xref: /openbmc/linux/fs/nfs/direct.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  * linux/fs/nfs/direct.c
3  *
4  * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
5  *
6  * High-performance uncached I/O for the Linux NFS client
7  *
8  * There are important applications whose performance or correctness
9  * depends on uncached access to file data.  Database clusters
10  * (multiple copies of the same instance running on separate hosts)
11  * implement their own cache coherency protocol that subsumes file
12  * system cache protocols.  Applications that process datasets
13  * considerably larger than the client's memory do not always benefit
14  * from a local cache.  A streaming video server, for instance, has no
15  * need to cache the contents of a file.
16  *
17  * When an application requests uncached I/O, all read and write requests
18  * are made directly to the server; data stored or fetched via these
19  * requests is not cached in the Linux page cache.  The client does not
20  * correct unaligned requests from applications.  All requested bytes are
21  * held on permanent storage before a direct write system call returns to
22  * an application.
23  *
24  * Solaris implements an uncached I/O facility called directio() that
25  * is used for backups and sequential I/O to very large files.  Solaris
26  * also supports uncaching whole NFS partitions with "-o forcedirectio,"
27  * an undocumented mount option.
28  *
29  * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
30  * help from Andrew Morton.
31  *
32  * 18 Dec 2001	Initial implementation for 2.4  --cel
33  * 08 Jul 2002	Version for 2.4.19, with bug fixes --trondmy
34  * 08 Jun 2003	Port to 2.5 APIs  --cel
35  * 31 Mar 2004	Handle direct I/O without VFS support  --cel
36  * 15 Sep 2004	Parallel async reads  --cel
37  * 04 May 2005	support O_DIRECT with aio  --cel
38  *
39  */
40 
41 #include <linux/errno.h>
42 #include <linux/sched.h>
43 #include <linux/kernel.h>
44 #include <linux/file.h>
45 #include <linux/pagemap.h>
46 #include <linux/kref.h>
47 #include <linux/slab.h>
48 
49 #include <linux/nfs_fs.h>
50 #include <linux/nfs_page.h>
51 #include <linux/sunrpc/clnt.h>
52 
53 #include <asm/system.h>
54 #include <asm/uaccess.h>
55 #include <asm/atomic.h>
56 
57 #include "internal.h"
58 #include "iostat.h"
59 
60 #define NFSDBG_FACILITY		NFSDBG_VFS
61 
62 static struct kmem_cache *nfs_direct_cachep;
63 
64 /*
65  * This represents a set of asynchronous requests that we're waiting on
66  */
67 struct nfs_direct_req {
68 	struct kref		kref;		/* release manager */
69 
70 	/* I/O parameters */
71 	struct nfs_open_context	*ctx;		/* file open context info */
72 	struct nfs_lock_context *l_ctx;		/* Lock context info */
73 	struct kiocb *		iocb;		/* controlling i/o request */
74 	struct inode *		inode;		/* target file of i/o */
75 
76 	/* completion state */
77 	atomic_t		io_count;	/* i/os we're waiting for */
78 	spinlock_t		lock;		/* protect completion state */
79 	ssize_t			count,		/* bytes actually processed */
80 				error;		/* any reported error */
81 	struct completion	completion;	/* wait for i/o completion */
82 
83 	/* commit state */
84 	struct list_head	rewrite_list;	/* saved nfs_write_data structs */
85 	struct nfs_write_data *	commit_data;	/* special write_data for commits */
86 	int			flags;
87 #define NFS_ODIRECT_DO_COMMIT		(1)	/* an unstable reply was received */
88 #define NFS_ODIRECT_RESCHED_WRITES	(2)	/* write verification failed */
89 	struct nfs_writeverf	verf;		/* unstable write verifier */
90 };
91 
92 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
93 static const struct rpc_call_ops nfs_write_direct_ops;
94 
95 static inline void get_dreq(struct nfs_direct_req *dreq)
96 {
97 	atomic_inc(&dreq->io_count);
98 }
99 
100 static inline int put_dreq(struct nfs_direct_req *dreq)
101 {
102 	return atomic_dec_and_test(&dreq->io_count);
103 }
104 
105 /**
106  * nfs_direct_IO - NFS address space operation for direct I/O
107  * @rw: direction (read or write)
108  * @iocb: target I/O control block
109  * @iov: array of vectors that define I/O buffer
110  * @pos: offset in file to begin the operation
111  * @nr_segs: size of iovec array
112  *
113  * The presence of this routine in the address space ops vector means
114  * the NFS client supports direct I/O.  However, we shunt off direct
115  * read and write requests before the VFS gets them, so this method
116  * should never be called.
117  */
118 ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs)
119 {
120 	dprintk("NFS: nfs_direct_IO (%s) off/no(%Ld/%lu) EINVAL\n",
121 			iocb->ki_filp->f_path.dentry->d_name.name,
122 			(long long) pos, nr_segs);
123 
124 	return -EINVAL;
125 }
126 
127 static void nfs_direct_dirty_pages(struct page **pages, unsigned int pgbase, size_t count)
128 {
129 	unsigned int npages;
130 	unsigned int i;
131 
132 	if (count == 0)
133 		return;
134 	pages += (pgbase >> PAGE_SHIFT);
135 	npages = (count + (pgbase & ~PAGE_MASK) + PAGE_SIZE - 1) >> PAGE_SHIFT;
136 	for (i = 0; i < npages; i++) {
137 		struct page *page = pages[i];
138 		if (!PageCompound(page))
139 			set_page_dirty(page);
140 	}
141 }
142 
143 static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
144 {
145 	unsigned int i;
146 	for (i = 0; i < npages; i++)
147 		page_cache_release(pages[i]);
148 }
149 
150 static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
151 {
152 	struct nfs_direct_req *dreq;
153 
154 	dreq = kmem_cache_alloc(nfs_direct_cachep, GFP_KERNEL);
155 	if (!dreq)
156 		return NULL;
157 
158 	kref_init(&dreq->kref);
159 	kref_get(&dreq->kref);
160 	init_completion(&dreq->completion);
161 	INIT_LIST_HEAD(&dreq->rewrite_list);
162 	dreq->iocb = NULL;
163 	dreq->ctx = NULL;
164 	dreq->l_ctx = NULL;
165 	spin_lock_init(&dreq->lock);
166 	atomic_set(&dreq->io_count, 0);
167 	dreq->count = 0;
168 	dreq->error = 0;
169 	dreq->flags = 0;
170 
171 	return dreq;
172 }
173 
174 static void nfs_direct_req_free(struct kref *kref)
175 {
176 	struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
177 
178 	if (dreq->l_ctx != NULL)
179 		nfs_put_lock_context(dreq->l_ctx);
180 	if (dreq->ctx != NULL)
181 		put_nfs_open_context(dreq->ctx);
182 	kmem_cache_free(nfs_direct_cachep, dreq);
183 }
184 
185 static void nfs_direct_req_release(struct nfs_direct_req *dreq)
186 {
187 	kref_put(&dreq->kref, nfs_direct_req_free);
188 }
189 
190 /*
191  * Collects and returns the final error value/byte-count.
192  */
193 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
194 {
195 	ssize_t result = -EIOCBQUEUED;
196 
197 	/* Async requests don't wait here */
198 	if (dreq->iocb)
199 		goto out;
200 
201 	result = wait_for_completion_killable(&dreq->completion);
202 
203 	if (!result)
204 		result = dreq->error;
205 	if (!result)
206 		result = dreq->count;
207 
208 out:
209 	return (ssize_t) result;
210 }
211 
212 /*
213  * Synchronous I/O uses a stack-allocated iocb.  Thus we can't trust
214  * the iocb is still valid here if this is a synchronous request.
215  */
216 static void nfs_direct_complete(struct nfs_direct_req *dreq)
217 {
218 	if (dreq->iocb) {
219 		long res = (long) dreq->error;
220 		if (!res)
221 			res = (long) dreq->count;
222 		aio_complete(dreq->iocb, res, 0);
223 	}
224 	complete_all(&dreq->completion);
225 
226 	nfs_direct_req_release(dreq);
227 }
228 
229 /*
230  * We must hold a reference to all the pages in this direct read request
231  * until the RPCs complete.  This could be long *after* we are woken up in
232  * nfs_direct_wait (for instance, if someone hits ^C on a slow server).
233  */
234 static void nfs_direct_read_result(struct rpc_task *task, void *calldata)
235 {
236 	struct nfs_read_data *data = calldata;
237 
238 	nfs_readpage_result(task, data);
239 }
240 
241 static void nfs_direct_read_release(void *calldata)
242 {
243 
244 	struct nfs_read_data *data = calldata;
245 	struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
246 	int status = data->task.tk_status;
247 
248 	spin_lock(&dreq->lock);
249 	if (unlikely(status < 0)) {
250 		dreq->error = status;
251 		spin_unlock(&dreq->lock);
252 	} else {
253 		dreq->count += data->res.count;
254 		spin_unlock(&dreq->lock);
255 		nfs_direct_dirty_pages(data->pagevec,
256 				data->args.pgbase,
257 				data->res.count);
258 	}
259 	nfs_direct_release_pages(data->pagevec, data->npages);
260 
261 	if (put_dreq(dreq))
262 		nfs_direct_complete(dreq);
263 	nfs_readdata_free(data);
264 }
265 
266 static const struct rpc_call_ops nfs_read_direct_ops = {
267 #if defined(CONFIG_NFS_V4_1)
268 	.rpc_call_prepare = nfs_read_prepare,
269 #endif /* CONFIG_NFS_V4_1 */
270 	.rpc_call_done = nfs_direct_read_result,
271 	.rpc_release = nfs_direct_read_release,
272 };
273 
274 /*
275  * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
276  * operation.  If nfs_readdata_alloc() or get_user_pages() fails,
277  * bail and stop sending more reads.  Read length accounting is
278  * handled automatically by nfs_direct_read_result().  Otherwise, if
279  * no requests have been sent, just return an error.
280  */
281 static ssize_t nfs_direct_read_schedule_segment(struct nfs_direct_req *dreq,
282 						const struct iovec *iov,
283 						loff_t pos)
284 {
285 	struct nfs_open_context *ctx = dreq->ctx;
286 	struct inode *inode = ctx->path.dentry->d_inode;
287 	unsigned long user_addr = (unsigned long)iov->iov_base;
288 	size_t count = iov->iov_len;
289 	size_t rsize = NFS_SERVER(inode)->rsize;
290 	struct rpc_task *task;
291 	struct rpc_message msg = {
292 		.rpc_cred = ctx->cred,
293 	};
294 	struct rpc_task_setup task_setup_data = {
295 		.rpc_client = NFS_CLIENT(inode),
296 		.rpc_message = &msg,
297 		.callback_ops = &nfs_read_direct_ops,
298 		.workqueue = nfsiod_workqueue,
299 		.flags = RPC_TASK_ASYNC,
300 	};
301 	unsigned int pgbase;
302 	int result;
303 	ssize_t started = 0;
304 
305 	do {
306 		struct nfs_read_data *data;
307 		size_t bytes;
308 
309 		pgbase = user_addr & ~PAGE_MASK;
310 		bytes = min(rsize,count);
311 
312 		result = -ENOMEM;
313 		data = nfs_readdata_alloc(nfs_page_array_len(pgbase, bytes));
314 		if (unlikely(!data))
315 			break;
316 
317 		down_read(&current->mm->mmap_sem);
318 		result = get_user_pages(current, current->mm, user_addr,
319 					data->npages, 1, 0, data->pagevec, NULL);
320 		up_read(&current->mm->mmap_sem);
321 		if (result < 0) {
322 			nfs_readdata_free(data);
323 			break;
324 		}
325 		if ((unsigned)result < data->npages) {
326 			bytes = result * PAGE_SIZE;
327 			if (bytes <= pgbase) {
328 				nfs_direct_release_pages(data->pagevec, result);
329 				nfs_readdata_free(data);
330 				break;
331 			}
332 			bytes -= pgbase;
333 			data->npages = result;
334 		}
335 
336 		get_dreq(dreq);
337 
338 		data->req = (struct nfs_page *) dreq;
339 		data->inode = inode;
340 		data->cred = msg.rpc_cred;
341 		data->args.fh = NFS_FH(inode);
342 		data->args.context = ctx;
343 		data->args.lock_context = dreq->l_ctx;
344 		data->args.offset = pos;
345 		data->args.pgbase = pgbase;
346 		data->args.pages = data->pagevec;
347 		data->args.count = bytes;
348 		data->res.fattr = &data->fattr;
349 		data->res.eof = 0;
350 		data->res.count = bytes;
351 		nfs_fattr_init(&data->fattr);
352 		msg.rpc_argp = &data->args;
353 		msg.rpc_resp = &data->res;
354 
355 		task_setup_data.task = &data->task;
356 		task_setup_data.callback_data = data;
357 		NFS_PROTO(inode)->read_setup(data, &msg);
358 
359 		task = rpc_run_task(&task_setup_data);
360 		if (IS_ERR(task))
361 			break;
362 		rpc_put_task(task);
363 
364 		dprintk("NFS: %5u initiated direct read call "
365 			"(req %s/%Ld, %zu bytes @ offset %Lu)\n",
366 				data->task.tk_pid,
367 				inode->i_sb->s_id,
368 				(long long)NFS_FILEID(inode),
369 				bytes,
370 				(unsigned long long)data->args.offset);
371 
372 		started += bytes;
373 		user_addr += bytes;
374 		pos += bytes;
375 		/* FIXME: Remove this unnecessary math from final patch */
376 		pgbase += bytes;
377 		pgbase &= ~PAGE_MASK;
378 		BUG_ON(pgbase != (user_addr & ~PAGE_MASK));
379 
380 		count -= bytes;
381 	} while (count != 0);
382 
383 	if (started)
384 		return started;
385 	return result < 0 ? (ssize_t) result : -EFAULT;
386 }
387 
388 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
389 					      const struct iovec *iov,
390 					      unsigned long nr_segs,
391 					      loff_t pos)
392 {
393 	ssize_t result = -EINVAL;
394 	size_t requested_bytes = 0;
395 	unsigned long seg;
396 
397 	get_dreq(dreq);
398 
399 	for (seg = 0; seg < nr_segs; seg++) {
400 		const struct iovec *vec = &iov[seg];
401 		result = nfs_direct_read_schedule_segment(dreq, vec, pos);
402 		if (result < 0)
403 			break;
404 		requested_bytes += result;
405 		if ((size_t)result < vec->iov_len)
406 			break;
407 		pos += vec->iov_len;
408 	}
409 
410 	/*
411 	 * If no bytes were started, return the error, and let the
412 	 * generic layer handle the completion.
413 	 */
414 	if (requested_bytes == 0) {
415 		nfs_direct_req_release(dreq);
416 		return result < 0 ? result : -EIO;
417 	}
418 
419 	if (put_dreq(dreq))
420 		nfs_direct_complete(dreq);
421 	return 0;
422 }
423 
424 static ssize_t nfs_direct_read(struct kiocb *iocb, const struct iovec *iov,
425 			       unsigned long nr_segs, loff_t pos)
426 {
427 	ssize_t result = -ENOMEM;
428 	struct inode *inode = iocb->ki_filp->f_mapping->host;
429 	struct nfs_direct_req *dreq;
430 
431 	dreq = nfs_direct_req_alloc();
432 	if (dreq == NULL)
433 		goto out;
434 
435 	dreq->inode = inode;
436 	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
437 	dreq->l_ctx = nfs_get_lock_context(dreq->ctx);
438 	if (dreq->l_ctx == NULL)
439 		goto out_release;
440 	if (!is_sync_kiocb(iocb))
441 		dreq->iocb = iocb;
442 
443 	result = nfs_direct_read_schedule_iovec(dreq, iov, nr_segs, pos);
444 	if (!result)
445 		result = nfs_direct_wait(dreq);
446 out_release:
447 	nfs_direct_req_release(dreq);
448 out:
449 	return result;
450 }
451 
452 static void nfs_direct_free_writedata(struct nfs_direct_req *dreq)
453 {
454 	while (!list_empty(&dreq->rewrite_list)) {
455 		struct nfs_write_data *data = list_entry(dreq->rewrite_list.next, struct nfs_write_data, pages);
456 		list_del(&data->pages);
457 		nfs_direct_release_pages(data->pagevec, data->npages);
458 		nfs_writedata_free(data);
459 	}
460 }
461 
462 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
463 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
464 {
465 	struct inode *inode = dreq->inode;
466 	struct list_head *p;
467 	struct nfs_write_data *data;
468 	struct rpc_task *task;
469 	struct rpc_message msg = {
470 		.rpc_cred = dreq->ctx->cred,
471 	};
472 	struct rpc_task_setup task_setup_data = {
473 		.rpc_client = NFS_CLIENT(inode),
474 		.rpc_message = &msg,
475 		.callback_ops = &nfs_write_direct_ops,
476 		.workqueue = nfsiod_workqueue,
477 		.flags = RPC_TASK_ASYNC,
478 	};
479 
480 	dreq->count = 0;
481 	get_dreq(dreq);
482 
483 	list_for_each(p, &dreq->rewrite_list) {
484 		data = list_entry(p, struct nfs_write_data, pages);
485 
486 		get_dreq(dreq);
487 
488 		/* Use stable writes */
489 		data->args.stable = NFS_FILE_SYNC;
490 
491 		/*
492 		 * Reset data->res.
493 		 */
494 		nfs_fattr_init(&data->fattr);
495 		data->res.count = data->args.count;
496 		memset(&data->verf, 0, sizeof(data->verf));
497 
498 		/*
499 		 * Reuse data->task; data->args should not have changed
500 		 * since the original request was sent.
501 		 */
502 		task_setup_data.task = &data->task;
503 		task_setup_data.callback_data = data;
504 		msg.rpc_argp = &data->args;
505 		msg.rpc_resp = &data->res;
506 		NFS_PROTO(inode)->write_setup(data, &msg);
507 
508 		/*
509 		 * We're called via an RPC callback, so BKL is already held.
510 		 */
511 		task = rpc_run_task(&task_setup_data);
512 		if (!IS_ERR(task))
513 			rpc_put_task(task);
514 
515 		dprintk("NFS: %5u rescheduled direct write call (req %s/%Ld, %u bytes @ offset %Lu)\n",
516 				data->task.tk_pid,
517 				inode->i_sb->s_id,
518 				(long long)NFS_FILEID(inode),
519 				data->args.count,
520 				(unsigned long long)data->args.offset);
521 	}
522 
523 	if (put_dreq(dreq))
524 		nfs_direct_write_complete(dreq, inode);
525 }
526 
527 static void nfs_direct_commit_result(struct rpc_task *task, void *calldata)
528 {
529 	struct nfs_write_data *data = calldata;
530 
531 	/* Call the NFS version-specific code */
532 	NFS_PROTO(data->inode)->commit_done(task, data);
533 }
534 
535 static void nfs_direct_commit_release(void *calldata)
536 {
537 	struct nfs_write_data *data = calldata;
538 	struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
539 	int status = data->task.tk_status;
540 
541 	if (status < 0) {
542 		dprintk("NFS: %5u commit failed with error %d.\n",
543 				data->task.tk_pid, status);
544 		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
545 	} else if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) {
546 		dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid);
547 		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
548 	}
549 
550 	dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status);
551 	nfs_direct_write_complete(dreq, data->inode);
552 	nfs_commit_free(data);
553 }
554 
555 static const struct rpc_call_ops nfs_commit_direct_ops = {
556 #if defined(CONFIG_NFS_V4_1)
557 	.rpc_call_prepare = nfs_write_prepare,
558 #endif /* CONFIG_NFS_V4_1 */
559 	.rpc_call_done = nfs_direct_commit_result,
560 	.rpc_release = nfs_direct_commit_release,
561 };
562 
563 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
564 {
565 	struct nfs_write_data *data = dreq->commit_data;
566 	struct rpc_task *task;
567 	struct rpc_message msg = {
568 		.rpc_argp = &data->args,
569 		.rpc_resp = &data->res,
570 		.rpc_cred = dreq->ctx->cred,
571 	};
572 	struct rpc_task_setup task_setup_data = {
573 		.task = &data->task,
574 		.rpc_client = NFS_CLIENT(dreq->inode),
575 		.rpc_message = &msg,
576 		.callback_ops = &nfs_commit_direct_ops,
577 		.callback_data = data,
578 		.workqueue = nfsiod_workqueue,
579 		.flags = RPC_TASK_ASYNC,
580 	};
581 
582 	data->inode = dreq->inode;
583 	data->cred = msg.rpc_cred;
584 
585 	data->args.fh = NFS_FH(data->inode);
586 	data->args.offset = 0;
587 	data->args.count = 0;
588 	data->args.context = dreq->ctx;
589 	data->args.lock_context = dreq->l_ctx;
590 	data->res.count = 0;
591 	data->res.fattr = &data->fattr;
592 	data->res.verf = &data->verf;
593 	nfs_fattr_init(&data->fattr);
594 
595 	NFS_PROTO(data->inode)->commit_setup(data, &msg);
596 
597 	/* Note: task.tk_ops->rpc_release will free dreq->commit_data */
598 	dreq->commit_data = NULL;
599 
600 	dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
601 
602 	task = rpc_run_task(&task_setup_data);
603 	if (!IS_ERR(task))
604 		rpc_put_task(task);
605 }
606 
607 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
608 {
609 	int flags = dreq->flags;
610 
611 	dreq->flags = 0;
612 	switch (flags) {
613 		case NFS_ODIRECT_DO_COMMIT:
614 			nfs_direct_commit_schedule(dreq);
615 			break;
616 		case NFS_ODIRECT_RESCHED_WRITES:
617 			nfs_direct_write_reschedule(dreq);
618 			break;
619 		default:
620 			if (dreq->commit_data != NULL)
621 				nfs_commit_free(dreq->commit_data);
622 			nfs_direct_free_writedata(dreq);
623 			nfs_zap_mapping(inode, inode->i_mapping);
624 			nfs_direct_complete(dreq);
625 	}
626 }
627 
628 static void nfs_alloc_commit_data(struct nfs_direct_req *dreq)
629 {
630 	dreq->commit_data = nfs_commitdata_alloc();
631 	if (dreq->commit_data != NULL)
632 		dreq->commit_data->req = (struct nfs_page *) dreq;
633 }
634 #else
635 static inline void nfs_alloc_commit_data(struct nfs_direct_req *dreq)
636 {
637 	dreq->commit_data = NULL;
638 }
639 
640 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
641 {
642 	nfs_direct_free_writedata(dreq);
643 	nfs_zap_mapping(inode, inode->i_mapping);
644 	nfs_direct_complete(dreq);
645 }
646 #endif
647 
648 static void nfs_direct_write_result(struct rpc_task *task, void *calldata)
649 {
650 	struct nfs_write_data *data = calldata;
651 
652 	if (nfs_writeback_done(task, data) != 0)
653 		return;
654 }
655 
656 /*
657  * NB: Return the value of the first error return code.  Subsequent
658  *     errors after the first one are ignored.
659  */
660 static void nfs_direct_write_release(void *calldata)
661 {
662 	struct nfs_write_data *data = calldata;
663 	struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
664 	int status = data->task.tk_status;
665 
666 	spin_lock(&dreq->lock);
667 
668 	if (unlikely(status < 0)) {
669 		/* An error has occurred, so we should not commit */
670 		dreq->flags = 0;
671 		dreq->error = status;
672 	}
673 	if (unlikely(dreq->error != 0))
674 		goto out_unlock;
675 
676 	dreq->count += data->res.count;
677 
678 	if (data->res.verf->committed != NFS_FILE_SYNC) {
679 		switch (dreq->flags) {
680 			case 0:
681 				memcpy(&dreq->verf, &data->verf, sizeof(dreq->verf));
682 				dreq->flags = NFS_ODIRECT_DO_COMMIT;
683 				break;
684 			case NFS_ODIRECT_DO_COMMIT:
685 				if (memcmp(&dreq->verf, &data->verf, sizeof(dreq->verf))) {
686 					dprintk("NFS: %5u write verify failed\n", data->task.tk_pid);
687 					dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
688 				}
689 		}
690 	}
691 out_unlock:
692 	spin_unlock(&dreq->lock);
693 
694 	if (put_dreq(dreq))
695 		nfs_direct_write_complete(dreq, data->inode);
696 }
697 
698 static const struct rpc_call_ops nfs_write_direct_ops = {
699 #if defined(CONFIG_NFS_V4_1)
700 	.rpc_call_prepare = nfs_write_prepare,
701 #endif /* CONFIG_NFS_V4_1 */
702 	.rpc_call_done = nfs_direct_write_result,
703 	.rpc_release = nfs_direct_write_release,
704 };
705 
706 /*
707  * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
708  * operation.  If nfs_writedata_alloc() or get_user_pages() fails,
709  * bail and stop sending more writes.  Write length accounting is
710  * handled automatically by nfs_direct_write_result().  Otherwise, if
711  * no requests have been sent, just return an error.
712  */
713 static ssize_t nfs_direct_write_schedule_segment(struct nfs_direct_req *dreq,
714 						 const struct iovec *iov,
715 						 loff_t pos, int sync)
716 {
717 	struct nfs_open_context *ctx = dreq->ctx;
718 	struct inode *inode = ctx->path.dentry->d_inode;
719 	unsigned long user_addr = (unsigned long)iov->iov_base;
720 	size_t count = iov->iov_len;
721 	struct rpc_task *task;
722 	struct rpc_message msg = {
723 		.rpc_cred = ctx->cred,
724 	};
725 	struct rpc_task_setup task_setup_data = {
726 		.rpc_client = NFS_CLIENT(inode),
727 		.rpc_message = &msg,
728 		.callback_ops = &nfs_write_direct_ops,
729 		.workqueue = nfsiod_workqueue,
730 		.flags = RPC_TASK_ASYNC,
731 	};
732 	size_t wsize = NFS_SERVER(inode)->wsize;
733 	unsigned int pgbase;
734 	int result;
735 	ssize_t started = 0;
736 
737 	do {
738 		struct nfs_write_data *data;
739 		size_t bytes;
740 
741 		pgbase = user_addr & ~PAGE_MASK;
742 		bytes = min(wsize,count);
743 
744 		result = -ENOMEM;
745 		data = nfs_writedata_alloc(nfs_page_array_len(pgbase, bytes));
746 		if (unlikely(!data))
747 			break;
748 
749 		down_read(&current->mm->mmap_sem);
750 		result = get_user_pages(current, current->mm, user_addr,
751 					data->npages, 0, 0, data->pagevec, NULL);
752 		up_read(&current->mm->mmap_sem);
753 		if (result < 0) {
754 			nfs_writedata_free(data);
755 			break;
756 		}
757 		if ((unsigned)result < data->npages) {
758 			bytes = result * PAGE_SIZE;
759 			if (bytes <= pgbase) {
760 				nfs_direct_release_pages(data->pagevec, result);
761 				nfs_writedata_free(data);
762 				break;
763 			}
764 			bytes -= pgbase;
765 			data->npages = result;
766 		}
767 
768 		get_dreq(dreq);
769 
770 		list_move_tail(&data->pages, &dreq->rewrite_list);
771 
772 		data->req = (struct nfs_page *) dreq;
773 		data->inode = inode;
774 		data->cred = msg.rpc_cred;
775 		data->args.fh = NFS_FH(inode);
776 		data->args.context = ctx;
777 		data->args.lock_context = dreq->l_ctx;
778 		data->args.offset = pos;
779 		data->args.pgbase = pgbase;
780 		data->args.pages = data->pagevec;
781 		data->args.count = bytes;
782 		data->args.stable = sync;
783 		data->res.fattr = &data->fattr;
784 		data->res.count = bytes;
785 		data->res.verf = &data->verf;
786 		nfs_fattr_init(&data->fattr);
787 
788 		task_setup_data.task = &data->task;
789 		task_setup_data.callback_data = data;
790 		msg.rpc_argp = &data->args;
791 		msg.rpc_resp = &data->res;
792 		NFS_PROTO(inode)->write_setup(data, &msg);
793 
794 		task = rpc_run_task(&task_setup_data);
795 		if (IS_ERR(task))
796 			break;
797 		rpc_put_task(task);
798 
799 		dprintk("NFS: %5u initiated direct write call "
800 			"(req %s/%Ld, %zu bytes @ offset %Lu)\n",
801 				data->task.tk_pid,
802 				inode->i_sb->s_id,
803 				(long long)NFS_FILEID(inode),
804 				bytes,
805 				(unsigned long long)data->args.offset);
806 
807 		started += bytes;
808 		user_addr += bytes;
809 		pos += bytes;
810 
811 		/* FIXME: Remove this useless math from the final patch */
812 		pgbase += bytes;
813 		pgbase &= ~PAGE_MASK;
814 		BUG_ON(pgbase != (user_addr & ~PAGE_MASK));
815 
816 		count -= bytes;
817 	} while (count != 0);
818 
819 	if (started)
820 		return started;
821 	return result < 0 ? (ssize_t) result : -EFAULT;
822 }
823 
824 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
825 					       const struct iovec *iov,
826 					       unsigned long nr_segs,
827 					       loff_t pos, int sync)
828 {
829 	ssize_t result = 0;
830 	size_t requested_bytes = 0;
831 	unsigned long seg;
832 
833 	get_dreq(dreq);
834 
835 	for (seg = 0; seg < nr_segs; seg++) {
836 		const struct iovec *vec = &iov[seg];
837 		result = nfs_direct_write_schedule_segment(dreq, vec,
838 							   pos, sync);
839 		if (result < 0)
840 			break;
841 		requested_bytes += result;
842 		if ((size_t)result < vec->iov_len)
843 			break;
844 		pos += vec->iov_len;
845 	}
846 
847 	/*
848 	 * If no bytes were started, return the error, and let the
849 	 * generic layer handle the completion.
850 	 */
851 	if (requested_bytes == 0) {
852 		nfs_direct_req_release(dreq);
853 		return result < 0 ? result : -EIO;
854 	}
855 
856 	if (put_dreq(dreq))
857 		nfs_direct_write_complete(dreq, dreq->inode);
858 	return 0;
859 }
860 
861 static ssize_t nfs_direct_write(struct kiocb *iocb, const struct iovec *iov,
862 				unsigned long nr_segs, loff_t pos,
863 				size_t count)
864 {
865 	ssize_t result = -ENOMEM;
866 	struct inode *inode = iocb->ki_filp->f_mapping->host;
867 	struct nfs_direct_req *dreq;
868 	size_t wsize = NFS_SERVER(inode)->wsize;
869 	int sync = NFS_UNSTABLE;
870 
871 	dreq = nfs_direct_req_alloc();
872 	if (!dreq)
873 		goto out;
874 	nfs_alloc_commit_data(dreq);
875 
876 	if (dreq->commit_data == NULL || count <= wsize)
877 		sync = NFS_FILE_SYNC;
878 
879 	dreq->inode = inode;
880 	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
881 	dreq->l_ctx = nfs_get_lock_context(dreq->ctx);
882 	if (dreq->l_ctx == NULL)
883 		goto out_release;
884 	if (!is_sync_kiocb(iocb))
885 		dreq->iocb = iocb;
886 
887 	result = nfs_direct_write_schedule_iovec(dreq, iov, nr_segs, pos, sync);
888 	if (!result)
889 		result = nfs_direct_wait(dreq);
890 out_release:
891 	nfs_direct_req_release(dreq);
892 out:
893 	return result;
894 }
895 
896 /**
897  * nfs_file_direct_read - file direct read operation for NFS files
898  * @iocb: target I/O control block
899  * @iov: vector of user buffers into which to read data
900  * @nr_segs: size of iov vector
901  * @pos: byte offset in file where reading starts
902  *
903  * We use this function for direct reads instead of calling
904  * generic_file_aio_read() in order to avoid gfar's check to see if
905  * the request starts before the end of the file.  For that check
906  * to work, we must generate a GETATTR before each direct read, and
907  * even then there is a window between the GETATTR and the subsequent
908  * READ where the file size could change.  Our preference is simply
909  * to do all reads the application wants, and the server will take
910  * care of managing the end of file boundary.
911  *
912  * This function also eliminates unnecessarily updating the file's
913  * atime locally, as the NFS server sets the file's atime, and this
914  * client must read the updated atime from the server back into its
915  * cache.
916  */
917 ssize_t nfs_file_direct_read(struct kiocb *iocb, const struct iovec *iov,
918 				unsigned long nr_segs, loff_t pos)
919 {
920 	ssize_t retval = -EINVAL;
921 	struct file *file = iocb->ki_filp;
922 	struct address_space *mapping = file->f_mapping;
923 	size_t count;
924 
925 	count = iov_length(iov, nr_segs);
926 	nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
927 
928 	dfprintk(FILE, "NFS: direct read(%s/%s, %zd@%Ld)\n",
929 		file->f_path.dentry->d_parent->d_name.name,
930 		file->f_path.dentry->d_name.name,
931 		count, (long long) pos);
932 
933 	retval = 0;
934 	if (!count)
935 		goto out;
936 
937 	retval = nfs_sync_mapping(mapping);
938 	if (retval)
939 		goto out;
940 
941 	retval = nfs_direct_read(iocb, iov, nr_segs, pos);
942 	if (retval > 0)
943 		iocb->ki_pos = pos + retval;
944 
945 out:
946 	return retval;
947 }
948 
949 /**
950  * nfs_file_direct_write - file direct write operation for NFS files
951  * @iocb: target I/O control block
952  * @iov: vector of user buffers from which to write data
953  * @nr_segs: size of iov vector
954  * @pos: byte offset in file where writing starts
955  *
956  * We use this function for direct writes instead of calling
957  * generic_file_aio_write() in order to avoid taking the inode
958  * semaphore and updating the i_size.  The NFS server will set
959  * the new i_size and this client must read the updated size
960  * back into its cache.  We let the server do generic write
961  * parameter checking and report problems.
962  *
963  * We eliminate local atime updates, see direct read above.
964  *
965  * We avoid unnecessary page cache invalidations for normal cached
966  * readers of this file.
967  *
968  * Note that O_APPEND is not supported for NFS direct writes, as there
969  * is no atomic O_APPEND write facility in the NFS protocol.
970  */
971 ssize_t nfs_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
972 				unsigned long nr_segs, loff_t pos)
973 {
974 	ssize_t retval = -EINVAL;
975 	struct file *file = iocb->ki_filp;
976 	struct address_space *mapping = file->f_mapping;
977 	size_t count;
978 
979 	count = iov_length(iov, nr_segs);
980 	nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
981 
982 	dfprintk(FILE, "NFS: direct write(%s/%s, %zd@%Ld)\n",
983 		file->f_path.dentry->d_parent->d_name.name,
984 		file->f_path.dentry->d_name.name,
985 		count, (long long) pos);
986 
987 	retval = generic_write_checks(file, &pos, &count, 0);
988 	if (retval)
989 		goto out;
990 
991 	retval = -EINVAL;
992 	if ((ssize_t) count < 0)
993 		goto out;
994 	retval = 0;
995 	if (!count)
996 		goto out;
997 
998 	retval = nfs_sync_mapping(mapping);
999 	if (retval)
1000 		goto out;
1001 
1002 	retval = nfs_direct_write(iocb, iov, nr_segs, pos, count);
1003 
1004 	if (retval > 0)
1005 		iocb->ki_pos = pos + retval;
1006 
1007 out:
1008 	return retval;
1009 }
1010 
1011 /**
1012  * nfs_init_directcache - create a slab cache for nfs_direct_req structures
1013  *
1014  */
1015 int __init nfs_init_directcache(void)
1016 {
1017 	nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
1018 						sizeof(struct nfs_direct_req),
1019 						0, (SLAB_RECLAIM_ACCOUNT|
1020 							SLAB_MEM_SPREAD),
1021 						NULL);
1022 	if (nfs_direct_cachep == NULL)
1023 		return -ENOMEM;
1024 
1025 	return 0;
1026 }
1027 
1028 /**
1029  * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
1030  *
1031  */
1032 void nfs_destroy_directcache(void)
1033 {
1034 	kmem_cache_destroy(nfs_direct_cachep);
1035 }
1036