xref: /openbmc/linux/fs/nfs/direct.c (revision cd99b9eb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/fs/nfs/direct.c
4  *
5  * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
6  *
7  * High-performance uncached I/O for the Linux NFS client
8  *
9  * There are important applications whose performance or correctness
10  * depends on uncached access to file data.  Database clusters
11  * (multiple copies of the same instance running on separate hosts)
12  * implement their own cache coherency protocol that subsumes file
13  * system cache protocols.  Applications that process datasets
14  * considerably larger than the client's memory do not always benefit
15  * from a local cache.  A streaming video server, for instance, has no
16  * need to cache the contents of a file.
17  *
18  * When an application requests uncached I/O, all read and write requests
19  * are made directly to the server; data stored or fetched via these
20  * requests is not cached in the Linux page cache.  The client does not
21  * correct unaligned requests from applications.  All requested bytes are
22  * held on permanent storage before a direct write system call returns to
23  * an application.
24  *
25  * Solaris implements an uncached I/O facility called directio() that
26  * is used for backups and sequential I/O to very large files.  Solaris
27  * also supports uncaching whole NFS partitions with "-o forcedirectio,"
28  * an undocumented mount option.
29  *
30  * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
31  * help from Andrew Morton.
32  *
33  * 18 Dec 2001	Initial implementation for 2.4  --cel
34  * 08 Jul 2002	Version for 2.4.19, with bug fixes --trondmy
35  * 08 Jun 2003	Port to 2.5 APIs  --cel
36  * 31 Mar 2004	Handle direct I/O without VFS support  --cel
37  * 15 Sep 2004	Parallel async reads  --cel
38  * 04 May 2005	support O_DIRECT with aio  --cel
39  *
40  */
41 
42 #include <linux/errno.h>
43 #include <linux/sched.h>
44 #include <linux/kernel.h>
45 #include <linux/file.h>
46 #include <linux/pagemap.h>
47 #include <linux/kref.h>
48 #include <linux/slab.h>
49 #include <linux/task_io_accounting_ops.h>
50 #include <linux/module.h>
51 
52 #include <linux/nfs_fs.h>
53 #include <linux/nfs_page.h>
54 #include <linux/sunrpc/clnt.h>
55 
56 #include <linux/uaccess.h>
57 #include <linux/atomic.h>
58 
59 #include "internal.h"
60 #include "iostat.h"
61 #include "pnfs.h"
62 #include "fscache.h"
63 #include "nfstrace.h"
64 
65 #define NFSDBG_FACILITY		NFSDBG_VFS
66 
67 static struct kmem_cache *nfs_direct_cachep;
68 
69 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
70 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
71 static void nfs_direct_write_complete(struct nfs_direct_req *dreq);
72 static void nfs_direct_write_schedule_work(struct work_struct *work);
73 
74 static inline void get_dreq(struct nfs_direct_req *dreq)
75 {
76 	atomic_inc(&dreq->io_count);
77 }
78 
79 static inline int put_dreq(struct nfs_direct_req *dreq)
80 {
81 	return atomic_dec_and_test(&dreq->io_count);
82 }
83 
84 static void
85 nfs_direct_handle_truncated(struct nfs_direct_req *dreq,
86 			    const struct nfs_pgio_header *hdr,
87 			    ssize_t dreq_len)
88 {
89 	if (!(test_bit(NFS_IOHDR_ERROR, &hdr->flags) ||
90 	      test_bit(NFS_IOHDR_EOF, &hdr->flags)))
91 		return;
92 	if (dreq->max_count >= dreq_len) {
93 		dreq->max_count = dreq_len;
94 		if (dreq->count > dreq_len)
95 			dreq->count = dreq_len;
96 
97 		if (test_bit(NFS_IOHDR_ERROR, &hdr->flags))
98 			dreq->error = hdr->error;
99 		else /* Clear outstanding error if this is EOF */
100 			dreq->error = 0;
101 	}
102 }
103 
104 static void
105 nfs_direct_count_bytes(struct nfs_direct_req *dreq,
106 		       const struct nfs_pgio_header *hdr)
107 {
108 	loff_t hdr_end = hdr->io_start + hdr->good_bytes;
109 	ssize_t dreq_len = 0;
110 
111 	if (hdr_end > dreq->io_start)
112 		dreq_len = hdr_end - dreq->io_start;
113 
114 	nfs_direct_handle_truncated(dreq, hdr, dreq_len);
115 
116 	if (dreq_len > dreq->max_count)
117 		dreq_len = dreq->max_count;
118 
119 	if (dreq->count < dreq_len)
120 		dreq->count = dreq_len;
121 }
122 
123 /**
124  * nfs_swap_rw - NFS address space operation for swap I/O
125  * @iocb: target I/O control block
126  * @iter: I/O buffer
127  *
128  * Perform IO to the swap-file.  This is much like direct IO.
129  */
130 int nfs_swap_rw(struct kiocb *iocb, struct iov_iter *iter)
131 {
132 	ssize_t ret;
133 
134 	VM_BUG_ON(iov_iter_count(iter) != PAGE_SIZE);
135 
136 	if (iov_iter_rw(iter) == READ)
137 		ret = nfs_file_direct_read(iocb, iter, true);
138 	else
139 		ret = nfs_file_direct_write(iocb, iter, true);
140 	if (ret < 0)
141 		return ret;
142 	return 0;
143 }
144 
145 static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
146 {
147 	unsigned int i;
148 	for (i = 0; i < npages; i++)
149 		put_page(pages[i]);
150 }
151 
152 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
153 			      struct nfs_direct_req *dreq)
154 {
155 	cinfo->inode = dreq->inode;
156 	cinfo->mds = &dreq->mds_cinfo;
157 	cinfo->ds = &dreq->ds_cinfo;
158 	cinfo->dreq = dreq;
159 	cinfo->completion_ops = &nfs_direct_commit_completion_ops;
160 }
161 
162 static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
163 {
164 	struct nfs_direct_req *dreq;
165 
166 	dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
167 	if (!dreq)
168 		return NULL;
169 
170 	kref_init(&dreq->kref);
171 	kref_get(&dreq->kref);
172 	init_completion(&dreq->completion);
173 	INIT_LIST_HEAD(&dreq->mds_cinfo.list);
174 	pnfs_init_ds_commit_info(&dreq->ds_cinfo);
175 	INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
176 	spin_lock_init(&dreq->lock);
177 
178 	return dreq;
179 }
180 
181 static void nfs_direct_req_free(struct kref *kref)
182 {
183 	struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
184 
185 	pnfs_release_ds_info(&dreq->ds_cinfo, dreq->inode);
186 	if (dreq->l_ctx != NULL)
187 		nfs_put_lock_context(dreq->l_ctx);
188 	if (dreq->ctx != NULL)
189 		put_nfs_open_context(dreq->ctx);
190 	kmem_cache_free(nfs_direct_cachep, dreq);
191 }
192 
193 static void nfs_direct_req_release(struct nfs_direct_req *dreq)
194 {
195 	kref_put(&dreq->kref, nfs_direct_req_free);
196 }
197 
198 ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq)
199 {
200 	return dreq->bytes_left;
201 }
202 EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
203 
204 /*
205  * Collects and returns the final error value/byte-count.
206  */
207 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
208 {
209 	ssize_t result = -EIOCBQUEUED;
210 
211 	/* Async requests don't wait here */
212 	if (dreq->iocb)
213 		goto out;
214 
215 	result = wait_for_completion_killable(&dreq->completion);
216 
217 	if (!result) {
218 		result = dreq->count;
219 		WARN_ON_ONCE(dreq->count < 0);
220 	}
221 	if (!result)
222 		result = dreq->error;
223 
224 out:
225 	return (ssize_t) result;
226 }
227 
228 /*
229  * Synchronous I/O uses a stack-allocated iocb.  Thus we can't trust
230  * the iocb is still valid here if this is a synchronous request.
231  */
232 static void nfs_direct_complete(struct nfs_direct_req *dreq)
233 {
234 	struct inode *inode = dreq->inode;
235 
236 	inode_dio_end(inode);
237 
238 	if (dreq->iocb) {
239 		long res = (long) dreq->error;
240 		if (dreq->count != 0) {
241 			res = (long) dreq->count;
242 			WARN_ON_ONCE(dreq->count < 0);
243 		}
244 		dreq->iocb->ki_complete(dreq->iocb, res);
245 	}
246 
247 	complete(&dreq->completion);
248 
249 	nfs_direct_req_release(dreq);
250 }
251 
252 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
253 {
254 	unsigned long bytes = 0;
255 	struct nfs_direct_req *dreq = hdr->dreq;
256 
257 	spin_lock(&dreq->lock);
258 	if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) {
259 		spin_unlock(&dreq->lock);
260 		goto out_put;
261 	}
262 
263 	nfs_direct_count_bytes(dreq, hdr);
264 	spin_unlock(&dreq->lock);
265 
266 	while (!list_empty(&hdr->pages)) {
267 		struct nfs_page *req = nfs_list_entry(hdr->pages.next);
268 		struct page *page = req->wb_page;
269 
270 		if (!PageCompound(page) && bytes < hdr->good_bytes &&
271 		    (dreq->flags == NFS_ODIRECT_SHOULD_DIRTY))
272 			set_page_dirty(page);
273 		bytes += req->wb_bytes;
274 		nfs_list_remove_request(req);
275 		nfs_release_request(req);
276 	}
277 out_put:
278 	if (put_dreq(dreq))
279 		nfs_direct_complete(dreq);
280 	hdr->release(hdr);
281 }
282 
283 static void nfs_read_sync_pgio_error(struct list_head *head, int error)
284 {
285 	struct nfs_page *req;
286 
287 	while (!list_empty(head)) {
288 		req = nfs_list_entry(head->next);
289 		nfs_list_remove_request(req);
290 		nfs_release_request(req);
291 	}
292 }
293 
294 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
295 {
296 	get_dreq(hdr->dreq);
297 }
298 
299 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
300 	.error_cleanup = nfs_read_sync_pgio_error,
301 	.init_hdr = nfs_direct_pgio_init,
302 	.completion = nfs_direct_read_completion,
303 };
304 
305 /*
306  * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
307  * operation.  If nfs_readdata_alloc() or get_user_pages() fails,
308  * bail and stop sending more reads.  Read length accounting is
309  * handled automatically by nfs_direct_read_result().  Otherwise, if
310  * no requests have been sent, just return an error.
311  */
312 
313 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
314 					      struct iov_iter *iter,
315 					      loff_t pos)
316 {
317 	struct nfs_pageio_descriptor desc;
318 	struct inode *inode = dreq->inode;
319 	ssize_t result = -EINVAL;
320 	size_t requested_bytes = 0;
321 	size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE);
322 
323 	nfs_pageio_init_read(&desc, dreq->inode, false,
324 			     &nfs_direct_read_completion_ops);
325 	get_dreq(dreq);
326 	desc.pg_dreq = dreq;
327 	inode_dio_begin(inode);
328 
329 	while (iov_iter_count(iter)) {
330 		struct page **pagevec;
331 		size_t bytes;
332 		size_t pgbase;
333 		unsigned npages, i;
334 
335 		result = iov_iter_get_pages_alloc2(iter, &pagevec,
336 						  rsize, &pgbase);
337 		if (result < 0)
338 			break;
339 
340 		bytes = result;
341 		npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
342 		for (i = 0; i < npages; i++) {
343 			struct nfs_page *req;
344 			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
345 			/* XXX do we need to do the eof zeroing found in async_filler? */
346 			req = nfs_page_create_from_page(dreq->ctx, pagevec[i],
347 							pgbase, pos, req_len);
348 			if (IS_ERR(req)) {
349 				result = PTR_ERR(req);
350 				break;
351 			}
352 			if (!nfs_pageio_add_request(&desc, req)) {
353 				result = desc.pg_error;
354 				nfs_release_request(req);
355 				break;
356 			}
357 			pgbase = 0;
358 			bytes -= req_len;
359 			requested_bytes += req_len;
360 			pos += req_len;
361 			dreq->bytes_left -= req_len;
362 		}
363 		nfs_direct_release_pages(pagevec, npages);
364 		kvfree(pagevec);
365 		if (result < 0)
366 			break;
367 	}
368 
369 	nfs_pageio_complete(&desc);
370 
371 	/*
372 	 * If no bytes were started, return the error, and let the
373 	 * generic layer handle the completion.
374 	 */
375 	if (requested_bytes == 0) {
376 		inode_dio_end(inode);
377 		nfs_direct_req_release(dreq);
378 		return result < 0 ? result : -EIO;
379 	}
380 
381 	if (put_dreq(dreq))
382 		nfs_direct_complete(dreq);
383 	return requested_bytes;
384 }
385 
386 /**
387  * nfs_file_direct_read - file direct read operation for NFS files
388  * @iocb: target I/O control block
389  * @iter: vector of user buffers into which to read data
390  * @swap: flag indicating this is swap IO, not O_DIRECT IO
391  *
392  * We use this function for direct reads instead of calling
393  * generic_file_aio_read() in order to avoid gfar's check to see if
394  * the request starts before the end of the file.  For that check
395  * to work, we must generate a GETATTR before each direct read, and
396  * even then there is a window between the GETATTR and the subsequent
397  * READ where the file size could change.  Our preference is simply
398  * to do all reads the application wants, and the server will take
399  * care of managing the end of file boundary.
400  *
401  * This function also eliminates unnecessarily updating the file's
402  * atime locally, as the NFS server sets the file's atime, and this
403  * client must read the updated atime from the server back into its
404  * cache.
405  */
406 ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter,
407 			     bool swap)
408 {
409 	struct file *file = iocb->ki_filp;
410 	struct address_space *mapping = file->f_mapping;
411 	struct inode *inode = mapping->host;
412 	struct nfs_direct_req *dreq;
413 	struct nfs_lock_context *l_ctx;
414 	ssize_t result, requested;
415 	size_t count = iov_iter_count(iter);
416 	nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
417 
418 	dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n",
419 		file, count, (long long) iocb->ki_pos);
420 
421 	result = 0;
422 	if (!count)
423 		goto out;
424 
425 	task_io_account_read(count);
426 
427 	result = -ENOMEM;
428 	dreq = nfs_direct_req_alloc();
429 	if (dreq == NULL)
430 		goto out;
431 
432 	dreq->inode = inode;
433 	dreq->bytes_left = dreq->max_count = count;
434 	dreq->io_start = iocb->ki_pos;
435 	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
436 	l_ctx = nfs_get_lock_context(dreq->ctx);
437 	if (IS_ERR(l_ctx)) {
438 		result = PTR_ERR(l_ctx);
439 		nfs_direct_req_release(dreq);
440 		goto out_release;
441 	}
442 	dreq->l_ctx = l_ctx;
443 	if (!is_sync_kiocb(iocb))
444 		dreq->iocb = iocb;
445 
446 	if (user_backed_iter(iter))
447 		dreq->flags = NFS_ODIRECT_SHOULD_DIRTY;
448 
449 	if (!swap)
450 		nfs_start_io_direct(inode);
451 
452 	NFS_I(inode)->read_io += count;
453 	requested = nfs_direct_read_schedule_iovec(dreq, iter, iocb->ki_pos);
454 
455 	if (!swap)
456 		nfs_end_io_direct(inode);
457 
458 	if (requested > 0) {
459 		result = nfs_direct_wait(dreq);
460 		if (result > 0) {
461 			requested -= result;
462 			iocb->ki_pos += result;
463 		}
464 		iov_iter_revert(iter, requested);
465 	} else {
466 		result = requested;
467 	}
468 
469 out_release:
470 	nfs_direct_req_release(dreq);
471 out:
472 	return result;
473 }
474 
475 static void nfs_direct_join_group(struct list_head *list, struct inode *inode)
476 {
477 	struct nfs_page *req, *subreq;
478 
479 	list_for_each_entry(req, list, wb_list) {
480 		if (req->wb_head != req)
481 			continue;
482 		subreq = req->wb_this_page;
483 		if (subreq == req)
484 			continue;
485 		do {
486 			/*
487 			 * Remove subrequests from this list before freeing
488 			 * them in the call to nfs_join_page_group().
489 			 */
490 			if (!list_empty(&subreq->wb_list)) {
491 				nfs_list_remove_request(subreq);
492 				nfs_release_request(subreq);
493 			}
494 		} while ((subreq = subreq->wb_this_page) != req);
495 		nfs_join_page_group(req, inode);
496 	}
497 }
498 
499 static void
500 nfs_direct_write_scan_commit_list(struct inode *inode,
501 				  struct list_head *list,
502 				  struct nfs_commit_info *cinfo)
503 {
504 	mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
505 	pnfs_recover_commit_reqs(list, cinfo);
506 	nfs_scan_commit_list(&cinfo->mds->list, list, cinfo, 0);
507 	mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
508 }
509 
510 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
511 {
512 	struct nfs_pageio_descriptor desc;
513 	struct nfs_page *req, *tmp;
514 	LIST_HEAD(reqs);
515 	struct nfs_commit_info cinfo;
516 	LIST_HEAD(failed);
517 
518 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
519 	nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
520 
521 	nfs_direct_join_group(&reqs, dreq->inode);
522 
523 	dreq->count = 0;
524 	dreq->max_count = 0;
525 	list_for_each_entry(req, &reqs, wb_list)
526 		dreq->max_count += req->wb_bytes;
527 	nfs_clear_pnfs_ds_commit_verifiers(&dreq->ds_cinfo);
528 	get_dreq(dreq);
529 
530 	nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false,
531 			      &nfs_direct_write_completion_ops);
532 	desc.pg_dreq = dreq;
533 
534 	list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
535 		/* Bump the transmission count */
536 		req->wb_nio++;
537 		if (!nfs_pageio_add_request(&desc, req)) {
538 			nfs_list_move_request(req, &failed);
539 			spin_lock(&cinfo.inode->i_lock);
540 			dreq->flags = 0;
541 			if (desc.pg_error < 0)
542 				dreq->error = desc.pg_error;
543 			else
544 				dreq->error = -EIO;
545 			spin_unlock(&cinfo.inode->i_lock);
546 		}
547 		nfs_release_request(req);
548 	}
549 	nfs_pageio_complete(&desc);
550 
551 	while (!list_empty(&failed)) {
552 		req = nfs_list_entry(failed.next);
553 		nfs_list_remove_request(req);
554 		nfs_unlock_and_release_request(req);
555 	}
556 
557 	if (put_dreq(dreq))
558 		nfs_direct_write_complete(dreq);
559 }
560 
561 static void nfs_direct_commit_complete(struct nfs_commit_data *data)
562 {
563 	const struct nfs_writeverf *verf = data->res.verf;
564 	struct nfs_direct_req *dreq = data->dreq;
565 	struct nfs_commit_info cinfo;
566 	struct nfs_page *req;
567 	int status = data->task.tk_status;
568 
569 	trace_nfs_direct_commit_complete(dreq);
570 
571 	if (status < 0) {
572 		/* Errors in commit are fatal */
573 		dreq->error = status;
574 		dreq->max_count = 0;
575 		dreq->count = 0;
576 		dreq->flags = NFS_ODIRECT_DONE;
577 	} else {
578 		status = dreq->error;
579 	}
580 
581 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
582 
583 	while (!list_empty(&data->pages)) {
584 		req = nfs_list_entry(data->pages.next);
585 		nfs_list_remove_request(req);
586 		if (status >= 0 && !nfs_write_match_verf(verf, req)) {
587 			dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
588 			/*
589 			 * Despite the reboot, the write was successful,
590 			 * so reset wb_nio.
591 			 */
592 			req->wb_nio = 0;
593 			nfs_mark_request_commit(req, NULL, &cinfo, 0);
594 		} else /* Error or match */
595 			nfs_release_request(req);
596 		nfs_unlock_and_release_request(req);
597 	}
598 
599 	if (nfs_commit_end(cinfo.mds))
600 		nfs_direct_write_complete(dreq);
601 }
602 
603 static void nfs_direct_resched_write(struct nfs_commit_info *cinfo,
604 		struct nfs_page *req)
605 {
606 	struct nfs_direct_req *dreq = cinfo->dreq;
607 
608 	trace_nfs_direct_resched_write(dreq);
609 
610 	spin_lock(&dreq->lock);
611 	if (dreq->flags != NFS_ODIRECT_DONE)
612 		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
613 	spin_unlock(&dreq->lock);
614 	nfs_mark_request_commit(req, NULL, cinfo, 0);
615 }
616 
617 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
618 	.completion = nfs_direct_commit_complete,
619 	.resched_write = nfs_direct_resched_write,
620 };
621 
622 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
623 {
624 	int res;
625 	struct nfs_commit_info cinfo;
626 	LIST_HEAD(mds_list);
627 
628 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
629 	nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
630 	res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
631 	if (res < 0) /* res == -ENOMEM */
632 		nfs_direct_write_reschedule(dreq);
633 }
634 
635 static void nfs_direct_write_clear_reqs(struct nfs_direct_req *dreq)
636 {
637 	struct nfs_commit_info cinfo;
638 	struct nfs_page *req;
639 	LIST_HEAD(reqs);
640 
641 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
642 	nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
643 
644 	while (!list_empty(&reqs)) {
645 		req = nfs_list_entry(reqs.next);
646 		nfs_list_remove_request(req);
647 		nfs_release_request(req);
648 		nfs_unlock_and_release_request(req);
649 	}
650 }
651 
652 static void nfs_direct_write_schedule_work(struct work_struct *work)
653 {
654 	struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
655 	int flags = dreq->flags;
656 
657 	dreq->flags = 0;
658 	switch (flags) {
659 		case NFS_ODIRECT_DO_COMMIT:
660 			nfs_direct_commit_schedule(dreq);
661 			break;
662 		case NFS_ODIRECT_RESCHED_WRITES:
663 			nfs_direct_write_reschedule(dreq);
664 			break;
665 		default:
666 			nfs_direct_write_clear_reqs(dreq);
667 			nfs_zap_mapping(dreq->inode, dreq->inode->i_mapping);
668 			nfs_direct_complete(dreq);
669 	}
670 }
671 
672 static void nfs_direct_write_complete(struct nfs_direct_req *dreq)
673 {
674 	trace_nfs_direct_write_complete(dreq);
675 	queue_work(nfsiod_workqueue, &dreq->work); /* Calls nfs_direct_write_schedule_work */
676 }
677 
678 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
679 {
680 	struct nfs_direct_req *dreq = hdr->dreq;
681 	struct nfs_commit_info cinfo;
682 	struct nfs_page *req = nfs_list_entry(hdr->pages.next);
683 	int flags = NFS_ODIRECT_DONE;
684 
685 	trace_nfs_direct_write_completion(dreq);
686 
687 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
688 
689 	spin_lock(&dreq->lock);
690 	if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) {
691 		spin_unlock(&dreq->lock);
692 		goto out_put;
693 	}
694 
695 	nfs_direct_count_bytes(dreq, hdr);
696 	if (test_bit(NFS_IOHDR_UNSTABLE_WRITES, &hdr->flags)) {
697 		if (!dreq->flags)
698 			dreq->flags = NFS_ODIRECT_DO_COMMIT;
699 		flags = dreq->flags;
700 	}
701 	spin_unlock(&dreq->lock);
702 
703 	while (!list_empty(&hdr->pages)) {
704 
705 		req = nfs_list_entry(hdr->pages.next);
706 		nfs_list_remove_request(req);
707 		if (flags == NFS_ODIRECT_DO_COMMIT) {
708 			kref_get(&req->wb_kref);
709 			memcpy(&req->wb_verf, &hdr->verf.verifier,
710 			       sizeof(req->wb_verf));
711 			nfs_mark_request_commit(req, hdr->lseg, &cinfo,
712 				hdr->ds_commit_idx);
713 		} else if (flags == NFS_ODIRECT_RESCHED_WRITES) {
714 			kref_get(&req->wb_kref);
715 			nfs_mark_request_commit(req, NULL, &cinfo, 0);
716 		}
717 		nfs_unlock_and_release_request(req);
718 	}
719 
720 out_put:
721 	if (put_dreq(dreq))
722 		nfs_direct_write_complete(dreq);
723 	hdr->release(hdr);
724 }
725 
726 static void nfs_write_sync_pgio_error(struct list_head *head, int error)
727 {
728 	struct nfs_page *req;
729 
730 	while (!list_empty(head)) {
731 		req = nfs_list_entry(head->next);
732 		nfs_list_remove_request(req);
733 		nfs_unlock_and_release_request(req);
734 	}
735 }
736 
737 static void nfs_direct_write_reschedule_io(struct nfs_pgio_header *hdr)
738 {
739 	struct nfs_direct_req *dreq = hdr->dreq;
740 
741 	trace_nfs_direct_write_reschedule_io(dreq);
742 
743 	spin_lock(&dreq->lock);
744 	if (dreq->error == 0) {
745 		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
746 		/* fake unstable write to let common nfs resend pages */
747 		hdr->verf.committed = NFS_UNSTABLE;
748 		hdr->good_bytes = hdr->args.offset + hdr->args.count -
749 			hdr->io_start;
750 	}
751 	spin_unlock(&dreq->lock);
752 }
753 
754 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
755 	.error_cleanup = nfs_write_sync_pgio_error,
756 	.init_hdr = nfs_direct_pgio_init,
757 	.completion = nfs_direct_write_completion,
758 	.reschedule_io = nfs_direct_write_reschedule_io,
759 };
760 
761 
762 /*
763  * NB: Return the value of the first error return code.  Subsequent
764  *     errors after the first one are ignored.
765  */
766 /*
767  * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
768  * operation.  If nfs_writedata_alloc() or get_user_pages() fails,
769  * bail and stop sending more writes.  Write length accounting is
770  * handled automatically by nfs_direct_write_result().  Otherwise, if
771  * no requests have been sent, just return an error.
772  */
773 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
774 					       struct iov_iter *iter,
775 					       loff_t pos, int ioflags)
776 {
777 	struct nfs_pageio_descriptor desc;
778 	struct inode *inode = dreq->inode;
779 	ssize_t result = 0;
780 	size_t requested_bytes = 0;
781 	size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE);
782 
783 	trace_nfs_direct_write_schedule_iovec(dreq);
784 
785 	nfs_pageio_init_write(&desc, inode, ioflags, false,
786 			      &nfs_direct_write_completion_ops);
787 	desc.pg_dreq = dreq;
788 	get_dreq(dreq);
789 	inode_dio_begin(inode);
790 
791 	NFS_I(inode)->write_io += iov_iter_count(iter);
792 	while (iov_iter_count(iter)) {
793 		struct page **pagevec;
794 		size_t bytes;
795 		size_t pgbase;
796 		unsigned npages, i;
797 
798 		result = iov_iter_get_pages_alloc2(iter, &pagevec,
799 						  wsize, &pgbase);
800 		if (result < 0)
801 			break;
802 
803 		bytes = result;
804 		npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
805 		for (i = 0; i < npages; i++) {
806 			struct nfs_page *req;
807 			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
808 
809 			req = nfs_page_create_from_page(dreq->ctx, pagevec[i],
810 							pgbase, pos, req_len);
811 			if (IS_ERR(req)) {
812 				result = PTR_ERR(req);
813 				break;
814 			}
815 
816 			if (desc.pg_error < 0) {
817 				nfs_free_request(req);
818 				result = desc.pg_error;
819 				break;
820 			}
821 
822 			nfs_lock_request(req);
823 			if (!nfs_pageio_add_request(&desc, req)) {
824 				result = desc.pg_error;
825 				nfs_unlock_and_release_request(req);
826 				break;
827 			}
828 			pgbase = 0;
829 			bytes -= req_len;
830 			requested_bytes += req_len;
831 			pos += req_len;
832 			dreq->bytes_left -= req_len;
833 		}
834 		nfs_direct_release_pages(pagevec, npages);
835 		kvfree(pagevec);
836 		if (result < 0)
837 			break;
838 	}
839 	nfs_pageio_complete(&desc);
840 
841 	/*
842 	 * If no bytes were started, return the error, and let the
843 	 * generic layer handle the completion.
844 	 */
845 	if (requested_bytes == 0) {
846 		inode_dio_end(inode);
847 		nfs_direct_req_release(dreq);
848 		return result < 0 ? result : -EIO;
849 	}
850 
851 	if (put_dreq(dreq))
852 		nfs_direct_write_complete(dreq);
853 	return requested_bytes;
854 }
855 
856 /**
857  * nfs_file_direct_write - file direct write operation for NFS files
858  * @iocb: target I/O control block
859  * @iter: vector of user buffers from which to write data
860  * @swap: flag indicating this is swap IO, not O_DIRECT IO
861  *
862  * We use this function for direct writes instead of calling
863  * generic_file_aio_write() in order to avoid taking the inode
864  * semaphore and updating the i_size.  The NFS server will set
865  * the new i_size and this client must read the updated size
866  * back into its cache.  We let the server do generic write
867  * parameter checking and report problems.
868  *
869  * We eliminate local atime updates, see direct read above.
870  *
871  * We avoid unnecessary page cache invalidations for normal cached
872  * readers of this file.
873  *
874  * Note that O_APPEND is not supported for NFS direct writes, as there
875  * is no atomic O_APPEND write facility in the NFS protocol.
876  */
877 ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter,
878 			      bool swap)
879 {
880 	ssize_t result, requested;
881 	size_t count;
882 	struct file *file = iocb->ki_filp;
883 	struct address_space *mapping = file->f_mapping;
884 	struct inode *inode = mapping->host;
885 	struct nfs_direct_req *dreq;
886 	struct nfs_lock_context *l_ctx;
887 	loff_t pos, end;
888 
889 	dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n",
890 		file, iov_iter_count(iter), (long long) iocb->ki_pos);
891 
892 	if (swap)
893 		/* bypass generic checks */
894 		result =  iov_iter_count(iter);
895 	else
896 		result = generic_write_checks(iocb, iter);
897 	if (result <= 0)
898 		return result;
899 	count = result;
900 	nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
901 
902 	pos = iocb->ki_pos;
903 	end = (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT;
904 
905 	task_io_account_write(count);
906 
907 	result = -ENOMEM;
908 	dreq = nfs_direct_req_alloc();
909 	if (!dreq)
910 		goto out;
911 
912 	dreq->inode = inode;
913 	dreq->bytes_left = dreq->max_count = count;
914 	dreq->io_start = pos;
915 	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
916 	l_ctx = nfs_get_lock_context(dreq->ctx);
917 	if (IS_ERR(l_ctx)) {
918 		result = PTR_ERR(l_ctx);
919 		nfs_direct_req_release(dreq);
920 		goto out_release;
921 	}
922 	dreq->l_ctx = l_ctx;
923 	if (!is_sync_kiocb(iocb))
924 		dreq->iocb = iocb;
925 	pnfs_init_ds_commit_info_ops(&dreq->ds_cinfo, inode);
926 
927 	if (swap) {
928 		requested = nfs_direct_write_schedule_iovec(dreq, iter, pos,
929 							    FLUSH_STABLE);
930 	} else {
931 		nfs_start_io_direct(inode);
932 
933 		requested = nfs_direct_write_schedule_iovec(dreq, iter, pos,
934 							    FLUSH_COND_STABLE);
935 
936 		if (mapping->nrpages) {
937 			invalidate_inode_pages2_range(mapping,
938 						      pos >> PAGE_SHIFT, end);
939 		}
940 
941 		nfs_end_io_direct(inode);
942 	}
943 
944 	if (requested > 0) {
945 		result = nfs_direct_wait(dreq);
946 		if (result > 0) {
947 			requested -= result;
948 			iocb->ki_pos = pos + result;
949 			/* XXX: should check the generic_write_sync retval */
950 			generic_write_sync(iocb, result);
951 		}
952 		iov_iter_revert(iter, requested);
953 	} else {
954 		result = requested;
955 	}
956 	nfs_fscache_invalidate(inode, FSCACHE_INVAL_DIO_WRITE);
957 out_release:
958 	nfs_direct_req_release(dreq);
959 out:
960 	return result;
961 }
962 
963 /**
964  * nfs_init_directcache - create a slab cache for nfs_direct_req structures
965  *
966  */
967 int __init nfs_init_directcache(void)
968 {
969 	nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
970 						sizeof(struct nfs_direct_req),
971 						0, (SLAB_RECLAIM_ACCOUNT|
972 							SLAB_MEM_SPREAD),
973 						NULL);
974 	if (nfs_direct_cachep == NULL)
975 		return -ENOMEM;
976 
977 	return 0;
978 }
979 
980 /**
981  * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
982  *
983  */
984 void nfs_destroy_directcache(void)
985 {
986 	kmem_cache_destroy(nfs_direct_cachep);
987 }
988