1 /* 2 * linux/fs/nfs/file.c 3 * 4 * Copyright (C) 1992 Rick Sladkey 5 * 6 * Changes Copyright (C) 1994 by Florian La Roche 7 * - Do not copy data too often around in the kernel. 8 * - In nfs_file_read the return value of kmalloc wasn't checked. 9 * - Put in a better version of read look-ahead buffering. Original idea 10 * and implementation by Wai S Kok elekokws@ee.nus.sg. 11 * 12 * Expire cache on write to a file by Wai S Kok (Oct 1994). 13 * 14 * Total rewrite of read side for new NFS buffer cache.. Linus. 15 * 16 * nfs regular file handling functions 17 */ 18 19 #include <linux/module.h> 20 #include <linux/time.h> 21 #include <linux/kernel.h> 22 #include <linux/errno.h> 23 #include <linux/fcntl.h> 24 #include <linux/stat.h> 25 #include <linux/nfs_fs.h> 26 #include <linux/nfs_mount.h> 27 #include <linux/mm.h> 28 #include <linux/pagemap.h> 29 #include <linux/gfp.h> 30 #include <linux/swap.h> 31 32 #include <linux/uaccess.h> 33 34 #include "delegation.h" 35 #include "internal.h" 36 #include "iostat.h" 37 #include "fscache.h" 38 #include "pnfs.h" 39 40 #include "nfstrace.h" 41 42 #define NFSDBG_FACILITY NFSDBG_FILE 43 44 static const struct vm_operations_struct nfs_file_vm_ops; 45 46 /* Hack for future NFS swap support */ 47 #ifndef IS_SWAPFILE 48 # define IS_SWAPFILE(inode) (0) 49 #endif 50 51 int nfs_check_flags(int flags) 52 { 53 if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT)) 54 return -EINVAL; 55 56 return 0; 57 } 58 EXPORT_SYMBOL_GPL(nfs_check_flags); 59 60 /* 61 * Open file 62 */ 63 static int 64 nfs_file_open(struct inode *inode, struct file *filp) 65 { 66 int res; 67 68 dprintk("NFS: open file(%pD2)\n", filp); 69 70 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 71 res = nfs_check_flags(filp->f_flags); 72 if (res) 73 return res; 74 75 res = nfs_open(inode, filp); 76 return res; 77 } 78 79 int 80 nfs_file_release(struct inode *inode, struct file *filp) 81 { 82 dprintk("NFS: release(%pD2)\n", filp); 83 84 nfs_inc_stats(inode, NFSIOS_VFSRELEASE); 85 nfs_file_clear_open_context(filp); 86 return 0; 87 } 88 EXPORT_SYMBOL_GPL(nfs_file_release); 89 90 /** 91 * nfs_revalidate_size - Revalidate the file size 92 * @inode: pointer to inode struct 93 * @filp: pointer to struct file 94 * 95 * Revalidates the file length. This is basically a wrapper around 96 * nfs_revalidate_inode() that takes into account the fact that we may 97 * have cached writes (in which case we don't care about the server's 98 * idea of what the file length is), or O_DIRECT (in which case we 99 * shouldn't trust the cache). 100 */ 101 static int nfs_revalidate_file_size(struct inode *inode, struct file *filp) 102 { 103 struct nfs_server *server = NFS_SERVER(inode); 104 105 if (filp->f_flags & O_DIRECT) 106 goto force_reval; 107 if (nfs_check_cache_invalid(inode, NFS_INO_REVAL_PAGECACHE)) 108 goto force_reval; 109 return 0; 110 force_reval: 111 return __nfs_revalidate_inode(server, inode); 112 } 113 114 loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence) 115 { 116 dprintk("NFS: llseek file(%pD2, %lld, %d)\n", 117 filp, offset, whence); 118 119 /* 120 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate 121 * the cached file length 122 */ 123 if (whence != SEEK_SET && whence != SEEK_CUR) { 124 struct inode *inode = filp->f_mapping->host; 125 126 int retval = nfs_revalidate_file_size(inode, filp); 127 if (retval < 0) 128 return (loff_t)retval; 129 } 130 131 return generic_file_llseek(filp, offset, whence); 132 } 133 EXPORT_SYMBOL_GPL(nfs_file_llseek); 134 135 /* 136 * Flush all dirty pages, and check for write errors. 137 */ 138 static int 139 nfs_file_flush(struct file *file, fl_owner_t id) 140 { 141 struct inode *inode = file_inode(file); 142 143 dprintk("NFS: flush(%pD2)\n", file); 144 145 nfs_inc_stats(inode, NFSIOS_VFSFLUSH); 146 if ((file->f_mode & FMODE_WRITE) == 0) 147 return 0; 148 149 /* Flush writes to the server and return any errors */ 150 return vfs_fsync(file, 0); 151 } 152 153 ssize_t 154 nfs_file_read(struct kiocb *iocb, struct iov_iter *to) 155 { 156 struct inode *inode = file_inode(iocb->ki_filp); 157 ssize_t result; 158 159 if (iocb->ki_flags & IOCB_DIRECT) 160 return nfs_file_direct_read(iocb, to); 161 162 dprintk("NFS: read(%pD2, %zu@%lu)\n", 163 iocb->ki_filp, 164 iov_iter_count(to), (unsigned long) iocb->ki_pos); 165 166 nfs_start_io_read(inode); 167 result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping); 168 if (!result) { 169 result = generic_file_read_iter(iocb, to); 170 if (result > 0) 171 nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result); 172 } 173 nfs_end_io_read(inode); 174 return result; 175 } 176 EXPORT_SYMBOL_GPL(nfs_file_read); 177 178 int 179 nfs_file_mmap(struct file * file, struct vm_area_struct * vma) 180 { 181 struct inode *inode = file_inode(file); 182 int status; 183 184 dprintk("NFS: mmap(%pD2)\n", file); 185 186 /* Note: generic_file_mmap() returns ENOSYS on nommu systems 187 * so we call that before revalidating the mapping 188 */ 189 status = generic_file_mmap(file, vma); 190 if (!status) { 191 vma->vm_ops = &nfs_file_vm_ops; 192 status = nfs_revalidate_mapping(inode, file->f_mapping); 193 } 194 return status; 195 } 196 EXPORT_SYMBOL_GPL(nfs_file_mmap); 197 198 /* 199 * Flush any dirty pages for this process, and check for write errors. 200 * The return status from this call provides a reliable indication of 201 * whether any write errors occurred for this process. 202 * 203 * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to 204 * disk, but it retrieves and clears ctx->error after synching, despite 205 * the two being set at the same time in nfs_context_set_write_error(). 206 * This is because the former is used to notify the _next_ call to 207 * nfs_file_write() that a write error occurred, and hence cause it to 208 * fall back to doing a synchronous write. 209 */ 210 static int 211 nfs_file_fsync_commit(struct file *file, int datasync) 212 { 213 struct nfs_open_context *ctx = nfs_file_open_context(file); 214 struct inode *inode = file_inode(file); 215 int do_resend, status; 216 int ret = 0; 217 218 dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync); 219 220 nfs_inc_stats(inode, NFSIOS_VFSFSYNC); 221 do_resend = test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags); 222 status = nfs_commit_inode(inode, FLUSH_SYNC); 223 if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags)) { 224 ret = xchg(&ctx->error, 0); 225 if (ret) 226 goto out; 227 } 228 if (status < 0) { 229 ret = status; 230 goto out; 231 } 232 do_resend |= test_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags); 233 if (do_resend) 234 ret = -EAGAIN; 235 out: 236 return ret; 237 } 238 239 int 240 nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync) 241 { 242 int ret; 243 struct inode *inode = file_inode(file); 244 245 trace_nfs_fsync_enter(inode); 246 247 do { 248 struct nfs_open_context *ctx = nfs_file_open_context(file); 249 ret = filemap_write_and_wait_range(inode->i_mapping, start, end); 250 if (test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags)) { 251 int ret2 = xchg(&ctx->error, 0); 252 if (ret2) 253 ret = ret2; 254 } 255 if (ret != 0) 256 break; 257 ret = nfs_file_fsync_commit(file, datasync); 258 if (!ret) 259 ret = pnfs_sync_inode(inode, !!datasync); 260 /* 261 * If nfs_file_fsync_commit detected a server reboot, then 262 * resend all dirty pages that might have been covered by 263 * the NFS_CONTEXT_RESEND_WRITES flag 264 */ 265 start = 0; 266 end = LLONG_MAX; 267 } while (ret == -EAGAIN); 268 269 trace_nfs_fsync_exit(inode, ret); 270 return ret; 271 } 272 EXPORT_SYMBOL_GPL(nfs_file_fsync); 273 274 /* 275 * Decide whether a read/modify/write cycle may be more efficient 276 * then a modify/write/read cycle when writing to a page in the 277 * page cache. 278 * 279 * Some pNFS layout drivers can only read/write at a certain block 280 * granularity like all block devices and therefore we must perform 281 * read/modify/write whenever a page hasn't read yet and the data 282 * to be written there is not aligned to a block boundary and/or 283 * smaller than the block size. 284 * 285 * The modify/write/read cycle may occur if a page is read before 286 * being completely filled by the writer. In this situation, the 287 * page must be completely written to stable storage on the server 288 * before it can be refilled by reading in the page from the server. 289 * This can lead to expensive, small, FILE_SYNC mode writes being 290 * done. 291 * 292 * It may be more efficient to read the page first if the file is 293 * open for reading in addition to writing, the page is not marked 294 * as Uptodate, it is not dirty or waiting to be committed, 295 * indicating that it was previously allocated and then modified, 296 * that there were valid bytes of data in that range of the file, 297 * and that the new data won't completely replace the old data in 298 * that range of the file. 299 */ 300 static bool nfs_full_page_write(struct page *page, loff_t pos, unsigned int len) 301 { 302 unsigned int pglen = nfs_page_length(page); 303 unsigned int offset = pos & (PAGE_SIZE - 1); 304 unsigned int end = offset + len; 305 306 return !pglen || (end >= pglen && !offset); 307 } 308 309 static bool nfs_want_read_modify_write(struct file *file, struct page *page, 310 loff_t pos, unsigned int len) 311 { 312 /* 313 * Up-to-date pages, those with ongoing or full-page write 314 * don't need read/modify/write 315 */ 316 if (PageUptodate(page) || PagePrivate(page) || 317 nfs_full_page_write(page, pos, len)) 318 return false; 319 320 if (pnfs_ld_read_whole_page(file->f_mapping->host)) 321 return true; 322 /* Open for reading too? */ 323 if (file->f_mode & FMODE_READ) 324 return true; 325 return false; 326 } 327 328 /* 329 * This does the "real" work of the write. We must allocate and lock the 330 * page to be sent back to the generic routine, which then copies the 331 * data from user space. 332 * 333 * If the writer ends up delaying the write, the writer needs to 334 * increment the page use counts until he is done with the page. 335 */ 336 static int nfs_write_begin(struct file *file, struct address_space *mapping, 337 loff_t pos, unsigned len, unsigned flags, 338 struct page **pagep, void **fsdata) 339 { 340 int ret; 341 pgoff_t index = pos >> PAGE_SHIFT; 342 struct page *page; 343 int once_thru = 0; 344 345 dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n", 346 file, mapping->host->i_ino, len, (long long) pos); 347 348 start: 349 page = grab_cache_page_write_begin(mapping, index, flags); 350 if (!page) 351 return -ENOMEM; 352 *pagep = page; 353 354 ret = nfs_flush_incompatible(file, page); 355 if (ret) { 356 unlock_page(page); 357 put_page(page); 358 } else if (!once_thru && 359 nfs_want_read_modify_write(file, page, pos, len)) { 360 once_thru = 1; 361 ret = nfs_readpage(file, page); 362 put_page(page); 363 if (!ret) 364 goto start; 365 } 366 return ret; 367 } 368 369 static int nfs_write_end(struct file *file, struct address_space *mapping, 370 loff_t pos, unsigned len, unsigned copied, 371 struct page *page, void *fsdata) 372 { 373 unsigned offset = pos & (PAGE_SIZE - 1); 374 struct nfs_open_context *ctx = nfs_file_open_context(file); 375 int status; 376 377 dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n", 378 file, mapping->host->i_ino, len, (long long) pos); 379 380 /* 381 * Zero any uninitialised parts of the page, and then mark the page 382 * as up to date if it turns out that we're extending the file. 383 */ 384 if (!PageUptodate(page)) { 385 unsigned pglen = nfs_page_length(page); 386 unsigned end = offset + copied; 387 388 if (pglen == 0) { 389 zero_user_segments(page, 0, offset, 390 end, PAGE_SIZE); 391 SetPageUptodate(page); 392 } else if (end >= pglen) { 393 zero_user_segment(page, end, PAGE_SIZE); 394 if (offset == 0) 395 SetPageUptodate(page); 396 } else 397 zero_user_segment(page, pglen, PAGE_SIZE); 398 } 399 400 status = nfs_updatepage(file, page, offset, copied); 401 402 unlock_page(page); 403 put_page(page); 404 405 if (status < 0) 406 return status; 407 NFS_I(mapping->host)->write_io += copied; 408 409 if (nfs_ctx_key_to_expire(ctx, mapping->host)) { 410 status = nfs_wb_all(mapping->host); 411 if (status < 0) 412 return status; 413 } 414 415 return copied; 416 } 417 418 /* 419 * Partially or wholly invalidate a page 420 * - Release the private state associated with a page if undergoing complete 421 * page invalidation 422 * - Called if either PG_private or PG_fscache is set on the page 423 * - Caller holds page lock 424 */ 425 static void nfs_invalidate_page(struct page *page, unsigned int offset, 426 unsigned int length) 427 { 428 dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n", 429 page, offset, length); 430 431 if (offset != 0 || length < PAGE_SIZE) 432 return; 433 /* Cancel any unstarted writes on this page */ 434 nfs_wb_page_cancel(page_file_mapping(page)->host, page); 435 436 nfs_fscache_invalidate_page(page, page->mapping->host); 437 } 438 439 /* 440 * Attempt to release the private state associated with a page 441 * - Called if either PG_private or PG_fscache is set on the page 442 * - Caller holds page lock 443 * - Return true (may release page) or false (may not) 444 */ 445 static int nfs_release_page(struct page *page, gfp_t gfp) 446 { 447 dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page); 448 449 /* If PagePrivate() is set, then the page is not freeable */ 450 if (PagePrivate(page)) 451 return 0; 452 return nfs_fscache_release_page(page, gfp); 453 } 454 455 static void nfs_check_dirty_writeback(struct page *page, 456 bool *dirty, bool *writeback) 457 { 458 struct nfs_inode *nfsi; 459 struct address_space *mapping = page_file_mapping(page); 460 461 if (!mapping || PageSwapCache(page)) 462 return; 463 464 /* 465 * Check if an unstable page is currently being committed and 466 * if so, have the VM treat it as if the page is under writeback 467 * so it will not block due to pages that will shortly be freeable. 468 */ 469 nfsi = NFS_I(mapping->host); 470 if (atomic_read(&nfsi->commit_info.rpcs_out)) { 471 *writeback = true; 472 return; 473 } 474 475 /* 476 * If PagePrivate() is set, then the page is not freeable and as the 477 * inode is not being committed, it's not going to be cleaned in the 478 * near future so treat it as dirty 479 */ 480 if (PagePrivate(page)) 481 *dirty = true; 482 } 483 484 /* 485 * Attempt to clear the private state associated with a page when an error 486 * occurs that requires the cached contents of an inode to be written back or 487 * destroyed 488 * - Called if either PG_private or fscache is set on the page 489 * - Caller holds page lock 490 * - Return 0 if successful, -error otherwise 491 */ 492 static int nfs_launder_page(struct page *page) 493 { 494 struct inode *inode = page_file_mapping(page)->host; 495 struct nfs_inode *nfsi = NFS_I(inode); 496 497 dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n", 498 inode->i_ino, (long long)page_offset(page)); 499 500 nfs_fscache_wait_on_page_write(nfsi, page); 501 return nfs_wb_page(inode, page); 502 } 503 504 static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file, 505 sector_t *span) 506 { 507 struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host); 508 509 *span = sis->pages; 510 511 return rpc_clnt_swap_activate(clnt); 512 } 513 514 static void nfs_swap_deactivate(struct file *file) 515 { 516 struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host); 517 518 rpc_clnt_swap_deactivate(clnt); 519 } 520 521 const struct address_space_operations nfs_file_aops = { 522 .readpage = nfs_readpage, 523 .readpages = nfs_readpages, 524 .set_page_dirty = __set_page_dirty_nobuffers, 525 .writepage = nfs_writepage, 526 .writepages = nfs_writepages, 527 .write_begin = nfs_write_begin, 528 .write_end = nfs_write_end, 529 .invalidatepage = nfs_invalidate_page, 530 .releasepage = nfs_release_page, 531 .direct_IO = nfs_direct_IO, 532 #ifdef CONFIG_MIGRATION 533 .migratepage = nfs_migrate_page, 534 #endif 535 .launder_page = nfs_launder_page, 536 .is_dirty_writeback = nfs_check_dirty_writeback, 537 .error_remove_page = generic_error_remove_page, 538 .swap_activate = nfs_swap_activate, 539 .swap_deactivate = nfs_swap_deactivate, 540 }; 541 542 /* 543 * Notification that a PTE pointing to an NFS page is about to be made 544 * writable, implying that someone is about to modify the page through a 545 * shared-writable mapping 546 */ 547 static vm_fault_t nfs_vm_page_mkwrite(struct vm_fault *vmf) 548 { 549 struct page *page = vmf->page; 550 struct file *filp = vmf->vma->vm_file; 551 struct inode *inode = file_inode(filp); 552 unsigned pagelen; 553 vm_fault_t ret = VM_FAULT_NOPAGE; 554 struct address_space *mapping; 555 556 dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n", 557 filp, filp->f_mapping->host->i_ino, 558 (long long)page_offset(page)); 559 560 sb_start_pagefault(inode->i_sb); 561 562 /* make sure the cache has finished storing the page */ 563 nfs_fscache_wait_on_page_write(NFS_I(inode), page); 564 565 wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING, 566 nfs_wait_bit_killable, TASK_KILLABLE); 567 568 lock_page(page); 569 mapping = page_file_mapping(page); 570 if (mapping != inode->i_mapping) 571 goto out_unlock; 572 573 wait_on_page_writeback(page); 574 575 pagelen = nfs_page_length(page); 576 if (pagelen == 0) 577 goto out_unlock; 578 579 ret = VM_FAULT_LOCKED; 580 if (nfs_flush_incompatible(filp, page) == 0 && 581 nfs_updatepage(filp, page, 0, pagelen) == 0) 582 goto out; 583 584 ret = VM_FAULT_SIGBUS; 585 out_unlock: 586 unlock_page(page); 587 out: 588 sb_end_pagefault(inode->i_sb); 589 return ret; 590 } 591 592 static const struct vm_operations_struct nfs_file_vm_ops = { 593 .fault = filemap_fault, 594 .map_pages = filemap_map_pages, 595 .page_mkwrite = nfs_vm_page_mkwrite, 596 }; 597 598 static int nfs_need_check_write(struct file *filp, struct inode *inode) 599 { 600 struct nfs_open_context *ctx; 601 602 ctx = nfs_file_open_context(filp); 603 if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags) || 604 nfs_ctx_key_to_expire(ctx, inode)) 605 return 1; 606 return 0; 607 } 608 609 ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from) 610 { 611 struct file *file = iocb->ki_filp; 612 struct inode *inode = file_inode(file); 613 unsigned long written = 0; 614 ssize_t result; 615 616 result = nfs_key_timeout_notify(file, inode); 617 if (result) 618 return result; 619 620 if (iocb->ki_flags & IOCB_DIRECT) 621 return nfs_file_direct_write(iocb, from); 622 623 dprintk("NFS: write(%pD2, %zu@%Ld)\n", 624 file, iov_iter_count(from), (long long) iocb->ki_pos); 625 626 if (IS_SWAPFILE(inode)) 627 goto out_swapfile; 628 /* 629 * O_APPEND implies that we must revalidate the file length. 630 */ 631 if (iocb->ki_flags & IOCB_APPEND) { 632 result = nfs_revalidate_file_size(inode, file); 633 if (result) 634 goto out; 635 } 636 if (iocb->ki_pos > i_size_read(inode)) 637 nfs_revalidate_mapping(inode, file->f_mapping); 638 639 nfs_start_io_write(inode); 640 result = generic_write_checks(iocb, from); 641 if (result > 0) { 642 current->backing_dev_info = inode_to_bdi(inode); 643 result = generic_perform_write(file, from, iocb->ki_pos); 644 current->backing_dev_info = NULL; 645 } 646 nfs_end_io_write(inode); 647 if (result <= 0) 648 goto out; 649 650 written = result; 651 iocb->ki_pos += written; 652 result = generic_write_sync(iocb, written); 653 if (result < 0) 654 goto out; 655 656 /* Return error values */ 657 if (nfs_need_check_write(file, inode)) { 658 int err = vfs_fsync(file, 0); 659 if (err < 0) 660 result = err; 661 } 662 nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written); 663 out: 664 return result; 665 666 out_swapfile: 667 printk(KERN_INFO "NFS: attempt to write to active swap file!\n"); 668 return -EBUSY; 669 } 670 EXPORT_SYMBOL_GPL(nfs_file_write); 671 672 static int 673 do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local) 674 { 675 struct inode *inode = filp->f_mapping->host; 676 int status = 0; 677 unsigned int saved_type = fl->fl_type; 678 679 /* Try local locking first */ 680 posix_test_lock(filp, fl); 681 if (fl->fl_type != F_UNLCK) { 682 /* found a conflict */ 683 goto out; 684 } 685 fl->fl_type = saved_type; 686 687 if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) 688 goto out_noconflict; 689 690 if (is_local) 691 goto out_noconflict; 692 693 status = NFS_PROTO(inode)->lock(filp, cmd, fl); 694 out: 695 return status; 696 out_noconflict: 697 fl->fl_type = F_UNLCK; 698 goto out; 699 } 700 701 static int 702 do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local) 703 { 704 struct inode *inode = filp->f_mapping->host; 705 struct nfs_lock_context *l_ctx; 706 int status; 707 708 /* 709 * Flush all pending writes before doing anything 710 * with locks.. 711 */ 712 vfs_fsync(filp, 0); 713 714 l_ctx = nfs_get_lock_context(nfs_file_open_context(filp)); 715 if (!IS_ERR(l_ctx)) { 716 status = nfs_iocounter_wait(l_ctx); 717 nfs_put_lock_context(l_ctx); 718 /* NOTE: special case 719 * If we're signalled while cleaning up locks on process exit, we 720 * still need to complete the unlock. 721 */ 722 if (status < 0 && !(fl->fl_flags & FL_CLOSE)) 723 return status; 724 } 725 726 /* 727 * Use local locking if mounted with "-onolock" or with appropriate 728 * "-olocal_lock=" 729 */ 730 if (!is_local) 731 status = NFS_PROTO(inode)->lock(filp, cmd, fl); 732 else 733 status = locks_lock_file_wait(filp, fl); 734 return status; 735 } 736 737 static int 738 do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local) 739 { 740 struct inode *inode = filp->f_mapping->host; 741 int status; 742 743 /* 744 * Flush all pending writes before doing anything 745 * with locks.. 746 */ 747 status = nfs_sync_mapping(filp->f_mapping); 748 if (status != 0) 749 goto out; 750 751 /* 752 * Use local locking if mounted with "-onolock" or with appropriate 753 * "-olocal_lock=" 754 */ 755 if (!is_local) 756 status = NFS_PROTO(inode)->lock(filp, cmd, fl); 757 else 758 status = locks_lock_file_wait(filp, fl); 759 if (status < 0) 760 goto out; 761 762 /* 763 * Invalidate cache to prevent missing any changes. If 764 * the file is mapped, clear the page cache as well so 765 * those mappings will be loaded. 766 * 767 * This makes locking act as a cache coherency point. 768 */ 769 nfs_sync_mapping(filp->f_mapping); 770 if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) { 771 nfs_zap_caches(inode); 772 if (mapping_mapped(filp->f_mapping)) 773 nfs_revalidate_mapping(inode, filp->f_mapping); 774 } 775 out: 776 return status; 777 } 778 779 /* 780 * Lock a (portion of) a file 781 */ 782 int nfs_lock(struct file *filp, int cmd, struct file_lock *fl) 783 { 784 struct inode *inode = filp->f_mapping->host; 785 int ret = -ENOLCK; 786 int is_local = 0; 787 788 dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n", 789 filp, fl->fl_type, fl->fl_flags, 790 (long long)fl->fl_start, (long long)fl->fl_end); 791 792 nfs_inc_stats(inode, NFSIOS_VFSLOCK); 793 794 /* No mandatory locks over NFS */ 795 if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK) 796 goto out_err; 797 798 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL) 799 is_local = 1; 800 801 if (NFS_PROTO(inode)->lock_check_bounds != NULL) { 802 ret = NFS_PROTO(inode)->lock_check_bounds(fl); 803 if (ret < 0) 804 goto out_err; 805 } 806 807 if (IS_GETLK(cmd)) 808 ret = do_getlk(filp, cmd, fl, is_local); 809 else if (fl->fl_type == F_UNLCK) 810 ret = do_unlk(filp, cmd, fl, is_local); 811 else 812 ret = do_setlk(filp, cmd, fl, is_local); 813 out_err: 814 return ret; 815 } 816 EXPORT_SYMBOL_GPL(nfs_lock); 817 818 /* 819 * Lock a (portion of) a file 820 */ 821 int nfs_flock(struct file *filp, int cmd, struct file_lock *fl) 822 { 823 struct inode *inode = filp->f_mapping->host; 824 int is_local = 0; 825 826 dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n", 827 filp, fl->fl_type, fl->fl_flags); 828 829 if (!(fl->fl_flags & FL_FLOCK)) 830 return -ENOLCK; 831 832 /* 833 * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of 834 * any standard. In principle we might be able to support LOCK_MAND 835 * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the 836 * NFS code is not set up for it. 837 */ 838 if (fl->fl_type & LOCK_MAND) 839 return -EINVAL; 840 841 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK) 842 is_local = 1; 843 844 /* We're simulating flock() locks using posix locks on the server */ 845 if (fl->fl_type == F_UNLCK) 846 return do_unlk(filp, cmd, fl, is_local); 847 return do_setlk(filp, cmd, fl, is_local); 848 } 849 EXPORT_SYMBOL_GPL(nfs_flock); 850 851 const struct file_operations nfs_file_operations = { 852 .llseek = nfs_file_llseek, 853 .read_iter = nfs_file_read, 854 .write_iter = nfs_file_write, 855 .mmap = nfs_file_mmap, 856 .open = nfs_file_open, 857 .flush = nfs_file_flush, 858 .release = nfs_file_release, 859 .fsync = nfs_file_fsync, 860 .lock = nfs_lock, 861 .flock = nfs_flock, 862 .splice_read = generic_file_splice_read, 863 .splice_write = iter_file_splice_write, 864 .check_flags = nfs_check_flags, 865 .setlease = simple_nosetlease, 866 }; 867 EXPORT_SYMBOL_GPL(nfs_file_operations); 868