xref: /openbmc/linux/fs/nfs/direct.c (revision f7875966)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/fs/nfs/direct.c
4  *
5  * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
6  *
7  * High-performance uncached I/O for the Linux NFS client
8  *
9  * There are important applications whose performance or correctness
10  * depends on uncached access to file data.  Database clusters
11  * (multiple copies of the same instance running on separate hosts)
12  * implement their own cache coherency protocol that subsumes file
13  * system cache protocols.  Applications that process datasets
14  * considerably larger than the client's memory do not always benefit
15  * from a local cache.  A streaming video server, for instance, has no
16  * need to cache the contents of a file.
17  *
18  * When an application requests uncached I/O, all read and write requests
19  * are made directly to the server; data stored or fetched via these
20  * requests is not cached in the Linux page cache.  The client does not
21  * correct unaligned requests from applications.  All requested bytes are
22  * held on permanent storage before a direct write system call returns to
23  * an application.
24  *
25  * Solaris implements an uncached I/O facility called directio() that
26  * is used for backups and sequential I/O to very large files.  Solaris
27  * also supports uncaching whole NFS partitions with "-o forcedirectio,"
28  * an undocumented mount option.
29  *
30  * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
31  * help from Andrew Morton.
32  *
33  * 18 Dec 2001	Initial implementation for 2.4  --cel
34  * 08 Jul 2002	Version for 2.4.19, with bug fixes --trondmy
35  * 08 Jun 2003	Port to 2.5 APIs  --cel
36  * 31 Mar 2004	Handle direct I/O without VFS support  --cel
37  * 15 Sep 2004	Parallel async reads  --cel
38  * 04 May 2005	support O_DIRECT with aio  --cel
39  *
40  */
41 
42 #include <linux/errno.h>
43 #include <linux/sched.h>
44 #include <linux/kernel.h>
45 #include <linux/file.h>
46 #include <linux/pagemap.h>
47 #include <linux/kref.h>
48 #include <linux/slab.h>
49 #include <linux/task_io_accounting_ops.h>
50 #include <linux/module.h>
51 
52 #include <linux/nfs_fs.h>
53 #include <linux/nfs_page.h>
54 #include <linux/sunrpc/clnt.h>
55 
56 #include <linux/uaccess.h>
57 #include <linux/atomic.h>
58 
59 #include "internal.h"
60 #include "iostat.h"
61 #include "pnfs.h"
62 #include "fscache.h"
63 #include "nfstrace.h"
64 
65 #define NFSDBG_FACILITY		NFSDBG_VFS
66 
67 static struct kmem_cache *nfs_direct_cachep;
68 
69 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
70 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
71 static void nfs_direct_write_complete(struct nfs_direct_req *dreq);
72 static void nfs_direct_write_schedule_work(struct work_struct *work);
73 
74 static inline void get_dreq(struct nfs_direct_req *dreq)
75 {
76 	atomic_inc(&dreq->io_count);
77 }
78 
79 static inline int put_dreq(struct nfs_direct_req *dreq)
80 {
81 	return atomic_dec_and_test(&dreq->io_count);
82 }
83 
84 static void
85 nfs_direct_handle_truncated(struct nfs_direct_req *dreq,
86 			    const struct nfs_pgio_header *hdr,
87 			    ssize_t dreq_len)
88 {
89 	if (!(test_bit(NFS_IOHDR_ERROR, &hdr->flags) ||
90 	      test_bit(NFS_IOHDR_EOF, &hdr->flags)))
91 		return;
92 	if (dreq->max_count >= dreq_len) {
93 		dreq->max_count = dreq_len;
94 		if (dreq->count > dreq_len)
95 			dreq->count = dreq_len;
96 
97 		if (test_bit(NFS_IOHDR_ERROR, &hdr->flags))
98 			dreq->error = hdr->error;
99 		else /* Clear outstanding error if this is EOF */
100 			dreq->error = 0;
101 	}
102 }
103 
104 static void
105 nfs_direct_count_bytes(struct nfs_direct_req *dreq,
106 		       const struct nfs_pgio_header *hdr)
107 {
108 	loff_t hdr_end = hdr->io_start + hdr->good_bytes;
109 	ssize_t dreq_len = 0;
110 
111 	if (hdr_end > dreq->io_start)
112 		dreq_len = hdr_end - dreq->io_start;
113 
114 	nfs_direct_handle_truncated(dreq, hdr, dreq_len);
115 
116 	if (dreq_len > dreq->max_count)
117 		dreq_len = dreq->max_count;
118 
119 	if (dreq->count < dreq_len)
120 		dreq->count = dreq_len;
121 }
122 
123 /**
124  * nfs_swap_rw - NFS address space operation for swap I/O
125  * @iocb: target I/O control block
126  * @iter: I/O buffer
127  *
128  * Perform IO to the swap-file.  This is much like direct IO.
129  */
130 int nfs_swap_rw(struct kiocb *iocb, struct iov_iter *iter)
131 {
132 	ssize_t ret;
133 
134 	VM_BUG_ON(iov_iter_count(iter) != PAGE_SIZE);
135 
136 	if (iov_iter_rw(iter) == READ)
137 		ret = nfs_file_direct_read(iocb, iter, true);
138 	else
139 		ret = nfs_file_direct_write(iocb, iter, true);
140 	if (ret < 0)
141 		return ret;
142 	return 0;
143 }
144 
145 static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
146 {
147 	unsigned int i;
148 	for (i = 0; i < npages; i++)
149 		put_page(pages[i]);
150 }
151 
152 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
153 			      struct nfs_direct_req *dreq)
154 {
155 	cinfo->inode = dreq->inode;
156 	cinfo->mds = &dreq->mds_cinfo;
157 	cinfo->ds = &dreq->ds_cinfo;
158 	cinfo->dreq = dreq;
159 	cinfo->completion_ops = &nfs_direct_commit_completion_ops;
160 }
161 
162 static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
163 {
164 	struct nfs_direct_req *dreq;
165 
166 	dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
167 	if (!dreq)
168 		return NULL;
169 
170 	kref_init(&dreq->kref);
171 	kref_get(&dreq->kref);
172 	init_completion(&dreq->completion);
173 	INIT_LIST_HEAD(&dreq->mds_cinfo.list);
174 	pnfs_init_ds_commit_info(&dreq->ds_cinfo);
175 	INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
176 	spin_lock_init(&dreq->lock);
177 
178 	return dreq;
179 }
180 
181 static void nfs_direct_req_free(struct kref *kref)
182 {
183 	struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
184 
185 	pnfs_release_ds_info(&dreq->ds_cinfo, dreq->inode);
186 	if (dreq->l_ctx != NULL)
187 		nfs_put_lock_context(dreq->l_ctx);
188 	if (dreq->ctx != NULL)
189 		put_nfs_open_context(dreq->ctx);
190 	kmem_cache_free(nfs_direct_cachep, dreq);
191 }
192 
193 static void nfs_direct_req_release(struct nfs_direct_req *dreq)
194 {
195 	kref_put(&dreq->kref, nfs_direct_req_free);
196 }
197 
198 ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq)
199 {
200 	return dreq->bytes_left;
201 }
202 EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
203 
204 /*
205  * Collects and returns the final error value/byte-count.
206  */
207 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
208 {
209 	ssize_t result = -EIOCBQUEUED;
210 
211 	/* Async requests don't wait here */
212 	if (dreq->iocb)
213 		goto out;
214 
215 	result = wait_for_completion_killable(&dreq->completion);
216 
217 	if (!result) {
218 		result = dreq->count;
219 		WARN_ON_ONCE(dreq->count < 0);
220 	}
221 	if (!result)
222 		result = dreq->error;
223 
224 out:
225 	return (ssize_t) result;
226 }
227 
228 /*
229  * Synchronous I/O uses a stack-allocated iocb.  Thus we can't trust
230  * the iocb is still valid here if this is a synchronous request.
231  */
232 static void nfs_direct_complete(struct nfs_direct_req *dreq)
233 {
234 	struct inode *inode = dreq->inode;
235 
236 	inode_dio_end(inode);
237 
238 	if (dreq->iocb) {
239 		long res = (long) dreq->error;
240 		if (dreq->count != 0) {
241 			res = (long) dreq->count;
242 			WARN_ON_ONCE(dreq->count < 0);
243 		}
244 		dreq->iocb->ki_complete(dreq->iocb, res);
245 	}
246 
247 	complete(&dreq->completion);
248 
249 	nfs_direct_req_release(dreq);
250 }
251 
252 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
253 {
254 	unsigned long bytes = 0;
255 	struct nfs_direct_req *dreq = hdr->dreq;
256 
257 	spin_lock(&dreq->lock);
258 	if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) {
259 		spin_unlock(&dreq->lock);
260 		goto out_put;
261 	}
262 
263 	nfs_direct_count_bytes(dreq, hdr);
264 	spin_unlock(&dreq->lock);
265 
266 	while (!list_empty(&hdr->pages)) {
267 		struct nfs_page *req = nfs_list_entry(hdr->pages.next);
268 		struct page *page = req->wb_page;
269 
270 		if (!PageCompound(page) && bytes < hdr->good_bytes &&
271 		    (dreq->flags == NFS_ODIRECT_SHOULD_DIRTY))
272 			set_page_dirty(page);
273 		bytes += req->wb_bytes;
274 		nfs_list_remove_request(req);
275 		nfs_release_request(req);
276 	}
277 out_put:
278 	if (put_dreq(dreq))
279 		nfs_direct_complete(dreq);
280 	hdr->release(hdr);
281 }
282 
283 static void nfs_read_sync_pgio_error(struct list_head *head, int error)
284 {
285 	struct nfs_page *req;
286 
287 	while (!list_empty(head)) {
288 		req = nfs_list_entry(head->next);
289 		nfs_list_remove_request(req);
290 		nfs_release_request(req);
291 	}
292 }
293 
294 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
295 {
296 	get_dreq(hdr->dreq);
297 }
298 
299 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
300 	.error_cleanup = nfs_read_sync_pgio_error,
301 	.init_hdr = nfs_direct_pgio_init,
302 	.completion = nfs_direct_read_completion,
303 };
304 
305 /*
306  * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
307  * operation.  If nfs_readdata_alloc() or get_user_pages() fails,
308  * bail and stop sending more reads.  Read length accounting is
309  * handled automatically by nfs_direct_read_result().  Otherwise, if
310  * no requests have been sent, just return an error.
311  */
312 
313 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
314 					      struct iov_iter *iter,
315 					      loff_t pos)
316 {
317 	struct nfs_pageio_descriptor desc;
318 	struct inode *inode = dreq->inode;
319 	ssize_t result = -EINVAL;
320 	size_t requested_bytes = 0;
321 	size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE);
322 
323 	nfs_pageio_init_read(&desc, dreq->inode, false,
324 			     &nfs_direct_read_completion_ops);
325 	get_dreq(dreq);
326 	desc.pg_dreq = dreq;
327 	inode_dio_begin(inode);
328 
329 	while (iov_iter_count(iter)) {
330 		struct page **pagevec;
331 		size_t bytes;
332 		size_t pgbase;
333 		unsigned npages, i;
334 
335 		result = iov_iter_get_pages_alloc2(iter, &pagevec,
336 						  rsize, &pgbase);
337 		if (result < 0)
338 			break;
339 
340 		bytes = result;
341 		npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
342 		for (i = 0; i < npages; i++) {
343 			struct nfs_page *req;
344 			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
345 			/* XXX do we need to do the eof zeroing found in async_filler? */
346 			req = nfs_page_create_from_page(dreq->ctx, pagevec[i],
347 							pgbase, pos, req_len);
348 			if (IS_ERR(req)) {
349 				result = PTR_ERR(req);
350 				break;
351 			}
352 			if (!nfs_pageio_add_request(&desc, req)) {
353 				result = desc.pg_error;
354 				nfs_release_request(req);
355 				break;
356 			}
357 			pgbase = 0;
358 			bytes -= req_len;
359 			requested_bytes += req_len;
360 			pos += req_len;
361 			dreq->bytes_left -= req_len;
362 		}
363 		nfs_direct_release_pages(pagevec, npages);
364 		kvfree(pagevec);
365 		if (result < 0)
366 			break;
367 	}
368 
369 	nfs_pageio_complete(&desc);
370 
371 	/*
372 	 * If no bytes were started, return the error, and let the
373 	 * generic layer handle the completion.
374 	 */
375 	if (requested_bytes == 0) {
376 		inode_dio_end(inode);
377 		nfs_direct_req_release(dreq);
378 		return result < 0 ? result : -EIO;
379 	}
380 
381 	if (put_dreq(dreq))
382 		nfs_direct_complete(dreq);
383 	return requested_bytes;
384 }
385 
386 /**
387  * nfs_file_direct_read - file direct read operation for NFS files
388  * @iocb: target I/O control block
389  * @iter: vector of user buffers into which to read data
390  * @swap: flag indicating this is swap IO, not O_DIRECT IO
391  *
392  * We use this function for direct reads instead of calling
393  * generic_file_aio_read() in order to avoid gfar's check to see if
394  * the request starts before the end of the file.  For that check
395  * to work, we must generate a GETATTR before each direct read, and
396  * even then there is a window between the GETATTR and the subsequent
397  * READ where the file size could change.  Our preference is simply
398  * to do all reads the application wants, and the server will take
399  * care of managing the end of file boundary.
400  *
401  * This function also eliminates unnecessarily updating the file's
402  * atime locally, as the NFS server sets the file's atime, and this
403  * client must read the updated atime from the server back into its
404  * cache.
405  */
406 ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter,
407 			     bool swap)
408 {
409 	struct file *file = iocb->ki_filp;
410 	struct address_space *mapping = file->f_mapping;
411 	struct inode *inode = mapping->host;
412 	struct nfs_direct_req *dreq;
413 	struct nfs_lock_context *l_ctx;
414 	ssize_t result, requested;
415 	size_t count = iov_iter_count(iter);
416 	nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
417 
418 	dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n",
419 		file, count, (long long) iocb->ki_pos);
420 
421 	result = 0;
422 	if (!count)
423 		goto out;
424 
425 	task_io_account_read(count);
426 
427 	result = -ENOMEM;
428 	dreq = nfs_direct_req_alloc();
429 	if (dreq == NULL)
430 		goto out;
431 
432 	dreq->inode = inode;
433 	dreq->bytes_left = dreq->max_count = count;
434 	dreq->io_start = iocb->ki_pos;
435 	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
436 	l_ctx = nfs_get_lock_context(dreq->ctx);
437 	if (IS_ERR(l_ctx)) {
438 		result = PTR_ERR(l_ctx);
439 		nfs_direct_req_release(dreq);
440 		goto out_release;
441 	}
442 	dreq->l_ctx = l_ctx;
443 	if (!is_sync_kiocb(iocb))
444 		dreq->iocb = iocb;
445 
446 	if (user_backed_iter(iter))
447 		dreq->flags = NFS_ODIRECT_SHOULD_DIRTY;
448 
449 	if (!swap)
450 		nfs_start_io_direct(inode);
451 
452 	NFS_I(inode)->read_io += count;
453 	requested = nfs_direct_read_schedule_iovec(dreq, iter, iocb->ki_pos);
454 
455 	if (!swap)
456 		nfs_end_io_direct(inode);
457 
458 	if (requested > 0) {
459 		result = nfs_direct_wait(dreq);
460 		if (result > 0) {
461 			requested -= result;
462 			iocb->ki_pos += result;
463 		}
464 		iov_iter_revert(iter, requested);
465 	} else {
466 		result = requested;
467 	}
468 
469 out_release:
470 	nfs_direct_req_release(dreq);
471 out:
472 	return result;
473 }
474 
475 static void nfs_direct_add_page_head(struct list_head *list,
476 				     struct nfs_page *req)
477 {
478 	struct nfs_page *head = req->wb_head;
479 
480 	if (!list_empty(&head->wb_list) || !nfs_lock_request(head))
481 		return;
482 	if (!list_empty(&head->wb_list)) {
483 		nfs_unlock_request(head);
484 		return;
485 	}
486 	list_add(&head->wb_list, list);
487 	kref_get(&head->wb_kref);
488 	kref_get(&head->wb_kref);
489 }
490 
491 static void nfs_direct_join_group(struct list_head *list, struct inode *inode)
492 {
493 	struct nfs_page *req, *subreq;
494 
495 	list_for_each_entry(req, list, wb_list) {
496 		if (req->wb_head != req) {
497 			nfs_direct_add_page_head(&req->wb_list, req);
498 			continue;
499 		}
500 		subreq = req->wb_this_page;
501 		if (subreq == req)
502 			continue;
503 		do {
504 			/*
505 			 * Remove subrequests from this list before freeing
506 			 * them in the call to nfs_join_page_group().
507 			 */
508 			if (!list_empty(&subreq->wb_list)) {
509 				nfs_list_remove_request(subreq);
510 				nfs_release_request(subreq);
511 			}
512 		} while ((subreq = subreq->wb_this_page) != req);
513 		nfs_join_page_group(req, inode);
514 	}
515 }
516 
517 static void
518 nfs_direct_write_scan_commit_list(struct inode *inode,
519 				  struct list_head *list,
520 				  struct nfs_commit_info *cinfo)
521 {
522 	mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
523 	pnfs_recover_commit_reqs(list, cinfo);
524 	nfs_scan_commit_list(&cinfo->mds->list, list, cinfo, 0);
525 	mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
526 }
527 
528 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
529 {
530 	struct nfs_pageio_descriptor desc;
531 	struct nfs_page *req, *tmp;
532 	LIST_HEAD(reqs);
533 	struct nfs_commit_info cinfo;
534 	LIST_HEAD(failed);
535 
536 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
537 	nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
538 
539 	nfs_direct_join_group(&reqs, dreq->inode);
540 
541 	dreq->count = 0;
542 	dreq->max_count = 0;
543 	list_for_each_entry(req, &reqs, wb_list)
544 		dreq->max_count += req->wb_bytes;
545 	nfs_clear_pnfs_ds_commit_verifiers(&dreq->ds_cinfo);
546 	get_dreq(dreq);
547 
548 	nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false,
549 			      &nfs_direct_write_completion_ops);
550 	desc.pg_dreq = dreq;
551 
552 	list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
553 		/* Bump the transmission count */
554 		req->wb_nio++;
555 		if (!nfs_pageio_add_request(&desc, req)) {
556 			nfs_list_move_request(req, &failed);
557 			spin_lock(&cinfo.inode->i_lock);
558 			dreq->flags = 0;
559 			if (desc.pg_error < 0)
560 				dreq->error = desc.pg_error;
561 			else
562 				dreq->error = -EIO;
563 			spin_unlock(&cinfo.inode->i_lock);
564 		}
565 		nfs_release_request(req);
566 	}
567 	nfs_pageio_complete(&desc);
568 
569 	while (!list_empty(&failed)) {
570 		req = nfs_list_entry(failed.next);
571 		nfs_list_remove_request(req);
572 		nfs_unlock_and_release_request(req);
573 	}
574 
575 	if (put_dreq(dreq))
576 		nfs_direct_write_complete(dreq);
577 }
578 
579 static void nfs_direct_commit_complete(struct nfs_commit_data *data)
580 {
581 	const struct nfs_writeverf *verf = data->res.verf;
582 	struct nfs_direct_req *dreq = data->dreq;
583 	struct nfs_commit_info cinfo;
584 	struct nfs_page *req;
585 	int status = data->task.tk_status;
586 
587 	trace_nfs_direct_commit_complete(dreq);
588 
589 	if (status < 0) {
590 		/* Errors in commit are fatal */
591 		dreq->error = status;
592 		dreq->max_count = 0;
593 		dreq->count = 0;
594 		dreq->flags = NFS_ODIRECT_DONE;
595 	} else {
596 		status = dreq->error;
597 	}
598 
599 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
600 
601 	while (!list_empty(&data->pages)) {
602 		req = nfs_list_entry(data->pages.next);
603 		nfs_list_remove_request(req);
604 		if (status >= 0 && !nfs_write_match_verf(verf, req)) {
605 			dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
606 			/*
607 			 * Despite the reboot, the write was successful,
608 			 * so reset wb_nio.
609 			 */
610 			req->wb_nio = 0;
611 			nfs_mark_request_commit(req, NULL, &cinfo, 0);
612 		} else /* Error or match */
613 			nfs_release_request(req);
614 		nfs_unlock_and_release_request(req);
615 	}
616 
617 	if (nfs_commit_end(cinfo.mds))
618 		nfs_direct_write_complete(dreq);
619 }
620 
621 static void nfs_direct_resched_write(struct nfs_commit_info *cinfo,
622 		struct nfs_page *req)
623 {
624 	struct nfs_direct_req *dreq = cinfo->dreq;
625 
626 	trace_nfs_direct_resched_write(dreq);
627 
628 	spin_lock(&dreq->lock);
629 	if (dreq->flags != NFS_ODIRECT_DONE)
630 		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
631 	spin_unlock(&dreq->lock);
632 	nfs_mark_request_commit(req, NULL, cinfo, 0);
633 }
634 
635 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
636 	.completion = nfs_direct_commit_complete,
637 	.resched_write = nfs_direct_resched_write,
638 };
639 
640 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
641 {
642 	int res;
643 	struct nfs_commit_info cinfo;
644 	LIST_HEAD(mds_list);
645 
646 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
647 	nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
648 	res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
649 	if (res < 0) /* res == -ENOMEM */
650 		nfs_direct_write_reschedule(dreq);
651 }
652 
653 static void nfs_direct_write_clear_reqs(struct nfs_direct_req *dreq)
654 {
655 	struct nfs_commit_info cinfo;
656 	struct nfs_page *req;
657 	LIST_HEAD(reqs);
658 
659 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
660 	nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
661 
662 	while (!list_empty(&reqs)) {
663 		req = nfs_list_entry(reqs.next);
664 		nfs_list_remove_request(req);
665 		nfs_release_request(req);
666 		nfs_unlock_and_release_request(req);
667 	}
668 }
669 
670 static void nfs_direct_write_schedule_work(struct work_struct *work)
671 {
672 	struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
673 	int flags = dreq->flags;
674 
675 	dreq->flags = 0;
676 	switch (flags) {
677 		case NFS_ODIRECT_DO_COMMIT:
678 			nfs_direct_commit_schedule(dreq);
679 			break;
680 		case NFS_ODIRECT_RESCHED_WRITES:
681 			nfs_direct_write_reschedule(dreq);
682 			break;
683 		default:
684 			nfs_direct_write_clear_reqs(dreq);
685 			nfs_zap_mapping(dreq->inode, dreq->inode->i_mapping);
686 			nfs_direct_complete(dreq);
687 	}
688 }
689 
690 static void nfs_direct_write_complete(struct nfs_direct_req *dreq)
691 {
692 	trace_nfs_direct_write_complete(dreq);
693 	queue_work(nfsiod_workqueue, &dreq->work); /* Calls nfs_direct_write_schedule_work */
694 }
695 
696 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
697 {
698 	struct nfs_direct_req *dreq = hdr->dreq;
699 	struct nfs_commit_info cinfo;
700 	struct nfs_page *req = nfs_list_entry(hdr->pages.next);
701 	int flags = NFS_ODIRECT_DONE;
702 
703 	trace_nfs_direct_write_completion(dreq);
704 
705 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
706 
707 	spin_lock(&dreq->lock);
708 	if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) {
709 		spin_unlock(&dreq->lock);
710 		goto out_put;
711 	}
712 
713 	nfs_direct_count_bytes(dreq, hdr);
714 	if (test_bit(NFS_IOHDR_UNSTABLE_WRITES, &hdr->flags)) {
715 		if (!dreq->flags)
716 			dreq->flags = NFS_ODIRECT_DO_COMMIT;
717 		flags = dreq->flags;
718 	}
719 	spin_unlock(&dreq->lock);
720 
721 	while (!list_empty(&hdr->pages)) {
722 
723 		req = nfs_list_entry(hdr->pages.next);
724 		nfs_list_remove_request(req);
725 		if (flags == NFS_ODIRECT_DO_COMMIT) {
726 			kref_get(&req->wb_kref);
727 			memcpy(&req->wb_verf, &hdr->verf.verifier,
728 			       sizeof(req->wb_verf));
729 			nfs_mark_request_commit(req, hdr->lseg, &cinfo,
730 				hdr->ds_commit_idx);
731 		} else if (flags == NFS_ODIRECT_RESCHED_WRITES) {
732 			kref_get(&req->wb_kref);
733 			nfs_mark_request_commit(req, NULL, &cinfo, 0);
734 		}
735 		nfs_unlock_and_release_request(req);
736 	}
737 
738 out_put:
739 	if (put_dreq(dreq))
740 		nfs_direct_write_complete(dreq);
741 	hdr->release(hdr);
742 }
743 
744 static void nfs_write_sync_pgio_error(struct list_head *head, int error)
745 {
746 	struct nfs_page *req;
747 
748 	while (!list_empty(head)) {
749 		req = nfs_list_entry(head->next);
750 		nfs_list_remove_request(req);
751 		nfs_unlock_and_release_request(req);
752 	}
753 }
754 
755 static void nfs_direct_write_reschedule_io(struct nfs_pgio_header *hdr)
756 {
757 	struct nfs_direct_req *dreq = hdr->dreq;
758 
759 	trace_nfs_direct_write_reschedule_io(dreq);
760 
761 	spin_lock(&dreq->lock);
762 	if (dreq->error == 0) {
763 		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
764 		/* fake unstable write to let common nfs resend pages */
765 		hdr->verf.committed = NFS_UNSTABLE;
766 		hdr->good_bytes = hdr->args.offset + hdr->args.count -
767 			hdr->io_start;
768 	}
769 	spin_unlock(&dreq->lock);
770 }
771 
772 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
773 	.error_cleanup = nfs_write_sync_pgio_error,
774 	.init_hdr = nfs_direct_pgio_init,
775 	.completion = nfs_direct_write_completion,
776 	.reschedule_io = nfs_direct_write_reschedule_io,
777 };
778 
779 
780 /*
781  * NB: Return the value of the first error return code.  Subsequent
782  *     errors after the first one are ignored.
783  */
784 /*
785  * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
786  * operation.  If nfs_writedata_alloc() or get_user_pages() fails,
787  * bail and stop sending more writes.  Write length accounting is
788  * handled automatically by nfs_direct_write_result().  Otherwise, if
789  * no requests have been sent, just return an error.
790  */
791 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
792 					       struct iov_iter *iter,
793 					       loff_t pos, int ioflags)
794 {
795 	struct nfs_pageio_descriptor desc;
796 	struct inode *inode = dreq->inode;
797 	ssize_t result = 0;
798 	size_t requested_bytes = 0;
799 	size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE);
800 
801 	trace_nfs_direct_write_schedule_iovec(dreq);
802 
803 	nfs_pageio_init_write(&desc, inode, ioflags, false,
804 			      &nfs_direct_write_completion_ops);
805 	desc.pg_dreq = dreq;
806 	get_dreq(dreq);
807 	inode_dio_begin(inode);
808 
809 	NFS_I(inode)->write_io += iov_iter_count(iter);
810 	while (iov_iter_count(iter)) {
811 		struct page **pagevec;
812 		size_t bytes;
813 		size_t pgbase;
814 		unsigned npages, i;
815 
816 		result = iov_iter_get_pages_alloc2(iter, &pagevec,
817 						  wsize, &pgbase);
818 		if (result < 0)
819 			break;
820 
821 		bytes = result;
822 		npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
823 		for (i = 0; i < npages; i++) {
824 			struct nfs_page *req;
825 			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
826 
827 			req = nfs_page_create_from_page(dreq->ctx, pagevec[i],
828 							pgbase, pos, req_len);
829 			if (IS_ERR(req)) {
830 				result = PTR_ERR(req);
831 				break;
832 			}
833 
834 			if (desc.pg_error < 0) {
835 				nfs_free_request(req);
836 				result = desc.pg_error;
837 				break;
838 			}
839 
840 			nfs_lock_request(req);
841 			if (!nfs_pageio_add_request(&desc, req)) {
842 				result = desc.pg_error;
843 				nfs_unlock_and_release_request(req);
844 				break;
845 			}
846 			pgbase = 0;
847 			bytes -= req_len;
848 			requested_bytes += req_len;
849 			pos += req_len;
850 			dreq->bytes_left -= req_len;
851 		}
852 		nfs_direct_release_pages(pagevec, npages);
853 		kvfree(pagevec);
854 		if (result < 0)
855 			break;
856 	}
857 	nfs_pageio_complete(&desc);
858 
859 	/*
860 	 * If no bytes were started, return the error, and let the
861 	 * generic layer handle the completion.
862 	 */
863 	if (requested_bytes == 0) {
864 		inode_dio_end(inode);
865 		nfs_direct_req_release(dreq);
866 		return result < 0 ? result : -EIO;
867 	}
868 
869 	if (put_dreq(dreq))
870 		nfs_direct_write_complete(dreq);
871 	return requested_bytes;
872 }
873 
874 /**
875  * nfs_file_direct_write - file direct write operation for NFS files
876  * @iocb: target I/O control block
877  * @iter: vector of user buffers from which to write data
878  * @swap: flag indicating this is swap IO, not O_DIRECT IO
879  *
880  * We use this function for direct writes instead of calling
881  * generic_file_aio_write() in order to avoid taking the inode
882  * semaphore and updating the i_size.  The NFS server will set
883  * the new i_size and this client must read the updated size
884  * back into its cache.  We let the server do generic write
885  * parameter checking and report problems.
886  *
887  * We eliminate local atime updates, see direct read above.
888  *
889  * We avoid unnecessary page cache invalidations for normal cached
890  * readers of this file.
891  *
892  * Note that O_APPEND is not supported for NFS direct writes, as there
893  * is no atomic O_APPEND write facility in the NFS protocol.
894  */
895 ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter,
896 			      bool swap)
897 {
898 	ssize_t result, requested;
899 	size_t count;
900 	struct file *file = iocb->ki_filp;
901 	struct address_space *mapping = file->f_mapping;
902 	struct inode *inode = mapping->host;
903 	struct nfs_direct_req *dreq;
904 	struct nfs_lock_context *l_ctx;
905 	loff_t pos, end;
906 
907 	dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n",
908 		file, iov_iter_count(iter), (long long) iocb->ki_pos);
909 
910 	if (swap)
911 		/* bypass generic checks */
912 		result =  iov_iter_count(iter);
913 	else
914 		result = generic_write_checks(iocb, iter);
915 	if (result <= 0)
916 		return result;
917 	count = result;
918 	nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
919 
920 	pos = iocb->ki_pos;
921 	end = (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT;
922 
923 	task_io_account_write(count);
924 
925 	result = -ENOMEM;
926 	dreq = nfs_direct_req_alloc();
927 	if (!dreq)
928 		goto out;
929 
930 	dreq->inode = inode;
931 	dreq->bytes_left = dreq->max_count = count;
932 	dreq->io_start = pos;
933 	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
934 	l_ctx = nfs_get_lock_context(dreq->ctx);
935 	if (IS_ERR(l_ctx)) {
936 		result = PTR_ERR(l_ctx);
937 		nfs_direct_req_release(dreq);
938 		goto out_release;
939 	}
940 	dreq->l_ctx = l_ctx;
941 	if (!is_sync_kiocb(iocb))
942 		dreq->iocb = iocb;
943 	pnfs_init_ds_commit_info_ops(&dreq->ds_cinfo, inode);
944 
945 	if (swap) {
946 		requested = nfs_direct_write_schedule_iovec(dreq, iter, pos,
947 							    FLUSH_STABLE);
948 	} else {
949 		nfs_start_io_direct(inode);
950 
951 		requested = nfs_direct_write_schedule_iovec(dreq, iter, pos,
952 							    FLUSH_COND_STABLE);
953 
954 		if (mapping->nrpages) {
955 			invalidate_inode_pages2_range(mapping,
956 						      pos >> PAGE_SHIFT, end);
957 		}
958 
959 		nfs_end_io_direct(inode);
960 	}
961 
962 	if (requested > 0) {
963 		result = nfs_direct_wait(dreq);
964 		if (result > 0) {
965 			requested -= result;
966 			iocb->ki_pos = pos + result;
967 			/* XXX: should check the generic_write_sync retval */
968 			generic_write_sync(iocb, result);
969 		}
970 		iov_iter_revert(iter, requested);
971 	} else {
972 		result = requested;
973 	}
974 	nfs_fscache_invalidate(inode, FSCACHE_INVAL_DIO_WRITE);
975 out_release:
976 	nfs_direct_req_release(dreq);
977 out:
978 	return result;
979 }
980 
981 /**
982  * nfs_init_directcache - create a slab cache for nfs_direct_req structures
983  *
984  */
985 int __init nfs_init_directcache(void)
986 {
987 	nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
988 						sizeof(struct nfs_direct_req),
989 						0, (SLAB_RECLAIM_ACCOUNT|
990 							SLAB_MEM_SPREAD),
991 						NULL);
992 	if (nfs_direct_cachep == NULL)
993 		return -ENOMEM;
994 
995 	return 0;
996 }
997 
998 /**
999  * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
1000  *
1001  */
1002 void nfs_destroy_directcache(void)
1003 {
1004 	kmem_cache_destroy(nfs_direct_cachep);
1005 }
1006