1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/nfs/direct.c 4 * 5 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com> 6 * 7 * High-performance uncached I/O for the Linux NFS client 8 * 9 * There are important applications whose performance or correctness 10 * depends on uncached access to file data. Database clusters 11 * (multiple copies of the same instance running on separate hosts) 12 * implement their own cache coherency protocol that subsumes file 13 * system cache protocols. Applications that process datasets 14 * considerably larger than the client's memory do not always benefit 15 * from a local cache. A streaming video server, for instance, has no 16 * need to cache the contents of a file. 17 * 18 * When an application requests uncached I/O, all read and write requests 19 * are made directly to the server; data stored or fetched via these 20 * requests is not cached in the Linux page cache. The client does not 21 * correct unaligned requests from applications. All requested bytes are 22 * held on permanent storage before a direct write system call returns to 23 * an application. 24 * 25 * Solaris implements an uncached I/O facility called directio() that 26 * is used for backups and sequential I/O to very large files. Solaris 27 * also supports uncaching whole NFS partitions with "-o forcedirectio," 28 * an undocumented mount option. 29 * 30 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with 31 * help from Andrew Morton. 32 * 33 * 18 Dec 2001 Initial implementation for 2.4 --cel 34 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy 35 * 08 Jun 2003 Port to 2.5 APIs --cel 36 * 31 Mar 2004 Handle direct I/O without VFS support --cel 37 * 15 Sep 2004 Parallel async reads --cel 38 * 04 May 2005 support O_DIRECT with aio --cel 39 * 40 */ 41 42 #include <linux/errno.h> 43 #include <linux/sched.h> 44 #include <linux/kernel.h> 45 #include <linux/file.h> 46 #include <linux/pagemap.h> 47 #include <linux/kref.h> 48 #include <linux/slab.h> 49 #include <linux/task_io_accounting_ops.h> 50 #include <linux/module.h> 51 52 #include <linux/nfs_fs.h> 53 #include <linux/nfs_page.h> 54 #include <linux/sunrpc/clnt.h> 55 56 #include <linux/uaccess.h> 57 #include <linux/atomic.h> 58 59 #include "internal.h" 60 #include "iostat.h" 61 #include "pnfs.h" 62 63 #define NFSDBG_FACILITY NFSDBG_VFS 64 65 static struct kmem_cache *nfs_direct_cachep; 66 67 struct nfs_direct_req { 68 struct kref kref; /* release manager */ 69 70 /* I/O parameters */ 71 struct nfs_open_context *ctx; /* file open context info */ 72 struct nfs_lock_context *l_ctx; /* Lock context info */ 73 struct kiocb * iocb; /* controlling i/o request */ 74 struct inode * inode; /* target file of i/o */ 75 76 /* completion state */ 77 atomic_t io_count; /* i/os we're waiting for */ 78 spinlock_t lock; /* protect completion state */ 79 80 loff_t io_start; /* Start offset for I/O */ 81 ssize_t count, /* bytes actually processed */ 82 max_count, /* max expected count */ 83 bytes_left, /* bytes left to be sent */ 84 error; /* any reported error */ 85 struct completion completion; /* wait for i/o completion */ 86 87 /* commit state */ 88 struct nfs_mds_commit_info mds_cinfo; /* Storage for cinfo */ 89 struct pnfs_ds_commit_info ds_cinfo; /* Storage for cinfo */ 90 struct work_struct work; 91 int flags; 92 /* for write */ 93 #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */ 94 #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */ 95 /* for read */ 96 #define NFS_ODIRECT_SHOULD_DIRTY (3) /* dirty user-space page after read */ 97 struct nfs_writeverf verf; /* unstable write verifier */ 98 }; 99 100 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops; 101 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops; 102 static void nfs_direct_write_complete(struct nfs_direct_req *dreq); 103 static void nfs_direct_write_schedule_work(struct work_struct *work); 104 105 static inline void get_dreq(struct nfs_direct_req *dreq) 106 { 107 atomic_inc(&dreq->io_count); 108 } 109 110 static inline int put_dreq(struct nfs_direct_req *dreq) 111 { 112 return atomic_dec_and_test(&dreq->io_count); 113 } 114 115 static void 116 nfs_direct_handle_truncated(struct nfs_direct_req *dreq, 117 const struct nfs_pgio_header *hdr, 118 ssize_t dreq_len) 119 { 120 if (!(test_bit(NFS_IOHDR_ERROR, &hdr->flags) || 121 test_bit(NFS_IOHDR_EOF, &hdr->flags))) 122 return; 123 if (dreq->max_count >= dreq_len) { 124 dreq->max_count = dreq_len; 125 if (dreq->count > dreq_len) 126 dreq->count = dreq_len; 127 128 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) 129 dreq->error = hdr->error; 130 else /* Clear outstanding error if this is EOF */ 131 dreq->error = 0; 132 } 133 } 134 135 static void 136 nfs_direct_count_bytes(struct nfs_direct_req *dreq, 137 const struct nfs_pgio_header *hdr) 138 { 139 loff_t hdr_end = hdr->io_start + hdr->good_bytes; 140 ssize_t dreq_len = 0; 141 142 if (hdr_end > dreq->io_start) 143 dreq_len = hdr_end - dreq->io_start; 144 145 nfs_direct_handle_truncated(dreq, hdr, dreq_len); 146 147 if (dreq_len > dreq->max_count) 148 dreq_len = dreq->max_count; 149 150 if (dreq->count < dreq_len) 151 dreq->count = dreq_len; 152 } 153 154 /* 155 * nfs_direct_select_verf - select the right verifier 156 * @dreq - direct request possibly spanning multiple servers 157 * @ds_clp - nfs_client of data server or NULL if MDS / non-pnfs 158 * @commit_idx - commit bucket index for the DS 159 * 160 * returns the correct verifier to use given the role of the server 161 */ 162 static struct nfs_writeverf * 163 nfs_direct_select_verf(struct nfs_direct_req *dreq, 164 struct nfs_client *ds_clp, 165 int commit_idx) 166 { 167 struct nfs_writeverf *verfp = &dreq->verf; 168 169 #ifdef CONFIG_NFS_V4_1 170 /* 171 * pNFS is in use, use the DS verf except commit_through_mds is set 172 * for layout segment where nbuckets is zero. 173 */ 174 if (ds_clp && dreq->ds_cinfo.nbuckets > 0) { 175 if (commit_idx >= 0 && commit_idx < dreq->ds_cinfo.nbuckets) 176 verfp = &dreq->ds_cinfo.buckets[commit_idx].direct_verf; 177 else 178 WARN_ON_ONCE(1); 179 } 180 #endif 181 return verfp; 182 } 183 184 185 /* 186 * nfs_direct_set_hdr_verf - set the write/commit verifier 187 * @dreq - direct request possibly spanning multiple servers 188 * @hdr - pageio header to validate against previously seen verfs 189 * 190 * Set the server's (MDS or DS) "seen" verifier 191 */ 192 static void nfs_direct_set_hdr_verf(struct nfs_direct_req *dreq, 193 struct nfs_pgio_header *hdr) 194 { 195 struct nfs_writeverf *verfp; 196 197 verfp = nfs_direct_select_verf(dreq, hdr->ds_clp, hdr->ds_commit_idx); 198 WARN_ON_ONCE(verfp->committed >= 0); 199 memcpy(verfp, &hdr->verf, sizeof(struct nfs_writeverf)); 200 WARN_ON_ONCE(verfp->committed < 0); 201 } 202 203 static int nfs_direct_cmp_verf(const struct nfs_writeverf *v1, 204 const struct nfs_writeverf *v2) 205 { 206 return nfs_write_verifier_cmp(&v1->verifier, &v2->verifier); 207 } 208 209 /* 210 * nfs_direct_cmp_hdr_verf - compare verifier for pgio header 211 * @dreq - direct request possibly spanning multiple servers 212 * @hdr - pageio header to validate against previously seen verf 213 * 214 * set the server's "seen" verf if not initialized. 215 * returns result of comparison between @hdr->verf and the "seen" 216 * verf of the server used by @hdr (DS or MDS) 217 */ 218 static int nfs_direct_set_or_cmp_hdr_verf(struct nfs_direct_req *dreq, 219 struct nfs_pgio_header *hdr) 220 { 221 struct nfs_writeverf *verfp; 222 223 verfp = nfs_direct_select_verf(dreq, hdr->ds_clp, hdr->ds_commit_idx); 224 if (verfp->committed < 0) { 225 nfs_direct_set_hdr_verf(dreq, hdr); 226 return 0; 227 } 228 return nfs_direct_cmp_verf(verfp, &hdr->verf); 229 } 230 231 /* 232 * nfs_direct_cmp_commit_data_verf - compare verifier for commit data 233 * @dreq - direct request possibly spanning multiple servers 234 * @data - commit data to validate against previously seen verf 235 * 236 * returns result of comparison between @data->verf and the verf of 237 * the server used by @data (DS or MDS) 238 */ 239 static int nfs_direct_cmp_commit_data_verf(struct nfs_direct_req *dreq, 240 struct nfs_commit_data *data) 241 { 242 struct nfs_writeverf *verfp; 243 244 verfp = nfs_direct_select_verf(dreq, data->ds_clp, 245 data->ds_commit_index); 246 247 /* verifier not set so always fail */ 248 if (verfp->committed < 0 || data->res.verf->committed <= NFS_UNSTABLE) 249 return 1; 250 251 return nfs_direct_cmp_verf(verfp, data->res.verf); 252 } 253 254 /** 255 * nfs_direct_IO - NFS address space operation for direct I/O 256 * @iocb: target I/O control block 257 * @iter: I/O buffer 258 * 259 * The presence of this routine in the address space ops vector means 260 * the NFS client supports direct I/O. However, for most direct IO, we 261 * shunt off direct read and write requests before the VFS gets them, 262 * so this method is only ever called for swap. 263 */ 264 ssize_t nfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 265 { 266 struct inode *inode = iocb->ki_filp->f_mapping->host; 267 268 /* we only support swap file calling nfs_direct_IO */ 269 if (!IS_SWAPFILE(inode)) 270 return 0; 271 272 VM_BUG_ON(iov_iter_count(iter) != PAGE_SIZE); 273 274 if (iov_iter_rw(iter) == READ) 275 return nfs_file_direct_read(iocb, iter); 276 return nfs_file_direct_write(iocb, iter); 277 } 278 279 static void nfs_direct_release_pages(struct page **pages, unsigned int npages) 280 { 281 unsigned int i; 282 for (i = 0; i < npages; i++) 283 put_page(pages[i]); 284 } 285 286 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo, 287 struct nfs_direct_req *dreq) 288 { 289 cinfo->inode = dreq->inode; 290 cinfo->mds = &dreq->mds_cinfo; 291 cinfo->ds = &dreq->ds_cinfo; 292 cinfo->dreq = dreq; 293 cinfo->completion_ops = &nfs_direct_commit_completion_ops; 294 } 295 296 static inline struct nfs_direct_req *nfs_direct_req_alloc(void) 297 { 298 struct nfs_direct_req *dreq; 299 300 dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL); 301 if (!dreq) 302 return NULL; 303 304 kref_init(&dreq->kref); 305 kref_get(&dreq->kref); 306 init_completion(&dreq->completion); 307 INIT_LIST_HEAD(&dreq->mds_cinfo.list); 308 dreq->verf.committed = NFS_INVALID_STABLE_HOW; /* not set yet */ 309 INIT_WORK(&dreq->work, nfs_direct_write_schedule_work); 310 spin_lock_init(&dreq->lock); 311 312 return dreq; 313 } 314 315 static void nfs_direct_req_free(struct kref *kref) 316 { 317 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref); 318 319 nfs_free_pnfs_ds_cinfo(&dreq->ds_cinfo); 320 if (dreq->l_ctx != NULL) 321 nfs_put_lock_context(dreq->l_ctx); 322 if (dreq->ctx != NULL) 323 put_nfs_open_context(dreq->ctx); 324 kmem_cache_free(nfs_direct_cachep, dreq); 325 } 326 327 static void nfs_direct_req_release(struct nfs_direct_req *dreq) 328 { 329 kref_put(&dreq->kref, nfs_direct_req_free); 330 } 331 332 ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq) 333 { 334 return dreq->bytes_left; 335 } 336 EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left); 337 338 /* 339 * Collects and returns the final error value/byte-count. 340 */ 341 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq) 342 { 343 ssize_t result = -EIOCBQUEUED; 344 345 /* Async requests don't wait here */ 346 if (dreq->iocb) 347 goto out; 348 349 result = wait_for_completion_killable(&dreq->completion); 350 351 if (!result) { 352 result = dreq->count; 353 WARN_ON_ONCE(dreq->count < 0); 354 } 355 if (!result) 356 result = dreq->error; 357 358 out: 359 return (ssize_t) result; 360 } 361 362 /* 363 * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust 364 * the iocb is still valid here if this is a synchronous request. 365 */ 366 static void nfs_direct_complete(struct nfs_direct_req *dreq) 367 { 368 struct inode *inode = dreq->inode; 369 370 inode_dio_end(inode); 371 372 if (dreq->iocb) { 373 long res = (long) dreq->error; 374 if (dreq->count != 0) { 375 res = (long) dreq->count; 376 WARN_ON_ONCE(dreq->count < 0); 377 } 378 dreq->iocb->ki_complete(dreq->iocb, res, 0); 379 } 380 381 complete(&dreq->completion); 382 383 nfs_direct_req_release(dreq); 384 } 385 386 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr) 387 { 388 unsigned long bytes = 0; 389 struct nfs_direct_req *dreq = hdr->dreq; 390 391 spin_lock(&dreq->lock); 392 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) { 393 spin_unlock(&dreq->lock); 394 goto out_put; 395 } 396 397 nfs_direct_count_bytes(dreq, hdr); 398 spin_unlock(&dreq->lock); 399 400 while (!list_empty(&hdr->pages)) { 401 struct nfs_page *req = nfs_list_entry(hdr->pages.next); 402 struct page *page = req->wb_page; 403 404 if (!PageCompound(page) && bytes < hdr->good_bytes && 405 (dreq->flags == NFS_ODIRECT_SHOULD_DIRTY)) 406 set_page_dirty(page); 407 bytes += req->wb_bytes; 408 nfs_list_remove_request(req); 409 nfs_release_request(req); 410 } 411 out_put: 412 if (put_dreq(dreq)) 413 nfs_direct_complete(dreq); 414 hdr->release(hdr); 415 } 416 417 static void nfs_read_sync_pgio_error(struct list_head *head, int error) 418 { 419 struct nfs_page *req; 420 421 while (!list_empty(head)) { 422 req = nfs_list_entry(head->next); 423 nfs_list_remove_request(req); 424 nfs_release_request(req); 425 } 426 } 427 428 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr) 429 { 430 get_dreq(hdr->dreq); 431 } 432 433 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = { 434 .error_cleanup = nfs_read_sync_pgio_error, 435 .init_hdr = nfs_direct_pgio_init, 436 .completion = nfs_direct_read_completion, 437 }; 438 439 /* 440 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ 441 * operation. If nfs_readdata_alloc() or get_user_pages() fails, 442 * bail and stop sending more reads. Read length accounting is 443 * handled automatically by nfs_direct_read_result(). Otherwise, if 444 * no requests have been sent, just return an error. 445 */ 446 447 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq, 448 struct iov_iter *iter, 449 loff_t pos) 450 { 451 struct nfs_pageio_descriptor desc; 452 struct inode *inode = dreq->inode; 453 ssize_t result = -EINVAL; 454 size_t requested_bytes = 0; 455 size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE); 456 457 nfs_pageio_init_read(&desc, dreq->inode, false, 458 &nfs_direct_read_completion_ops); 459 get_dreq(dreq); 460 desc.pg_dreq = dreq; 461 inode_dio_begin(inode); 462 463 while (iov_iter_count(iter)) { 464 struct page **pagevec; 465 size_t bytes; 466 size_t pgbase; 467 unsigned npages, i; 468 469 result = iov_iter_get_pages_alloc(iter, &pagevec, 470 rsize, &pgbase); 471 if (result < 0) 472 break; 473 474 bytes = result; 475 iov_iter_advance(iter, bytes); 476 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE; 477 for (i = 0; i < npages; i++) { 478 struct nfs_page *req; 479 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase); 480 /* XXX do we need to do the eof zeroing found in async_filler? */ 481 req = nfs_create_request(dreq->ctx, pagevec[i], 482 pgbase, req_len); 483 if (IS_ERR(req)) { 484 result = PTR_ERR(req); 485 break; 486 } 487 req->wb_index = pos >> PAGE_SHIFT; 488 req->wb_offset = pos & ~PAGE_MASK; 489 if (!nfs_pageio_add_request(&desc, req)) { 490 result = desc.pg_error; 491 nfs_release_request(req); 492 break; 493 } 494 pgbase = 0; 495 bytes -= req_len; 496 requested_bytes += req_len; 497 pos += req_len; 498 dreq->bytes_left -= req_len; 499 } 500 nfs_direct_release_pages(pagevec, npages); 501 kvfree(pagevec); 502 if (result < 0) 503 break; 504 } 505 506 nfs_pageio_complete(&desc); 507 508 /* 509 * If no bytes were started, return the error, and let the 510 * generic layer handle the completion. 511 */ 512 if (requested_bytes == 0) { 513 inode_dio_end(inode); 514 nfs_direct_req_release(dreq); 515 return result < 0 ? result : -EIO; 516 } 517 518 if (put_dreq(dreq)) 519 nfs_direct_complete(dreq); 520 return requested_bytes; 521 } 522 523 /** 524 * nfs_file_direct_read - file direct read operation for NFS files 525 * @iocb: target I/O control block 526 * @iter: vector of user buffers into which to read data 527 * 528 * We use this function for direct reads instead of calling 529 * generic_file_aio_read() in order to avoid gfar's check to see if 530 * the request starts before the end of the file. For that check 531 * to work, we must generate a GETATTR before each direct read, and 532 * even then there is a window between the GETATTR and the subsequent 533 * READ where the file size could change. Our preference is simply 534 * to do all reads the application wants, and the server will take 535 * care of managing the end of file boundary. 536 * 537 * This function also eliminates unnecessarily updating the file's 538 * atime locally, as the NFS server sets the file's atime, and this 539 * client must read the updated atime from the server back into its 540 * cache. 541 */ 542 ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter) 543 { 544 struct file *file = iocb->ki_filp; 545 struct address_space *mapping = file->f_mapping; 546 struct inode *inode = mapping->host; 547 struct nfs_direct_req *dreq; 548 struct nfs_lock_context *l_ctx; 549 ssize_t result = -EINVAL, requested; 550 size_t count = iov_iter_count(iter); 551 nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count); 552 553 dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n", 554 file, count, (long long) iocb->ki_pos); 555 556 result = 0; 557 if (!count) 558 goto out; 559 560 task_io_account_read(count); 561 562 result = -ENOMEM; 563 dreq = nfs_direct_req_alloc(); 564 if (dreq == NULL) 565 goto out; 566 567 dreq->inode = inode; 568 dreq->bytes_left = dreq->max_count = count; 569 dreq->io_start = iocb->ki_pos; 570 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp)); 571 l_ctx = nfs_get_lock_context(dreq->ctx); 572 if (IS_ERR(l_ctx)) { 573 result = PTR_ERR(l_ctx); 574 goto out_release; 575 } 576 dreq->l_ctx = l_ctx; 577 if (!is_sync_kiocb(iocb)) 578 dreq->iocb = iocb; 579 580 if (iter_is_iovec(iter)) 581 dreq->flags = NFS_ODIRECT_SHOULD_DIRTY; 582 583 nfs_start_io_direct(inode); 584 585 NFS_I(inode)->read_io += count; 586 requested = nfs_direct_read_schedule_iovec(dreq, iter, iocb->ki_pos); 587 588 nfs_end_io_direct(inode); 589 590 if (requested > 0) { 591 result = nfs_direct_wait(dreq); 592 if (result > 0) { 593 requested -= result; 594 iocb->ki_pos += result; 595 } 596 iov_iter_revert(iter, requested); 597 } else { 598 result = requested; 599 } 600 601 out_release: 602 nfs_direct_req_release(dreq); 603 out: 604 return result; 605 } 606 607 static void 608 nfs_direct_write_scan_commit_list(struct inode *inode, 609 struct list_head *list, 610 struct nfs_commit_info *cinfo) 611 { 612 mutex_lock(&NFS_I(cinfo->inode)->commit_mutex); 613 #ifdef CONFIG_NFS_V4_1 614 if (cinfo->ds != NULL && cinfo->ds->nwritten != 0) 615 NFS_SERVER(inode)->pnfs_curr_ld->recover_commit_reqs(list, cinfo); 616 #endif 617 nfs_scan_commit_list(&cinfo->mds->list, list, cinfo, 0); 618 mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex); 619 } 620 621 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq) 622 { 623 struct nfs_pageio_descriptor desc; 624 struct nfs_page *req, *tmp; 625 LIST_HEAD(reqs); 626 struct nfs_commit_info cinfo; 627 LIST_HEAD(failed); 628 629 nfs_init_cinfo_from_dreq(&cinfo, dreq); 630 nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo); 631 632 dreq->count = 0; 633 dreq->max_count = 0; 634 list_for_each_entry(req, &reqs, wb_list) 635 dreq->max_count += req->wb_bytes; 636 dreq->verf.committed = NFS_INVALID_STABLE_HOW; 637 nfs_clear_pnfs_ds_commit_verifiers(&dreq->ds_cinfo); 638 get_dreq(dreq); 639 640 nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false, 641 &nfs_direct_write_completion_ops); 642 desc.pg_dreq = dreq; 643 644 list_for_each_entry_safe(req, tmp, &reqs, wb_list) { 645 /* Bump the transmission count */ 646 req->wb_nio++; 647 if (!nfs_pageio_add_request(&desc, req)) { 648 nfs_list_move_request(req, &failed); 649 spin_lock(&cinfo.inode->i_lock); 650 dreq->flags = 0; 651 if (desc.pg_error < 0) 652 dreq->error = desc.pg_error; 653 else 654 dreq->error = -EIO; 655 spin_unlock(&cinfo.inode->i_lock); 656 } 657 nfs_release_request(req); 658 } 659 nfs_pageio_complete(&desc); 660 661 while (!list_empty(&failed)) { 662 req = nfs_list_entry(failed.next); 663 nfs_list_remove_request(req); 664 nfs_unlock_and_release_request(req); 665 } 666 667 if (put_dreq(dreq)) 668 nfs_direct_write_complete(dreq); 669 } 670 671 static void nfs_direct_commit_complete(struct nfs_commit_data *data) 672 { 673 struct nfs_direct_req *dreq = data->dreq; 674 struct nfs_commit_info cinfo; 675 struct nfs_page *req; 676 int status = data->task.tk_status; 677 678 nfs_init_cinfo_from_dreq(&cinfo, dreq); 679 if (status < 0 || nfs_direct_cmp_commit_data_verf(dreq, data)) 680 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 681 682 while (!list_empty(&data->pages)) { 683 req = nfs_list_entry(data->pages.next); 684 nfs_list_remove_request(req); 685 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) { 686 /* 687 * Despite the reboot, the write was successful, 688 * so reset wb_nio. 689 */ 690 req->wb_nio = 0; 691 /* Note the rewrite will go through mds */ 692 nfs_mark_request_commit(req, NULL, &cinfo, 0); 693 } else 694 nfs_release_request(req); 695 nfs_unlock_and_release_request(req); 696 } 697 698 if (atomic_dec_and_test(&cinfo.mds->rpcs_out)) 699 nfs_direct_write_complete(dreq); 700 } 701 702 static void nfs_direct_resched_write(struct nfs_commit_info *cinfo, 703 struct nfs_page *req) 704 { 705 struct nfs_direct_req *dreq = cinfo->dreq; 706 707 spin_lock(&dreq->lock); 708 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 709 spin_unlock(&dreq->lock); 710 nfs_mark_request_commit(req, NULL, cinfo, 0); 711 } 712 713 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = { 714 .completion = nfs_direct_commit_complete, 715 .resched_write = nfs_direct_resched_write, 716 }; 717 718 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq) 719 { 720 int res; 721 struct nfs_commit_info cinfo; 722 LIST_HEAD(mds_list); 723 724 nfs_init_cinfo_from_dreq(&cinfo, dreq); 725 nfs_scan_commit(dreq->inode, &mds_list, &cinfo); 726 res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo); 727 if (res < 0) /* res == -ENOMEM */ 728 nfs_direct_write_reschedule(dreq); 729 } 730 731 static void nfs_direct_write_schedule_work(struct work_struct *work) 732 { 733 struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work); 734 int flags = dreq->flags; 735 736 dreq->flags = 0; 737 switch (flags) { 738 case NFS_ODIRECT_DO_COMMIT: 739 nfs_direct_commit_schedule(dreq); 740 break; 741 case NFS_ODIRECT_RESCHED_WRITES: 742 nfs_direct_write_reschedule(dreq); 743 break; 744 default: 745 nfs_zap_mapping(dreq->inode, dreq->inode->i_mapping); 746 nfs_direct_complete(dreq); 747 } 748 } 749 750 static void nfs_direct_write_complete(struct nfs_direct_req *dreq) 751 { 752 queue_work(nfsiod_workqueue, &dreq->work); /* Calls nfs_direct_write_schedule_work */ 753 } 754 755 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr) 756 { 757 struct nfs_direct_req *dreq = hdr->dreq; 758 struct nfs_commit_info cinfo; 759 bool request_commit = false; 760 struct nfs_page *req = nfs_list_entry(hdr->pages.next); 761 762 nfs_init_cinfo_from_dreq(&cinfo, dreq); 763 764 spin_lock(&dreq->lock); 765 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) { 766 spin_unlock(&dreq->lock); 767 goto out_put; 768 } 769 770 nfs_direct_count_bytes(dreq, hdr); 771 if (hdr->good_bytes != 0) { 772 if (nfs_write_need_commit(hdr)) { 773 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) 774 request_commit = true; 775 else if (dreq->flags == 0) { 776 nfs_direct_set_hdr_verf(dreq, hdr); 777 request_commit = true; 778 dreq->flags = NFS_ODIRECT_DO_COMMIT; 779 } else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) { 780 request_commit = true; 781 if (nfs_direct_set_or_cmp_hdr_verf(dreq, hdr)) 782 dreq->flags = 783 NFS_ODIRECT_RESCHED_WRITES; 784 } 785 } 786 } 787 spin_unlock(&dreq->lock); 788 789 while (!list_empty(&hdr->pages)) { 790 791 req = nfs_list_entry(hdr->pages.next); 792 nfs_list_remove_request(req); 793 if (request_commit) { 794 kref_get(&req->wb_kref); 795 nfs_mark_request_commit(req, hdr->lseg, &cinfo, 796 hdr->ds_commit_idx); 797 } 798 nfs_unlock_and_release_request(req); 799 } 800 801 out_put: 802 if (put_dreq(dreq)) 803 nfs_direct_write_complete(dreq); 804 hdr->release(hdr); 805 } 806 807 static void nfs_write_sync_pgio_error(struct list_head *head, int error) 808 { 809 struct nfs_page *req; 810 811 while (!list_empty(head)) { 812 req = nfs_list_entry(head->next); 813 nfs_list_remove_request(req); 814 nfs_unlock_and_release_request(req); 815 } 816 } 817 818 static void nfs_direct_write_reschedule_io(struct nfs_pgio_header *hdr) 819 { 820 struct nfs_direct_req *dreq = hdr->dreq; 821 822 spin_lock(&dreq->lock); 823 if (dreq->error == 0) { 824 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 825 /* fake unstable write to let common nfs resend pages */ 826 hdr->verf.committed = NFS_UNSTABLE; 827 hdr->good_bytes = hdr->args.offset + hdr->args.count - 828 hdr->io_start; 829 } 830 spin_unlock(&dreq->lock); 831 } 832 833 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = { 834 .error_cleanup = nfs_write_sync_pgio_error, 835 .init_hdr = nfs_direct_pgio_init, 836 .completion = nfs_direct_write_completion, 837 .reschedule_io = nfs_direct_write_reschedule_io, 838 }; 839 840 841 /* 842 * NB: Return the value of the first error return code. Subsequent 843 * errors after the first one are ignored. 844 */ 845 /* 846 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE 847 * operation. If nfs_writedata_alloc() or get_user_pages() fails, 848 * bail and stop sending more writes. Write length accounting is 849 * handled automatically by nfs_direct_write_result(). Otherwise, if 850 * no requests have been sent, just return an error. 851 */ 852 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq, 853 struct iov_iter *iter, 854 loff_t pos) 855 { 856 struct nfs_pageio_descriptor desc; 857 struct inode *inode = dreq->inode; 858 ssize_t result = 0; 859 size_t requested_bytes = 0; 860 size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE); 861 862 nfs_pageio_init_write(&desc, inode, FLUSH_COND_STABLE, false, 863 &nfs_direct_write_completion_ops); 864 desc.pg_dreq = dreq; 865 get_dreq(dreq); 866 inode_dio_begin(inode); 867 868 NFS_I(inode)->write_io += iov_iter_count(iter); 869 while (iov_iter_count(iter)) { 870 struct page **pagevec; 871 size_t bytes; 872 size_t pgbase; 873 unsigned npages, i; 874 875 result = iov_iter_get_pages_alloc(iter, &pagevec, 876 wsize, &pgbase); 877 if (result < 0) 878 break; 879 880 bytes = result; 881 iov_iter_advance(iter, bytes); 882 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE; 883 for (i = 0; i < npages; i++) { 884 struct nfs_page *req; 885 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase); 886 887 req = nfs_create_request(dreq->ctx, pagevec[i], 888 pgbase, req_len); 889 if (IS_ERR(req)) { 890 result = PTR_ERR(req); 891 break; 892 } 893 894 if (desc.pg_error < 0) { 895 nfs_free_request(req); 896 result = desc.pg_error; 897 break; 898 } 899 900 nfs_lock_request(req); 901 req->wb_index = pos >> PAGE_SHIFT; 902 req->wb_offset = pos & ~PAGE_MASK; 903 if (!nfs_pageio_add_request(&desc, req)) { 904 result = desc.pg_error; 905 nfs_unlock_and_release_request(req); 906 break; 907 } 908 pgbase = 0; 909 bytes -= req_len; 910 requested_bytes += req_len; 911 pos += req_len; 912 dreq->bytes_left -= req_len; 913 } 914 nfs_direct_release_pages(pagevec, npages); 915 kvfree(pagevec); 916 if (result < 0) 917 break; 918 } 919 nfs_pageio_complete(&desc); 920 921 /* 922 * If no bytes were started, return the error, and let the 923 * generic layer handle the completion. 924 */ 925 if (requested_bytes == 0) { 926 inode_dio_end(inode); 927 nfs_direct_req_release(dreq); 928 return result < 0 ? result : -EIO; 929 } 930 931 if (put_dreq(dreq)) 932 nfs_direct_write_complete(dreq); 933 return requested_bytes; 934 } 935 936 /** 937 * nfs_file_direct_write - file direct write operation for NFS files 938 * @iocb: target I/O control block 939 * @iter: vector of user buffers from which to write data 940 * 941 * We use this function for direct writes instead of calling 942 * generic_file_aio_write() in order to avoid taking the inode 943 * semaphore and updating the i_size. The NFS server will set 944 * the new i_size and this client must read the updated size 945 * back into its cache. We let the server do generic write 946 * parameter checking and report problems. 947 * 948 * We eliminate local atime updates, see direct read above. 949 * 950 * We avoid unnecessary page cache invalidations for normal cached 951 * readers of this file. 952 * 953 * Note that O_APPEND is not supported for NFS direct writes, as there 954 * is no atomic O_APPEND write facility in the NFS protocol. 955 */ 956 ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter) 957 { 958 ssize_t result = -EINVAL, requested; 959 size_t count; 960 struct file *file = iocb->ki_filp; 961 struct address_space *mapping = file->f_mapping; 962 struct inode *inode = mapping->host; 963 struct nfs_direct_req *dreq; 964 struct nfs_lock_context *l_ctx; 965 loff_t pos, end; 966 967 dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n", 968 file, iov_iter_count(iter), (long long) iocb->ki_pos); 969 970 result = generic_write_checks(iocb, iter); 971 if (result <= 0) 972 return result; 973 count = result; 974 nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count); 975 976 pos = iocb->ki_pos; 977 end = (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT; 978 979 task_io_account_write(count); 980 981 result = -ENOMEM; 982 dreq = nfs_direct_req_alloc(); 983 if (!dreq) 984 goto out; 985 986 dreq->inode = inode; 987 dreq->bytes_left = dreq->max_count = count; 988 dreq->io_start = pos; 989 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp)); 990 l_ctx = nfs_get_lock_context(dreq->ctx); 991 if (IS_ERR(l_ctx)) { 992 result = PTR_ERR(l_ctx); 993 goto out_release; 994 } 995 dreq->l_ctx = l_ctx; 996 if (!is_sync_kiocb(iocb)) 997 dreq->iocb = iocb; 998 999 nfs_start_io_direct(inode); 1000 1001 requested = nfs_direct_write_schedule_iovec(dreq, iter, pos); 1002 1003 if (mapping->nrpages) { 1004 invalidate_inode_pages2_range(mapping, 1005 pos >> PAGE_SHIFT, end); 1006 } 1007 1008 nfs_end_io_direct(inode); 1009 1010 if (requested > 0) { 1011 result = nfs_direct_wait(dreq); 1012 if (result > 0) { 1013 requested -= result; 1014 iocb->ki_pos = pos + result; 1015 /* XXX: should check the generic_write_sync retval */ 1016 generic_write_sync(iocb, result); 1017 } 1018 iov_iter_revert(iter, requested); 1019 } else { 1020 result = requested; 1021 } 1022 out_release: 1023 nfs_direct_req_release(dreq); 1024 out: 1025 return result; 1026 } 1027 1028 /** 1029 * nfs_init_directcache - create a slab cache for nfs_direct_req structures 1030 * 1031 */ 1032 int __init nfs_init_directcache(void) 1033 { 1034 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache", 1035 sizeof(struct nfs_direct_req), 1036 0, (SLAB_RECLAIM_ACCOUNT| 1037 SLAB_MEM_SPREAD), 1038 NULL); 1039 if (nfs_direct_cachep == NULL) 1040 return -ENOMEM; 1041 1042 return 0; 1043 } 1044 1045 /** 1046 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures 1047 * 1048 */ 1049 void nfs_destroy_directcache(void) 1050 { 1051 kmem_cache_destroy(nfs_direct_cachep); 1052 } 1053