1 /* 2 * linux/fs/nfs/direct.c 3 * 4 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com> 5 * 6 * High-performance uncached I/O for the Linux NFS client 7 * 8 * There are important applications whose performance or correctness 9 * depends on uncached access to file data. Database clusters 10 * (multiple copies of the same instance running on separate hosts) 11 * implement their own cache coherency protocol that subsumes file 12 * system cache protocols. Applications that process datasets 13 * considerably larger than the client's memory do not always benefit 14 * from a local cache. A streaming video server, for instance, has no 15 * need to cache the contents of a file. 16 * 17 * When an application requests uncached I/O, all read and write requests 18 * are made directly to the server; data stored or fetched via these 19 * requests is not cached in the Linux page cache. The client does not 20 * correct unaligned requests from applications. All requested bytes are 21 * held on permanent storage before a direct write system call returns to 22 * an application. 23 * 24 * Solaris implements an uncached I/O facility called directio() that 25 * is used for backups and sequential I/O to very large files. Solaris 26 * also supports uncaching whole NFS partitions with "-o forcedirectio," 27 * an undocumented mount option. 28 * 29 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with 30 * help from Andrew Morton. 31 * 32 * 18 Dec 2001 Initial implementation for 2.4 --cel 33 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy 34 * 08 Jun 2003 Port to 2.5 APIs --cel 35 * 31 Mar 2004 Handle direct I/O without VFS support --cel 36 * 15 Sep 2004 Parallel async reads --cel 37 * 04 May 2005 support O_DIRECT with aio --cel 38 * 39 */ 40 41 #include <linux/errno.h> 42 #include <linux/sched.h> 43 #include <linux/kernel.h> 44 #include <linux/file.h> 45 #include <linux/pagemap.h> 46 #include <linux/kref.h> 47 #include <linux/slab.h> 48 #include <linux/task_io_accounting_ops.h> 49 #include <linux/module.h> 50 51 #include <linux/nfs_fs.h> 52 #include <linux/nfs_page.h> 53 #include <linux/sunrpc/clnt.h> 54 55 #include <linux/uaccess.h> 56 #include <linux/atomic.h> 57 58 #include "internal.h" 59 #include "iostat.h" 60 #include "pnfs.h" 61 62 #define NFSDBG_FACILITY NFSDBG_VFS 63 64 static struct kmem_cache *nfs_direct_cachep; 65 66 /* 67 * This represents a set of asynchronous requests that we're waiting on 68 */ 69 struct nfs_direct_mirror { 70 ssize_t count; 71 }; 72 73 struct nfs_direct_req { 74 struct kref kref; /* release manager */ 75 76 /* I/O parameters */ 77 struct nfs_open_context *ctx; /* file open context info */ 78 struct nfs_lock_context *l_ctx; /* Lock context info */ 79 struct kiocb * iocb; /* controlling i/o request */ 80 struct inode * inode; /* target file of i/o */ 81 82 /* completion state */ 83 atomic_t io_count; /* i/os we're waiting for */ 84 spinlock_t lock; /* protect completion state */ 85 86 struct nfs_direct_mirror mirrors[NFS_PAGEIO_DESCRIPTOR_MIRROR_MAX]; 87 int mirror_count; 88 89 loff_t io_start; /* Start offset for I/O */ 90 ssize_t count, /* bytes actually processed */ 91 max_count, /* max expected count */ 92 bytes_left, /* bytes left to be sent */ 93 error; /* any reported error */ 94 struct completion completion; /* wait for i/o completion */ 95 96 /* commit state */ 97 struct nfs_mds_commit_info mds_cinfo; /* Storage for cinfo */ 98 struct pnfs_ds_commit_info ds_cinfo; /* Storage for cinfo */ 99 struct work_struct work; 100 int flags; 101 /* for write */ 102 #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */ 103 #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */ 104 /* for read */ 105 #define NFS_ODIRECT_SHOULD_DIRTY (3) /* dirty user-space page after read */ 106 struct nfs_writeverf verf; /* unstable write verifier */ 107 }; 108 109 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops; 110 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops; 111 static void nfs_direct_write_complete(struct nfs_direct_req *dreq); 112 static void nfs_direct_write_schedule_work(struct work_struct *work); 113 114 static inline void get_dreq(struct nfs_direct_req *dreq) 115 { 116 atomic_inc(&dreq->io_count); 117 } 118 119 static inline int put_dreq(struct nfs_direct_req *dreq) 120 { 121 return atomic_dec_and_test(&dreq->io_count); 122 } 123 124 static void 125 nfs_direct_good_bytes(struct nfs_direct_req *dreq, struct nfs_pgio_header *hdr) 126 { 127 int i; 128 ssize_t count; 129 130 WARN_ON_ONCE(dreq->count >= dreq->max_count); 131 132 if (dreq->mirror_count == 1) { 133 dreq->mirrors[hdr->pgio_mirror_idx].count += hdr->good_bytes; 134 dreq->count += hdr->good_bytes; 135 } else { 136 /* mirrored writes */ 137 count = dreq->mirrors[hdr->pgio_mirror_idx].count; 138 if (count + dreq->io_start < hdr->io_start + hdr->good_bytes) { 139 count = hdr->io_start + hdr->good_bytes - dreq->io_start; 140 dreq->mirrors[hdr->pgio_mirror_idx].count = count; 141 } 142 /* update the dreq->count by finding the minimum agreed count from all 143 * mirrors */ 144 count = dreq->mirrors[0].count; 145 146 for (i = 1; i < dreq->mirror_count; i++) 147 count = min(count, dreq->mirrors[i].count); 148 149 dreq->count = count; 150 } 151 } 152 153 /* 154 * nfs_direct_select_verf - select the right verifier 155 * @dreq - direct request possibly spanning multiple servers 156 * @ds_clp - nfs_client of data server or NULL if MDS / non-pnfs 157 * @commit_idx - commit bucket index for the DS 158 * 159 * returns the correct verifier to use given the role of the server 160 */ 161 static struct nfs_writeverf * 162 nfs_direct_select_verf(struct nfs_direct_req *dreq, 163 struct nfs_client *ds_clp, 164 int commit_idx) 165 { 166 struct nfs_writeverf *verfp = &dreq->verf; 167 168 #ifdef CONFIG_NFS_V4_1 169 /* 170 * pNFS is in use, use the DS verf except commit_through_mds is set 171 * for layout segment where nbuckets is zero. 172 */ 173 if (ds_clp && dreq->ds_cinfo.nbuckets > 0) { 174 if (commit_idx >= 0 && commit_idx < dreq->ds_cinfo.nbuckets) 175 verfp = &dreq->ds_cinfo.buckets[commit_idx].direct_verf; 176 else 177 WARN_ON_ONCE(1); 178 } 179 #endif 180 return verfp; 181 } 182 183 184 /* 185 * nfs_direct_set_hdr_verf - set the write/commit verifier 186 * @dreq - direct request possibly spanning multiple servers 187 * @hdr - pageio header to validate against previously seen verfs 188 * 189 * Set the server's (MDS or DS) "seen" verifier 190 */ 191 static void nfs_direct_set_hdr_verf(struct nfs_direct_req *dreq, 192 struct nfs_pgio_header *hdr) 193 { 194 struct nfs_writeverf *verfp; 195 196 verfp = nfs_direct_select_verf(dreq, hdr->ds_clp, hdr->ds_commit_idx); 197 WARN_ON_ONCE(verfp->committed >= 0); 198 memcpy(verfp, &hdr->verf, sizeof(struct nfs_writeverf)); 199 WARN_ON_ONCE(verfp->committed < 0); 200 } 201 202 static int nfs_direct_cmp_verf(const struct nfs_writeverf *v1, 203 const struct nfs_writeverf *v2) 204 { 205 return nfs_write_verifier_cmp(&v1->verifier, &v2->verifier); 206 } 207 208 /* 209 * nfs_direct_cmp_hdr_verf - compare verifier for pgio header 210 * @dreq - direct request possibly spanning multiple servers 211 * @hdr - pageio header to validate against previously seen verf 212 * 213 * set the server's "seen" verf if not initialized. 214 * returns result of comparison between @hdr->verf and the "seen" 215 * verf of the server used by @hdr (DS or MDS) 216 */ 217 static int nfs_direct_set_or_cmp_hdr_verf(struct nfs_direct_req *dreq, 218 struct nfs_pgio_header *hdr) 219 { 220 struct nfs_writeverf *verfp; 221 222 verfp = nfs_direct_select_verf(dreq, hdr->ds_clp, hdr->ds_commit_idx); 223 if (verfp->committed < 0) { 224 nfs_direct_set_hdr_verf(dreq, hdr); 225 return 0; 226 } 227 return nfs_direct_cmp_verf(verfp, &hdr->verf); 228 } 229 230 /* 231 * nfs_direct_cmp_commit_data_verf - compare verifier for commit data 232 * @dreq - direct request possibly spanning multiple servers 233 * @data - commit data to validate against previously seen verf 234 * 235 * returns result of comparison between @data->verf and the verf of 236 * the server used by @data (DS or MDS) 237 */ 238 static int nfs_direct_cmp_commit_data_verf(struct nfs_direct_req *dreq, 239 struct nfs_commit_data *data) 240 { 241 struct nfs_writeverf *verfp; 242 243 verfp = nfs_direct_select_verf(dreq, data->ds_clp, 244 data->ds_commit_index); 245 246 /* verifier not set so always fail */ 247 if (verfp->committed < 0) 248 return 1; 249 250 return nfs_direct_cmp_verf(verfp, &data->verf); 251 } 252 253 /** 254 * nfs_direct_IO - NFS address space operation for direct I/O 255 * @iocb: target I/O control block 256 * @iter: I/O buffer 257 * 258 * The presence of this routine in the address space ops vector means 259 * the NFS client supports direct I/O. However, for most direct IO, we 260 * shunt off direct read and write requests before the VFS gets them, 261 * so this method is only ever called for swap. 262 */ 263 ssize_t nfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 264 { 265 struct inode *inode = iocb->ki_filp->f_mapping->host; 266 267 /* we only support swap file calling nfs_direct_IO */ 268 if (!IS_SWAPFILE(inode)) 269 return 0; 270 271 VM_BUG_ON(iov_iter_count(iter) != PAGE_SIZE); 272 273 if (iov_iter_rw(iter) == READ) 274 return nfs_file_direct_read(iocb, iter); 275 return nfs_file_direct_write(iocb, iter); 276 } 277 278 static void nfs_direct_release_pages(struct page **pages, unsigned int npages) 279 { 280 unsigned int i; 281 for (i = 0; i < npages; i++) 282 put_page(pages[i]); 283 } 284 285 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo, 286 struct nfs_direct_req *dreq) 287 { 288 cinfo->inode = dreq->inode; 289 cinfo->mds = &dreq->mds_cinfo; 290 cinfo->ds = &dreq->ds_cinfo; 291 cinfo->dreq = dreq; 292 cinfo->completion_ops = &nfs_direct_commit_completion_ops; 293 } 294 295 static inline void nfs_direct_setup_mirroring(struct nfs_direct_req *dreq, 296 struct nfs_pageio_descriptor *pgio, 297 struct nfs_page *req) 298 { 299 int mirror_count = 1; 300 301 if (pgio->pg_ops->pg_get_mirror_count) 302 mirror_count = pgio->pg_ops->pg_get_mirror_count(pgio, req); 303 304 dreq->mirror_count = mirror_count; 305 } 306 307 static inline struct nfs_direct_req *nfs_direct_req_alloc(void) 308 { 309 struct nfs_direct_req *dreq; 310 311 dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL); 312 if (!dreq) 313 return NULL; 314 315 kref_init(&dreq->kref); 316 kref_get(&dreq->kref); 317 init_completion(&dreq->completion); 318 INIT_LIST_HEAD(&dreq->mds_cinfo.list); 319 dreq->verf.committed = NFS_INVALID_STABLE_HOW; /* not set yet */ 320 INIT_WORK(&dreq->work, nfs_direct_write_schedule_work); 321 dreq->mirror_count = 1; 322 spin_lock_init(&dreq->lock); 323 324 return dreq; 325 } 326 327 static void nfs_direct_req_free(struct kref *kref) 328 { 329 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref); 330 331 nfs_free_pnfs_ds_cinfo(&dreq->ds_cinfo); 332 if (dreq->l_ctx != NULL) 333 nfs_put_lock_context(dreq->l_ctx); 334 if (dreq->ctx != NULL) 335 put_nfs_open_context(dreq->ctx); 336 kmem_cache_free(nfs_direct_cachep, dreq); 337 } 338 339 static void nfs_direct_req_release(struct nfs_direct_req *dreq) 340 { 341 kref_put(&dreq->kref, nfs_direct_req_free); 342 } 343 344 ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq) 345 { 346 return dreq->bytes_left; 347 } 348 EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left); 349 350 /* 351 * Collects and returns the final error value/byte-count. 352 */ 353 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq) 354 { 355 ssize_t result = -EIOCBQUEUED; 356 357 /* Async requests don't wait here */ 358 if (dreq->iocb) 359 goto out; 360 361 result = wait_for_completion_killable(&dreq->completion); 362 363 if (!result) { 364 result = dreq->count; 365 WARN_ON_ONCE(dreq->count < 0); 366 } 367 if (!result) 368 result = dreq->error; 369 370 out: 371 return (ssize_t) result; 372 } 373 374 /* 375 * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust 376 * the iocb is still valid here if this is a synchronous request. 377 */ 378 static void nfs_direct_complete(struct nfs_direct_req *dreq) 379 { 380 struct inode *inode = dreq->inode; 381 382 inode_dio_end(inode); 383 384 if (dreq->iocb) { 385 long res = (long) dreq->error; 386 if (dreq->count != 0) { 387 res = (long) dreq->count; 388 WARN_ON_ONCE(dreq->count < 0); 389 } 390 dreq->iocb->ki_complete(dreq->iocb, res, 0); 391 } 392 393 complete(&dreq->completion); 394 395 nfs_direct_req_release(dreq); 396 } 397 398 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr) 399 { 400 unsigned long bytes = 0; 401 struct nfs_direct_req *dreq = hdr->dreq; 402 403 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) 404 goto out_put; 405 406 spin_lock(&dreq->lock); 407 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0)) 408 dreq->error = hdr->error; 409 else 410 nfs_direct_good_bytes(dreq, hdr); 411 412 spin_unlock(&dreq->lock); 413 414 while (!list_empty(&hdr->pages)) { 415 struct nfs_page *req = nfs_list_entry(hdr->pages.next); 416 struct page *page = req->wb_page; 417 418 if (!PageCompound(page) && bytes < hdr->good_bytes && 419 (dreq->flags == NFS_ODIRECT_SHOULD_DIRTY)) 420 set_page_dirty(page); 421 bytes += req->wb_bytes; 422 nfs_list_remove_request(req); 423 nfs_release_request(req); 424 } 425 out_put: 426 if (put_dreq(dreq)) 427 nfs_direct_complete(dreq); 428 hdr->release(hdr); 429 } 430 431 static void nfs_read_sync_pgio_error(struct list_head *head, int error) 432 { 433 struct nfs_page *req; 434 435 while (!list_empty(head)) { 436 req = nfs_list_entry(head->next); 437 nfs_list_remove_request(req); 438 nfs_release_request(req); 439 } 440 } 441 442 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr) 443 { 444 get_dreq(hdr->dreq); 445 } 446 447 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = { 448 .error_cleanup = nfs_read_sync_pgio_error, 449 .init_hdr = nfs_direct_pgio_init, 450 .completion = nfs_direct_read_completion, 451 }; 452 453 /* 454 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ 455 * operation. If nfs_readdata_alloc() or get_user_pages() fails, 456 * bail and stop sending more reads. Read length accounting is 457 * handled automatically by nfs_direct_read_result(). Otherwise, if 458 * no requests have been sent, just return an error. 459 */ 460 461 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq, 462 struct iov_iter *iter, 463 loff_t pos) 464 { 465 struct nfs_pageio_descriptor desc; 466 struct inode *inode = dreq->inode; 467 ssize_t result = -EINVAL; 468 size_t requested_bytes = 0; 469 size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE); 470 471 nfs_pageio_init_read(&desc, dreq->inode, false, 472 &nfs_direct_read_completion_ops); 473 get_dreq(dreq); 474 desc.pg_dreq = dreq; 475 inode_dio_begin(inode); 476 477 while (iov_iter_count(iter)) { 478 struct page **pagevec; 479 size_t bytes; 480 size_t pgbase; 481 unsigned npages, i; 482 483 result = iov_iter_get_pages_alloc(iter, &pagevec, 484 rsize, &pgbase); 485 if (result < 0) 486 break; 487 488 bytes = result; 489 iov_iter_advance(iter, bytes); 490 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE; 491 for (i = 0; i < npages; i++) { 492 struct nfs_page *req; 493 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase); 494 /* XXX do we need to do the eof zeroing found in async_filler? */ 495 req = nfs_create_request(dreq->ctx, pagevec[i], NULL, 496 pgbase, req_len); 497 if (IS_ERR(req)) { 498 result = PTR_ERR(req); 499 break; 500 } 501 req->wb_index = pos >> PAGE_SHIFT; 502 req->wb_offset = pos & ~PAGE_MASK; 503 if (!nfs_pageio_add_request(&desc, req)) { 504 result = desc.pg_error; 505 nfs_release_request(req); 506 break; 507 } 508 pgbase = 0; 509 bytes -= req_len; 510 requested_bytes += req_len; 511 pos += req_len; 512 dreq->bytes_left -= req_len; 513 } 514 nfs_direct_release_pages(pagevec, npages); 515 kvfree(pagevec); 516 if (result < 0) 517 break; 518 } 519 520 nfs_pageio_complete(&desc); 521 522 /* 523 * If no bytes were started, return the error, and let the 524 * generic layer handle the completion. 525 */ 526 if (requested_bytes == 0) { 527 inode_dio_end(inode); 528 nfs_direct_req_release(dreq); 529 return result < 0 ? result : -EIO; 530 } 531 532 if (put_dreq(dreq)) 533 nfs_direct_complete(dreq); 534 return requested_bytes; 535 } 536 537 /** 538 * nfs_file_direct_read - file direct read operation for NFS files 539 * @iocb: target I/O control block 540 * @iter: vector of user buffers into which to read data 541 * 542 * We use this function for direct reads instead of calling 543 * generic_file_aio_read() in order to avoid gfar's check to see if 544 * the request starts before the end of the file. For that check 545 * to work, we must generate a GETATTR before each direct read, and 546 * even then there is a window between the GETATTR and the subsequent 547 * READ where the file size could change. Our preference is simply 548 * to do all reads the application wants, and the server will take 549 * care of managing the end of file boundary. 550 * 551 * This function also eliminates unnecessarily updating the file's 552 * atime locally, as the NFS server sets the file's atime, and this 553 * client must read the updated atime from the server back into its 554 * cache. 555 */ 556 ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter) 557 { 558 struct file *file = iocb->ki_filp; 559 struct address_space *mapping = file->f_mapping; 560 struct inode *inode = mapping->host; 561 struct nfs_direct_req *dreq; 562 struct nfs_lock_context *l_ctx; 563 ssize_t result = -EINVAL, requested; 564 size_t count = iov_iter_count(iter); 565 nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count); 566 567 dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n", 568 file, count, (long long) iocb->ki_pos); 569 570 result = 0; 571 if (!count) 572 goto out; 573 574 task_io_account_read(count); 575 576 result = -ENOMEM; 577 dreq = nfs_direct_req_alloc(); 578 if (dreq == NULL) 579 goto out; 580 581 dreq->inode = inode; 582 dreq->bytes_left = dreq->max_count = count; 583 dreq->io_start = iocb->ki_pos; 584 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp)); 585 l_ctx = nfs_get_lock_context(dreq->ctx); 586 if (IS_ERR(l_ctx)) { 587 result = PTR_ERR(l_ctx); 588 goto out_release; 589 } 590 dreq->l_ctx = l_ctx; 591 if (!is_sync_kiocb(iocb)) 592 dreq->iocb = iocb; 593 594 if (iter_is_iovec(iter)) 595 dreq->flags = NFS_ODIRECT_SHOULD_DIRTY; 596 597 nfs_start_io_direct(inode); 598 599 NFS_I(inode)->read_io += count; 600 requested = nfs_direct_read_schedule_iovec(dreq, iter, iocb->ki_pos); 601 602 nfs_end_io_direct(inode); 603 604 if (requested > 0) { 605 result = nfs_direct_wait(dreq); 606 if (result > 0) { 607 requested -= result; 608 iocb->ki_pos += result; 609 } 610 iov_iter_revert(iter, requested); 611 } else { 612 result = requested; 613 } 614 615 out_release: 616 nfs_direct_req_release(dreq); 617 out: 618 return result; 619 } 620 621 static void 622 nfs_direct_write_scan_commit_list(struct inode *inode, 623 struct list_head *list, 624 struct nfs_commit_info *cinfo) 625 { 626 mutex_lock(&NFS_I(cinfo->inode)->commit_mutex); 627 #ifdef CONFIG_NFS_V4_1 628 if (cinfo->ds != NULL && cinfo->ds->nwritten != 0) 629 NFS_SERVER(inode)->pnfs_curr_ld->recover_commit_reqs(list, cinfo); 630 #endif 631 nfs_scan_commit_list(&cinfo->mds->list, list, cinfo, 0); 632 mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex); 633 } 634 635 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq) 636 { 637 struct nfs_pageio_descriptor desc; 638 struct nfs_page *req, *tmp; 639 LIST_HEAD(reqs); 640 struct nfs_commit_info cinfo; 641 LIST_HEAD(failed); 642 int i; 643 644 nfs_init_cinfo_from_dreq(&cinfo, dreq); 645 nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo); 646 647 dreq->count = 0; 648 dreq->verf.committed = NFS_INVALID_STABLE_HOW; 649 nfs_clear_pnfs_ds_commit_verifiers(&dreq->ds_cinfo); 650 for (i = 0; i < dreq->mirror_count; i++) 651 dreq->mirrors[i].count = 0; 652 get_dreq(dreq); 653 654 nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false, 655 &nfs_direct_write_completion_ops); 656 desc.pg_dreq = dreq; 657 658 req = nfs_list_entry(reqs.next); 659 nfs_direct_setup_mirroring(dreq, &desc, req); 660 if (desc.pg_error < 0) { 661 list_splice_init(&reqs, &failed); 662 goto out_failed; 663 } 664 665 list_for_each_entry_safe(req, tmp, &reqs, wb_list) { 666 if (!nfs_pageio_add_request(&desc, req)) { 667 nfs_list_move_request(req, &failed); 668 spin_lock(&cinfo.inode->i_lock); 669 dreq->flags = 0; 670 if (desc.pg_error < 0) 671 dreq->error = desc.pg_error; 672 else 673 dreq->error = -EIO; 674 spin_unlock(&cinfo.inode->i_lock); 675 } 676 nfs_release_request(req); 677 } 678 nfs_pageio_complete(&desc); 679 680 out_failed: 681 while (!list_empty(&failed)) { 682 req = nfs_list_entry(failed.next); 683 nfs_list_remove_request(req); 684 nfs_unlock_and_release_request(req); 685 } 686 687 if (put_dreq(dreq)) 688 nfs_direct_write_complete(dreq); 689 } 690 691 static void nfs_direct_commit_complete(struct nfs_commit_data *data) 692 { 693 struct nfs_direct_req *dreq = data->dreq; 694 struct nfs_commit_info cinfo; 695 struct nfs_page *req; 696 int status = data->task.tk_status; 697 698 nfs_init_cinfo_from_dreq(&cinfo, dreq); 699 if (status < 0 || nfs_direct_cmp_commit_data_verf(dreq, data)) 700 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 701 702 while (!list_empty(&data->pages)) { 703 req = nfs_list_entry(data->pages.next); 704 nfs_list_remove_request(req); 705 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) { 706 /* Note the rewrite will go through mds */ 707 nfs_mark_request_commit(req, NULL, &cinfo, 0); 708 } else 709 nfs_release_request(req); 710 nfs_unlock_and_release_request(req); 711 } 712 713 if (atomic_dec_and_test(&cinfo.mds->rpcs_out)) 714 nfs_direct_write_complete(dreq); 715 } 716 717 static void nfs_direct_resched_write(struct nfs_commit_info *cinfo, 718 struct nfs_page *req) 719 { 720 struct nfs_direct_req *dreq = cinfo->dreq; 721 722 spin_lock(&dreq->lock); 723 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 724 spin_unlock(&dreq->lock); 725 nfs_mark_request_commit(req, NULL, cinfo, 0); 726 } 727 728 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = { 729 .completion = nfs_direct_commit_complete, 730 .resched_write = nfs_direct_resched_write, 731 }; 732 733 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq) 734 { 735 int res; 736 struct nfs_commit_info cinfo; 737 LIST_HEAD(mds_list); 738 739 nfs_init_cinfo_from_dreq(&cinfo, dreq); 740 nfs_scan_commit(dreq->inode, &mds_list, &cinfo); 741 res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo); 742 if (res < 0) /* res == -ENOMEM */ 743 nfs_direct_write_reschedule(dreq); 744 } 745 746 static void nfs_direct_write_schedule_work(struct work_struct *work) 747 { 748 struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work); 749 int flags = dreq->flags; 750 751 dreq->flags = 0; 752 switch (flags) { 753 case NFS_ODIRECT_DO_COMMIT: 754 nfs_direct_commit_schedule(dreq); 755 break; 756 case NFS_ODIRECT_RESCHED_WRITES: 757 nfs_direct_write_reschedule(dreq); 758 break; 759 default: 760 nfs_zap_mapping(dreq->inode, dreq->inode->i_mapping); 761 nfs_direct_complete(dreq); 762 } 763 } 764 765 static void nfs_direct_write_complete(struct nfs_direct_req *dreq) 766 { 767 queue_work(nfsiod_workqueue, &dreq->work); /* Calls nfs_direct_write_schedule_work */ 768 } 769 770 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr) 771 { 772 struct nfs_direct_req *dreq = hdr->dreq; 773 struct nfs_commit_info cinfo; 774 bool request_commit = false; 775 struct nfs_page *req = nfs_list_entry(hdr->pages.next); 776 777 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) 778 goto out_put; 779 780 nfs_init_cinfo_from_dreq(&cinfo, dreq); 781 782 spin_lock(&dreq->lock); 783 784 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) 785 dreq->error = hdr->error; 786 if (dreq->error == 0) { 787 nfs_direct_good_bytes(dreq, hdr); 788 if (nfs_write_need_commit(hdr)) { 789 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) 790 request_commit = true; 791 else if (dreq->flags == 0) { 792 nfs_direct_set_hdr_verf(dreq, hdr); 793 request_commit = true; 794 dreq->flags = NFS_ODIRECT_DO_COMMIT; 795 } else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) { 796 request_commit = true; 797 if (nfs_direct_set_or_cmp_hdr_verf(dreq, hdr)) 798 dreq->flags = 799 NFS_ODIRECT_RESCHED_WRITES; 800 } 801 } 802 } 803 spin_unlock(&dreq->lock); 804 805 while (!list_empty(&hdr->pages)) { 806 807 req = nfs_list_entry(hdr->pages.next); 808 nfs_list_remove_request(req); 809 if (request_commit) { 810 kref_get(&req->wb_kref); 811 nfs_mark_request_commit(req, hdr->lseg, &cinfo, 812 hdr->ds_commit_idx); 813 } 814 nfs_unlock_and_release_request(req); 815 } 816 817 out_put: 818 if (put_dreq(dreq)) 819 nfs_direct_write_complete(dreq); 820 hdr->release(hdr); 821 } 822 823 static void nfs_write_sync_pgio_error(struct list_head *head, int error) 824 { 825 struct nfs_page *req; 826 827 while (!list_empty(head)) { 828 req = nfs_list_entry(head->next); 829 nfs_list_remove_request(req); 830 nfs_unlock_and_release_request(req); 831 } 832 } 833 834 static void nfs_direct_write_reschedule_io(struct nfs_pgio_header *hdr) 835 { 836 struct nfs_direct_req *dreq = hdr->dreq; 837 838 spin_lock(&dreq->lock); 839 if (dreq->error == 0) { 840 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 841 /* fake unstable write to let common nfs resend pages */ 842 hdr->verf.committed = NFS_UNSTABLE; 843 hdr->good_bytes = hdr->args.count; 844 } 845 spin_unlock(&dreq->lock); 846 } 847 848 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = { 849 .error_cleanup = nfs_write_sync_pgio_error, 850 .init_hdr = nfs_direct_pgio_init, 851 .completion = nfs_direct_write_completion, 852 .reschedule_io = nfs_direct_write_reschedule_io, 853 }; 854 855 856 /* 857 * NB: Return the value of the first error return code. Subsequent 858 * errors after the first one are ignored. 859 */ 860 /* 861 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE 862 * operation. If nfs_writedata_alloc() or get_user_pages() fails, 863 * bail and stop sending more writes. Write length accounting is 864 * handled automatically by nfs_direct_write_result(). Otherwise, if 865 * no requests have been sent, just return an error. 866 */ 867 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq, 868 struct iov_iter *iter, 869 loff_t pos) 870 { 871 struct nfs_pageio_descriptor desc; 872 struct inode *inode = dreq->inode; 873 ssize_t result = 0; 874 size_t requested_bytes = 0; 875 size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE); 876 877 nfs_pageio_init_write(&desc, inode, FLUSH_COND_STABLE, false, 878 &nfs_direct_write_completion_ops); 879 desc.pg_dreq = dreq; 880 get_dreq(dreq); 881 inode_dio_begin(inode); 882 883 NFS_I(inode)->write_io += iov_iter_count(iter); 884 while (iov_iter_count(iter)) { 885 struct page **pagevec; 886 size_t bytes; 887 size_t pgbase; 888 unsigned npages, i; 889 890 result = iov_iter_get_pages_alloc(iter, &pagevec, 891 wsize, &pgbase); 892 if (result < 0) 893 break; 894 895 bytes = result; 896 iov_iter_advance(iter, bytes); 897 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE; 898 for (i = 0; i < npages; i++) { 899 struct nfs_page *req; 900 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase); 901 902 req = nfs_create_request(dreq->ctx, pagevec[i], NULL, 903 pgbase, req_len); 904 if (IS_ERR(req)) { 905 result = PTR_ERR(req); 906 break; 907 } 908 909 nfs_direct_setup_mirroring(dreq, &desc, req); 910 if (desc.pg_error < 0) { 911 nfs_free_request(req); 912 result = desc.pg_error; 913 break; 914 } 915 916 nfs_lock_request(req); 917 req->wb_index = pos >> PAGE_SHIFT; 918 req->wb_offset = pos & ~PAGE_MASK; 919 if (!nfs_pageio_add_request(&desc, req)) { 920 result = desc.pg_error; 921 nfs_unlock_and_release_request(req); 922 break; 923 } 924 pgbase = 0; 925 bytes -= req_len; 926 requested_bytes += req_len; 927 pos += req_len; 928 dreq->bytes_left -= req_len; 929 } 930 nfs_direct_release_pages(pagevec, npages); 931 kvfree(pagevec); 932 if (result < 0) 933 break; 934 } 935 nfs_pageio_complete(&desc); 936 937 /* 938 * If no bytes were started, return the error, and let the 939 * generic layer handle the completion. 940 */ 941 if (requested_bytes == 0) { 942 inode_dio_end(inode); 943 nfs_direct_req_release(dreq); 944 return result < 0 ? result : -EIO; 945 } 946 947 if (put_dreq(dreq)) 948 nfs_direct_write_complete(dreq); 949 return requested_bytes; 950 } 951 952 /** 953 * nfs_file_direct_write - file direct write operation for NFS files 954 * @iocb: target I/O control block 955 * @iter: vector of user buffers from which to write data 956 * 957 * We use this function for direct writes instead of calling 958 * generic_file_aio_write() in order to avoid taking the inode 959 * semaphore and updating the i_size. The NFS server will set 960 * the new i_size and this client must read the updated size 961 * back into its cache. We let the server do generic write 962 * parameter checking and report problems. 963 * 964 * We eliminate local atime updates, see direct read above. 965 * 966 * We avoid unnecessary page cache invalidations for normal cached 967 * readers of this file. 968 * 969 * Note that O_APPEND is not supported for NFS direct writes, as there 970 * is no atomic O_APPEND write facility in the NFS protocol. 971 */ 972 ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter) 973 { 974 ssize_t result = -EINVAL, requested; 975 size_t count; 976 struct file *file = iocb->ki_filp; 977 struct address_space *mapping = file->f_mapping; 978 struct inode *inode = mapping->host; 979 struct nfs_direct_req *dreq; 980 struct nfs_lock_context *l_ctx; 981 loff_t pos, end; 982 983 dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n", 984 file, iov_iter_count(iter), (long long) iocb->ki_pos); 985 986 result = generic_write_checks(iocb, iter); 987 if (result <= 0) 988 return result; 989 count = result; 990 nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count); 991 992 pos = iocb->ki_pos; 993 end = (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT; 994 995 task_io_account_write(count); 996 997 result = -ENOMEM; 998 dreq = nfs_direct_req_alloc(); 999 if (!dreq) 1000 goto out; 1001 1002 dreq->inode = inode; 1003 dreq->bytes_left = dreq->max_count = count; 1004 dreq->io_start = pos; 1005 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp)); 1006 l_ctx = nfs_get_lock_context(dreq->ctx); 1007 if (IS_ERR(l_ctx)) { 1008 result = PTR_ERR(l_ctx); 1009 goto out_release; 1010 } 1011 dreq->l_ctx = l_ctx; 1012 if (!is_sync_kiocb(iocb)) 1013 dreq->iocb = iocb; 1014 1015 nfs_start_io_direct(inode); 1016 1017 requested = nfs_direct_write_schedule_iovec(dreq, iter, pos); 1018 1019 if (mapping->nrpages) { 1020 invalidate_inode_pages2_range(mapping, 1021 pos >> PAGE_SHIFT, end); 1022 } 1023 1024 nfs_end_io_direct(inode); 1025 1026 if (requested > 0) { 1027 result = nfs_direct_wait(dreq); 1028 if (result > 0) { 1029 requested -= result; 1030 iocb->ki_pos = pos + result; 1031 /* XXX: should check the generic_write_sync retval */ 1032 generic_write_sync(iocb, result); 1033 } 1034 iov_iter_revert(iter, requested); 1035 } else { 1036 result = requested; 1037 } 1038 out_release: 1039 nfs_direct_req_release(dreq); 1040 out: 1041 return result; 1042 } 1043 1044 /** 1045 * nfs_init_directcache - create a slab cache for nfs_direct_req structures 1046 * 1047 */ 1048 int __init nfs_init_directcache(void) 1049 { 1050 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache", 1051 sizeof(struct nfs_direct_req), 1052 0, (SLAB_RECLAIM_ACCOUNT| 1053 SLAB_MEM_SPREAD), 1054 NULL); 1055 if (nfs_direct_cachep == NULL) 1056 return -ENOMEM; 1057 1058 return 0; 1059 } 1060 1061 /** 1062 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures 1063 * 1064 */ 1065 void nfs_destroy_directcache(void) 1066 { 1067 kmem_cache_destroy(nfs_direct_cachep); 1068 } 1069