /* Cancel any unstarted writes on this page */ 415 nfs_wb_folio_cancel(folio->mapping->host, folio); 416 folio_wait_fscache(folio); 417 } 418 419 /* 420 * Attempt to release the private state associated with a page 421 * - Called if either PG_private or PG_fscache is set on the page 422 * - Caller holds page lock 423 * - Return true (may release page) or false (may not) 424 */ 425 static int nfs_release_page(struct page *page, gfp_t gfp) 426 { 427 dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page); 428 429 /* If PagePrivate() is set, then the page is not freeable */ 430 if (PagePrivate(page)) 431 return 0; 432 return nfs_fscache_release_page(page, gfp); 433 } 434 435 static void nfs_check_dirty_writeback(struct page *page, 436 bool *dirty, bool *writeback) 437 { 438 struct nfs_inode *nfsi; 439 struct address_space *mapping = page_file_mapping(page); 440 441 if (!mapping || PageSwapCache(page)) 442 return; 443 444 /* 445 * Check if an unstable page is currently being committed and 446 * if so, have the VM treat it as if the page is under writeback 447 * so it will not block due to pages that will shortly be freeable. 448 */ 449 nfsi = NFS_I(mapping->host); 450 if (atomic_read(&nfsi->commit_info.rpcs_out)) { 451 *writeback = true; 452 return; 453 } 454 455 /* 456 * If PagePrivate() is set, then the page is not freeable and as the 457 * inode is not being committed, it's not going to be cleaned in the 458 * near future so treat it as dirty 459 */ 460 if (PagePrivate(page)) 461 *dirty = true; 462 } 463 464 /* 465 * Attempt to clear the private state associated with a page when an error 466 * occurs that requires the cached contents of an inode to be written back or 467 * destroyed 468 * - Called if either PG_private or fscache is set on the page 469 * - Caller holds page lock 470 * - Return 0 if successful, -error otherwise 471 */ 472 static int nfs_launder_folio(struct folio *folio) 473 { 474 struct inode *inode = folio->mapping->host; 475 476 dfprintk(PAGECACHE, "NFS: launder_folio(%ld, %llu)\n", 477 inode->i_ino, folio_pos(folio)); 478 479 folio_wait_fscache(folio); 480 return nfs_wb_page(inode, &folio->page); 481 } 482 483 static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file, 484 sector_t *span) 485 { 486 unsigned long blocks; 487 long long isize; 488 int ret; 489 struct inode *inode = file_inode(file); 490 struct rpc_clnt *clnt = NFS_CLIENT(inode); 491 struct nfs_client *cl = NFS_SERVER(inode)->nfs_client; 492 493 spin_lock(&inode->i_lock); 494 blocks = inode->i_blocks; 495 isize = inode->i_size; 496 spin_unlock(&inode->i_lock); 497 if (blocks*512 < isize) { 498 pr_warn("swap activate: swapfile has holes\n"); 499 return -EINVAL; 500 } 501 502 ret = rpc_clnt_swap_activate(clnt); 503 if (ret) 504 return ret; 505 ret = add_swap_extent(sis, 0, sis->max, 0); 506 if (ret < 0) { 507 rpc_clnt_swap_deactivate(clnt); 508 return ret; 509 } 510 511 *span = sis->pages; 512 513 if (cl->rpc_ops->enable_swap) 514 cl->rpc_ops->enable_swap(inode); 515 516 sis->flags |= SWP_FS_OPS; 517 return ret; 518 } 519 520 static void nfs_swap_deactivate(struct file *file) 521 { 522 struct inode *inode = file_inode(file); 523 struct rpc_clnt *clnt = NFS_CLIENT(inode); 524 struct nfs_client *cl = NFS_SERVER(inode)->nfs_client; 525 526 rpc_clnt_swap_deactivate(clnt); 527 if (cl->rpc_ops->disable_swap) 528 cl->rpc_ops->disable_swap(file_inode(file)); 529 } 530 531 const struct address_space_operations nfs_file_aops = { 532 .readpage = nfs_readpage, 533 .readahead = nfs_readahead, 534 .dirty_folio = filemap_dirty_folio, 535 .writepage = nfs_writepage, 536 .writepages = nfs_writepages, 537 .write_begin = nfs_write_begin, 538 .write_end = nfs_write_end, 539 .invalidate_folio = nfs_invalidate_folio, 540 .releasepage = nfs_release_page, 541 #ifdef CONFIG_MIGRATION 542 .migratepage = nfs_migrate_page, 543 #endif 544 .launder_folio = nfs_launder_folio, 545 .is_dirty_writeback = nfs_check_dirty_writeback, 546 .error_remove_page = generic_error_remove_page, 547 .swap_activate = nfs_swap_activate, 548 .swap_deactivate = nfs_swap_deactivate, 549 .swap_rw = nfs_swap_rw, 550 }; 551 552 /* 553 * Notification that a PTE pointing to an NFS page is about to be made 554 * writable, implying that someone is about to modify the page through a 555 * shared-writable mapping 556 */ 557 static vm_fault_t nfs_vm_page_mkwrite(struct vm_fault *vmf) 558 { 559 struct page *page = vmf->page; 560 struct file *filp = vmf->vma->vm_file; 561 struct inode *inode = file_inode(filp); 562 unsigned pagelen; 563 vm_fault_t ret = VM_FAULT_NOPAGE; 564 struct address_space *mapping; 565 566 dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n", 567 filp, filp->f_mapping->host->i_ino, 568 (long long)page_offset(page)); 569 570 sb_start_pagefault(inode->i_sb); 571 572 /* make sure the cache has finished storing the page */ 573 if (PageFsCache(page) && 574 wait_on_page_fscache_killable(vmf->page) < 0) { 575 ret = VM_FAULT_RETRY; 576 goto out; 577 } 578 579 wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING, 580 nfs_wait_bit_killable, TASK_KILLABLE); 581 582 lock_page(page); 583 mapping = page_file_mapping(page); 584 if (mapping != inode->i_mapping) 585 goto out_unlock; 586 587 wait_on_page_writeback(page); 588 589 pagelen = nfs_page_length(page); 590 if (pagelen == 0) 591 goto out_unlock; 592 593 ret = VM_FAULT_LOCKED; 594 if (nfs_flush_incompatible(filp, page) == 0 && 595 nfs_updatepage(filp, page, 0, pagelen) == 0) 596 goto out; 597 598 ret = VM_FAULT_SIGBUS; 599 out_unlock: 600 unlock_page(page); 601 out: 602 sb_end_pagefault(inode->i_sb); 603 return ret; 604 } 605 606 static const struct vm_operations_struct nfs_file_vm_ops = { 607 .fault = filemap_fault, 608 .map_pages = filemap_map_pages, 609 .page_mkwrite = nfs_vm_page_mkwrite, 610 }; 611 612 static int nfs_need_check_write(struct file *filp, struct inode *inode, 613 int error) 614 { 615 struct nfs_open_context *ctx; 616 617 ctx = nfs_file_open_context(filp); 618 if (nfs_error_is_fatal_on_server(error) || 619 nfs_ctx_key_to_expire(ctx, inode)) 620 return 1; 621 return 0; 622 } 623 624 ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from) 625 { 626 struct file *file = iocb->ki_filp; 627 struct inode *inode = file_inode(file); 628 unsigned int mntflags = NFS_SERVER(inode)->flags; 629 ssize_t result, written; 630 errseq_t since; 631 int error; 632 633 result = nfs_key_timeout_notify(file, inode); 634 if (result) 635 return result; 636 637 if (iocb->ki_flags & IOCB_DIRECT) 638 return nfs_file_direct_write(iocb, from, false); 639 640 dprintk("NFS: write(%pD2, %zu@%Ld)\n", 641 file, iov_iter_count(from), (long long) iocb->ki_pos); 642 643 if (IS_SWAPFILE(inode)) 644 goto out_swapfile; 645 /* 646 * O_APPEND implies that we must revalidate the file length. 647 */ 648 if (iocb->ki_flags & IOCB_APPEND || iocb->ki_pos > i_size_read(inode)) { 649 result = nfs_revalidate_file_size(inode, file); 650 if (result) 651 goto out; 652 } 653 654 nfs_clear_invalid_mapping(file->f_mapping); 655 656 since = filemap_sample_wb_err(file->f_mapping); 657 nfs_start_io_write(inode); 658 result = generic_write_checks(iocb, from); 659 if (result > 0) { 660 current->backing_dev_info = inode_to_bdi(inode); 661 result = generic_perform_write(iocb, from); 662 current->backing_dev_info = NULL; 663 } 664 nfs_end_io_write(inode); 665 if (result <= 0) 666 goto out; 667 668 written = result; 669 iocb->ki_pos += written; 670 671 if (mntflags & NFS_MOUNT_WRITE_EAGER) { 672 result = filemap_fdatawrite_range(file->f_mapping, 673 iocb->ki_pos - written, 674 iocb->ki_pos - 1); 675 if (result < 0) 676 goto out; 677 } 678 if (mntflags & NFS_MOUNT_WRITE_WAIT) { 679 result = filemap_fdatawait_range(file->f_mapping, 680 iocb->ki_pos - written, 681 iocb->ki_pos - 1); 682 if (result < 0) 683 goto out; 684 } 685 result = generic_write_sync(iocb, written); 686 if (result < 0) 687 goto out; 688 689 /* Return error values */ 690 error = filemap_check_wb_err(file->f_mapping, since); 691 if (nfs_need_check_write(file, inode, error)) { 692 int err = nfs_wb_all(inode); 693 if (err < 0) 694 result = err; 695 } 696 nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written); 697 out: 698 return result; 699 700 out_swapfile: 701 printk(KERN_INFO "NFS: attempt to write to active swap file!\n"); 702 return -ETXTBSY; 703 } 704 EXPORT_SYMBOL_GPL(nfs_file_write); 705 706 static int 707 do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local) 708 { 709 struct inode *inode = filp->f_mapping->host; 710 int status = 0; 711 unsigned int saved_type = fl->fl_type; 712 713 /* Try local locking first */ 714 posix_test_lock(filp, fl); 715 if (fl->fl_type != F_UNLCK) { 716 /* found a conflict */ 717 goto out; 718 } 719 fl->fl_type = saved_type; 720 721 if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) 722 goto out_noconflict; 723 724 if (is_local) 725 goto out_noconflict; 726 727 status = NFS_PROTO(inode)->lock(filp, cmd, fl); 728 out: 729 return status; 730 out_noconflict: 731 fl->fl_type = F_UNLCK; 732 goto out; 733 } 734 735 static int 736 do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local) 737 { 738 struct inode *inode = filp->f_mapping->host; 739 struct nfs_lock_context *l_ctx; 740 int status; 741 742 /* 743 * Flush all pending writes before doing anything 744 * with locks.. 745 */ 746 nfs_wb_all(inode); 747 748 l_ctx = nfs_get_lock_context(nfs_file_open_context(filp)); 749 if (!IS_ERR(l_ctx)) { 750 status = nfs_iocounter_wait(l_ctx); 751 nfs_put_lock_context(l_ctx); 752 /* NOTE: special case 753 * If we're signalled while cleaning up locks on process exit, we 754 * still need to complete the unlock. 755 */ 756 if (status < 0 && !(fl->fl_flags & FL_CLOSE)) 757 return status; 758 } 759 760 /* 761 * Use local locking if mounted with "-onolock" or with appropriate 762 * "-olocal_lock=" 763 */ 764 if (!is_local) 765 status = NFS_PROTO(inode)->lock(filp, cmd, fl); 766 else 767 status = locks_lock_file_wait(filp, fl); 768 return status; 769 } 770 771 static int 772 do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local) 773 { 774 struct inode *inode = filp->f_mapping->host; 775 int status; 776 777 /* 778 * Flush all pending writes before doing anything 779 * with locks.. 780 */ 781 status = nfs_sync_mapping(filp->f_mapping); 782 if (status != 0) 783 goto out; 784 785 /* 786 * Use local locking if mounted with "-onolock" or with appropriate 787 * "-olocal_lock=" 788 */ 789 if (!is_local) 790 status = NFS_PROTO(inode)->lock(filp, cmd, fl); 791 else 792 status = locks_lock_file_wait(filp, fl); 793 if (status < 0) 794 goto out; 795 796 /* 797 * Invalidate cache to prevent missing any changes. If 798 * the file is mapped, clear the page cache as well so 799 * those mappings will be loaded. 800 * 801 * This makes locking act as a cache coherency point. 802 */ 803 nfs_sync_mapping(filp->f_mapping); 804 if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) { 805 nfs_zap_caches(inode); 806 if (mapping_mapped(filp->f_mapping)) 807 nfs_revalidate_mapping(inode, filp->f_mapping); 808 } 809 out: 810 return status; 811 } 812 813 /* 814 * Lock a (portion of) a file 815 */ 816 int nfs_lock(struct file *filp, int cmd, struct file_lock *fl) 817 { 818 struct inode *inode = filp->f_mapping->host; 819 int ret = -ENOLCK; 820 int is_local = 0; 821 822 dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n", 823 filp, fl->fl_type, fl->fl_flags, 824 (long long)fl->fl_start, (long long)fl->fl_end); 825 826 nfs_inc_stats(inode, NFSIOS_VFSLOCK); 827 828 if (fl->fl_flags & FL_RECLAIM) 829 return -ENOGRACE; 830 831 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL) 832 is_local = 1; 833 834 if (NFS_PROTO(inode)->lock_check_bounds != NULL) { 835 ret = NFS_PROTO(inode)->lock_check_bounds(fl); 836 if (ret < 0) 837 goto out_err; 838 } 839 840 if (IS_GETLK(cmd)) 841 ret = do_getlk(filp, cmd, fl, is_local); 842 else if (fl->fl_type == F_UNLCK) 843 ret = do_unlk(filp, cmd, fl, is_local); 844 else 845 ret = do_setlk(filp, cmd, fl, is_local); 846 out_err: 847 return ret; 848 } 849 EXPORT_SYMBOL_GPL(nfs_lock); 850 851 /* 852 * Lock a (portion of) a file 853 */ 854 int nfs_flock(struct file *filp, int cmd, struct file_lock *fl) 855 { 856 struct inode *inode = filp->f_mapping->host; 857 int is_local = 0; 858 859 dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n", 860 filp, fl->fl_type, fl->fl_flags); 861 862 if (!(fl->fl_flags & FL_FLOCK)) 863 return -ENOLCK; 864 865 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK) 866 is_local = 1; 867 868 /* We're simulating flock() locks using posix locks on the server */ 869 if (fl->fl_type == F_UNLCK) 870 return do_unlk(filp, cmd, fl, is_local); 871 return do_setlk(filp, cmd, fl, is_local); 872 } 873 EXPORT_SYMBOL_GPL(nfs_flock); 874 875 const struct file_operations nfs_file_operations = { 876 .llseek = nfs_file_llseek, 877 .read_iter = nfs_file_read, 878 .write_iter = nfs_file_write, 879 .mmap = nfs_file_mmap, 880 .open = nfs_file_open, 881 .flush = nfs_file_flush, 882 .release = nfs_file_release, 883 .fsync = nfs_file_fsync, 884 .lock = nfs_lock, 885 .flock = nfs_flock, 886 .splice_read = generic_file_splice_read, 887 .splice_write = iter_file_splice_write, 888 .check_flags = nfs_check_flags, 889 .setlease = simple_nosetlease, 890 }; 891 EXPORT_SYMBOL_GPL(nfs_file_operations); 892