1 /* 2 * linux/fs/nfs/file.c 3 * 4 * Copyright (C) 1992 Rick Sladkey 5 * 6 * Changes Copyright (C) 1994 by Florian La Roche 7 * - Do not copy data too often around in the kernel. 8 * - In nfs_file_read the return value of kmalloc wasn't checked. 9 * - Put in a better version of read look-ahead buffering. Original idea 10 * and implementation by Wai S Kok elekokws@ee.nus.sg. 11 * 12 * Expire cache on write to a file by Wai S Kok (Oct 1994). 13 * 14 * Total rewrite of read side for new NFS buffer cache.. Linus. 15 * 16 * nfs regular file handling functions 17 */ 18 19 #include <linux/module.h> 20 #include <linux/time.h> 21 #include <linux/kernel.h> 22 #include <linux/errno.h> 23 #include <linux/fcntl.h> 24 #include <linux/stat.h> 25 #include <linux/nfs_fs.h> 26 #include <linux/nfs_mount.h> 27 #include <linux/mm.h> 28 #include <linux/pagemap.h> 29 #include <linux/gfp.h> 30 #include <linux/swap.h> 31 32 #include <linux/uaccess.h> 33 34 #include "delegation.h" 35 #include "internal.h" 36 #include "iostat.h" 37 #include "fscache.h" 38 #include "pnfs.h" 39 40 #include "nfstrace.h" 41 42 #define NFSDBG_FACILITY NFSDBG_FILE 43 44 static const struct vm_operations_struct nfs_file_vm_ops; 45 46 /* Hack for future NFS swap support */ 47 #ifndef IS_SWAPFILE 48 # define IS_SWAPFILE(inode) (0) 49 #endif 50 51 int nfs_check_flags(int flags) 52 { 53 if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT)) 54 return -EINVAL; 55 56 return 0; 57 } 58 EXPORT_SYMBOL_GPL(nfs_check_flags); 59 60 /* 61 * Open file 62 */ 63 static int 64 nfs_file_open(struct inode *inode, struct file *filp) 65 { 66 int res; 67 68 dprintk("NFS: open file(%pD2)\n", filp); 69 70 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 71 res = nfs_check_flags(filp->f_flags); 72 if (res) 73 return res; 74 75 res = nfs_open(inode, filp); 76 return res; 77 } 78 79 int 80 nfs_file_release(struct inode *inode, struct file *filp) 81 { 82 dprintk("NFS: release(%pD2)\n", filp); 83 84 nfs_inc_stats(inode, NFSIOS_VFSRELEASE); 85 nfs_file_clear_open_context(filp); 86 return 0; 87 } 88 EXPORT_SYMBOL_GPL(nfs_file_release); 89 90 /** 91 * nfs_revalidate_size - Revalidate the file size 92 * @inode - pointer to inode struct 93 * @file - pointer to struct file 94 * 95 * Revalidates the file length. This is basically a wrapper around 96 * nfs_revalidate_inode() that takes into account the fact that we may 97 * have cached writes (in which case we don't care about the server's 98 * idea of what the file length is), or O_DIRECT (in which case we 99 * shouldn't trust the cache). 100 */ 101 static int nfs_revalidate_file_size(struct inode *inode, struct file *filp) 102 { 103 struct nfs_server *server = NFS_SERVER(inode); 104 105 if (filp->f_flags & O_DIRECT) 106 goto force_reval; 107 if (nfs_check_cache_invalid(inode, NFS_INO_REVAL_PAGECACHE)) 108 goto force_reval; 109 return 0; 110 force_reval: 111 return __nfs_revalidate_inode(server, inode); 112 } 113 114 loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence) 115 { 116 dprintk("NFS: llseek file(%pD2, %lld, %d)\n", 117 filp, offset, whence); 118 119 /* 120 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate 121 * the cached file length 122 */ 123 if (whence != SEEK_SET && whence != SEEK_CUR) { 124 struct inode *inode = filp->f_mapping->host; 125 126 int retval = nfs_revalidate_file_size(inode, filp); 127 if (retval < 0) 128 return (loff_t)retval; 129 } 130 131 return generic_file_llseek(filp, offset, whence); 132 } 133 EXPORT_SYMBOL_GPL(nfs_file_llseek); 134 135 /* 136 * Flush all dirty pages, and check for write errors. 137 */ 138 static int 139 nfs_file_flush(struct file *file, fl_owner_t id) 140 { 141 struct inode *inode = file_inode(file); 142 143 dprintk("NFS: flush(%pD2)\n", file); 144 145 nfs_inc_stats(inode, NFSIOS_VFSFLUSH); 146 if ((file->f_mode & FMODE_WRITE) == 0) 147 return 0; 148 149 /* Flush writes to the server and return any errors */ 150 return vfs_fsync(file, 0); 151 } 152 153 ssize_t 154 nfs_file_read(struct kiocb *iocb, struct iov_iter *to) 155 { 156 struct inode *inode = file_inode(iocb->ki_filp); 157 ssize_t result; 158 159 if (iocb->ki_flags & IOCB_DIRECT) 160 return nfs_file_direct_read(iocb, to); 161 162 dprintk("NFS: read(%pD2, %zu@%lu)\n", 163 iocb->ki_filp, 164 iov_iter_count(to), (unsigned long) iocb->ki_pos); 165 166 nfs_start_io_read(inode); 167 result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping); 168 if (!result) { 169 result = generic_file_read_iter(iocb, to); 170 if (result > 0) 171 nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result); 172 } 173 nfs_end_io_read(inode); 174 return result; 175 } 176 EXPORT_SYMBOL_GPL(nfs_file_read); 177 178 int 179 nfs_file_mmap(struct file * file, struct vm_area_struct * vma) 180 { 181 struct inode *inode = file_inode(file); 182 int status; 183 184 dprintk("NFS: mmap(%pD2)\n", file); 185 186 /* Note: generic_file_mmap() returns ENOSYS on nommu systems 187 * so we call that before revalidating the mapping 188 */ 189 status = generic_file_mmap(file, vma); 190 if (!status) { 191 vma->vm_ops = &nfs_file_vm_ops; 192 status = nfs_revalidate_mapping(inode, file->f_mapping); 193 } 194 return status; 195 } 196 EXPORT_SYMBOL_GPL(nfs_file_mmap); 197 198 /* 199 * Flush any dirty pages for this process, and check for write errors. 200 * The return status from this call provides a reliable indication of 201 * whether any write errors occurred for this process. 202 * 203 * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to 204 * disk, but it retrieves and clears ctx->error after synching, despite 205 * the two being set at the same time in nfs_context_set_write_error(). 206 * This is because the former is used to notify the _next_ call to 207 * nfs_file_write() that a write error occurred, and hence cause it to 208 * fall back to doing a synchronous write. 209 */ 210 static int 211 nfs_file_fsync_commit(struct file *file, int datasync) 212 { 213 struct nfs_open_context *ctx = nfs_file_open_context(file); 214 struct inode *inode = file_inode(file); 215 int do_resend, status; 216 int ret = 0; 217 218 dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync); 219 220 nfs_inc_stats(inode, NFSIOS_VFSFSYNC); 221 do_resend = test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags); 222 status = nfs_commit_inode(inode, FLUSH_SYNC); 223 if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags)) { 224 ret = xchg(&ctx->error, 0); 225 if (ret) 226 goto out; 227 } 228 if (status < 0) { 229 ret = status; 230 goto out; 231 } 232 do_resend |= test_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags); 233 if (do_resend) 234 ret = -EAGAIN; 235 out: 236 return ret; 237 } 238 239 int 240 nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync) 241 { 242 int ret; 243 struct inode *inode = file_inode(file); 244 245 trace_nfs_fsync_enter(inode); 246 247 do { 248 struct nfs_open_context *ctx = nfs_file_open_context(file); 249 ret = filemap_write_and_wait_range(inode->i_mapping, start, end); 250 if (test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags)) { 251 int ret2 = xchg(&ctx->error, 0); 252 if (ret2) 253 ret = ret2; 254 } 255 if (ret != 0) 256 break; 257 ret = nfs_file_fsync_commit(file, datasync); 258 if (!ret) 259 ret = pnfs_sync_inode(inode, !!datasync); 260 /* 261 * If nfs_file_fsync_commit detected a server reboot, then 262 * resend all dirty pages that might have been covered by 263 * the NFS_CONTEXT_RESEND_WRITES flag 264 */ 265 start = 0; 266 end = LLONG_MAX; 267 } while (ret == -EAGAIN); 268 269 trace_nfs_fsync_exit(inode, ret); 270 return ret; 271 } 272 EXPORT_SYMBOL_GPL(nfs_file_fsync); 273 274 /* 275 * Decide whether a read/modify/write cycle may be more efficient 276 * then a modify/write/read cycle when writing to a page in the 277 * page cache. 278 * 279 * The modify/write/read cycle may occur if a page is read before 280 * being completely filled by the writer. In this situation, the 281 * page must be completely written to stable storage on the server 282 * before it can be refilled by reading in the page from the server. 283 * This can lead to expensive, small, FILE_SYNC mode writes being 284 * done. 285 * 286 * It may be more efficient to read the page first if the file is 287 * open for reading in addition to writing, the page is not marked 288 * as Uptodate, it is not dirty or waiting to be committed, 289 * indicating that it was previously allocated and then modified, 290 * that there were valid bytes of data in that range of the file, 291 * and that the new data won't completely replace the old data in 292 * that range of the file. 293 */ 294 static int nfs_want_read_modify_write(struct file *file, struct page *page, 295 loff_t pos, unsigned len) 296 { 297 unsigned int pglen = nfs_page_length(page); 298 unsigned int offset = pos & (PAGE_SIZE - 1); 299 unsigned int end = offset + len; 300 301 if (pnfs_ld_read_whole_page(file->f_mapping->host)) { 302 if (!PageUptodate(page)) 303 return 1; 304 return 0; 305 } 306 307 if ((file->f_mode & FMODE_READ) && /* open for read? */ 308 !PageUptodate(page) && /* Uptodate? */ 309 !PagePrivate(page) && /* i/o request already? */ 310 pglen && /* valid bytes of file? */ 311 (end < pglen || offset)) /* replace all valid bytes? */ 312 return 1; 313 return 0; 314 } 315 316 /* 317 * This does the "real" work of the write. We must allocate and lock the 318 * page to be sent back to the generic routine, which then copies the 319 * data from user space. 320 * 321 * If the writer ends up delaying the write, the writer needs to 322 * increment the page use counts until he is done with the page. 323 */ 324 static int nfs_write_begin(struct file *file, struct address_space *mapping, 325 loff_t pos, unsigned len, unsigned flags, 326 struct page **pagep, void **fsdata) 327 { 328 int ret; 329 pgoff_t index = pos >> PAGE_SHIFT; 330 struct page *page; 331 int once_thru = 0; 332 333 dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n", 334 file, mapping->host->i_ino, len, (long long) pos); 335 336 start: 337 page = grab_cache_page_write_begin(mapping, index, flags); 338 if (!page) 339 return -ENOMEM; 340 *pagep = page; 341 342 ret = nfs_flush_incompatible(file, page); 343 if (ret) { 344 unlock_page(page); 345 put_page(page); 346 } else if (!once_thru && 347 nfs_want_read_modify_write(file, page, pos, len)) { 348 once_thru = 1; 349 ret = nfs_readpage(file, page); 350 put_page(page); 351 if (!ret) 352 goto start; 353 } 354 return ret; 355 } 356 357 static int nfs_write_end(struct file *file, struct address_space *mapping, 358 loff_t pos, unsigned len, unsigned copied, 359 struct page *page, void *fsdata) 360 { 361 unsigned offset = pos & (PAGE_SIZE - 1); 362 struct nfs_open_context *ctx = nfs_file_open_context(file); 363 int status; 364 365 dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n", 366 file, mapping->host->i_ino, len, (long long) pos); 367 368 /* 369 * Zero any uninitialised parts of the page, and then mark the page 370 * as up to date if it turns out that we're extending the file. 371 */ 372 if (!PageUptodate(page)) { 373 unsigned pglen = nfs_page_length(page); 374 unsigned end = offset + copied; 375 376 if (pglen == 0) { 377 zero_user_segments(page, 0, offset, 378 end, PAGE_SIZE); 379 SetPageUptodate(page); 380 } else if (end >= pglen) { 381 zero_user_segment(page, end, PAGE_SIZE); 382 if (offset == 0) 383 SetPageUptodate(page); 384 } else 385 zero_user_segment(page, pglen, PAGE_SIZE); 386 } 387 388 status = nfs_updatepage(file, page, offset, copied); 389 390 unlock_page(page); 391 put_page(page); 392 393 if (status < 0) 394 return status; 395 NFS_I(mapping->host)->write_io += copied; 396 397 if (nfs_ctx_key_to_expire(ctx, mapping->host)) { 398 status = nfs_wb_all(mapping->host); 399 if (status < 0) 400 return status; 401 } 402 403 return copied; 404 } 405 406 /* 407 * Partially or wholly invalidate a page 408 * - Release the private state associated with a page if undergoing complete 409 * page invalidation 410 * - Called if either PG_private or PG_fscache is set on the page 411 * - Caller holds page lock 412 */ 413 static void nfs_invalidate_page(struct page *page, unsigned int offset, 414 unsigned int length) 415 { 416 dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n", 417 page, offset, length); 418 419 if (offset != 0 || length < PAGE_SIZE) 420 return; 421 /* Cancel any unstarted writes on this page */ 422 nfs_wb_page_cancel(page_file_mapping(page)->host, page); 423 424 nfs_fscache_invalidate_page(page, page->mapping->host); 425 } 426 427 /* 428 * Attempt to release the private state associated with a page 429 * - Called if either PG_private or PG_fscache is set on the page 430 * - Caller holds page lock 431 * - Return true (may release page) or false (may not) 432 */ 433 static int nfs_release_page(struct page *page, gfp_t gfp) 434 { 435 dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page); 436 437 /* If PagePrivate() is set, then the page is not freeable */ 438 if (PagePrivate(page)) 439 return 0; 440 return nfs_fscache_release_page(page, gfp); 441 } 442 443 static void nfs_check_dirty_writeback(struct page *page, 444 bool *dirty, bool *writeback) 445 { 446 struct nfs_inode *nfsi; 447 struct address_space *mapping = page_file_mapping(page); 448 449 if (!mapping || PageSwapCache(page)) 450 return; 451 452 /* 453 * Check if an unstable page is currently being committed and 454 * if so, have the VM treat it as if the page is under writeback 455 * so it will not block due to pages that will shortly be freeable. 456 */ 457 nfsi = NFS_I(mapping->host); 458 if (atomic_read(&nfsi->commit_info.rpcs_out)) { 459 *writeback = true; 460 return; 461 } 462 463 /* 464 * If PagePrivate() is set, then the page is not freeable and as the 465 * inode is not being committed, it's not going to be cleaned in the 466 * near future so treat it as dirty 467 */ 468 if (PagePrivate(page)) 469 *dirty = true; 470 } 471 472 /* 473 * Attempt to clear the private state associated with a page when an error 474 * occurs that requires the cached contents of an inode to be written back or 475 * destroyed 476 * - Called if either PG_private or fscache is set on the page 477 * - Caller holds page lock 478 * - Return 0 if successful, -error otherwise 479 */ 480 static int nfs_launder_page(struct page *page) 481 { 482 struct inode *inode = page_file_mapping(page)->host; 483 struct nfs_inode *nfsi = NFS_I(inode); 484 485 dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n", 486 inode->i_ino, (long long)page_offset(page)); 487 488 nfs_fscache_wait_on_page_write(nfsi, page); 489 return nfs_wb_page(inode, page); 490 } 491 492 static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file, 493 sector_t *span) 494 { 495 struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host); 496 497 *span = sis->pages; 498 499 return rpc_clnt_swap_activate(clnt); 500 } 501 502 static void nfs_swap_deactivate(struct file *file) 503 { 504 struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host); 505 506 rpc_clnt_swap_deactivate(clnt); 507 } 508 509 const struct address_space_operations nfs_file_aops = { 510 .readpage = nfs_readpage, 511 .readpages = nfs_readpages, 512 .set_page_dirty = __set_page_dirty_nobuffers, 513 .writepage = nfs_writepage, 514 .writepages = nfs_writepages, 515 .write_begin = nfs_write_begin, 516 .write_end = nfs_write_end, 517 .invalidatepage = nfs_invalidate_page, 518 .releasepage = nfs_release_page, 519 .direct_IO = nfs_direct_IO, 520 #ifdef CONFIG_MIGRATION 521 .migratepage = nfs_migrate_page, 522 #endif 523 .launder_page = nfs_launder_page, 524 .is_dirty_writeback = nfs_check_dirty_writeback, 525 .error_remove_page = generic_error_remove_page, 526 .swap_activate = nfs_swap_activate, 527 .swap_deactivate = nfs_swap_deactivate, 528 }; 529 530 /* 531 * Notification that a PTE pointing to an NFS page is about to be made 532 * writable, implying that someone is about to modify the page through a 533 * shared-writable mapping 534 */ 535 static int nfs_vm_page_mkwrite(struct vm_fault *vmf) 536 { 537 struct page *page = vmf->page; 538 struct file *filp = vmf->vma->vm_file; 539 struct inode *inode = file_inode(filp); 540 unsigned pagelen; 541 int ret = VM_FAULT_NOPAGE; 542 struct address_space *mapping; 543 544 dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n", 545 filp, filp->f_mapping->host->i_ino, 546 (long long)page_offset(page)); 547 548 sb_start_pagefault(inode->i_sb); 549 550 /* make sure the cache has finished storing the page */ 551 nfs_fscache_wait_on_page_write(NFS_I(inode), page); 552 553 wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING, 554 nfs_wait_bit_killable, TASK_KILLABLE); 555 556 lock_page(page); 557 mapping = page_file_mapping(page); 558 if (mapping != inode->i_mapping) 559 goto out_unlock; 560 561 wait_on_page_writeback(page); 562 563 pagelen = nfs_page_length(page); 564 if (pagelen == 0) 565 goto out_unlock; 566 567 ret = VM_FAULT_LOCKED; 568 if (nfs_flush_incompatible(filp, page) == 0 && 569 nfs_updatepage(filp, page, 0, pagelen) == 0) 570 goto out; 571 572 ret = VM_FAULT_SIGBUS; 573 out_unlock: 574 unlock_page(page); 575 out: 576 sb_end_pagefault(inode->i_sb); 577 return ret; 578 } 579 580 static const struct vm_operations_struct nfs_file_vm_ops = { 581 .fault = filemap_fault, 582 .map_pages = filemap_map_pages, 583 .page_mkwrite = nfs_vm_page_mkwrite, 584 }; 585 586 static int nfs_need_check_write(struct file *filp, struct inode *inode) 587 { 588 struct nfs_open_context *ctx; 589 590 ctx = nfs_file_open_context(filp); 591 if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags) || 592 nfs_ctx_key_to_expire(ctx, inode)) 593 return 1; 594 return 0; 595 } 596 597 ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from) 598 { 599 struct file *file = iocb->ki_filp; 600 struct inode *inode = file_inode(file); 601 unsigned long written = 0; 602 ssize_t result; 603 604 result = nfs_key_timeout_notify(file, inode); 605 if (result) 606 return result; 607 608 if (iocb->ki_flags & IOCB_DIRECT) 609 return nfs_file_direct_write(iocb, from); 610 611 dprintk("NFS: write(%pD2, %zu@%Ld)\n", 612 file, iov_iter_count(from), (long long) iocb->ki_pos); 613 614 if (IS_SWAPFILE(inode)) 615 goto out_swapfile; 616 /* 617 * O_APPEND implies that we must revalidate the file length. 618 */ 619 if (iocb->ki_flags & IOCB_APPEND) { 620 result = nfs_revalidate_file_size(inode, file); 621 if (result) 622 goto out; 623 } 624 if (iocb->ki_pos > i_size_read(inode)) 625 nfs_revalidate_mapping(inode, file->f_mapping); 626 627 nfs_start_io_write(inode); 628 result = generic_write_checks(iocb, from); 629 if (result > 0) { 630 current->backing_dev_info = inode_to_bdi(inode); 631 result = generic_perform_write(file, from, iocb->ki_pos); 632 current->backing_dev_info = NULL; 633 } 634 nfs_end_io_write(inode); 635 if (result <= 0) 636 goto out; 637 638 written = result; 639 iocb->ki_pos += written; 640 result = generic_write_sync(iocb, written); 641 if (result < 0) 642 goto out; 643 644 /* Return error values */ 645 if (nfs_need_check_write(file, inode)) { 646 int err = vfs_fsync(file, 0); 647 if (err < 0) 648 result = err; 649 } 650 nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written); 651 out: 652 return result; 653 654 out_swapfile: 655 printk(KERN_INFO "NFS: attempt to write to active swap file!\n"); 656 return -EBUSY; 657 } 658 EXPORT_SYMBOL_GPL(nfs_file_write); 659 660 static int 661 do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local) 662 { 663 struct inode *inode = filp->f_mapping->host; 664 int status = 0; 665 unsigned int saved_type = fl->fl_type; 666 667 /* Try local locking first */ 668 posix_test_lock(filp, fl); 669 if (fl->fl_type != F_UNLCK) { 670 /* found a conflict */ 671 goto out; 672 } 673 fl->fl_type = saved_type; 674 675 if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) 676 goto out_noconflict; 677 678 if (is_local) 679 goto out_noconflict; 680 681 status = NFS_PROTO(inode)->lock(filp, cmd, fl); 682 out: 683 return status; 684 out_noconflict: 685 fl->fl_type = F_UNLCK; 686 goto out; 687 } 688 689 static int 690 do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local) 691 { 692 struct inode *inode = filp->f_mapping->host; 693 struct nfs_lock_context *l_ctx; 694 int status; 695 696 /* 697 * Flush all pending writes before doing anything 698 * with locks.. 699 */ 700 vfs_fsync(filp, 0); 701 702 l_ctx = nfs_get_lock_context(nfs_file_open_context(filp)); 703 if (!IS_ERR(l_ctx)) { 704 status = nfs_iocounter_wait(l_ctx); 705 nfs_put_lock_context(l_ctx); 706 /* NOTE: special case 707 * If we're signalled while cleaning up locks on process exit, we 708 * still need to complete the unlock. 709 */ 710 if (status < 0 && !(fl->fl_flags & FL_CLOSE)) 711 return status; 712 } 713 714 /* 715 * Use local locking if mounted with "-onolock" or with appropriate 716 * "-olocal_lock=" 717 */ 718 if (!is_local) 719 status = NFS_PROTO(inode)->lock(filp, cmd, fl); 720 else 721 status = locks_lock_file_wait(filp, fl); 722 return status; 723 } 724 725 static int 726 do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local) 727 { 728 struct inode *inode = filp->f_mapping->host; 729 int status; 730 731 /* 732 * Flush all pending writes before doing anything 733 * with locks.. 734 */ 735 status = nfs_sync_mapping(filp->f_mapping); 736 if (status != 0) 737 goto out; 738 739 /* 740 * Use local locking if mounted with "-onolock" or with appropriate 741 * "-olocal_lock=" 742 */ 743 if (!is_local) 744 status = NFS_PROTO(inode)->lock(filp, cmd, fl); 745 else 746 status = locks_lock_file_wait(filp, fl); 747 if (status < 0) 748 goto out; 749 750 /* 751 * Invalidate cache to prevent missing any changes. If 752 * the file is mapped, clear the page cache as well so 753 * those mappings will be loaded. 754 * 755 * This makes locking act as a cache coherency point. 756 */ 757 nfs_sync_mapping(filp->f_mapping); 758 if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) { 759 nfs_zap_caches(inode); 760 if (mapping_mapped(filp->f_mapping)) 761 nfs_revalidate_mapping(inode, filp->f_mapping); 762 } 763 out: 764 return status; 765 } 766 767 /* 768 * Lock a (portion of) a file 769 */ 770 int nfs_lock(struct file *filp, int cmd, struct file_lock *fl) 771 { 772 struct inode *inode = filp->f_mapping->host; 773 int ret = -ENOLCK; 774 int is_local = 0; 775 776 dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n", 777 filp, fl->fl_type, fl->fl_flags, 778 (long long)fl->fl_start, (long long)fl->fl_end); 779 780 nfs_inc_stats(inode, NFSIOS_VFSLOCK); 781 782 /* No mandatory locks over NFS */ 783 if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK) 784 goto out_err; 785 786 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL) 787 is_local = 1; 788 789 if (NFS_PROTO(inode)->lock_check_bounds != NULL) { 790 ret = NFS_PROTO(inode)->lock_check_bounds(fl); 791 if (ret < 0) 792 goto out_err; 793 } 794 795 if (IS_GETLK(cmd)) 796 ret = do_getlk(filp, cmd, fl, is_local); 797 else if (fl->fl_type == F_UNLCK) 798 ret = do_unlk(filp, cmd, fl, is_local); 799 else 800 ret = do_setlk(filp, cmd, fl, is_local); 801 out_err: 802 return ret; 803 } 804 EXPORT_SYMBOL_GPL(nfs_lock); 805 806 /* 807 * Lock a (portion of) a file 808 */ 809 int nfs_flock(struct file *filp, int cmd, struct file_lock *fl) 810 { 811 struct inode *inode = filp->f_mapping->host; 812 int is_local = 0; 813 814 dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n", 815 filp, fl->fl_type, fl->fl_flags); 816 817 if (!(fl->fl_flags & FL_FLOCK)) 818 return -ENOLCK; 819 820 /* 821 * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of 822 * any standard. In principle we might be able to support LOCK_MAND 823 * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the 824 * NFS code is not set up for it. 825 */ 826 if (fl->fl_type & LOCK_MAND) 827 return -EINVAL; 828 829 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK) 830 is_local = 1; 831 832 /* 833 * VFS doesn't require the open mode to match a flock() lock's type. 834 * NFS, however, may simulate flock() locking with posix locking which 835 * requires the open mode to match the lock type. 836 */ 837 switch (fl->fl_type) { 838 case F_UNLCK: 839 return do_unlk(filp, cmd, fl, is_local); 840 case F_RDLCK: 841 if (!(filp->f_mode & FMODE_READ)) 842 return -EBADF; 843 break; 844 case F_WRLCK: 845 if (!(filp->f_mode & FMODE_WRITE)) 846 return -EBADF; 847 } 848 849 return do_setlk(filp, cmd, fl, is_local); 850 } 851 EXPORT_SYMBOL_GPL(nfs_flock); 852 853 const struct file_operations nfs_file_operations = { 854 .llseek = nfs_file_llseek, 855 .read_iter = nfs_file_read, 856 .write_iter = nfs_file_write, 857 .mmap = nfs_file_mmap, 858 .open = nfs_file_open, 859 .flush = nfs_file_flush, 860 .release = nfs_file_release, 861 .fsync = nfs_file_fsync, 862 .lock = nfs_lock, 863 .flock = nfs_flock, 864 .splice_read = generic_file_splice_read, 865 .splice_write = iter_file_splice_write, 866 .check_flags = nfs_check_flags, 867 .setlease = simple_nosetlease, 868 }; 869 EXPORT_SYMBOL_GPL(nfs_file_operations); 870