1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/nfs/direct.c 4 * 5 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com> 6 * 7 * High-performance uncached I/O for the Linux NFS client 8 * 9 * There are important applications whose performance or correctness 10 * depends on uncached access to file data. Database clusters 11 * (multiple copies of the same instance running on separate hosts) 12 * implement their own cache coherency protocol that subsumes file 13 * system cache protocols. Applications that process datasets 14 * considerably larger than the client's memory do not always benefit 15 * from a local cache. A streaming video server, for instance, has no 16 * need to cache the contents of a file. 17 * 18 * When an application requests uncached I/O, all read and write requests 19 * are made directly to the server; data stored or fetched via these 20 * requests is not cached in the Linux page cache. The client does not 21 * correct unaligned requests from applications. All requested bytes are 22 * held on permanent storage before a direct write system call returns to 23 * an application. 24 * 25 * Solaris implements an uncached I/O facility called directio() that 26 * is used for backups and sequential I/O to very large files. Solaris 27 * also supports uncaching whole NFS partitions with "-o forcedirectio," 28 * an undocumented mount option. 29 * 30 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with 31 * help from Andrew Morton. 32 * 33 * 18 Dec 2001 Initial implementation for 2.4 --cel 34 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy 35 * 08 Jun 2003 Port to 2.5 APIs --cel 36 * 31 Mar 2004 Handle direct I/O without VFS support --cel 37 * 15 Sep 2004 Parallel async reads --cel 38 * 04 May 2005 support O_DIRECT with aio --cel 39 * 40 */ 41 42 #include <linux/errno.h> 43 #include <linux/sched.h> 44 #include <linux/kernel.h> 45 #include <linux/file.h> 46 #include <linux/pagemap.h> 47 #include <linux/kref.h> 48 #include <linux/slab.h> 49 #include <linux/task_io_accounting_ops.h> 50 #include <linux/module.h> 51 52 #include <linux/nfs_fs.h> 53 #include <linux/nfs_page.h> 54 #include <linux/sunrpc/clnt.h> 55 56 #include <linux/uaccess.h> 57 #include <linux/atomic.h> 58 59 #include "internal.h" 60 #include "iostat.h" 61 #include "pnfs.h" 62 #include "fscache.h" 63 #include "nfstrace.h" 64 65 #define NFSDBG_FACILITY NFSDBG_VFS 66 67 static struct kmem_cache *nfs_direct_cachep; 68 69 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops; 70 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops; 71 static void nfs_direct_write_complete(struct nfs_direct_req *dreq); 72 static void nfs_direct_write_schedule_work(struct work_struct *work); 73 74 static inline void get_dreq(struct nfs_direct_req *dreq) 75 { 76 atomic_inc(&dreq->io_count); 77 } 78 79 static inline int put_dreq(struct nfs_direct_req *dreq) 80 { 81 return atomic_dec_and_test(&dreq->io_count); 82 } 83 84 static void 85 nfs_direct_handle_truncated(struct nfs_direct_req *dreq, 86 const struct nfs_pgio_header *hdr, 87 ssize_t dreq_len) 88 { 89 if (!(test_bit(NFS_IOHDR_ERROR, &hdr->flags) || 90 test_bit(NFS_IOHDR_EOF, &hdr->flags))) 91 return; 92 if (dreq->max_count >= dreq_len) { 93 dreq->max_count = dreq_len; 94 if (dreq->count > dreq_len) 95 dreq->count = dreq_len; 96 } 97 98 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && !dreq->error) 99 dreq->error = hdr->error; 100 } 101 102 static void 103 nfs_direct_count_bytes(struct nfs_direct_req *dreq, 104 const struct nfs_pgio_header *hdr) 105 { 106 loff_t hdr_end = hdr->io_start + hdr->good_bytes; 107 ssize_t dreq_len = 0; 108 109 if (hdr_end > dreq->io_start) 110 dreq_len = hdr_end - dreq->io_start; 111 112 nfs_direct_handle_truncated(dreq, hdr, dreq_len); 113 114 if (dreq_len > dreq->max_count) 115 dreq_len = dreq->max_count; 116 117 if (dreq->count < dreq_len) 118 dreq->count = dreq_len; 119 } 120 121 static void nfs_direct_truncate_request(struct nfs_direct_req *dreq, 122 struct nfs_page *req) 123 { 124 loff_t offs = req_offset(req); 125 size_t req_start = (size_t)(offs - dreq->io_start); 126 127 if (req_start < dreq->max_count) 128 dreq->max_count = req_start; 129 if (req_start < dreq->count) 130 dreq->count = req_start; 131 } 132 133 /** 134 * nfs_swap_rw - NFS address space operation for swap I/O 135 * @iocb: target I/O control block 136 * @iter: I/O buffer 137 * 138 * Perform IO to the swap-file. This is much like direct IO. 139 */ 140 int nfs_swap_rw(struct kiocb *iocb, struct iov_iter *iter) 141 { 142 ssize_t ret; 143 144 VM_BUG_ON(iov_iter_count(iter) != PAGE_SIZE); 145 146 if (iov_iter_rw(iter) == READ) 147 ret = nfs_file_direct_read(iocb, iter, true); 148 else 149 ret = nfs_file_direct_write(iocb, iter, true); 150 if (ret < 0) 151 return ret; 152 return 0; 153 } 154 155 static void nfs_direct_release_pages(struct page **pages, unsigned int npages) 156 { 157 unsigned int i; 158 for (i = 0; i < npages; i++) 159 put_page(pages[i]); 160 } 161 162 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo, 163 struct nfs_direct_req *dreq) 164 { 165 cinfo->inode = dreq->inode; 166 cinfo->mds = &dreq->mds_cinfo; 167 cinfo->ds = &dreq->ds_cinfo; 168 cinfo->dreq = dreq; 169 cinfo->completion_ops = &nfs_direct_commit_completion_ops; 170 } 171 172 static inline struct nfs_direct_req *nfs_direct_req_alloc(void) 173 { 174 struct nfs_direct_req *dreq; 175 176 dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL); 177 if (!dreq) 178 return NULL; 179 180 kref_init(&dreq->kref); 181 kref_get(&dreq->kref); 182 init_completion(&dreq->completion); 183 INIT_LIST_HEAD(&dreq->mds_cinfo.list); 184 pnfs_init_ds_commit_info(&dreq->ds_cinfo); 185 INIT_WORK(&dreq->work, nfs_direct_write_schedule_work); 186 spin_lock_init(&dreq->lock); 187 188 return dreq; 189 } 190 191 static void nfs_direct_req_free(struct kref *kref) 192 { 193 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref); 194 195 pnfs_release_ds_info(&dreq->ds_cinfo, dreq->inode); 196 if (dreq->l_ctx != NULL) 197 nfs_put_lock_context(dreq->l_ctx); 198 if (dreq->ctx != NULL) 199 put_nfs_open_context(dreq->ctx); 200 kmem_cache_free(nfs_direct_cachep, dreq); 201 } 202 203 static void nfs_direct_req_release(struct nfs_direct_req *dreq) 204 { 205 kref_put(&dreq->kref, nfs_direct_req_free); 206 } 207 208 ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq, loff_t offset) 209 { 210 loff_t start = offset - dreq->io_start; 211 return dreq->max_count - start; 212 } 213 EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left); 214 215 /* 216 * Collects and returns the final error value/byte-count. 217 */ 218 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq) 219 { 220 ssize_t result = -EIOCBQUEUED; 221 222 /* Async requests don't wait here */ 223 if (dreq->iocb) 224 goto out; 225 226 result = wait_for_completion_killable(&dreq->completion); 227 228 if (!result) { 229 result = dreq->count; 230 WARN_ON_ONCE(dreq->count < 0); 231 } 232 if (!result) 233 result = dreq->error; 234 235 out: 236 return (ssize_t) result; 237 } 238 239 /* 240 * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust 241 * the iocb is still valid here if this is a synchronous request. 242 */ 243 static void nfs_direct_complete(struct nfs_direct_req *dreq) 244 { 245 struct inode *inode = dreq->inode; 246 247 inode_dio_end(inode); 248 249 if (dreq->iocb) { 250 long res = (long) dreq->error; 251 if (dreq->count != 0) { 252 res = (long) dreq->count; 253 WARN_ON_ONCE(dreq->count < 0); 254 } 255 dreq->iocb->ki_complete(dreq->iocb, res); 256 } 257 258 complete(&dreq->completion); 259 260 nfs_direct_req_release(dreq); 261 } 262 263 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr) 264 { 265 unsigned long bytes = 0; 266 struct nfs_direct_req *dreq = hdr->dreq; 267 268 spin_lock(&dreq->lock); 269 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) { 270 spin_unlock(&dreq->lock); 271 goto out_put; 272 } 273 274 nfs_direct_count_bytes(dreq, hdr); 275 spin_unlock(&dreq->lock); 276 277 while (!list_empty(&hdr->pages)) { 278 struct nfs_page *req = nfs_list_entry(hdr->pages.next); 279 struct page *page = req->wb_page; 280 281 if (!PageCompound(page) && bytes < hdr->good_bytes && 282 (dreq->flags == NFS_ODIRECT_SHOULD_DIRTY)) 283 set_page_dirty(page); 284 bytes += req->wb_bytes; 285 nfs_list_remove_request(req); 286 nfs_release_request(req); 287 } 288 out_put: 289 if (put_dreq(dreq)) 290 nfs_direct_complete(dreq); 291 hdr->release(hdr); 292 } 293 294 static void nfs_read_sync_pgio_error(struct list_head *head, int error) 295 { 296 struct nfs_page *req; 297 298 while (!list_empty(head)) { 299 req = nfs_list_entry(head->next); 300 nfs_list_remove_request(req); 301 nfs_release_request(req); 302 } 303 } 304 305 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr) 306 { 307 get_dreq(hdr->dreq); 308 } 309 310 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = { 311 .error_cleanup = nfs_read_sync_pgio_error, 312 .init_hdr = nfs_direct_pgio_init, 313 .completion = nfs_direct_read_completion, 314 }; 315 316 /* 317 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ 318 * operation. If nfs_readdata_alloc() or get_user_pages() fails, 319 * bail and stop sending more reads. Read length accounting is 320 * handled automatically by nfs_direct_read_result(). Otherwise, if 321 * no requests have been sent, just return an error. 322 */ 323 324 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq, 325 struct iov_iter *iter, 326 loff_t pos) 327 { 328 struct nfs_pageio_descriptor desc; 329 struct inode *inode = dreq->inode; 330 ssize_t result = -EINVAL; 331 size_t requested_bytes = 0; 332 size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE); 333 334 nfs_pageio_init_read(&desc, dreq->inode, false, 335 &nfs_direct_read_completion_ops); 336 get_dreq(dreq); 337 desc.pg_dreq = dreq; 338 inode_dio_begin(inode); 339 340 while (iov_iter_count(iter)) { 341 struct page **pagevec; 342 size_t bytes; 343 size_t pgbase; 344 unsigned npages, i; 345 346 result = iov_iter_get_pages_alloc2(iter, &pagevec, 347 rsize, &pgbase); 348 if (result < 0) 349 break; 350 351 bytes = result; 352 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE; 353 for (i = 0; i < npages; i++) { 354 struct nfs_page *req; 355 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase); 356 /* XXX do we need to do the eof zeroing found in async_filler? */ 357 req = nfs_page_create_from_page(dreq->ctx, pagevec[i], 358 pgbase, pos, req_len); 359 if (IS_ERR(req)) { 360 result = PTR_ERR(req); 361 break; 362 } 363 if (!nfs_pageio_add_request(&desc, req)) { 364 result = desc.pg_error; 365 nfs_release_request(req); 366 break; 367 } 368 pgbase = 0; 369 bytes -= req_len; 370 requested_bytes += req_len; 371 pos += req_len; 372 dreq->bytes_left -= req_len; 373 } 374 nfs_direct_release_pages(pagevec, npages); 375 kvfree(pagevec); 376 if (result < 0) 377 break; 378 } 379 380 nfs_pageio_complete(&desc); 381 382 /* 383 * If no bytes were started, return the error, and let the 384 * generic layer handle the completion. 385 */ 386 if (requested_bytes == 0) { 387 inode_dio_end(inode); 388 nfs_direct_req_release(dreq); 389 return result < 0 ? result : -EIO; 390 } 391 392 if (put_dreq(dreq)) 393 nfs_direct_complete(dreq); 394 return requested_bytes; 395 } 396 397 /** 398 * nfs_file_direct_read - file direct read operation for NFS files 399 * @iocb: target I/O control block 400 * @iter: vector of user buffers into which to read data 401 * @swap: flag indicating this is swap IO, not O_DIRECT IO 402 * 403 * We use this function for direct reads instead of calling 404 * generic_file_aio_read() in order to avoid gfar's check to see if 405 * the request starts before the end of the file. For that check 406 * to work, we must generate a GETATTR before each direct read, and 407 * even then there is a window between the GETATTR and the subsequent 408 * READ where the file size could change. Our preference is simply 409 * to do all reads the application wants, and the server will take 410 * care of managing the end of file boundary. 411 * 412 * This function also eliminates unnecessarily updating the file's 413 * atime locally, as the NFS server sets the file's atime, and this 414 * client must read the updated atime from the server back into its 415 * cache. 416 */ 417 ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter, 418 bool swap) 419 { 420 struct file *file = iocb->ki_filp; 421 struct address_space *mapping = file->f_mapping; 422 struct inode *inode = mapping->host; 423 struct nfs_direct_req *dreq; 424 struct nfs_lock_context *l_ctx; 425 ssize_t result, requested; 426 size_t count = iov_iter_count(iter); 427 nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count); 428 429 dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n", 430 file, count, (long long) iocb->ki_pos); 431 432 result = 0; 433 if (!count) 434 goto out; 435 436 task_io_account_read(count); 437 438 result = -ENOMEM; 439 dreq = nfs_direct_req_alloc(); 440 if (dreq == NULL) 441 goto out; 442 443 dreq->inode = inode; 444 dreq->bytes_left = dreq->max_count = count; 445 dreq->io_start = iocb->ki_pos; 446 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp)); 447 l_ctx = nfs_get_lock_context(dreq->ctx); 448 if (IS_ERR(l_ctx)) { 449 result = PTR_ERR(l_ctx); 450 nfs_direct_req_release(dreq); 451 goto out_release; 452 } 453 dreq->l_ctx = l_ctx; 454 if (!is_sync_kiocb(iocb)) 455 dreq->iocb = iocb; 456 457 if (user_backed_iter(iter)) 458 dreq->flags = NFS_ODIRECT_SHOULD_DIRTY; 459 460 if (!swap) 461 nfs_start_io_direct(inode); 462 463 NFS_I(inode)->read_io += count; 464 requested = nfs_direct_read_schedule_iovec(dreq, iter, iocb->ki_pos); 465 466 if (!swap) 467 nfs_end_io_direct(inode); 468 469 if (requested > 0) { 470 result = nfs_direct_wait(dreq); 471 if (result > 0) { 472 requested -= result; 473 iocb->ki_pos += result; 474 } 475 iov_iter_revert(iter, requested); 476 } else { 477 result = requested; 478 } 479 480 out_release: 481 nfs_direct_req_release(dreq); 482 out: 483 return result; 484 } 485 486 static void nfs_direct_add_page_head(struct list_head *list, 487 struct nfs_page *req) 488 { 489 struct nfs_page *head = req->wb_head; 490 491 if (!list_empty(&head->wb_list) || !nfs_lock_request(head)) 492 return; 493 if (!list_empty(&head->wb_list)) { 494 nfs_unlock_request(head); 495 return; 496 } 497 list_add(&head->wb_list, list); 498 kref_get(&head->wb_kref); 499 kref_get(&head->wb_kref); 500 } 501 502 static void nfs_direct_join_group(struct list_head *list, 503 struct nfs_commit_info *cinfo, 504 struct inode *inode) 505 { 506 struct nfs_page *req, *subreq; 507 508 list_for_each_entry(req, list, wb_list) { 509 if (req->wb_head != req) { 510 nfs_direct_add_page_head(&req->wb_list, req); 511 continue; 512 } 513 subreq = req->wb_this_page; 514 if (subreq == req) 515 continue; 516 do { 517 /* 518 * Remove subrequests from this list before freeing 519 * them in the call to nfs_join_page_group(). 520 */ 521 if (!list_empty(&subreq->wb_list)) { 522 nfs_list_remove_request(subreq); 523 nfs_release_request(subreq); 524 } 525 } while ((subreq = subreq->wb_this_page) != req); 526 nfs_join_page_group(req, cinfo, inode); 527 } 528 } 529 530 static void 531 nfs_direct_write_scan_commit_list(struct inode *inode, 532 struct list_head *list, 533 struct nfs_commit_info *cinfo) 534 { 535 mutex_lock(&NFS_I(cinfo->inode)->commit_mutex); 536 pnfs_recover_commit_reqs(list, cinfo); 537 nfs_scan_commit_list(&cinfo->mds->list, list, cinfo, 0); 538 mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex); 539 } 540 541 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq) 542 { 543 struct nfs_pageio_descriptor desc; 544 struct nfs_page *req; 545 LIST_HEAD(reqs); 546 struct nfs_commit_info cinfo; 547 548 nfs_init_cinfo_from_dreq(&cinfo, dreq); 549 nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo); 550 551 nfs_direct_join_group(&reqs, &cinfo, dreq->inode); 552 553 nfs_clear_pnfs_ds_commit_verifiers(&dreq->ds_cinfo); 554 get_dreq(dreq); 555 556 nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false, 557 &nfs_direct_write_completion_ops); 558 desc.pg_dreq = dreq; 559 560 while (!list_empty(&reqs)) { 561 req = nfs_list_entry(reqs.next); 562 /* Bump the transmission count */ 563 req->wb_nio++; 564 if (!nfs_pageio_add_request(&desc, req)) { 565 spin_lock(&dreq->lock); 566 if (dreq->error < 0) { 567 desc.pg_error = dreq->error; 568 } else if (desc.pg_error != -EAGAIN) { 569 dreq->flags = 0; 570 if (!desc.pg_error) 571 desc.pg_error = -EIO; 572 dreq->error = desc.pg_error; 573 } else 574 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 575 spin_unlock(&dreq->lock); 576 break; 577 } 578 nfs_release_request(req); 579 } 580 nfs_pageio_complete(&desc); 581 582 while (!list_empty(&reqs)) { 583 req = nfs_list_entry(reqs.next); 584 nfs_list_remove_request(req); 585 nfs_unlock_and_release_request(req); 586 if (desc.pg_error == -EAGAIN) { 587 nfs_mark_request_commit(req, NULL, &cinfo, 0); 588 } else { 589 spin_lock(&dreq->lock); 590 nfs_direct_truncate_request(dreq, req); 591 spin_unlock(&dreq->lock); 592 nfs_release_request(req); 593 } 594 } 595 596 if (put_dreq(dreq)) 597 nfs_direct_write_complete(dreq); 598 } 599 600 static void nfs_direct_commit_complete(struct nfs_commit_data *data) 601 { 602 const struct nfs_writeverf *verf = data->res.verf; 603 struct nfs_direct_req *dreq = data->dreq; 604 struct nfs_commit_info cinfo; 605 struct nfs_page *req; 606 int status = data->task.tk_status; 607 608 trace_nfs_direct_commit_complete(dreq); 609 610 if (status < 0) { 611 /* Errors in commit are fatal */ 612 dreq->error = status; 613 dreq->flags = NFS_ODIRECT_DONE; 614 } else { 615 status = dreq->error; 616 } 617 618 nfs_init_cinfo_from_dreq(&cinfo, dreq); 619 620 while (!list_empty(&data->pages)) { 621 req = nfs_list_entry(data->pages.next); 622 nfs_list_remove_request(req); 623 if (status < 0) { 624 spin_lock(&dreq->lock); 625 nfs_direct_truncate_request(dreq, req); 626 spin_unlock(&dreq->lock); 627 nfs_release_request(req); 628 } else if (!nfs_write_match_verf(verf, req)) { 629 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 630 /* 631 * Despite the reboot, the write was successful, 632 * so reset wb_nio. 633 */ 634 req->wb_nio = 0; 635 nfs_mark_request_commit(req, NULL, &cinfo, 0); 636 } else 637 nfs_release_request(req); 638 nfs_unlock_and_release_request(req); 639 } 640 641 if (nfs_commit_end(cinfo.mds)) 642 nfs_direct_write_complete(dreq); 643 } 644 645 static void nfs_direct_resched_write(struct nfs_commit_info *cinfo, 646 struct nfs_page *req) 647 { 648 struct nfs_direct_req *dreq = cinfo->dreq; 649 650 trace_nfs_direct_resched_write(dreq); 651 652 spin_lock(&dreq->lock); 653 if (dreq->flags != NFS_ODIRECT_DONE) 654 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 655 spin_unlock(&dreq->lock); 656 nfs_mark_request_commit(req, NULL, cinfo, 0); 657 } 658 659 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = { 660 .completion = nfs_direct_commit_complete, 661 .resched_write = nfs_direct_resched_write, 662 }; 663 664 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq) 665 { 666 int res; 667 struct nfs_commit_info cinfo; 668 LIST_HEAD(mds_list); 669 670 nfs_init_cinfo_from_dreq(&cinfo, dreq); 671 nfs_scan_commit(dreq->inode, &mds_list, &cinfo); 672 res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo); 673 if (res < 0) /* res == -ENOMEM */ 674 nfs_direct_write_reschedule(dreq); 675 } 676 677 static void nfs_direct_write_clear_reqs(struct nfs_direct_req *dreq) 678 { 679 struct nfs_commit_info cinfo; 680 struct nfs_page *req; 681 LIST_HEAD(reqs); 682 683 nfs_init_cinfo_from_dreq(&cinfo, dreq); 684 nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo); 685 686 while (!list_empty(&reqs)) { 687 req = nfs_list_entry(reqs.next); 688 nfs_list_remove_request(req); 689 nfs_direct_truncate_request(dreq, req); 690 nfs_release_request(req); 691 nfs_unlock_and_release_request(req); 692 } 693 } 694 695 static void nfs_direct_write_schedule_work(struct work_struct *work) 696 { 697 struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work); 698 int flags = dreq->flags; 699 700 dreq->flags = 0; 701 switch (flags) { 702 case NFS_ODIRECT_DO_COMMIT: 703 nfs_direct_commit_schedule(dreq); 704 break; 705 case NFS_ODIRECT_RESCHED_WRITES: 706 nfs_direct_write_reschedule(dreq); 707 break; 708 default: 709 nfs_direct_write_clear_reqs(dreq); 710 nfs_zap_mapping(dreq->inode, dreq->inode->i_mapping); 711 nfs_direct_complete(dreq); 712 } 713 } 714 715 static void nfs_direct_write_complete(struct nfs_direct_req *dreq) 716 { 717 trace_nfs_direct_write_complete(dreq); 718 queue_work(nfsiod_workqueue, &dreq->work); /* Calls nfs_direct_write_schedule_work */ 719 } 720 721 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr) 722 { 723 struct nfs_direct_req *dreq = hdr->dreq; 724 struct nfs_commit_info cinfo; 725 struct nfs_page *req = nfs_list_entry(hdr->pages.next); 726 int flags = NFS_ODIRECT_DONE; 727 728 trace_nfs_direct_write_completion(dreq); 729 730 nfs_init_cinfo_from_dreq(&cinfo, dreq); 731 732 spin_lock(&dreq->lock); 733 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) { 734 spin_unlock(&dreq->lock); 735 goto out_put; 736 } 737 738 nfs_direct_count_bytes(dreq, hdr); 739 if (test_bit(NFS_IOHDR_UNSTABLE_WRITES, &hdr->flags) && 740 !test_bit(NFS_IOHDR_ERROR, &hdr->flags)) { 741 if (!dreq->flags) 742 dreq->flags = NFS_ODIRECT_DO_COMMIT; 743 flags = dreq->flags; 744 } 745 spin_unlock(&dreq->lock); 746 747 while (!list_empty(&hdr->pages)) { 748 749 req = nfs_list_entry(hdr->pages.next); 750 nfs_list_remove_request(req); 751 if (flags == NFS_ODIRECT_DO_COMMIT) { 752 kref_get(&req->wb_kref); 753 memcpy(&req->wb_verf, &hdr->verf.verifier, 754 sizeof(req->wb_verf)); 755 nfs_mark_request_commit(req, hdr->lseg, &cinfo, 756 hdr->ds_commit_idx); 757 } else if (flags == NFS_ODIRECT_RESCHED_WRITES) { 758 kref_get(&req->wb_kref); 759 nfs_mark_request_commit(req, NULL, &cinfo, 0); 760 } 761 nfs_unlock_and_release_request(req); 762 } 763 764 out_put: 765 if (put_dreq(dreq)) 766 nfs_direct_write_complete(dreq); 767 hdr->release(hdr); 768 } 769 770 static void nfs_write_sync_pgio_error(struct list_head *head, int error) 771 { 772 struct nfs_page *req; 773 774 while (!list_empty(head)) { 775 req = nfs_list_entry(head->next); 776 nfs_list_remove_request(req); 777 nfs_unlock_and_release_request(req); 778 } 779 } 780 781 static void nfs_direct_write_reschedule_io(struct nfs_pgio_header *hdr) 782 { 783 struct nfs_direct_req *dreq = hdr->dreq; 784 struct nfs_page *req; 785 struct nfs_commit_info cinfo; 786 787 trace_nfs_direct_write_reschedule_io(dreq); 788 789 nfs_init_cinfo_from_dreq(&cinfo, dreq); 790 spin_lock(&dreq->lock); 791 if (dreq->error == 0) 792 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 793 set_bit(NFS_IOHDR_REDO, &hdr->flags); 794 spin_unlock(&dreq->lock); 795 while (!list_empty(&hdr->pages)) { 796 req = nfs_list_entry(hdr->pages.next); 797 nfs_list_remove_request(req); 798 nfs_unlock_request(req); 799 nfs_mark_request_commit(req, NULL, &cinfo, 0); 800 } 801 } 802 803 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = { 804 .error_cleanup = nfs_write_sync_pgio_error, 805 .init_hdr = nfs_direct_pgio_init, 806 .completion = nfs_direct_write_completion, 807 .reschedule_io = nfs_direct_write_reschedule_io, 808 }; 809 810 811 /* 812 * NB: Return the value of the first error return code. Subsequent 813 * errors after the first one are ignored. 814 */ 815 /* 816 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE 817 * operation. If nfs_writedata_alloc() or get_user_pages() fails, 818 * bail and stop sending more writes. Write length accounting is 819 * handled automatically by nfs_direct_write_result(). Otherwise, if 820 * no requests have been sent, just return an error. 821 */ 822 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq, 823 struct iov_iter *iter, 824 loff_t pos, int ioflags) 825 { 826 struct nfs_pageio_descriptor desc; 827 struct inode *inode = dreq->inode; 828 struct nfs_commit_info cinfo; 829 ssize_t result = 0; 830 size_t requested_bytes = 0; 831 size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE); 832 bool defer = false; 833 834 trace_nfs_direct_write_schedule_iovec(dreq); 835 836 nfs_pageio_init_write(&desc, inode, ioflags, false, 837 &nfs_direct_write_completion_ops); 838 desc.pg_dreq = dreq; 839 get_dreq(dreq); 840 inode_dio_begin(inode); 841 842 NFS_I(inode)->write_io += iov_iter_count(iter); 843 while (iov_iter_count(iter)) { 844 struct page **pagevec; 845 size_t bytes; 846 size_t pgbase; 847 unsigned npages, i; 848 849 result = iov_iter_get_pages_alloc2(iter, &pagevec, 850 wsize, &pgbase); 851 if (result < 0) 852 break; 853 854 bytes = result; 855 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE; 856 for (i = 0; i < npages; i++) { 857 struct nfs_page *req; 858 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase); 859 860 req = nfs_page_create_from_page(dreq->ctx, pagevec[i], 861 pgbase, pos, req_len); 862 if (IS_ERR(req)) { 863 result = PTR_ERR(req); 864 break; 865 } 866 867 if (desc.pg_error < 0) { 868 nfs_free_request(req); 869 result = desc.pg_error; 870 break; 871 } 872 873 pgbase = 0; 874 bytes -= req_len; 875 requested_bytes += req_len; 876 pos += req_len; 877 dreq->bytes_left -= req_len; 878 879 if (defer) { 880 nfs_mark_request_commit(req, NULL, &cinfo, 0); 881 continue; 882 } 883 884 nfs_lock_request(req); 885 if (nfs_pageio_add_request(&desc, req)) 886 continue; 887 888 /* Exit on hard errors */ 889 if (desc.pg_error < 0 && desc.pg_error != -EAGAIN) { 890 result = desc.pg_error; 891 nfs_unlock_and_release_request(req); 892 break; 893 } 894 895 /* If the error is soft, defer remaining requests */ 896 nfs_init_cinfo_from_dreq(&cinfo, dreq); 897 spin_lock(&dreq->lock); 898 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 899 spin_unlock(&dreq->lock); 900 nfs_unlock_request(req); 901 nfs_mark_request_commit(req, NULL, &cinfo, 0); 902 desc.pg_error = 0; 903 defer = true; 904 } 905 nfs_direct_release_pages(pagevec, npages); 906 kvfree(pagevec); 907 if (result < 0) 908 break; 909 } 910 nfs_pageio_complete(&desc); 911 912 /* 913 * If no bytes were started, return the error, and let the 914 * generic layer handle the completion. 915 */ 916 if (requested_bytes == 0) { 917 inode_dio_end(inode); 918 nfs_direct_req_release(dreq); 919 return result < 0 ? result : -EIO; 920 } 921 922 if (put_dreq(dreq)) 923 nfs_direct_write_complete(dreq); 924 return requested_bytes; 925 } 926 927 /** 928 * nfs_file_direct_write - file direct write operation for NFS files 929 * @iocb: target I/O control block 930 * @iter: vector of user buffers from which to write data 931 * @swap: flag indicating this is swap IO, not O_DIRECT IO 932 * 933 * We use this function for direct writes instead of calling 934 * generic_file_aio_write() in order to avoid taking the inode 935 * semaphore and updating the i_size. The NFS server will set 936 * the new i_size and this client must read the updated size 937 * back into its cache. We let the server do generic write 938 * parameter checking and report problems. 939 * 940 * We eliminate local atime updates, see direct read above. 941 * 942 * We avoid unnecessary page cache invalidations for normal cached 943 * readers of this file. 944 * 945 * Note that O_APPEND is not supported for NFS direct writes, as there 946 * is no atomic O_APPEND write facility in the NFS protocol. 947 */ 948 ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter, 949 bool swap) 950 { 951 ssize_t result, requested; 952 size_t count; 953 struct file *file = iocb->ki_filp; 954 struct address_space *mapping = file->f_mapping; 955 struct inode *inode = mapping->host; 956 struct nfs_direct_req *dreq; 957 struct nfs_lock_context *l_ctx; 958 loff_t pos, end; 959 960 dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n", 961 file, iov_iter_count(iter), (long long) iocb->ki_pos); 962 963 if (swap) 964 /* bypass generic checks */ 965 result = iov_iter_count(iter); 966 else 967 result = generic_write_checks(iocb, iter); 968 if (result <= 0) 969 return result; 970 count = result; 971 nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count); 972 973 pos = iocb->ki_pos; 974 end = (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT; 975 976 task_io_account_write(count); 977 978 result = -ENOMEM; 979 dreq = nfs_direct_req_alloc(); 980 if (!dreq) 981 goto out; 982 983 dreq->inode = inode; 984 dreq->bytes_left = dreq->max_count = count; 985 dreq->io_start = pos; 986 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp)); 987 l_ctx = nfs_get_lock_context(dreq->ctx); 988 if (IS_ERR(l_ctx)) { 989 result = PTR_ERR(l_ctx); 990 nfs_direct_req_release(dreq); 991 goto out_release; 992 } 993 dreq->l_ctx = l_ctx; 994 if (!is_sync_kiocb(iocb)) 995 dreq->iocb = iocb; 996 pnfs_init_ds_commit_info_ops(&dreq->ds_cinfo, inode); 997 998 if (swap) { 999 requested = nfs_direct_write_schedule_iovec(dreq, iter, pos, 1000 FLUSH_STABLE); 1001 } else { 1002 nfs_start_io_direct(inode); 1003 1004 requested = nfs_direct_write_schedule_iovec(dreq, iter, pos, 1005 FLUSH_COND_STABLE); 1006 1007 if (mapping->nrpages) { 1008 invalidate_inode_pages2_range(mapping, 1009 pos >> PAGE_SHIFT, end); 1010 } 1011 1012 nfs_end_io_direct(inode); 1013 } 1014 1015 if (requested > 0) { 1016 result = nfs_direct_wait(dreq); 1017 if (result > 0) { 1018 requested -= result; 1019 iocb->ki_pos = pos + result; 1020 /* XXX: should check the generic_write_sync retval */ 1021 generic_write_sync(iocb, result); 1022 } 1023 iov_iter_revert(iter, requested); 1024 } else { 1025 result = requested; 1026 } 1027 nfs_fscache_invalidate(inode, FSCACHE_INVAL_DIO_WRITE); 1028 out_release: 1029 nfs_direct_req_release(dreq); 1030 out: 1031 return result; 1032 } 1033 1034 /** 1035 * nfs_init_directcache - create a slab cache for nfs_direct_req structures 1036 * 1037 */ 1038 int __init nfs_init_directcache(void) 1039 { 1040 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache", 1041 sizeof(struct nfs_direct_req), 1042 0, (SLAB_RECLAIM_ACCOUNT| 1043 SLAB_MEM_SPREAD), 1044 NULL); 1045 if (nfs_direct_cachep == NULL) 1046 return -ENOMEM; 1047 1048 return 0; 1049 } 1050 1051 /** 1052 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures 1053 * 1054 */ 1055 void nfs_destroy_directcache(void) 1056 { 1057 kmem_cache_destroy(nfs_direct_cachep); 1058 } 1059