xref: /openbmc/linux/fs/nfs/direct.c (revision e23feb16)
1 /*
2  * linux/fs/nfs/direct.c
3  *
4  * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
5  *
6  * High-performance uncached I/O for the Linux NFS client
7  *
8  * There are important applications whose performance or correctness
9  * depends on uncached access to file data.  Database clusters
10  * (multiple copies of the same instance running on separate hosts)
11  * implement their own cache coherency protocol that subsumes file
12  * system cache protocols.  Applications that process datasets
13  * considerably larger than the client's memory do not always benefit
14  * from a local cache.  A streaming video server, for instance, has no
15  * need to cache the contents of a file.
16  *
17  * When an application requests uncached I/O, all read and write requests
18  * are made directly to the server; data stored or fetched via these
19  * requests is not cached in the Linux page cache.  The client does not
20  * correct unaligned requests from applications.  All requested bytes are
21  * held on permanent storage before a direct write system call returns to
22  * an application.
23  *
24  * Solaris implements an uncached I/O facility called directio() that
25  * is used for backups and sequential I/O to very large files.  Solaris
26  * also supports uncaching whole NFS partitions with "-o forcedirectio,"
27  * an undocumented mount option.
28  *
29  * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
30  * help from Andrew Morton.
31  *
32  * 18 Dec 2001	Initial implementation for 2.4  --cel
33  * 08 Jul 2002	Version for 2.4.19, with bug fixes --trondmy
34  * 08 Jun 2003	Port to 2.5 APIs  --cel
35  * 31 Mar 2004	Handle direct I/O without VFS support  --cel
36  * 15 Sep 2004	Parallel async reads  --cel
37  * 04 May 2005	support O_DIRECT with aio  --cel
38  *
39  */
40 
41 #include <linux/errno.h>
42 #include <linux/sched.h>
43 #include <linux/kernel.h>
44 #include <linux/file.h>
45 #include <linux/pagemap.h>
46 #include <linux/kref.h>
47 #include <linux/slab.h>
48 #include <linux/task_io_accounting_ops.h>
49 #include <linux/module.h>
50 
51 #include <linux/nfs_fs.h>
52 #include <linux/nfs_page.h>
53 #include <linux/sunrpc/clnt.h>
54 
55 #include <asm/uaccess.h>
56 #include <linux/atomic.h>
57 
58 #include "internal.h"
59 #include "iostat.h"
60 #include "pnfs.h"
61 
62 #define NFSDBG_FACILITY		NFSDBG_VFS
63 
64 static struct kmem_cache *nfs_direct_cachep;
65 
66 /*
67  * This represents a set of asynchronous requests that we're waiting on
68  */
69 struct nfs_direct_req {
70 	struct kref		kref;		/* release manager */
71 
72 	/* I/O parameters */
73 	struct nfs_open_context	*ctx;		/* file open context info */
74 	struct nfs_lock_context *l_ctx;		/* Lock context info */
75 	struct kiocb *		iocb;		/* controlling i/o request */
76 	struct inode *		inode;		/* target file of i/o */
77 
78 	/* completion state */
79 	atomic_t		io_count;	/* i/os we're waiting for */
80 	spinlock_t		lock;		/* protect completion state */
81 	ssize_t			count,		/* bytes actually processed */
82 				bytes_left,	/* bytes left to be sent */
83 				error;		/* any reported error */
84 	struct completion	completion;	/* wait for i/o completion */
85 
86 	/* commit state */
87 	struct nfs_mds_commit_info mds_cinfo;	/* Storage for cinfo */
88 	struct pnfs_ds_commit_info ds_cinfo;	/* Storage for cinfo */
89 	struct work_struct	work;
90 	int			flags;
91 #define NFS_ODIRECT_DO_COMMIT		(1)	/* an unstable reply was received */
92 #define NFS_ODIRECT_RESCHED_WRITES	(2)	/* write verification failed */
93 	struct nfs_writeverf	verf;		/* unstable write verifier */
94 };
95 
96 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
97 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
98 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
99 static void nfs_direct_write_schedule_work(struct work_struct *work);
100 
101 static inline void get_dreq(struct nfs_direct_req *dreq)
102 {
103 	atomic_inc(&dreq->io_count);
104 }
105 
106 static inline int put_dreq(struct nfs_direct_req *dreq)
107 {
108 	return atomic_dec_and_test(&dreq->io_count);
109 }
110 
111 /**
112  * nfs_direct_IO - NFS address space operation for direct I/O
113  * @rw: direction (read or write)
114  * @iocb: target I/O control block
115  * @iov: array of vectors that define I/O buffer
116  * @pos: offset in file to begin the operation
117  * @nr_segs: size of iovec array
118  *
119  * The presence of this routine in the address space ops vector means
120  * the NFS client supports direct I/O. However, for most direct IO, we
121  * shunt off direct read and write requests before the VFS gets them,
122  * so this method is only ever called for swap.
123  */
124 ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs)
125 {
126 #ifndef CONFIG_NFS_SWAP
127 	dprintk("NFS: nfs_direct_IO (%s) off/no(%Ld/%lu) EINVAL\n",
128 			iocb->ki_filp->f_path.dentry->d_name.name,
129 			(long long) pos, nr_segs);
130 
131 	return -EINVAL;
132 #else
133 	VM_BUG_ON(iocb->ki_nbytes != PAGE_SIZE);
134 
135 	if (rw == READ || rw == KERNEL_READ)
136 		return nfs_file_direct_read(iocb, iov, nr_segs, pos,
137 				rw == READ ? true : false);
138 	return nfs_file_direct_write(iocb, iov, nr_segs, pos,
139 				rw == WRITE ? true : false);
140 #endif /* CONFIG_NFS_SWAP */
141 }
142 
143 static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
144 {
145 	unsigned int i;
146 	for (i = 0; i < npages; i++)
147 		page_cache_release(pages[i]);
148 }
149 
150 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
151 			      struct nfs_direct_req *dreq)
152 {
153 	cinfo->lock = &dreq->lock;
154 	cinfo->mds = &dreq->mds_cinfo;
155 	cinfo->ds = &dreq->ds_cinfo;
156 	cinfo->dreq = dreq;
157 	cinfo->completion_ops = &nfs_direct_commit_completion_ops;
158 }
159 
160 static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
161 {
162 	struct nfs_direct_req *dreq;
163 
164 	dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
165 	if (!dreq)
166 		return NULL;
167 
168 	kref_init(&dreq->kref);
169 	kref_get(&dreq->kref);
170 	init_completion(&dreq->completion);
171 	INIT_LIST_HEAD(&dreq->mds_cinfo.list);
172 	INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
173 	spin_lock_init(&dreq->lock);
174 
175 	return dreq;
176 }
177 
178 static void nfs_direct_req_free(struct kref *kref)
179 {
180 	struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
181 
182 	if (dreq->l_ctx != NULL)
183 		nfs_put_lock_context(dreq->l_ctx);
184 	if (dreq->ctx != NULL)
185 		put_nfs_open_context(dreq->ctx);
186 	kmem_cache_free(nfs_direct_cachep, dreq);
187 }
188 
189 static void nfs_direct_req_release(struct nfs_direct_req *dreq)
190 {
191 	kref_put(&dreq->kref, nfs_direct_req_free);
192 }
193 
194 ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq)
195 {
196 	return dreq->bytes_left;
197 }
198 EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
199 
200 /*
201  * Collects and returns the final error value/byte-count.
202  */
203 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
204 {
205 	ssize_t result = -EIOCBQUEUED;
206 
207 	/* Async requests don't wait here */
208 	if (dreq->iocb)
209 		goto out;
210 
211 	result = wait_for_completion_killable(&dreq->completion);
212 
213 	if (!result)
214 		result = dreq->error;
215 	if (!result)
216 		result = dreq->count;
217 
218 out:
219 	return (ssize_t) result;
220 }
221 
222 /*
223  * Synchronous I/O uses a stack-allocated iocb.  Thus we can't trust
224  * the iocb is still valid here if this is a synchronous request.
225  */
226 static void nfs_direct_complete(struct nfs_direct_req *dreq)
227 {
228 	if (dreq->iocb) {
229 		long res = (long) dreq->error;
230 		if (!res)
231 			res = (long) dreq->count;
232 		aio_complete(dreq->iocb, res, 0);
233 	}
234 	complete_all(&dreq->completion);
235 
236 	nfs_direct_req_release(dreq);
237 }
238 
239 static void nfs_direct_readpage_release(struct nfs_page *req)
240 {
241 	dprintk("NFS: direct read done (%s/%lld %d@%lld)\n",
242 		req->wb_context->dentry->d_inode->i_sb->s_id,
243 		(long long)NFS_FILEID(req->wb_context->dentry->d_inode),
244 		req->wb_bytes,
245 		(long long)req_offset(req));
246 	nfs_release_request(req);
247 }
248 
249 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
250 {
251 	unsigned long bytes = 0;
252 	struct nfs_direct_req *dreq = hdr->dreq;
253 
254 	if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
255 		goto out_put;
256 
257 	spin_lock(&dreq->lock);
258 	if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0))
259 		dreq->error = hdr->error;
260 	else
261 		dreq->count += hdr->good_bytes;
262 	spin_unlock(&dreq->lock);
263 
264 	while (!list_empty(&hdr->pages)) {
265 		struct nfs_page *req = nfs_list_entry(hdr->pages.next);
266 		struct page *page = req->wb_page;
267 
268 		if (!PageCompound(page) && bytes < hdr->good_bytes)
269 			set_page_dirty(page);
270 		bytes += req->wb_bytes;
271 		nfs_list_remove_request(req);
272 		nfs_direct_readpage_release(req);
273 	}
274 out_put:
275 	if (put_dreq(dreq))
276 		nfs_direct_complete(dreq);
277 	hdr->release(hdr);
278 }
279 
280 static void nfs_read_sync_pgio_error(struct list_head *head)
281 {
282 	struct nfs_page *req;
283 
284 	while (!list_empty(head)) {
285 		req = nfs_list_entry(head->next);
286 		nfs_list_remove_request(req);
287 		nfs_release_request(req);
288 	}
289 }
290 
291 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
292 {
293 	get_dreq(hdr->dreq);
294 }
295 
296 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
297 	.error_cleanup = nfs_read_sync_pgio_error,
298 	.init_hdr = nfs_direct_pgio_init,
299 	.completion = nfs_direct_read_completion,
300 };
301 
302 /*
303  * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
304  * operation.  If nfs_readdata_alloc() or get_user_pages() fails,
305  * bail and stop sending more reads.  Read length accounting is
306  * handled automatically by nfs_direct_read_result().  Otherwise, if
307  * no requests have been sent, just return an error.
308  */
309 static ssize_t nfs_direct_read_schedule_segment(struct nfs_pageio_descriptor *desc,
310 						const struct iovec *iov,
311 						loff_t pos, bool uio)
312 {
313 	struct nfs_direct_req *dreq = desc->pg_dreq;
314 	struct nfs_open_context *ctx = dreq->ctx;
315 	struct inode *inode = ctx->dentry->d_inode;
316 	unsigned long user_addr = (unsigned long)iov->iov_base;
317 	size_t count = iov->iov_len;
318 	size_t rsize = NFS_SERVER(inode)->rsize;
319 	unsigned int pgbase;
320 	int result;
321 	ssize_t started = 0;
322 	struct page **pagevec = NULL;
323 	unsigned int npages;
324 
325 	do {
326 		size_t bytes;
327 		int i;
328 
329 		pgbase = user_addr & ~PAGE_MASK;
330 		bytes = min(max_t(size_t, rsize, PAGE_SIZE), count);
331 
332 		result = -ENOMEM;
333 		npages = nfs_page_array_len(pgbase, bytes);
334 		if (!pagevec)
335 			pagevec = kmalloc(npages * sizeof(struct page *),
336 					  GFP_KERNEL);
337 		if (!pagevec)
338 			break;
339 		if (uio) {
340 			down_read(&current->mm->mmap_sem);
341 			result = get_user_pages(current, current->mm, user_addr,
342 					npages, 1, 0, pagevec, NULL);
343 			up_read(&current->mm->mmap_sem);
344 			if (result < 0)
345 				break;
346 		} else {
347 			WARN_ON(npages != 1);
348 			result = get_kernel_page(user_addr, 1, pagevec);
349 			if (WARN_ON(result != 1))
350 				break;
351 		}
352 
353 		if ((unsigned)result < npages) {
354 			bytes = result * PAGE_SIZE;
355 			if (bytes <= pgbase) {
356 				nfs_direct_release_pages(pagevec, result);
357 				break;
358 			}
359 			bytes -= pgbase;
360 			npages = result;
361 		}
362 
363 		for (i = 0; i < npages; i++) {
364 			struct nfs_page *req;
365 			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
366 			/* XXX do we need to do the eof zeroing found in async_filler? */
367 			req = nfs_create_request(dreq->ctx, dreq->inode,
368 						 pagevec[i],
369 						 pgbase, req_len);
370 			if (IS_ERR(req)) {
371 				result = PTR_ERR(req);
372 				break;
373 			}
374 			req->wb_index = pos >> PAGE_SHIFT;
375 			req->wb_offset = pos & ~PAGE_MASK;
376 			if (!nfs_pageio_add_request(desc, req)) {
377 				result = desc->pg_error;
378 				nfs_release_request(req);
379 				break;
380 			}
381 			pgbase = 0;
382 			bytes -= req_len;
383 			started += req_len;
384 			user_addr += req_len;
385 			pos += req_len;
386 			count -= req_len;
387 			dreq->bytes_left -= req_len;
388 		}
389 		/* The nfs_page now hold references to these pages */
390 		nfs_direct_release_pages(pagevec, npages);
391 	} while (count != 0 && result >= 0);
392 
393 	kfree(pagevec);
394 
395 	if (started)
396 		return started;
397 	return result < 0 ? (ssize_t) result : -EFAULT;
398 }
399 
400 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
401 					      const struct iovec *iov,
402 					      unsigned long nr_segs,
403 					      loff_t pos, bool uio)
404 {
405 	struct nfs_pageio_descriptor desc;
406 	ssize_t result = -EINVAL;
407 	size_t requested_bytes = 0;
408 	unsigned long seg;
409 
410 	NFS_PROTO(dreq->inode)->read_pageio_init(&desc, dreq->inode,
411 			     &nfs_direct_read_completion_ops);
412 	get_dreq(dreq);
413 	desc.pg_dreq = dreq;
414 
415 	for (seg = 0; seg < nr_segs; seg++) {
416 		const struct iovec *vec = &iov[seg];
417 		result = nfs_direct_read_schedule_segment(&desc, vec, pos, uio);
418 		if (result < 0)
419 			break;
420 		requested_bytes += result;
421 		if ((size_t)result < vec->iov_len)
422 			break;
423 		pos += vec->iov_len;
424 	}
425 
426 	nfs_pageio_complete(&desc);
427 
428 	/*
429 	 * If no bytes were started, return the error, and let the
430 	 * generic layer handle the completion.
431 	 */
432 	if (requested_bytes == 0) {
433 		nfs_direct_req_release(dreq);
434 		return result < 0 ? result : -EIO;
435 	}
436 
437 	if (put_dreq(dreq))
438 		nfs_direct_complete(dreq);
439 	return 0;
440 }
441 
442 static ssize_t nfs_direct_read(struct kiocb *iocb, const struct iovec *iov,
443 			       unsigned long nr_segs, loff_t pos, bool uio)
444 {
445 	ssize_t result = -ENOMEM;
446 	struct inode *inode = iocb->ki_filp->f_mapping->host;
447 	struct nfs_direct_req *dreq;
448 	struct nfs_lock_context *l_ctx;
449 
450 	dreq = nfs_direct_req_alloc();
451 	if (dreq == NULL)
452 		goto out;
453 
454 	dreq->inode = inode;
455 	dreq->bytes_left = iov_length(iov, nr_segs);
456 	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
457 	l_ctx = nfs_get_lock_context(dreq->ctx);
458 	if (IS_ERR(l_ctx)) {
459 		result = PTR_ERR(l_ctx);
460 		goto out_release;
461 	}
462 	dreq->l_ctx = l_ctx;
463 	if (!is_sync_kiocb(iocb))
464 		dreq->iocb = iocb;
465 
466 	NFS_I(inode)->read_io += iov_length(iov, nr_segs);
467 	result = nfs_direct_read_schedule_iovec(dreq, iov, nr_segs, pos, uio);
468 	if (!result)
469 		result = nfs_direct_wait(dreq);
470 out_release:
471 	nfs_direct_req_release(dreq);
472 out:
473 	return result;
474 }
475 
476 static void nfs_inode_dio_write_done(struct inode *inode)
477 {
478 	nfs_zap_mapping(inode, inode->i_mapping);
479 	inode_dio_done(inode);
480 }
481 
482 #if IS_ENABLED(CONFIG_NFS_V3) || IS_ENABLED(CONFIG_NFS_V4)
483 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
484 {
485 	struct nfs_pageio_descriptor desc;
486 	struct nfs_page *req, *tmp;
487 	LIST_HEAD(reqs);
488 	struct nfs_commit_info cinfo;
489 	LIST_HEAD(failed);
490 
491 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
492 	pnfs_recover_commit_reqs(dreq->inode, &reqs, &cinfo);
493 	spin_lock(cinfo.lock);
494 	nfs_scan_commit_list(&cinfo.mds->list, &reqs, &cinfo, 0);
495 	spin_unlock(cinfo.lock);
496 
497 	dreq->count = 0;
498 	get_dreq(dreq);
499 
500 	NFS_PROTO(dreq->inode)->write_pageio_init(&desc, dreq->inode, FLUSH_STABLE,
501 			      &nfs_direct_write_completion_ops);
502 	desc.pg_dreq = dreq;
503 
504 	list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
505 		if (!nfs_pageio_add_request(&desc, req)) {
506 			nfs_list_remove_request(req);
507 			nfs_list_add_request(req, &failed);
508 			spin_lock(cinfo.lock);
509 			dreq->flags = 0;
510 			dreq->error = -EIO;
511 			spin_unlock(cinfo.lock);
512 		}
513 		nfs_release_request(req);
514 	}
515 	nfs_pageio_complete(&desc);
516 
517 	while (!list_empty(&failed)) {
518 		req = nfs_list_entry(failed.next);
519 		nfs_list_remove_request(req);
520 		nfs_unlock_and_release_request(req);
521 	}
522 
523 	if (put_dreq(dreq))
524 		nfs_direct_write_complete(dreq, dreq->inode);
525 }
526 
527 static void nfs_direct_commit_complete(struct nfs_commit_data *data)
528 {
529 	struct nfs_direct_req *dreq = data->dreq;
530 	struct nfs_commit_info cinfo;
531 	struct nfs_page *req;
532 	int status = data->task.tk_status;
533 
534 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
535 	if (status < 0) {
536 		dprintk("NFS: %5u commit failed with error %d.\n",
537 			data->task.tk_pid, status);
538 		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
539 	} else if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) {
540 		dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid);
541 		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
542 	}
543 
544 	dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status);
545 	while (!list_empty(&data->pages)) {
546 		req = nfs_list_entry(data->pages.next);
547 		nfs_list_remove_request(req);
548 		if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) {
549 			/* Note the rewrite will go through mds */
550 			nfs_mark_request_commit(req, NULL, &cinfo);
551 		} else
552 			nfs_release_request(req);
553 		nfs_unlock_and_release_request(req);
554 	}
555 
556 	if (atomic_dec_and_test(&cinfo.mds->rpcs_out))
557 		nfs_direct_write_complete(dreq, data->inode);
558 }
559 
560 static void nfs_direct_error_cleanup(struct nfs_inode *nfsi)
561 {
562 	/* There is no lock to clear */
563 }
564 
565 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
566 	.completion = nfs_direct_commit_complete,
567 	.error_cleanup = nfs_direct_error_cleanup,
568 };
569 
570 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
571 {
572 	int res;
573 	struct nfs_commit_info cinfo;
574 	LIST_HEAD(mds_list);
575 
576 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
577 	nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
578 	res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
579 	if (res < 0) /* res == -ENOMEM */
580 		nfs_direct_write_reschedule(dreq);
581 }
582 
583 static void nfs_direct_write_schedule_work(struct work_struct *work)
584 {
585 	struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
586 	int flags = dreq->flags;
587 
588 	dreq->flags = 0;
589 	switch (flags) {
590 		case NFS_ODIRECT_DO_COMMIT:
591 			nfs_direct_commit_schedule(dreq);
592 			break;
593 		case NFS_ODIRECT_RESCHED_WRITES:
594 			nfs_direct_write_reschedule(dreq);
595 			break;
596 		default:
597 			nfs_inode_dio_write_done(dreq->inode);
598 			nfs_direct_complete(dreq);
599 	}
600 }
601 
602 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
603 {
604 	schedule_work(&dreq->work); /* Calls nfs_direct_write_schedule_work */
605 }
606 
607 #else
608 static void nfs_direct_write_schedule_work(struct work_struct *work)
609 {
610 }
611 
612 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
613 {
614 	nfs_inode_dio_write_done(inode);
615 	nfs_direct_complete(dreq);
616 }
617 #endif
618 
619 /*
620  * NB: Return the value of the first error return code.  Subsequent
621  *     errors after the first one are ignored.
622  */
623 /*
624  * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
625  * operation.  If nfs_writedata_alloc() or get_user_pages() fails,
626  * bail and stop sending more writes.  Write length accounting is
627  * handled automatically by nfs_direct_write_result().  Otherwise, if
628  * no requests have been sent, just return an error.
629  */
630 static ssize_t nfs_direct_write_schedule_segment(struct nfs_pageio_descriptor *desc,
631 						 const struct iovec *iov,
632 						 loff_t pos, bool uio)
633 {
634 	struct nfs_direct_req *dreq = desc->pg_dreq;
635 	struct nfs_open_context *ctx = dreq->ctx;
636 	struct inode *inode = ctx->dentry->d_inode;
637 	unsigned long user_addr = (unsigned long)iov->iov_base;
638 	size_t count = iov->iov_len;
639 	size_t wsize = NFS_SERVER(inode)->wsize;
640 	unsigned int pgbase;
641 	int result;
642 	ssize_t started = 0;
643 	struct page **pagevec = NULL;
644 	unsigned int npages;
645 
646 	do {
647 		size_t bytes;
648 		int i;
649 
650 		pgbase = user_addr & ~PAGE_MASK;
651 		bytes = min(max_t(size_t, wsize, PAGE_SIZE), count);
652 
653 		result = -ENOMEM;
654 		npages = nfs_page_array_len(pgbase, bytes);
655 		if (!pagevec)
656 			pagevec = kmalloc(npages * sizeof(struct page *), GFP_KERNEL);
657 		if (!pagevec)
658 			break;
659 
660 		if (uio) {
661 			down_read(&current->mm->mmap_sem);
662 			result = get_user_pages(current, current->mm, user_addr,
663 						npages, 0, 0, pagevec, NULL);
664 			up_read(&current->mm->mmap_sem);
665 			if (result < 0)
666 				break;
667 		} else {
668 			WARN_ON(npages != 1);
669 			result = get_kernel_page(user_addr, 0, pagevec);
670 			if (WARN_ON(result != 1))
671 				break;
672 		}
673 
674 		if ((unsigned)result < npages) {
675 			bytes = result * PAGE_SIZE;
676 			if (bytes <= pgbase) {
677 				nfs_direct_release_pages(pagevec, result);
678 				break;
679 			}
680 			bytes -= pgbase;
681 			npages = result;
682 		}
683 
684 		for (i = 0; i < npages; i++) {
685 			struct nfs_page *req;
686 			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
687 
688 			req = nfs_create_request(dreq->ctx, dreq->inode,
689 						 pagevec[i],
690 						 pgbase, req_len);
691 			if (IS_ERR(req)) {
692 				result = PTR_ERR(req);
693 				break;
694 			}
695 			nfs_lock_request(req);
696 			req->wb_index = pos >> PAGE_SHIFT;
697 			req->wb_offset = pos & ~PAGE_MASK;
698 			if (!nfs_pageio_add_request(desc, req)) {
699 				result = desc->pg_error;
700 				nfs_unlock_and_release_request(req);
701 				break;
702 			}
703 			pgbase = 0;
704 			bytes -= req_len;
705 			started += req_len;
706 			user_addr += req_len;
707 			pos += req_len;
708 			count -= req_len;
709 			dreq->bytes_left -= req_len;
710 		}
711 		/* The nfs_page now hold references to these pages */
712 		nfs_direct_release_pages(pagevec, npages);
713 	} while (count != 0 && result >= 0);
714 
715 	kfree(pagevec);
716 
717 	if (started)
718 		return started;
719 	return result < 0 ? (ssize_t) result : -EFAULT;
720 }
721 
722 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
723 {
724 	struct nfs_direct_req *dreq = hdr->dreq;
725 	struct nfs_commit_info cinfo;
726 	int bit = -1;
727 	struct nfs_page *req = nfs_list_entry(hdr->pages.next);
728 
729 	if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
730 		goto out_put;
731 
732 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
733 
734 	spin_lock(&dreq->lock);
735 
736 	if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
737 		dreq->flags = 0;
738 		dreq->error = hdr->error;
739 	}
740 	if (dreq->error != 0)
741 		bit = NFS_IOHDR_ERROR;
742 	else {
743 		dreq->count += hdr->good_bytes;
744 		if (test_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags)) {
745 			dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
746 			bit = NFS_IOHDR_NEED_RESCHED;
747 		} else if (test_bit(NFS_IOHDR_NEED_COMMIT, &hdr->flags)) {
748 			if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES)
749 				bit = NFS_IOHDR_NEED_RESCHED;
750 			else if (dreq->flags == 0) {
751 				memcpy(&dreq->verf, hdr->verf,
752 				       sizeof(dreq->verf));
753 				bit = NFS_IOHDR_NEED_COMMIT;
754 				dreq->flags = NFS_ODIRECT_DO_COMMIT;
755 			} else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) {
756 				if (memcmp(&dreq->verf, hdr->verf, sizeof(dreq->verf))) {
757 					dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
758 					bit = NFS_IOHDR_NEED_RESCHED;
759 				} else
760 					bit = NFS_IOHDR_NEED_COMMIT;
761 			}
762 		}
763 	}
764 	spin_unlock(&dreq->lock);
765 
766 	while (!list_empty(&hdr->pages)) {
767 		req = nfs_list_entry(hdr->pages.next);
768 		nfs_list_remove_request(req);
769 		switch (bit) {
770 		case NFS_IOHDR_NEED_RESCHED:
771 		case NFS_IOHDR_NEED_COMMIT:
772 			kref_get(&req->wb_kref);
773 			nfs_mark_request_commit(req, hdr->lseg, &cinfo);
774 		}
775 		nfs_unlock_and_release_request(req);
776 	}
777 
778 out_put:
779 	if (put_dreq(dreq))
780 		nfs_direct_write_complete(dreq, hdr->inode);
781 	hdr->release(hdr);
782 }
783 
784 static void nfs_write_sync_pgio_error(struct list_head *head)
785 {
786 	struct nfs_page *req;
787 
788 	while (!list_empty(head)) {
789 		req = nfs_list_entry(head->next);
790 		nfs_list_remove_request(req);
791 		nfs_unlock_and_release_request(req);
792 	}
793 }
794 
795 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
796 	.error_cleanup = nfs_write_sync_pgio_error,
797 	.init_hdr = nfs_direct_pgio_init,
798 	.completion = nfs_direct_write_completion,
799 };
800 
801 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
802 					       const struct iovec *iov,
803 					       unsigned long nr_segs,
804 					       loff_t pos, bool uio)
805 {
806 	struct nfs_pageio_descriptor desc;
807 	struct inode *inode = dreq->inode;
808 	ssize_t result = 0;
809 	size_t requested_bytes = 0;
810 	unsigned long seg;
811 
812 	NFS_PROTO(inode)->write_pageio_init(&desc, inode, FLUSH_COND_STABLE,
813 			      &nfs_direct_write_completion_ops);
814 	desc.pg_dreq = dreq;
815 	get_dreq(dreq);
816 	atomic_inc(&inode->i_dio_count);
817 
818 	NFS_I(dreq->inode)->write_io += iov_length(iov, nr_segs);
819 	for (seg = 0; seg < nr_segs; seg++) {
820 		const struct iovec *vec = &iov[seg];
821 		result = nfs_direct_write_schedule_segment(&desc, vec, pos, uio);
822 		if (result < 0)
823 			break;
824 		requested_bytes += result;
825 		if ((size_t)result < vec->iov_len)
826 			break;
827 		pos += vec->iov_len;
828 	}
829 	nfs_pageio_complete(&desc);
830 
831 	/*
832 	 * If no bytes were started, return the error, and let the
833 	 * generic layer handle the completion.
834 	 */
835 	if (requested_bytes == 0) {
836 		inode_dio_done(inode);
837 		nfs_direct_req_release(dreq);
838 		return result < 0 ? result : -EIO;
839 	}
840 
841 	if (put_dreq(dreq))
842 		nfs_direct_write_complete(dreq, dreq->inode);
843 	return 0;
844 }
845 
846 static ssize_t nfs_direct_write(struct kiocb *iocb, const struct iovec *iov,
847 				unsigned long nr_segs, loff_t pos,
848 				size_t count, bool uio)
849 {
850 	ssize_t result = -ENOMEM;
851 	struct inode *inode = iocb->ki_filp->f_mapping->host;
852 	struct nfs_direct_req *dreq;
853 	struct nfs_lock_context *l_ctx;
854 
855 	dreq = nfs_direct_req_alloc();
856 	if (!dreq)
857 		goto out;
858 
859 	dreq->inode = inode;
860 	dreq->bytes_left = count;
861 	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
862 	l_ctx = nfs_get_lock_context(dreq->ctx);
863 	if (IS_ERR(l_ctx)) {
864 		result = PTR_ERR(l_ctx);
865 		goto out_release;
866 	}
867 	dreq->l_ctx = l_ctx;
868 	if (!is_sync_kiocb(iocb))
869 		dreq->iocb = iocb;
870 
871 	result = nfs_direct_write_schedule_iovec(dreq, iov, nr_segs, pos, uio);
872 	if (!result)
873 		result = nfs_direct_wait(dreq);
874 out_release:
875 	nfs_direct_req_release(dreq);
876 out:
877 	return result;
878 }
879 
880 /**
881  * nfs_file_direct_read - file direct read operation for NFS files
882  * @iocb: target I/O control block
883  * @iov: vector of user buffers into which to read data
884  * @nr_segs: size of iov vector
885  * @pos: byte offset in file where reading starts
886  *
887  * We use this function for direct reads instead of calling
888  * generic_file_aio_read() in order to avoid gfar's check to see if
889  * the request starts before the end of the file.  For that check
890  * to work, we must generate a GETATTR before each direct read, and
891  * even then there is a window between the GETATTR and the subsequent
892  * READ where the file size could change.  Our preference is simply
893  * to do all reads the application wants, and the server will take
894  * care of managing the end of file boundary.
895  *
896  * This function also eliminates unnecessarily updating the file's
897  * atime locally, as the NFS server sets the file's atime, and this
898  * client must read the updated atime from the server back into its
899  * cache.
900  */
901 ssize_t nfs_file_direct_read(struct kiocb *iocb, const struct iovec *iov,
902 				unsigned long nr_segs, loff_t pos, bool uio)
903 {
904 	ssize_t retval = -EINVAL;
905 	struct file *file = iocb->ki_filp;
906 	struct address_space *mapping = file->f_mapping;
907 	size_t count;
908 
909 	count = iov_length(iov, nr_segs);
910 	nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
911 
912 	dfprintk(FILE, "NFS: direct read(%s/%s, %zd@%Ld)\n",
913 		file->f_path.dentry->d_parent->d_name.name,
914 		file->f_path.dentry->d_name.name,
915 		count, (long long) pos);
916 
917 	retval = 0;
918 	if (!count)
919 		goto out;
920 
921 	retval = nfs_sync_mapping(mapping);
922 	if (retval)
923 		goto out;
924 
925 	task_io_account_read(count);
926 
927 	retval = nfs_direct_read(iocb, iov, nr_segs, pos, uio);
928 	if (retval > 0)
929 		iocb->ki_pos = pos + retval;
930 
931 out:
932 	return retval;
933 }
934 
935 /**
936  * nfs_file_direct_write - file direct write operation for NFS files
937  * @iocb: target I/O control block
938  * @iov: vector of user buffers from which to write data
939  * @nr_segs: size of iov vector
940  * @pos: byte offset in file where writing starts
941  *
942  * We use this function for direct writes instead of calling
943  * generic_file_aio_write() in order to avoid taking the inode
944  * semaphore and updating the i_size.  The NFS server will set
945  * the new i_size and this client must read the updated size
946  * back into its cache.  We let the server do generic write
947  * parameter checking and report problems.
948  *
949  * We eliminate local atime updates, see direct read above.
950  *
951  * We avoid unnecessary page cache invalidations for normal cached
952  * readers of this file.
953  *
954  * Note that O_APPEND is not supported for NFS direct writes, as there
955  * is no atomic O_APPEND write facility in the NFS protocol.
956  */
957 ssize_t nfs_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
958 				unsigned long nr_segs, loff_t pos, bool uio)
959 {
960 	ssize_t retval = -EINVAL;
961 	struct file *file = iocb->ki_filp;
962 	struct address_space *mapping = file->f_mapping;
963 	size_t count;
964 
965 	count = iov_length(iov, nr_segs);
966 	nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
967 
968 	dfprintk(FILE, "NFS: direct write(%s/%s, %zd@%Ld)\n",
969 		file->f_path.dentry->d_parent->d_name.name,
970 		file->f_path.dentry->d_name.name,
971 		count, (long long) pos);
972 
973 	retval = generic_write_checks(file, &pos, &count, 0);
974 	if (retval)
975 		goto out;
976 
977 	retval = -EINVAL;
978 	if ((ssize_t) count < 0)
979 		goto out;
980 	retval = 0;
981 	if (!count)
982 		goto out;
983 
984 	retval = nfs_sync_mapping(mapping);
985 	if (retval)
986 		goto out;
987 
988 	task_io_account_write(count);
989 
990 	retval = nfs_direct_write(iocb, iov, nr_segs, pos, count, uio);
991 	if (retval > 0) {
992 		struct inode *inode = mapping->host;
993 
994 		iocb->ki_pos = pos + retval;
995 		spin_lock(&inode->i_lock);
996 		if (i_size_read(inode) < iocb->ki_pos)
997 			i_size_write(inode, iocb->ki_pos);
998 		spin_unlock(&inode->i_lock);
999 	}
1000 out:
1001 	return retval;
1002 }
1003 
1004 /**
1005  * nfs_init_directcache - create a slab cache for nfs_direct_req structures
1006  *
1007  */
1008 int __init nfs_init_directcache(void)
1009 {
1010 	nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
1011 						sizeof(struct nfs_direct_req),
1012 						0, (SLAB_RECLAIM_ACCOUNT|
1013 							SLAB_MEM_SPREAD),
1014 						NULL);
1015 	if (nfs_direct_cachep == NULL)
1016 		return -ENOMEM;
1017 
1018 	return 0;
1019 }
1020 
1021 /**
1022  * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
1023  *
1024  */
1025 void nfs_destroy_directcache(void)
1026 {
1027 	kmem_cache_destroy(nfs_direct_cachep);
1028 }
1029