1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/nfs/file.c 4 * 5 * Copyright (C) 1992 Rick Sladkey 6 * 7 * Changes Copyright (C) 1994 by Florian La Roche 8 * - Do not copy data too often around in the kernel. 9 * - In nfs_file_read the return value of kmalloc wasn't checked. 10 * - Put in a better version of read look-ahead buffering. Original idea 11 * and implementation by Wai S Kok elekokws@ee.nus.sg. 12 * 13 * Expire cache on write to a file by Wai S Kok (Oct 1994). 14 * 15 * Total rewrite of read side for new NFS buffer cache.. Linus. 16 * 17 * nfs regular file handling functions 18 */ 19 20 #include <linux/module.h> 21 #include <linux/time.h> 22 #include <linux/kernel.h> 23 #include <linux/errno.h> 24 #include <linux/fcntl.h> 25 #include <linux/stat.h> 26 #include <linux/nfs_fs.h> 27 #include <linux/nfs_mount.h> 28 #include <linux/mm.h> 29 #include <linux/pagemap.h> 30 #include <linux/gfp.h> 31 #include <linux/swap.h> 32 33 #include <linux/uaccess.h> 34 35 #include "delegation.h" 36 #include "internal.h" 37 #include "iostat.h" 38 #include "fscache.h" 39 #include "pnfs.h" 40 41 #include "nfstrace.h" 42 43 #define NFSDBG_FACILITY NFSDBG_FILE 44 45 static const struct vm_operations_struct nfs_file_vm_ops; 46 47 /* Hack for future NFS swap support */ 48 #ifndef IS_SWAPFILE 49 # define IS_SWAPFILE(inode) (0) 50 #endif 51 52 int nfs_check_flags(int flags) 53 { 54 if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT)) 55 return -EINVAL; 56 57 return 0; 58 } 59 EXPORT_SYMBOL_GPL(nfs_check_flags); 60 61 /* 62 * Open file 63 */ 64 static int 65 nfs_file_open(struct inode *inode, struct file *filp) 66 { 67 int res; 68 69 dprintk("NFS: open file(%pD2)\n", filp); 70 71 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 72 res = nfs_check_flags(filp->f_flags); 73 if (res) 74 return res; 75 76 res = nfs_open(inode, filp); 77 return res; 78 } 79 80 int 81 nfs_file_release(struct inode *inode, struct file *filp) 82 { 83 dprintk("NFS: release(%pD2)\n", filp); 84 85 nfs_inc_stats(inode, NFSIOS_VFSRELEASE); 86 nfs_file_clear_open_context(filp); 87 nfs_fscache_release_file(inode, filp); 88 return 0; 89 } 90 EXPORT_SYMBOL_GPL(nfs_file_release); 91 92 /** 93 * nfs_revalidate_file_size - Revalidate the file size 94 * @inode: pointer to inode struct 95 * @filp: pointer to struct file 96 * 97 * Revalidates the file length. This is basically a wrapper around 98 * nfs_revalidate_inode() that takes into account the fact that we may 99 * have cached writes (in which case we don't care about the server's 100 * idea of what the file length is), or O_DIRECT (in which case we 101 * shouldn't trust the cache). 102 */ 103 static int nfs_revalidate_file_size(struct inode *inode, struct file *filp) 104 { 105 struct nfs_server *server = NFS_SERVER(inode); 106 107 if (filp->f_flags & O_DIRECT) 108 goto force_reval; 109 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_SIZE)) 110 goto force_reval; 111 return 0; 112 force_reval: 113 return __nfs_revalidate_inode(server, inode); 114 } 115 116 loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence) 117 { 118 dprintk("NFS: llseek file(%pD2, %lld, %d)\n", 119 filp, offset, whence); 120 121 /* 122 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate 123 * the cached file length 124 */ 125 if (whence != SEEK_SET && whence != SEEK_CUR) { 126 struct inode *inode = filp->f_mapping->host; 127 128 int retval = nfs_revalidate_file_size(inode, filp); 129 if (retval < 0) 130 return (loff_t)retval; 131 } 132 133 return generic_file_llseek(filp, offset, whence); 134 } 135 EXPORT_SYMBOL_GPL(nfs_file_llseek); 136 137 /* 138 * Flush all dirty pages, and check for write errors. 139 */ 140 static int 141 nfs_file_flush(struct file *file, fl_owner_t id) 142 { 143 struct inode *inode = file_inode(file); 144 errseq_t since; 145 146 dprintk("NFS: flush(%pD2)\n", file); 147 148 nfs_inc_stats(inode, NFSIOS_VFSFLUSH); 149 if ((file->f_mode & FMODE_WRITE) == 0) 150 return 0; 151 152 /* Flush writes to the server and return any errors */ 153 since = filemap_sample_wb_err(file->f_mapping); 154 nfs_wb_all(inode); 155 return filemap_check_wb_err(file->f_mapping, since); 156 } 157 158 ssize_t 159 nfs_file_read(struct kiocb *iocb, struct iov_iter *to) 160 { 161 struct inode *inode = file_inode(iocb->ki_filp); 162 ssize_t result; 163 164 if (iocb->ki_flags & IOCB_DIRECT) 165 return nfs_file_direct_read(iocb, to); 166 167 dprintk("NFS: read(%pD2, %zu@%lu)\n", 168 iocb->ki_filp, 169 iov_iter_count(to), (unsigned long) iocb->ki_pos); 170 171 nfs_start_io_read(inode); 172 result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping); 173 if (!result) { 174 result = generic_file_read_iter(iocb, to); 175 if (result > 0) 176 nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result); 177 } 178 nfs_end_io_read(inode); 179 return result; 180 } 181 EXPORT_SYMBOL_GPL(nfs_file_read); 182 183 int 184 nfs_file_mmap(struct file * file, struct vm_area_struct * vma) 185 { 186 struct inode *inode = file_inode(file); 187 int status; 188 189 dprintk("NFS: mmap(%pD2)\n", file); 190 191 /* Note: generic_file_mmap() returns ENOSYS on nommu systems 192 * so we call that before revalidating the mapping 193 */ 194 status = generic_file_mmap(file, vma); 195 if (!status) { 196 vma->vm_ops = &nfs_file_vm_ops; 197 status = nfs_revalidate_mapping(inode, file->f_mapping); 198 } 199 return status; 200 } 201 EXPORT_SYMBOL_GPL(nfs_file_mmap); 202 203 /* 204 * Flush any dirty pages for this process, and check for write errors. 205 * The return status from this call provides a reliable indication of 206 * whether any write errors occurred for this process. 207 */ 208 static int 209 nfs_file_fsync_commit(struct file *file, int datasync) 210 { 211 struct inode *inode = file_inode(file); 212 int ret; 213 214 dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync); 215 216 nfs_inc_stats(inode, NFSIOS_VFSFSYNC); 217 ret = nfs_commit_inode(inode, FLUSH_SYNC); 218 if (ret < 0) 219 return ret; 220 return file_check_and_advance_wb_err(file); 221 } 222 223 int 224 nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync) 225 { 226 struct nfs_open_context *ctx = nfs_file_open_context(file); 227 struct inode *inode = file_inode(file); 228 int ret; 229 230 trace_nfs_fsync_enter(inode); 231 232 for (;;) { 233 ret = file_write_and_wait_range(file, start, end); 234 if (ret != 0) 235 break; 236 ret = nfs_file_fsync_commit(file, datasync); 237 if (ret != 0) 238 break; 239 ret = pnfs_sync_inode(inode, !!datasync); 240 if (ret != 0) 241 break; 242 if (!test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags)) 243 break; 244 /* 245 * If nfs_file_fsync_commit detected a server reboot, then 246 * resend all dirty pages that might have been covered by 247 * the NFS_CONTEXT_RESEND_WRITES flag 248 */ 249 start = 0; 250 end = LLONG_MAX; 251 } 252 253 trace_nfs_fsync_exit(inode, ret); 254 return ret; 255 } 256 EXPORT_SYMBOL_GPL(nfs_file_fsync); 257 258 /* 259 * Decide whether a read/modify/write cycle may be more efficient 260 * then a modify/write/read cycle when writing to a page in the 261 * page cache. 262 * 263 * Some pNFS layout drivers can only read/write at a certain block 264 * granularity like all block devices and therefore we must perform 265 * read/modify/write whenever a page hasn't read yet and the data 266 * to be written there is not aligned to a block boundary and/or 267 * smaller than the block size. 268 * 269 * The modify/write/read cycle may occur if a page is read before 270 * being completely filled by the writer. In this situation, the 271 * page must be completely written to stable storage on the server 272 * before it can be refilled by reading in the page from the server. 273 * This can lead to expensive, small, FILE_SYNC mode writes being 274 * done. 275 * 276 * It may be more efficient to read the page first if the file is 277 * open for reading in addition to writing, the page is not marked 278 * as Uptodate, it is not dirty or waiting to be committed, 279 * indicating that it was previously allocated and then modified, 280 * that there were valid bytes of data in that range of the file, 281 * and that the new data won't completely replace the old data in 282 * that range of the file. 283 */ 284 static bool nfs_full_page_write(struct page *page, loff_t pos, unsigned int len) 285 { 286 unsigned int pglen = nfs_page_length(page); 287 unsigned int offset = pos & (PAGE_SIZE - 1); 288 unsigned int end = offset + len; 289 290 return !pglen || (end >= pglen && !offset); 291 } 292 293 static bool nfs_want_read_modify_write(struct file *file, struct page *page, 294 loff_t pos, unsigned int len) 295 { 296 /* 297 * Up-to-date pages, those with ongoing or full-page write 298 * don't need read/modify/write 299 */ 300 if (PageUptodate(page) || PagePrivate(page) || 301 nfs_full_page_write(page, pos, len)) 302 return false; 303 304 if (pnfs_ld_read_whole_page(file->f_mapping->host)) 305 return true; 306 /* Open for reading too? */ 307 if (file->f_mode & FMODE_READ) 308 return true; 309 return false; 310 } 311 312 /* 313 * This does the "real" work of the write. We must allocate and lock the 314 * page to be sent back to the generic routine, which then copies the 315 * data from user space. 316 * 317 * If the writer ends up delaying the write, the writer needs to 318 * increment the page use counts until he is done with the page. 319 */ 320 static int nfs_write_begin(struct file *file, struct address_space *mapping, 321 loff_t pos, unsigned len, unsigned flags, 322 struct page **pagep, void **fsdata) 323 { 324 int ret; 325 pgoff_t index = pos >> PAGE_SHIFT; 326 struct page *page; 327 int once_thru = 0; 328 329 dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n", 330 file, mapping->host->i_ino, len, (long long) pos); 331 332 start: 333 page = grab_cache_page_write_begin(mapping, index, flags); 334 if (!page) 335 return -ENOMEM; 336 *pagep = page; 337 338 ret = nfs_flush_incompatible(file, page); 339 if (ret) { 340 unlock_page(page); 341 put_page(page); 342 } else if (!once_thru && 343 nfs_want_read_modify_write(file, page, pos, len)) { 344 once_thru = 1; 345 ret = nfs_readpage(file, page); 346 put_page(page); 347 if (!ret) 348 goto start; 349 } 350 return ret; 351 } 352 353 static int nfs_write_end(struct file *file, struct address_space *mapping, 354 loff_t pos, unsigned len, unsigned copied, 355 struct page *page, void *fsdata) 356 { 357 unsigned offset = pos & (PAGE_SIZE - 1); 358 struct nfs_open_context *ctx = nfs_file_open_context(file); 359 int status; 360 361 dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n", 362 file, mapping->host->i_ino, len, (long long) pos); 363 364 /* 365 * Zero any uninitialised parts of the page, and then mark the page 366 * as up to date if it turns out that we're extending the file. 367 */ 368 if (!PageUptodate(page)) { 369 unsigned pglen = nfs_page_length(page); 370 unsigned end = offset + copied; 371 372 if (pglen == 0) { 373 zero_user_segments(page, 0, offset, 374 end, PAGE_SIZE); 375 SetPageUptodate(page); 376 } else if (end >= pglen) { 377 zero_user_segment(page, end, PAGE_SIZE); 378 if (offset == 0) 379 SetPageUptodate(page); 380 } else 381 zero_user_segment(page, pglen, PAGE_SIZE); 382 } 383 384 status = nfs_updatepage(file, page, offset, copied); 385 386 unlock_page(page); 387 put_page(page); 388 389 if (status < 0) 390 return status; 391 NFS_I(mapping->host)->write_io += copied; 392 393 if (nfs_ctx_key_to_expire(ctx, mapping->host)) { 394 status = nfs_wb_all(mapping->host); 395 if (status < 0) 396 return status; 397 } 398 399 return copied; 400 } 401 402 /* 403 * Partially or wholly invalidate a page 404 * - Release the private state associated with a page if undergoing complete 405 * page invalidation 406 * - Called if either PG_private or PG_fscache is set on the page 407 * - Caller holds page lock 408 */ 409 static void nfs_invalidate_page(struct page *page, unsigned int offset, 410 unsigned int length) 411 { 412 dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n", 413 page, offset, length); 414 415 if (offset != 0 || length < PAGE_SIZE) 416 return; 417 /* Cancel any unstarted writes on this page */ 418 nfs_wb_page_cancel(page_file_mapping(page)->host, page); 419 wait_on_page_fscache(page); 420 } 421 422 /* 423 * Attempt to release the private state associated with a page 424 * - Called if either PG_private or PG_fscache is set on the page 425 * - Caller holds page lock 426 * - Return true (may release page) or false (may not) 427 */ 428 static int nfs_release_page(struct page *page, gfp_t gfp) 429 { 430 dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page); 431 432 /* If PagePrivate() is set, then the page is not freeable */ 433 if (PagePrivate(page)) 434 return 0; 435 return nfs_fscache_release_page(page, gfp); 436 } 437 438 static void nfs_check_dirty_writeback(struct page *page, 439 bool *dirty, bool *writeback) 440 { 441 struct nfs_inode *nfsi; 442 struct address_space *mapping = page_file_mapping(page); 443 444 if (!mapping || PageSwapCache(page)) 445 return; 446 447 /* 448 * Check if an unstable page is currently being committed and 449 * if so, have the VM treat it as if the page is under writeback 450 * so it will not block due to pages that will shortly be freeable. 451 */ 452 nfsi = NFS_I(mapping->host); 453 if (atomic_read(&nfsi->commit_info.rpcs_out)) { 454 *writeback = true; 455 return; 456 } 457 458 /* 459 * If PagePrivate() is set, then the page is not freeable and as the 460 * inode is not being committed, it's not going to be cleaned in the 461 * near future so treat it as dirty 462 */ 463 if (PagePrivate(page)) 464 *dirty = true; 465 } 466 467 /* 468 * Attempt to clear the private state associated with a page when an error 469 * occurs that requires the cached contents of an inode to be written back or 470 * destroyed 471 * - Called if either PG_private or fscache is set on the page 472 * - Caller holds page lock 473 * - Return 0 if successful, -error otherwise 474 */ 475 static int nfs_launder_page(struct page *page) 476 { 477 struct inode *inode = page_file_mapping(page)->host; 478 479 dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n", 480 inode->i_ino, (long long)page_offset(page)); 481 482 wait_on_page_fscache(page); 483 return nfs_wb_page(inode, page); 484 } 485 486 static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file, 487 sector_t *span) 488 { 489 unsigned long blocks; 490 long long isize; 491 struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host); 492 struct inode *inode = file->f_mapping->host; 493 494 spin_lock(&inode->i_lock); 495 blocks = inode->i_blocks; 496 isize = inode->i_size; 497 spin_unlock(&inode->i_lock); 498 if (blocks*512 < isize) { 499 pr_warn("swap activate: swapfile has holes\n"); 500 return -EINVAL; 501 } 502 503 *span = sis->pages; 504 505 return rpc_clnt_swap_activate(clnt); 506 } 507 508 static void nfs_swap_deactivate(struct file *file) 509 { 510 struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host); 511 512 rpc_clnt_swap_deactivate(clnt); 513 } 514 515 const struct address_space_operations nfs_file_aops = { 516 .readpage = nfs_readpage, 517 .readpages = nfs_readpages, 518 .set_page_dirty = __set_page_dirty_nobuffers, 519 .writepage = nfs_writepage, 520 .writepages = nfs_writepages, 521 .write_begin = nfs_write_begin, 522 .write_end = nfs_write_end, 523 .invalidatepage = nfs_invalidate_page, 524 .releasepage = nfs_release_page, 525 .direct_IO = nfs_direct_IO, 526 #ifdef CONFIG_MIGRATION 527 .migratepage = nfs_migrate_page, 528 #endif 529 .launder_page = nfs_launder_page, 530 .is_dirty_writeback = nfs_check_dirty_writeback, 531 .error_remove_page = generic_error_remove_page, 532 .swap_activate = nfs_swap_activate, 533 .swap_deactivate = nfs_swap_deactivate, 534 }; 535 536 /* 537 * Notification that a PTE pointing to an NFS page is about to be made 538 * writable, implying that someone is about to modify the page through a 539 * shared-writable mapping 540 */ 541 static vm_fault_t nfs_vm_page_mkwrite(struct vm_fault *vmf) 542 { 543 struct page *page = vmf->page; 544 struct file *filp = vmf->vma->vm_file; 545 struct inode *inode = file_inode(filp); 546 unsigned pagelen; 547 vm_fault_t ret = VM_FAULT_NOPAGE; 548 struct address_space *mapping; 549 550 dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n", 551 filp, filp->f_mapping->host->i_ino, 552 (long long)page_offset(page)); 553 554 sb_start_pagefault(inode->i_sb); 555 556 /* make sure the cache has finished storing the page */ 557 if (PageFsCache(page) && 558 wait_on_page_fscache_killable(vmf->page) < 0) { 559 ret = VM_FAULT_RETRY; 560 goto out; 561 } 562 563 wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING, 564 nfs_wait_bit_killable, TASK_KILLABLE); 565 566 lock_page(page); 567 mapping = page_file_mapping(page); 568 if (mapping != inode->i_mapping) 569 goto out_unlock; 570 571 wait_on_page_writeback(page); 572 573 pagelen = nfs_page_length(page); 574 if (pagelen == 0) 575 goto out_unlock; 576 577 ret = VM_FAULT_LOCKED; 578 if (nfs_flush_incompatible(filp, page) == 0 && 579 nfs_updatepage(filp, page, 0, pagelen) == 0) 580 goto out; 581 582 ret = VM_FAULT_SIGBUS; 583 out_unlock: 584 unlock_page(page); 585 out: 586 sb_end_pagefault(inode->i_sb); 587 return ret; 588 } 589 590 static const struct vm_operations_struct nfs_file_vm_ops = { 591 .fault = filemap_fault, 592 .map_pages = filemap_map_pages, 593 .page_mkwrite = nfs_vm_page_mkwrite, 594 }; 595 596 static int nfs_need_check_write(struct file *filp, struct inode *inode, 597 int error) 598 { 599 struct nfs_open_context *ctx; 600 601 ctx = nfs_file_open_context(filp); 602 if (nfs_error_is_fatal_on_server(error) || 603 nfs_ctx_key_to_expire(ctx, inode)) 604 return 1; 605 return 0; 606 } 607 608 ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from) 609 { 610 struct file *file = iocb->ki_filp; 611 struct inode *inode = file_inode(file); 612 unsigned int mntflags = NFS_SERVER(inode)->flags; 613 ssize_t result, written; 614 errseq_t since; 615 int error; 616 617 result = nfs_key_timeout_notify(file, inode); 618 if (result) 619 return result; 620 621 if (iocb->ki_flags & IOCB_DIRECT) 622 return nfs_file_direct_write(iocb, from); 623 624 dprintk("NFS: write(%pD2, %zu@%Ld)\n", 625 file, iov_iter_count(from), (long long) iocb->ki_pos); 626 627 if (IS_SWAPFILE(inode)) 628 goto out_swapfile; 629 /* 630 * O_APPEND implies that we must revalidate the file length. 631 */ 632 if (iocb->ki_flags & IOCB_APPEND || iocb->ki_pos > i_size_read(inode)) { 633 result = nfs_revalidate_file_size(inode, file); 634 if (result) 635 goto out; 636 } 637 638 nfs_clear_invalid_mapping(file->f_mapping); 639 640 since = filemap_sample_wb_err(file->f_mapping); 641 nfs_start_io_write(inode); 642 result = generic_write_checks(iocb, from); 643 if (result > 0) { 644 current->backing_dev_info = inode_to_bdi(inode); 645 result = generic_perform_write(file, from, iocb->ki_pos); 646 current->backing_dev_info = NULL; 647 } 648 nfs_end_io_write(inode); 649 if (result <= 0) 650 goto out; 651 652 written = result; 653 iocb->ki_pos += written; 654 655 if (mntflags & NFS_MOUNT_WRITE_EAGER) { 656 result = filemap_fdatawrite_range(file->f_mapping, 657 iocb->ki_pos - written, 658 iocb->ki_pos - 1); 659 if (result < 0) 660 goto out; 661 } 662 if (mntflags & NFS_MOUNT_WRITE_WAIT) { 663 result = filemap_fdatawait_range(file->f_mapping, 664 iocb->ki_pos - written, 665 iocb->ki_pos - 1); 666 if (result < 0) 667 goto out; 668 } 669 result = generic_write_sync(iocb, written); 670 if (result < 0) 671 goto out; 672 673 /* Return error values */ 674 error = filemap_check_wb_err(file->f_mapping, since); 675 if (nfs_need_check_write(file, inode, error)) { 676 int err = nfs_wb_all(inode); 677 if (err < 0) 678 result = err; 679 } 680 nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written); 681 out: 682 return result; 683 684 out_swapfile: 685 printk(KERN_INFO "NFS: attempt to write to active swap file!\n"); 686 return -ETXTBSY; 687 } 688 EXPORT_SYMBOL_GPL(nfs_file_write); 689 690 static int 691 do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local) 692 { 693 struct inode *inode = filp->f_mapping->host; 694 int status = 0; 695 unsigned int saved_type = fl->fl_type; 696 697 /* Try local locking first */ 698 posix_test_lock(filp, fl); 699 if (fl->fl_type != F_UNLCK) { 700 /* found a conflict */ 701 goto out; 702 } 703 fl->fl_type = saved_type; 704 705 if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) 706 goto out_noconflict; 707 708 if (is_local) 709 goto out_noconflict; 710 711 status = NFS_PROTO(inode)->lock(filp, cmd, fl); 712 out: 713 return status; 714 out_noconflict: 715 fl->fl_type = F_UNLCK; 716 goto out; 717 } 718 719 static int 720 do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local) 721 { 722 struct inode *inode = filp->f_mapping->host; 723 struct nfs_lock_context *l_ctx; 724 int status; 725 726 /* 727 * Flush all pending writes before doing anything 728 * with locks.. 729 */ 730 nfs_wb_all(inode); 731 732 l_ctx = nfs_get_lock_context(nfs_file_open_context(filp)); 733 if (!IS_ERR(l_ctx)) { 734 status = nfs_iocounter_wait(l_ctx); 735 nfs_put_lock_context(l_ctx); 736 /* NOTE: special case 737 * If we're signalled while cleaning up locks on process exit, we 738 * still need to complete the unlock. 739 */ 740 if (status < 0 && !(fl->fl_flags & FL_CLOSE)) 741 return status; 742 } 743 744 /* 745 * Use local locking if mounted with "-onolock" or with appropriate 746 * "-olocal_lock=" 747 */ 748 if (!is_local) 749 status = NFS_PROTO(inode)->lock(filp, cmd, fl); 750 else 751 status = locks_lock_file_wait(filp, fl); 752 return status; 753 } 754 755 static int 756 do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local) 757 { 758 struct inode *inode = filp->f_mapping->host; 759 int status; 760 761 /* 762 * Flush all pending writes before doing anything 763 * with locks.. 764 */ 765 status = nfs_sync_mapping(filp->f_mapping); 766 if (status != 0) 767 goto out; 768 769 /* 770 * Use local locking if mounted with "-onolock" or with appropriate 771 * "-olocal_lock=" 772 */ 773 if (!is_local) 774 status = NFS_PROTO(inode)->lock(filp, cmd, fl); 775 else 776 status = locks_lock_file_wait(filp, fl); 777 if (status < 0) 778 goto out; 779 780 /* 781 * Invalidate cache to prevent missing any changes. If 782 * the file is mapped, clear the page cache as well so 783 * those mappings will be loaded. 784 * 785 * This makes locking act as a cache coherency point. 786 */ 787 nfs_sync_mapping(filp->f_mapping); 788 if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) { 789 nfs_zap_caches(inode); 790 if (mapping_mapped(filp->f_mapping)) 791 nfs_revalidate_mapping(inode, filp->f_mapping); 792 } 793 out: 794 return status; 795 } 796 797 /* 798 * Lock a (portion of) a file 799 */ 800 int nfs_lock(struct file *filp, int cmd, struct file_lock *fl) 801 { 802 struct inode *inode = filp->f_mapping->host; 803 int ret = -ENOLCK; 804 int is_local = 0; 805 806 dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n", 807 filp, fl->fl_type, fl->fl_flags, 808 (long long)fl->fl_start, (long long)fl->fl_end); 809 810 nfs_inc_stats(inode, NFSIOS_VFSLOCK); 811 812 if (fl->fl_flags & FL_RECLAIM) 813 return -ENOGRACE; 814 815 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL) 816 is_local = 1; 817 818 if (NFS_PROTO(inode)->lock_check_bounds != NULL) { 819 ret = NFS_PROTO(inode)->lock_check_bounds(fl); 820 if (ret < 0) 821 goto out_err; 822 } 823 824 if (IS_GETLK(cmd)) 825 ret = do_getlk(filp, cmd, fl, is_local); 826 else if (fl->fl_type == F_UNLCK) 827 ret = do_unlk(filp, cmd, fl, is_local); 828 else 829 ret = do_setlk(filp, cmd, fl, is_local); 830 out_err: 831 return ret; 832 } 833 EXPORT_SYMBOL_GPL(nfs_lock); 834 835 /* 836 * Lock a (portion of) a file 837 */ 838 int nfs_flock(struct file *filp, int cmd, struct file_lock *fl) 839 { 840 struct inode *inode = filp->f_mapping->host; 841 int is_local = 0; 842 843 dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n", 844 filp, fl->fl_type, fl->fl_flags); 845 846 if (!(fl->fl_flags & FL_FLOCK)) 847 return -ENOLCK; 848 849 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK) 850 is_local = 1; 851 852 /* We're simulating flock() locks using posix locks on the server */ 853 if (fl->fl_type == F_UNLCK) 854 return do_unlk(filp, cmd, fl, is_local); 855 return do_setlk(filp, cmd, fl, is_local); 856 } 857 EXPORT_SYMBOL_GPL(nfs_flock); 858 859 const struct file_operations nfs_file_operations = { 860 .llseek = nfs_file_llseek, 861 .read_iter = nfs_file_read, 862 .write_iter = nfs_file_write, 863 .mmap = nfs_file_mmap, 864 .open = nfs_file_open, 865 .flush = nfs_file_flush, 866 .release = nfs_file_release, 867 .fsync = nfs_file_fsync, 868 .lock = nfs_lock, 869 .flock = nfs_flock, 870 .splice_read = generic_file_splice_read, 871 .splice_write = iter_file_splice_write, 872 .check_flags = nfs_check_flags, 873 .setlease = simple_nosetlease, 874 }; 875 EXPORT_SYMBOL_GPL(nfs_file_operations); 876