1 /* 2 * linux/fs/nfs/file.c 3 * 4 * Copyright (C) 1992 Rick Sladkey 5 * 6 * Changes Copyright (C) 1994 by Florian La Roche 7 * - Do not copy data too often around in the kernel. 8 * - In nfs_file_read the return value of kmalloc wasn't checked. 9 * - Put in a better version of read look-ahead buffering. Original idea 10 * and implementation by Wai S Kok elekokws@ee.nus.sg. 11 * 12 * Expire cache on write to a file by Wai S Kok (Oct 1994). 13 * 14 * Total rewrite of read side for new NFS buffer cache.. Linus. 15 * 16 * nfs regular file handling functions 17 */ 18 19 #include <linux/module.h> 20 #include <linux/time.h> 21 #include <linux/kernel.h> 22 #include <linux/errno.h> 23 #include <linux/fcntl.h> 24 #include <linux/stat.h> 25 #include <linux/nfs_fs.h> 26 #include <linux/nfs_mount.h> 27 #include <linux/mm.h> 28 #include <linux/pagemap.h> 29 #include <linux/aio.h> 30 #include <linux/gfp.h> 31 #include <linux/swap.h> 32 33 #include <asm/uaccess.h> 34 35 #include "delegation.h" 36 #include "internal.h" 37 #include "iostat.h" 38 #include "fscache.h" 39 #include "pnfs.h" 40 41 #include "nfstrace.h" 42 43 #define NFSDBG_FACILITY NFSDBG_FILE 44 45 static const struct vm_operations_struct nfs_file_vm_ops; 46 47 /* Hack for future NFS swap support */ 48 #ifndef IS_SWAPFILE 49 # define IS_SWAPFILE(inode) (0) 50 #endif 51 52 int nfs_check_flags(int flags) 53 { 54 if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT)) 55 return -EINVAL; 56 57 return 0; 58 } 59 EXPORT_SYMBOL_GPL(nfs_check_flags); 60 61 /* 62 * Open file 63 */ 64 static int 65 nfs_file_open(struct inode *inode, struct file *filp) 66 { 67 int res; 68 69 dprintk("NFS: open file(%pD2)\n", filp); 70 71 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 72 res = nfs_check_flags(filp->f_flags); 73 if (res) 74 return res; 75 76 res = nfs_open(inode, filp); 77 return res; 78 } 79 80 int 81 nfs_file_release(struct inode *inode, struct file *filp) 82 { 83 dprintk("NFS: release(%pD2)\n", filp); 84 85 nfs_inc_stats(inode, NFSIOS_VFSRELEASE); 86 return nfs_release(inode, filp); 87 } 88 EXPORT_SYMBOL_GPL(nfs_file_release); 89 90 /** 91 * nfs_revalidate_size - Revalidate the file size 92 * @inode - pointer to inode struct 93 * @file - pointer to struct file 94 * 95 * Revalidates the file length. This is basically a wrapper around 96 * nfs_revalidate_inode() that takes into account the fact that we may 97 * have cached writes (in which case we don't care about the server's 98 * idea of what the file length is), or O_DIRECT (in which case we 99 * shouldn't trust the cache). 100 */ 101 static int nfs_revalidate_file_size(struct inode *inode, struct file *filp) 102 { 103 struct nfs_server *server = NFS_SERVER(inode); 104 struct nfs_inode *nfsi = NFS_I(inode); 105 106 if (nfs_have_delegated_attributes(inode)) 107 goto out_noreval; 108 109 if (filp->f_flags & O_DIRECT) 110 goto force_reval; 111 if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE) 112 goto force_reval; 113 if (nfs_attribute_timeout(inode)) 114 goto force_reval; 115 out_noreval: 116 return 0; 117 force_reval: 118 return __nfs_revalidate_inode(server, inode); 119 } 120 121 loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence) 122 { 123 dprintk("NFS: llseek file(%pD2, %lld, %d)\n", 124 filp, offset, whence); 125 126 /* 127 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate 128 * the cached file length 129 */ 130 if (whence != SEEK_SET && whence != SEEK_CUR) { 131 struct inode *inode = filp->f_mapping->host; 132 133 int retval = nfs_revalidate_file_size(inode, filp); 134 if (retval < 0) 135 return (loff_t)retval; 136 } 137 138 return generic_file_llseek(filp, offset, whence); 139 } 140 EXPORT_SYMBOL_GPL(nfs_file_llseek); 141 142 /* 143 * Flush all dirty pages, and check for write errors. 144 */ 145 int 146 nfs_file_flush(struct file *file, fl_owner_t id) 147 { 148 struct inode *inode = file_inode(file); 149 150 dprintk("NFS: flush(%pD2)\n", file); 151 152 nfs_inc_stats(inode, NFSIOS_VFSFLUSH); 153 if ((file->f_mode & FMODE_WRITE) == 0) 154 return 0; 155 156 /* 157 * If we're holding a write delegation, then just start the i/o 158 * but don't wait for completion (or send a commit). 159 */ 160 if (NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE)) 161 return filemap_fdatawrite(file->f_mapping); 162 163 /* Flush writes to the server and return any errors */ 164 return vfs_fsync(file, 0); 165 } 166 EXPORT_SYMBOL_GPL(nfs_file_flush); 167 168 ssize_t 169 nfs_file_read(struct kiocb *iocb, struct iov_iter *to) 170 { 171 struct inode *inode = file_inode(iocb->ki_filp); 172 ssize_t result; 173 174 if (iocb->ki_filp->f_flags & O_DIRECT) 175 return nfs_file_direct_read(iocb, to, iocb->ki_pos); 176 177 dprintk("NFS: read(%pD2, %zu@%lu)\n", 178 iocb->ki_filp, 179 iov_iter_count(to), (unsigned long) iocb->ki_pos); 180 181 result = nfs_revalidate_mapping_protected(inode, iocb->ki_filp->f_mapping); 182 if (!result) { 183 result = generic_file_read_iter(iocb, to); 184 if (result > 0) 185 nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result); 186 } 187 return result; 188 } 189 EXPORT_SYMBOL_GPL(nfs_file_read); 190 191 ssize_t 192 nfs_file_splice_read(struct file *filp, loff_t *ppos, 193 struct pipe_inode_info *pipe, size_t count, 194 unsigned int flags) 195 { 196 struct inode *inode = file_inode(filp); 197 ssize_t res; 198 199 dprintk("NFS: splice_read(%pD2, %lu@%Lu)\n", 200 filp, (unsigned long) count, (unsigned long long) *ppos); 201 202 res = nfs_revalidate_mapping_protected(inode, filp->f_mapping); 203 if (!res) { 204 res = generic_file_splice_read(filp, ppos, pipe, count, flags); 205 if (res > 0) 206 nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, res); 207 } 208 return res; 209 } 210 EXPORT_SYMBOL_GPL(nfs_file_splice_read); 211 212 int 213 nfs_file_mmap(struct file * file, struct vm_area_struct * vma) 214 { 215 struct inode *inode = file_inode(file); 216 int status; 217 218 dprintk("NFS: mmap(%pD2)\n", file); 219 220 /* Note: generic_file_mmap() returns ENOSYS on nommu systems 221 * so we call that before revalidating the mapping 222 */ 223 status = generic_file_mmap(file, vma); 224 if (!status) { 225 vma->vm_ops = &nfs_file_vm_ops; 226 status = nfs_revalidate_mapping(inode, file->f_mapping); 227 } 228 return status; 229 } 230 EXPORT_SYMBOL_GPL(nfs_file_mmap); 231 232 /* 233 * Flush any dirty pages for this process, and check for write errors. 234 * The return status from this call provides a reliable indication of 235 * whether any write errors occurred for this process. 236 * 237 * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to 238 * disk, but it retrieves and clears ctx->error after synching, despite 239 * the two being set at the same time in nfs_context_set_write_error(). 240 * This is because the former is used to notify the _next_ call to 241 * nfs_file_write() that a write error occurred, and hence cause it to 242 * fall back to doing a synchronous write. 243 */ 244 int 245 nfs_file_fsync_commit(struct file *file, loff_t start, loff_t end, int datasync) 246 { 247 struct nfs_open_context *ctx = nfs_file_open_context(file); 248 struct inode *inode = file_inode(file); 249 int have_error, do_resend, status; 250 int ret = 0; 251 252 dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync); 253 254 nfs_inc_stats(inode, NFSIOS_VFSFSYNC); 255 do_resend = test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags); 256 have_error = test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags); 257 status = nfs_commit_inode(inode, FLUSH_SYNC); 258 have_error |= test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags); 259 if (have_error) { 260 ret = xchg(&ctx->error, 0); 261 if (ret) 262 goto out; 263 } 264 if (status < 0) { 265 ret = status; 266 goto out; 267 } 268 do_resend |= test_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags); 269 if (do_resend) 270 ret = -EAGAIN; 271 out: 272 return ret; 273 } 274 EXPORT_SYMBOL_GPL(nfs_file_fsync_commit); 275 276 static int 277 nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync) 278 { 279 int ret; 280 struct inode *inode = file_inode(file); 281 282 trace_nfs_fsync_enter(inode); 283 284 do { 285 ret = filemap_write_and_wait_range(inode->i_mapping, start, end); 286 if (ret != 0) 287 break; 288 mutex_lock(&inode->i_mutex); 289 ret = nfs_file_fsync_commit(file, start, end, datasync); 290 mutex_unlock(&inode->i_mutex); 291 /* 292 * If nfs_file_fsync_commit detected a server reboot, then 293 * resend all dirty pages that might have been covered by 294 * the NFS_CONTEXT_RESEND_WRITES flag 295 */ 296 start = 0; 297 end = LLONG_MAX; 298 } while (ret == -EAGAIN); 299 300 trace_nfs_fsync_exit(inode, ret); 301 return ret; 302 } 303 304 /* 305 * Decide whether a read/modify/write cycle may be more efficient 306 * then a modify/write/read cycle when writing to a page in the 307 * page cache. 308 * 309 * The modify/write/read cycle may occur if a page is read before 310 * being completely filled by the writer. In this situation, the 311 * page must be completely written to stable storage on the server 312 * before it can be refilled by reading in the page from the server. 313 * This can lead to expensive, small, FILE_SYNC mode writes being 314 * done. 315 * 316 * It may be more efficient to read the page first if the file is 317 * open for reading in addition to writing, the page is not marked 318 * as Uptodate, it is not dirty or waiting to be committed, 319 * indicating that it was previously allocated and then modified, 320 * that there were valid bytes of data in that range of the file, 321 * and that the new data won't completely replace the old data in 322 * that range of the file. 323 */ 324 static int nfs_want_read_modify_write(struct file *file, struct page *page, 325 loff_t pos, unsigned len) 326 { 327 unsigned int pglen = nfs_page_length(page); 328 unsigned int offset = pos & (PAGE_CACHE_SIZE - 1); 329 unsigned int end = offset + len; 330 331 if (pnfs_ld_read_whole_page(file->f_mapping->host)) { 332 if (!PageUptodate(page)) 333 return 1; 334 return 0; 335 } 336 337 if ((file->f_mode & FMODE_READ) && /* open for read? */ 338 !PageUptodate(page) && /* Uptodate? */ 339 !PagePrivate(page) && /* i/o request already? */ 340 pglen && /* valid bytes of file? */ 341 (end < pglen || offset)) /* replace all valid bytes? */ 342 return 1; 343 return 0; 344 } 345 346 /* 347 * This does the "real" work of the write. We must allocate and lock the 348 * page to be sent back to the generic routine, which then copies the 349 * data from user space. 350 * 351 * If the writer ends up delaying the write, the writer needs to 352 * increment the page use counts until he is done with the page. 353 */ 354 static int nfs_write_begin(struct file *file, struct address_space *mapping, 355 loff_t pos, unsigned len, unsigned flags, 356 struct page **pagep, void **fsdata) 357 { 358 int ret; 359 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 360 struct page *page; 361 int once_thru = 0; 362 363 dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n", 364 file, mapping->host->i_ino, len, (long long) pos); 365 366 start: 367 /* 368 * Prevent starvation issues if someone is doing a consistency 369 * sync-to-disk 370 */ 371 ret = wait_on_bit_action(&NFS_I(mapping->host)->flags, NFS_INO_FLUSHING, 372 nfs_wait_bit_killable, TASK_KILLABLE); 373 if (ret) 374 return ret; 375 /* 376 * Wait for O_DIRECT to complete 377 */ 378 nfs_inode_dio_wait(mapping->host); 379 380 page = grab_cache_page_write_begin(mapping, index, flags); 381 if (!page) 382 return -ENOMEM; 383 *pagep = page; 384 385 ret = nfs_flush_incompatible(file, page); 386 if (ret) { 387 unlock_page(page); 388 page_cache_release(page); 389 } else if (!once_thru && 390 nfs_want_read_modify_write(file, page, pos, len)) { 391 once_thru = 1; 392 ret = nfs_readpage(file, page); 393 page_cache_release(page); 394 if (!ret) 395 goto start; 396 } 397 return ret; 398 } 399 400 static int nfs_write_end(struct file *file, struct address_space *mapping, 401 loff_t pos, unsigned len, unsigned copied, 402 struct page *page, void *fsdata) 403 { 404 unsigned offset = pos & (PAGE_CACHE_SIZE - 1); 405 struct nfs_open_context *ctx = nfs_file_open_context(file); 406 int status; 407 408 dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n", 409 file, mapping->host->i_ino, len, (long long) pos); 410 411 /* 412 * Zero any uninitialised parts of the page, and then mark the page 413 * as up to date if it turns out that we're extending the file. 414 */ 415 if (!PageUptodate(page)) { 416 unsigned pglen = nfs_page_length(page); 417 unsigned end = offset + len; 418 419 if (pglen == 0) { 420 zero_user_segments(page, 0, offset, 421 end, PAGE_CACHE_SIZE); 422 SetPageUptodate(page); 423 } else if (end >= pglen) { 424 zero_user_segment(page, end, PAGE_CACHE_SIZE); 425 if (offset == 0) 426 SetPageUptodate(page); 427 } else 428 zero_user_segment(page, pglen, PAGE_CACHE_SIZE); 429 } 430 431 status = nfs_updatepage(file, page, offset, copied); 432 433 unlock_page(page); 434 page_cache_release(page); 435 436 if (status < 0) 437 return status; 438 NFS_I(mapping->host)->write_io += copied; 439 440 if (nfs_ctx_key_to_expire(ctx)) { 441 status = nfs_wb_all(mapping->host); 442 if (status < 0) 443 return status; 444 } 445 446 return copied; 447 } 448 449 /* 450 * Partially or wholly invalidate a page 451 * - Release the private state associated with a page if undergoing complete 452 * page invalidation 453 * - Called if either PG_private or PG_fscache is set on the page 454 * - Caller holds page lock 455 */ 456 static void nfs_invalidate_page(struct page *page, unsigned int offset, 457 unsigned int length) 458 { 459 dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n", 460 page, offset, length); 461 462 if (offset != 0 || length < PAGE_CACHE_SIZE) 463 return; 464 /* Cancel any unstarted writes on this page */ 465 nfs_wb_page_cancel(page_file_mapping(page)->host, page); 466 467 nfs_fscache_invalidate_page(page, page->mapping->host); 468 } 469 470 /* 471 * Attempt to release the private state associated with a page 472 * - Called if either PG_private or PG_fscache is set on the page 473 * - Caller holds page lock 474 * - Return true (may release page) or false (may not) 475 */ 476 static int nfs_release_page(struct page *page, gfp_t gfp) 477 { 478 struct address_space *mapping = page->mapping; 479 480 dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page); 481 482 /* Always try to initiate a 'commit' if relevant, but only 483 * wait for it if __GFP_WAIT is set. Even then, only wait 1 484 * second and only if the 'bdi' is not congested. 485 * Waiting indefinitely can cause deadlocks when the NFS 486 * server is on this machine, when a new TCP connection is 487 * needed and in other rare cases. There is no particular 488 * need to wait extensively here. A short wait has the 489 * benefit that someone else can worry about the freezer. 490 */ 491 if (mapping) { 492 struct nfs_server *nfss = NFS_SERVER(mapping->host); 493 nfs_commit_inode(mapping->host, 0); 494 if ((gfp & __GFP_WAIT) && 495 !bdi_write_congested(&nfss->backing_dev_info)) { 496 wait_on_page_bit_killable_timeout(page, PG_private, 497 HZ); 498 if (PagePrivate(page)) 499 set_bdi_congested(&nfss->backing_dev_info, 500 BLK_RW_ASYNC); 501 } 502 } 503 /* If PagePrivate() is set, then the page is not freeable */ 504 if (PagePrivate(page)) 505 return 0; 506 return nfs_fscache_release_page(page, gfp); 507 } 508 509 static void nfs_check_dirty_writeback(struct page *page, 510 bool *dirty, bool *writeback) 511 { 512 struct nfs_inode *nfsi; 513 struct address_space *mapping = page_file_mapping(page); 514 515 if (!mapping || PageSwapCache(page)) 516 return; 517 518 /* 519 * Check if an unstable page is currently being committed and 520 * if so, have the VM treat it as if the page is under writeback 521 * so it will not block due to pages that will shortly be freeable. 522 */ 523 nfsi = NFS_I(mapping->host); 524 if (test_bit(NFS_INO_COMMIT, &nfsi->flags)) { 525 *writeback = true; 526 return; 527 } 528 529 /* 530 * If PagePrivate() is set, then the page is not freeable and as the 531 * inode is not being committed, it's not going to be cleaned in the 532 * near future so treat it as dirty 533 */ 534 if (PagePrivate(page)) 535 *dirty = true; 536 } 537 538 /* 539 * Attempt to clear the private state associated with a page when an error 540 * occurs that requires the cached contents of an inode to be written back or 541 * destroyed 542 * - Called if either PG_private or fscache is set on the page 543 * - Caller holds page lock 544 * - Return 0 if successful, -error otherwise 545 */ 546 static int nfs_launder_page(struct page *page) 547 { 548 struct inode *inode = page_file_mapping(page)->host; 549 struct nfs_inode *nfsi = NFS_I(inode); 550 551 dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n", 552 inode->i_ino, (long long)page_offset(page)); 553 554 nfs_fscache_wait_on_page_write(nfsi, page); 555 return nfs_wb_page(inode, page); 556 } 557 558 #ifdef CONFIG_NFS_SWAP 559 static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file, 560 sector_t *span) 561 { 562 int ret; 563 struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host); 564 565 *span = sis->pages; 566 567 rcu_read_lock(); 568 ret = xs_swapper(rcu_dereference(clnt->cl_xprt), 1); 569 rcu_read_unlock(); 570 571 return ret; 572 } 573 574 static void nfs_swap_deactivate(struct file *file) 575 { 576 struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host); 577 578 rcu_read_lock(); 579 xs_swapper(rcu_dereference(clnt->cl_xprt), 0); 580 rcu_read_unlock(); 581 } 582 #endif 583 584 const struct address_space_operations nfs_file_aops = { 585 .readpage = nfs_readpage, 586 .readpages = nfs_readpages, 587 .set_page_dirty = __set_page_dirty_nobuffers, 588 .writepage = nfs_writepage, 589 .writepages = nfs_writepages, 590 .write_begin = nfs_write_begin, 591 .write_end = nfs_write_end, 592 .invalidatepage = nfs_invalidate_page, 593 .releasepage = nfs_release_page, 594 .direct_IO = nfs_direct_IO, 595 .migratepage = nfs_migrate_page, 596 .launder_page = nfs_launder_page, 597 .is_dirty_writeback = nfs_check_dirty_writeback, 598 .error_remove_page = generic_error_remove_page, 599 #ifdef CONFIG_NFS_SWAP 600 .swap_activate = nfs_swap_activate, 601 .swap_deactivate = nfs_swap_deactivate, 602 #endif 603 }; 604 605 /* 606 * Notification that a PTE pointing to an NFS page is about to be made 607 * writable, implying that someone is about to modify the page through a 608 * shared-writable mapping 609 */ 610 static int nfs_vm_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 611 { 612 struct page *page = vmf->page; 613 struct file *filp = vma->vm_file; 614 struct inode *inode = file_inode(filp); 615 unsigned pagelen; 616 int ret = VM_FAULT_NOPAGE; 617 struct address_space *mapping; 618 619 dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n", 620 filp, filp->f_mapping->host->i_ino, 621 (long long)page_offset(page)); 622 623 /* make sure the cache has finished storing the page */ 624 nfs_fscache_wait_on_page_write(NFS_I(inode), page); 625 626 wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING, 627 nfs_wait_bit_killable, TASK_KILLABLE); 628 629 lock_page(page); 630 mapping = page_file_mapping(page); 631 if (mapping != inode->i_mapping) 632 goto out_unlock; 633 634 wait_on_page_writeback(page); 635 636 pagelen = nfs_page_length(page); 637 if (pagelen == 0) 638 goto out_unlock; 639 640 ret = VM_FAULT_LOCKED; 641 if (nfs_flush_incompatible(filp, page) == 0 && 642 nfs_updatepage(filp, page, 0, pagelen) == 0) 643 goto out; 644 645 ret = VM_FAULT_SIGBUS; 646 out_unlock: 647 unlock_page(page); 648 out: 649 return ret; 650 } 651 652 static const struct vm_operations_struct nfs_file_vm_ops = { 653 .fault = filemap_fault, 654 .map_pages = filemap_map_pages, 655 .page_mkwrite = nfs_vm_page_mkwrite, 656 }; 657 658 static int nfs_need_sync_write(struct file *filp, struct inode *inode) 659 { 660 struct nfs_open_context *ctx; 661 662 if (IS_SYNC(inode) || (filp->f_flags & O_DSYNC)) 663 return 1; 664 ctx = nfs_file_open_context(filp); 665 if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags) || 666 nfs_ctx_key_to_expire(ctx)) 667 return 1; 668 return 0; 669 } 670 671 ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from) 672 { 673 struct file *file = iocb->ki_filp; 674 struct inode *inode = file_inode(file); 675 unsigned long written = 0; 676 ssize_t result; 677 size_t count = iov_iter_count(from); 678 loff_t pos = iocb->ki_pos; 679 680 result = nfs_key_timeout_notify(file, inode); 681 if (result) 682 return result; 683 684 if (file->f_flags & O_DIRECT) 685 return nfs_file_direct_write(iocb, from, pos); 686 687 dprintk("NFS: write(%pD2, %zu@%Ld)\n", 688 file, count, (long long) pos); 689 690 result = -EBUSY; 691 if (IS_SWAPFILE(inode)) 692 goto out_swapfile; 693 /* 694 * O_APPEND implies that we must revalidate the file length. 695 */ 696 if (file->f_flags & O_APPEND) { 697 result = nfs_revalidate_file_size(inode, file); 698 if (result) 699 goto out; 700 } 701 702 result = count; 703 if (!count) 704 goto out; 705 706 result = generic_file_write_iter(iocb, from); 707 if (result > 0) 708 written = result; 709 710 /* Return error values for O_DSYNC and IS_SYNC() */ 711 if (result >= 0 && nfs_need_sync_write(file, inode)) { 712 int err = vfs_fsync(file, 0); 713 if (err < 0) 714 result = err; 715 } 716 if (result > 0) 717 nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written); 718 out: 719 return result; 720 721 out_swapfile: 722 printk(KERN_INFO "NFS: attempt to write to active swap file!\n"); 723 goto out; 724 } 725 EXPORT_SYMBOL_GPL(nfs_file_write); 726 727 static int 728 do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local) 729 { 730 struct inode *inode = filp->f_mapping->host; 731 int status = 0; 732 unsigned int saved_type = fl->fl_type; 733 734 /* Try local locking first */ 735 posix_test_lock(filp, fl); 736 if (fl->fl_type != F_UNLCK) { 737 /* found a conflict */ 738 goto out; 739 } 740 fl->fl_type = saved_type; 741 742 if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) 743 goto out_noconflict; 744 745 if (is_local) 746 goto out_noconflict; 747 748 status = NFS_PROTO(inode)->lock(filp, cmd, fl); 749 out: 750 return status; 751 out_noconflict: 752 fl->fl_type = F_UNLCK; 753 goto out; 754 } 755 756 static int do_vfs_lock(struct file *file, struct file_lock *fl) 757 { 758 int res = 0; 759 switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) { 760 case FL_POSIX: 761 res = posix_lock_file_wait(file, fl); 762 break; 763 case FL_FLOCK: 764 res = flock_lock_file_wait(file, fl); 765 break; 766 default: 767 BUG(); 768 } 769 return res; 770 } 771 772 static int 773 do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local) 774 { 775 struct inode *inode = filp->f_mapping->host; 776 struct nfs_lock_context *l_ctx; 777 int status; 778 779 /* 780 * Flush all pending writes before doing anything 781 * with locks.. 782 */ 783 nfs_sync_mapping(filp->f_mapping); 784 785 l_ctx = nfs_get_lock_context(nfs_file_open_context(filp)); 786 if (!IS_ERR(l_ctx)) { 787 status = nfs_iocounter_wait(&l_ctx->io_count); 788 nfs_put_lock_context(l_ctx); 789 if (status < 0) 790 return status; 791 } 792 793 /* NOTE: special case 794 * If we're signalled while cleaning up locks on process exit, we 795 * still need to complete the unlock. 796 */ 797 /* 798 * Use local locking if mounted with "-onolock" or with appropriate 799 * "-olocal_lock=" 800 */ 801 if (!is_local) 802 status = NFS_PROTO(inode)->lock(filp, cmd, fl); 803 else 804 status = do_vfs_lock(filp, fl); 805 return status; 806 } 807 808 static int 809 is_time_granular(struct timespec *ts) { 810 return ((ts->tv_sec == 0) && (ts->tv_nsec <= 1000)); 811 } 812 813 static int 814 do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local) 815 { 816 struct inode *inode = filp->f_mapping->host; 817 int status; 818 819 /* 820 * Flush all pending writes before doing anything 821 * with locks.. 822 */ 823 status = nfs_sync_mapping(filp->f_mapping); 824 if (status != 0) 825 goto out; 826 827 /* 828 * Use local locking if mounted with "-onolock" or with appropriate 829 * "-olocal_lock=" 830 */ 831 if (!is_local) 832 status = NFS_PROTO(inode)->lock(filp, cmd, fl); 833 else 834 status = do_vfs_lock(filp, fl); 835 if (status < 0) 836 goto out; 837 838 /* 839 * Revalidate the cache if the server has time stamps granular 840 * enough to detect subsecond changes. Otherwise, clear the 841 * cache to prevent missing any changes. 842 * 843 * This makes locking act as a cache coherency point. 844 */ 845 nfs_sync_mapping(filp->f_mapping); 846 if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) { 847 if (is_time_granular(&NFS_SERVER(inode)->time_delta)) 848 __nfs_revalidate_inode(NFS_SERVER(inode), inode); 849 else 850 nfs_zap_caches(inode); 851 } 852 out: 853 return status; 854 } 855 856 /* 857 * Lock a (portion of) a file 858 */ 859 int nfs_lock(struct file *filp, int cmd, struct file_lock *fl) 860 { 861 struct inode *inode = filp->f_mapping->host; 862 int ret = -ENOLCK; 863 int is_local = 0; 864 865 dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n", 866 filp, fl->fl_type, fl->fl_flags, 867 (long long)fl->fl_start, (long long)fl->fl_end); 868 869 nfs_inc_stats(inode, NFSIOS_VFSLOCK); 870 871 /* No mandatory locks over NFS */ 872 if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK) 873 goto out_err; 874 875 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL) 876 is_local = 1; 877 878 if (NFS_PROTO(inode)->lock_check_bounds != NULL) { 879 ret = NFS_PROTO(inode)->lock_check_bounds(fl); 880 if (ret < 0) 881 goto out_err; 882 } 883 884 if (IS_GETLK(cmd)) 885 ret = do_getlk(filp, cmd, fl, is_local); 886 else if (fl->fl_type == F_UNLCK) 887 ret = do_unlk(filp, cmd, fl, is_local); 888 else 889 ret = do_setlk(filp, cmd, fl, is_local); 890 out_err: 891 return ret; 892 } 893 EXPORT_SYMBOL_GPL(nfs_lock); 894 895 /* 896 * Lock a (portion of) a file 897 */ 898 int nfs_flock(struct file *filp, int cmd, struct file_lock *fl) 899 { 900 struct inode *inode = filp->f_mapping->host; 901 int is_local = 0; 902 903 dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n", 904 filp, fl->fl_type, fl->fl_flags); 905 906 if (!(fl->fl_flags & FL_FLOCK)) 907 return -ENOLCK; 908 909 /* 910 * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of 911 * any standard. In principle we might be able to support LOCK_MAND 912 * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the 913 * NFS code is not set up for it. 914 */ 915 if (fl->fl_type & LOCK_MAND) 916 return -EINVAL; 917 918 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK) 919 is_local = 1; 920 921 /* We're simulating flock() locks using posix locks on the server */ 922 if (fl->fl_type == F_UNLCK) 923 return do_unlk(filp, cmd, fl, is_local); 924 return do_setlk(filp, cmd, fl, is_local); 925 } 926 EXPORT_SYMBOL_GPL(nfs_flock); 927 928 const struct file_operations nfs_file_operations = { 929 .llseek = nfs_file_llseek, 930 .read = new_sync_read, 931 .write = new_sync_write, 932 .read_iter = nfs_file_read, 933 .write_iter = nfs_file_write, 934 .mmap = nfs_file_mmap, 935 .open = nfs_file_open, 936 .flush = nfs_file_flush, 937 .release = nfs_file_release, 938 .fsync = nfs_file_fsync, 939 .lock = nfs_lock, 940 .flock = nfs_flock, 941 .splice_read = nfs_file_splice_read, 942 .splice_write = iter_file_splice_write, 943 .check_flags = nfs_check_flags, 944 .setlease = simple_nosetlease, 945 }; 946 EXPORT_SYMBOL_GPL(nfs_file_operations); 947