1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/nfs/direct.c 4 * 5 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com> 6 * 7 * High-performance uncached I/O for the Linux NFS client 8 * 9 * There are important applications whose performance or correctness 10 * depends on uncached access to file data. Database clusters 11 * (multiple copies of the same instance running on separate hosts) 12 * implement their own cache coherency protocol that subsumes file 13 * system cache protocols. Applications that process datasets 14 * considerably larger than the client's memory do not always benefit 15 * from a local cache. A streaming video server, for instance, has no 16 * need to cache the contents of a file. 17 * 18 * When an application requests uncached I/O, all read and write requests 19 * are made directly to the server; data stored or fetched via these 20 * requests is not cached in the Linux page cache. The client does not 21 * correct unaligned requests from applications. All requested bytes are 22 * held on permanent storage before a direct write system call returns to 23 * an application. 24 * 25 * Solaris implements an uncached I/O facility called directio() that 26 * is used for backups and sequential I/O to very large files. Solaris 27 * also supports uncaching whole NFS partitions with "-o forcedirectio," 28 * an undocumented mount option. 29 * 30 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with 31 * help from Andrew Morton. 32 * 33 * 18 Dec 2001 Initial implementation for 2.4 --cel 34 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy 35 * 08 Jun 2003 Port to 2.5 APIs --cel 36 * 31 Mar 2004 Handle direct I/O without VFS support --cel 37 * 15 Sep 2004 Parallel async reads --cel 38 * 04 May 2005 support O_DIRECT with aio --cel 39 * 40 */ 41 42 #include <linux/errno.h> 43 #include <linux/sched.h> 44 #include <linux/kernel.h> 45 #include <linux/file.h> 46 #include <linux/pagemap.h> 47 #include <linux/kref.h> 48 #include <linux/slab.h> 49 #include <linux/task_io_accounting_ops.h> 50 #include <linux/module.h> 51 52 #include <linux/nfs_fs.h> 53 #include <linux/nfs_page.h> 54 #include <linux/sunrpc/clnt.h> 55 56 #include <linux/uaccess.h> 57 #include <linux/atomic.h> 58 59 #include "internal.h" 60 #include "iostat.h" 61 #include "pnfs.h" 62 #include "fscache.h" 63 #include "nfstrace.h" 64 65 #define NFSDBG_FACILITY NFSDBG_VFS 66 67 static struct kmem_cache *nfs_direct_cachep; 68 69 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops; 70 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops; 71 static void nfs_direct_write_complete(struct nfs_direct_req *dreq); 72 static void nfs_direct_write_schedule_work(struct work_struct *work); 73 74 static inline void get_dreq(struct nfs_direct_req *dreq) 75 { 76 atomic_inc(&dreq->io_count); 77 } 78 79 static inline int put_dreq(struct nfs_direct_req *dreq) 80 { 81 return atomic_dec_and_test(&dreq->io_count); 82 } 83 84 static void 85 nfs_direct_handle_truncated(struct nfs_direct_req *dreq, 86 const struct nfs_pgio_header *hdr, 87 ssize_t dreq_len) 88 { 89 if (!(test_bit(NFS_IOHDR_ERROR, &hdr->flags) || 90 test_bit(NFS_IOHDR_EOF, &hdr->flags))) 91 return; 92 if (dreq->max_count >= dreq_len) { 93 dreq->max_count = dreq_len; 94 if (dreq->count > dreq_len) 95 dreq->count = dreq_len; 96 97 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) 98 dreq->error = hdr->error; 99 else /* Clear outstanding error if this is EOF */ 100 dreq->error = 0; 101 } 102 } 103 104 static void 105 nfs_direct_count_bytes(struct nfs_direct_req *dreq, 106 const struct nfs_pgio_header *hdr) 107 { 108 loff_t hdr_end = hdr->io_start + hdr->good_bytes; 109 ssize_t dreq_len = 0; 110 111 if (hdr_end > dreq->io_start) 112 dreq_len = hdr_end - dreq->io_start; 113 114 nfs_direct_handle_truncated(dreq, hdr, dreq_len); 115 116 if (dreq_len > dreq->max_count) 117 dreq_len = dreq->max_count; 118 119 if (dreq->count < dreq_len) 120 dreq->count = dreq_len; 121 } 122 123 /** 124 * nfs_swap_rw - NFS address space operation for swap I/O 125 * @iocb: target I/O control block 126 * @iter: I/O buffer 127 * 128 * Perform IO to the swap-file. This is much like direct IO. 129 */ 130 int nfs_swap_rw(struct kiocb *iocb, struct iov_iter *iter) 131 { 132 ssize_t ret; 133 134 VM_BUG_ON(iov_iter_count(iter) != PAGE_SIZE); 135 136 if (iov_iter_rw(iter) == READ) 137 ret = nfs_file_direct_read(iocb, iter, true); 138 else 139 ret = nfs_file_direct_write(iocb, iter, true); 140 if (ret < 0) 141 return ret; 142 return 0; 143 } 144 145 static void nfs_direct_release_pages(struct page **pages, unsigned int npages) 146 { 147 unsigned int i; 148 for (i = 0; i < npages; i++) 149 put_page(pages[i]); 150 } 151 152 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo, 153 struct nfs_direct_req *dreq) 154 { 155 cinfo->inode = dreq->inode; 156 cinfo->mds = &dreq->mds_cinfo; 157 cinfo->ds = &dreq->ds_cinfo; 158 cinfo->dreq = dreq; 159 cinfo->completion_ops = &nfs_direct_commit_completion_ops; 160 } 161 162 static inline struct nfs_direct_req *nfs_direct_req_alloc(void) 163 { 164 struct nfs_direct_req *dreq; 165 166 dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL); 167 if (!dreq) 168 return NULL; 169 170 kref_init(&dreq->kref); 171 kref_get(&dreq->kref); 172 init_completion(&dreq->completion); 173 INIT_LIST_HEAD(&dreq->mds_cinfo.list); 174 pnfs_init_ds_commit_info(&dreq->ds_cinfo); 175 INIT_WORK(&dreq->work, nfs_direct_write_schedule_work); 176 spin_lock_init(&dreq->lock); 177 178 return dreq; 179 } 180 181 static void nfs_direct_req_free(struct kref *kref) 182 { 183 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref); 184 185 pnfs_release_ds_info(&dreq->ds_cinfo, dreq->inode); 186 if (dreq->l_ctx != NULL) 187 nfs_put_lock_context(dreq->l_ctx); 188 if (dreq->ctx != NULL) 189 put_nfs_open_context(dreq->ctx); 190 kmem_cache_free(nfs_direct_cachep, dreq); 191 } 192 193 static void nfs_direct_req_release(struct nfs_direct_req *dreq) 194 { 195 kref_put(&dreq->kref, nfs_direct_req_free); 196 } 197 198 ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq) 199 { 200 return dreq->bytes_left; 201 } 202 EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left); 203 204 /* 205 * Collects and returns the final error value/byte-count. 206 */ 207 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq) 208 { 209 ssize_t result = -EIOCBQUEUED; 210 211 /* Async requests don't wait here */ 212 if (dreq->iocb) 213 goto out; 214 215 result = wait_for_completion_killable(&dreq->completion); 216 217 if (!result) { 218 result = dreq->count; 219 WARN_ON_ONCE(dreq->count < 0); 220 } 221 if (!result) 222 result = dreq->error; 223 224 out: 225 return (ssize_t) result; 226 } 227 228 /* 229 * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust 230 * the iocb is still valid here if this is a synchronous request. 231 */ 232 static void nfs_direct_complete(struct nfs_direct_req *dreq) 233 { 234 struct inode *inode = dreq->inode; 235 236 inode_dio_end(inode); 237 238 if (dreq->iocb) { 239 long res = (long) dreq->error; 240 if (dreq->count != 0) { 241 res = (long) dreq->count; 242 WARN_ON_ONCE(dreq->count < 0); 243 } 244 dreq->iocb->ki_complete(dreq->iocb, res); 245 } 246 247 complete(&dreq->completion); 248 249 nfs_direct_req_release(dreq); 250 } 251 252 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr) 253 { 254 unsigned long bytes = 0; 255 struct nfs_direct_req *dreq = hdr->dreq; 256 257 spin_lock(&dreq->lock); 258 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) { 259 spin_unlock(&dreq->lock); 260 goto out_put; 261 } 262 263 nfs_direct_count_bytes(dreq, hdr); 264 spin_unlock(&dreq->lock); 265 266 while (!list_empty(&hdr->pages)) { 267 struct nfs_page *req = nfs_list_entry(hdr->pages.next); 268 struct page *page = req->wb_page; 269 270 if (!PageCompound(page) && bytes < hdr->good_bytes && 271 (dreq->flags == NFS_ODIRECT_SHOULD_DIRTY)) 272 set_page_dirty(page); 273 bytes += req->wb_bytes; 274 nfs_list_remove_request(req); 275 nfs_release_request(req); 276 } 277 out_put: 278 if (put_dreq(dreq)) 279 nfs_direct_complete(dreq); 280 hdr->release(hdr); 281 } 282 283 static void nfs_read_sync_pgio_error(struct list_head *head, int error) 284 { 285 struct nfs_page *req; 286 287 while (!list_empty(head)) { 288 req = nfs_list_entry(head->next); 289 nfs_list_remove_request(req); 290 nfs_release_request(req); 291 } 292 } 293 294 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr) 295 { 296 get_dreq(hdr->dreq); 297 } 298 299 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = { 300 .error_cleanup = nfs_read_sync_pgio_error, 301 .init_hdr = nfs_direct_pgio_init, 302 .completion = nfs_direct_read_completion, 303 }; 304 305 /* 306 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ 307 * operation. If nfs_readdata_alloc() or get_user_pages() fails, 308 * bail and stop sending more reads. Read length accounting is 309 * handled automatically by nfs_direct_read_result(). Otherwise, if 310 * no requests have been sent, just return an error. 311 */ 312 313 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq, 314 struct iov_iter *iter, 315 loff_t pos) 316 { 317 struct nfs_pageio_descriptor desc; 318 struct inode *inode = dreq->inode; 319 ssize_t result = -EINVAL; 320 size_t requested_bytes = 0; 321 size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE); 322 323 nfs_pageio_init_read(&desc, dreq->inode, false, 324 &nfs_direct_read_completion_ops); 325 get_dreq(dreq); 326 desc.pg_dreq = dreq; 327 inode_dio_begin(inode); 328 329 while (iov_iter_count(iter)) { 330 struct page **pagevec; 331 size_t bytes; 332 size_t pgbase; 333 unsigned npages, i; 334 335 result = iov_iter_get_pages_alloc2(iter, &pagevec, 336 rsize, &pgbase); 337 if (result < 0) 338 break; 339 340 bytes = result; 341 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE; 342 for (i = 0; i < npages; i++) { 343 struct nfs_page *req; 344 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase); 345 /* XXX do we need to do the eof zeroing found in async_filler? */ 346 req = nfs_page_create_from_page(dreq->ctx, pagevec[i], 347 pgbase, pos, req_len); 348 if (IS_ERR(req)) { 349 result = PTR_ERR(req); 350 break; 351 } 352 if (!nfs_pageio_add_request(&desc, req)) { 353 result = desc.pg_error; 354 nfs_release_request(req); 355 break; 356 } 357 pgbase = 0; 358 bytes -= req_len; 359 requested_bytes += req_len; 360 pos += req_len; 361 dreq->bytes_left -= req_len; 362 } 363 nfs_direct_release_pages(pagevec, npages); 364 kvfree(pagevec); 365 if (result < 0) 366 break; 367 } 368 369 nfs_pageio_complete(&desc); 370 371 /* 372 * If no bytes were started, return the error, and let the 373 * generic layer handle the completion. 374 */ 375 if (requested_bytes == 0) { 376 inode_dio_end(inode); 377 nfs_direct_req_release(dreq); 378 return result < 0 ? result : -EIO; 379 } 380 381 if (put_dreq(dreq)) 382 nfs_direct_complete(dreq); 383 return requested_bytes; 384 } 385 386 /** 387 * nfs_file_direct_read - file direct read operation for NFS files 388 * @iocb: target I/O control block 389 * @iter: vector of user buffers into which to read data 390 * @swap: flag indicating this is swap IO, not O_DIRECT IO 391 * 392 * We use this function for direct reads instead of calling 393 * generic_file_aio_read() in order to avoid gfar's check to see if 394 * the request starts before the end of the file. For that check 395 * to work, we must generate a GETATTR before each direct read, and 396 * even then there is a window between the GETATTR and the subsequent 397 * READ where the file size could change. Our preference is simply 398 * to do all reads the application wants, and the server will take 399 * care of managing the end of file boundary. 400 * 401 * This function also eliminates unnecessarily updating the file's 402 * atime locally, as the NFS server sets the file's atime, and this 403 * client must read the updated atime from the server back into its 404 * cache. 405 */ 406 ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter, 407 bool swap) 408 { 409 struct file *file = iocb->ki_filp; 410 struct address_space *mapping = file->f_mapping; 411 struct inode *inode = mapping->host; 412 struct nfs_direct_req *dreq; 413 struct nfs_lock_context *l_ctx; 414 ssize_t result, requested; 415 size_t count = iov_iter_count(iter); 416 nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count); 417 418 dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n", 419 file, count, (long long) iocb->ki_pos); 420 421 result = 0; 422 if (!count) 423 goto out; 424 425 task_io_account_read(count); 426 427 result = -ENOMEM; 428 dreq = nfs_direct_req_alloc(); 429 if (dreq == NULL) 430 goto out; 431 432 dreq->inode = inode; 433 dreq->bytes_left = dreq->max_count = count; 434 dreq->io_start = iocb->ki_pos; 435 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp)); 436 l_ctx = nfs_get_lock_context(dreq->ctx); 437 if (IS_ERR(l_ctx)) { 438 result = PTR_ERR(l_ctx); 439 nfs_direct_req_release(dreq); 440 goto out_release; 441 } 442 dreq->l_ctx = l_ctx; 443 if (!is_sync_kiocb(iocb)) 444 dreq->iocb = iocb; 445 446 if (user_backed_iter(iter)) 447 dreq->flags = NFS_ODIRECT_SHOULD_DIRTY; 448 449 if (!swap) 450 nfs_start_io_direct(inode); 451 452 NFS_I(inode)->read_io += count; 453 requested = nfs_direct_read_schedule_iovec(dreq, iter, iocb->ki_pos); 454 455 if (!swap) 456 nfs_end_io_direct(inode); 457 458 if (requested > 0) { 459 result = nfs_direct_wait(dreq); 460 if (result > 0) { 461 requested -= result; 462 iocb->ki_pos += result; 463 } 464 iov_iter_revert(iter, requested); 465 } else { 466 result = requested; 467 } 468 469 out_release: 470 nfs_direct_req_release(dreq); 471 out: 472 return result; 473 } 474 475 static void nfs_direct_join_group(struct list_head *list, struct inode *inode) 476 { 477 struct nfs_page *req, *subreq; 478 479 list_for_each_entry(req, list, wb_list) { 480 if (req->wb_head != req) 481 continue; 482 subreq = req->wb_this_page; 483 if (subreq == req) 484 continue; 485 do { 486 /* 487 * Remove subrequests from this list before freeing 488 * them in the call to nfs_join_page_group(). 489 */ 490 if (!list_empty(&subreq->wb_list)) { 491 nfs_list_remove_request(subreq); 492 nfs_release_request(subreq); 493 } 494 } while ((subreq = subreq->wb_this_page) != req); 495 nfs_join_page_group(req, inode); 496 } 497 } 498 499 static void 500 nfs_direct_write_scan_commit_list(struct inode *inode, 501 struct list_head *list, 502 struct nfs_commit_info *cinfo) 503 { 504 mutex_lock(&NFS_I(cinfo->inode)->commit_mutex); 505 pnfs_recover_commit_reqs(list, cinfo); 506 nfs_scan_commit_list(&cinfo->mds->list, list, cinfo, 0); 507 mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex); 508 } 509 510 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq) 511 { 512 struct nfs_pageio_descriptor desc; 513 struct nfs_page *req, *tmp; 514 LIST_HEAD(reqs); 515 struct nfs_commit_info cinfo; 516 LIST_HEAD(failed); 517 518 nfs_init_cinfo_from_dreq(&cinfo, dreq); 519 nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo); 520 521 nfs_direct_join_group(&reqs, dreq->inode); 522 523 dreq->count = 0; 524 dreq->max_count = 0; 525 list_for_each_entry(req, &reqs, wb_list) 526 dreq->max_count += req->wb_bytes; 527 nfs_clear_pnfs_ds_commit_verifiers(&dreq->ds_cinfo); 528 get_dreq(dreq); 529 530 nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false, 531 &nfs_direct_write_completion_ops); 532 desc.pg_dreq = dreq; 533 534 list_for_each_entry_safe(req, tmp, &reqs, wb_list) { 535 /* Bump the transmission count */ 536 req->wb_nio++; 537 if (!nfs_pageio_add_request(&desc, req)) { 538 nfs_list_move_request(req, &failed); 539 spin_lock(&cinfo.inode->i_lock); 540 dreq->flags = 0; 541 if (desc.pg_error < 0) 542 dreq->error = desc.pg_error; 543 else 544 dreq->error = -EIO; 545 spin_unlock(&cinfo.inode->i_lock); 546 } 547 nfs_release_request(req); 548 } 549 nfs_pageio_complete(&desc); 550 551 while (!list_empty(&failed)) { 552 req = nfs_list_entry(failed.next); 553 nfs_list_remove_request(req); 554 nfs_unlock_and_release_request(req); 555 } 556 557 if (put_dreq(dreq)) 558 nfs_direct_write_complete(dreq); 559 } 560 561 static void nfs_direct_commit_complete(struct nfs_commit_data *data) 562 { 563 const struct nfs_writeverf *verf = data->res.verf; 564 struct nfs_direct_req *dreq = data->dreq; 565 struct nfs_commit_info cinfo; 566 struct nfs_page *req; 567 int status = data->task.tk_status; 568 569 trace_nfs_direct_commit_complete(dreq); 570 571 if (status < 0) { 572 /* Errors in commit are fatal */ 573 dreq->error = status; 574 dreq->max_count = 0; 575 dreq->count = 0; 576 dreq->flags = NFS_ODIRECT_DONE; 577 } else { 578 status = dreq->error; 579 } 580 581 nfs_init_cinfo_from_dreq(&cinfo, dreq); 582 583 while (!list_empty(&data->pages)) { 584 req = nfs_list_entry(data->pages.next); 585 nfs_list_remove_request(req); 586 if (status >= 0 && !nfs_write_match_verf(verf, req)) { 587 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 588 /* 589 * Despite the reboot, the write was successful, 590 * so reset wb_nio. 591 */ 592 req->wb_nio = 0; 593 nfs_mark_request_commit(req, NULL, &cinfo, 0); 594 } else /* Error or match */ 595 nfs_release_request(req); 596 nfs_unlock_and_release_request(req); 597 } 598 599 if (nfs_commit_end(cinfo.mds)) 600 nfs_direct_write_complete(dreq); 601 } 602 603 static void nfs_direct_resched_write(struct nfs_commit_info *cinfo, 604 struct nfs_page *req) 605 { 606 struct nfs_direct_req *dreq = cinfo->dreq; 607 608 trace_nfs_direct_resched_write(dreq); 609 610 spin_lock(&dreq->lock); 611 if (dreq->flags != NFS_ODIRECT_DONE) 612 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 613 spin_unlock(&dreq->lock); 614 nfs_mark_request_commit(req, NULL, cinfo, 0); 615 } 616 617 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = { 618 .completion = nfs_direct_commit_complete, 619 .resched_write = nfs_direct_resched_write, 620 }; 621 622 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq) 623 { 624 int res; 625 struct nfs_commit_info cinfo; 626 LIST_HEAD(mds_list); 627 628 nfs_init_cinfo_from_dreq(&cinfo, dreq); 629 nfs_scan_commit(dreq->inode, &mds_list, &cinfo); 630 res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo); 631 if (res < 0) /* res == -ENOMEM */ 632 nfs_direct_write_reschedule(dreq); 633 } 634 635 static void nfs_direct_write_clear_reqs(struct nfs_direct_req *dreq) 636 { 637 struct nfs_commit_info cinfo; 638 struct nfs_page *req; 639 LIST_HEAD(reqs); 640 641 nfs_init_cinfo_from_dreq(&cinfo, dreq); 642 nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo); 643 644 while (!list_empty(&reqs)) { 645 req = nfs_list_entry(reqs.next); 646 nfs_list_remove_request(req); 647 nfs_release_request(req); 648 nfs_unlock_and_release_request(req); 649 } 650 } 651 652 static void nfs_direct_write_schedule_work(struct work_struct *work) 653 { 654 struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work); 655 int flags = dreq->flags; 656 657 dreq->flags = 0; 658 switch (flags) { 659 case NFS_ODIRECT_DO_COMMIT: 660 nfs_direct_commit_schedule(dreq); 661 break; 662 case NFS_ODIRECT_RESCHED_WRITES: 663 nfs_direct_write_reschedule(dreq); 664 break; 665 default: 666 nfs_direct_write_clear_reqs(dreq); 667 nfs_zap_mapping(dreq->inode, dreq->inode->i_mapping); 668 nfs_direct_complete(dreq); 669 } 670 } 671 672 static void nfs_direct_write_complete(struct nfs_direct_req *dreq) 673 { 674 trace_nfs_direct_write_complete(dreq); 675 queue_work(nfsiod_workqueue, &dreq->work); /* Calls nfs_direct_write_schedule_work */ 676 } 677 678 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr) 679 { 680 struct nfs_direct_req *dreq = hdr->dreq; 681 struct nfs_commit_info cinfo; 682 struct nfs_page *req = nfs_list_entry(hdr->pages.next); 683 int flags = NFS_ODIRECT_DONE; 684 685 trace_nfs_direct_write_completion(dreq); 686 687 nfs_init_cinfo_from_dreq(&cinfo, dreq); 688 689 spin_lock(&dreq->lock); 690 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) { 691 spin_unlock(&dreq->lock); 692 goto out_put; 693 } 694 695 nfs_direct_count_bytes(dreq, hdr); 696 if (test_bit(NFS_IOHDR_UNSTABLE_WRITES, &hdr->flags)) { 697 if (!dreq->flags) 698 dreq->flags = NFS_ODIRECT_DO_COMMIT; 699 flags = dreq->flags; 700 } 701 spin_unlock(&dreq->lock); 702 703 while (!list_empty(&hdr->pages)) { 704 705 req = nfs_list_entry(hdr->pages.next); 706 nfs_list_remove_request(req); 707 if (flags == NFS_ODIRECT_DO_COMMIT) { 708 kref_get(&req->wb_kref); 709 memcpy(&req->wb_verf, &hdr->verf.verifier, 710 sizeof(req->wb_verf)); 711 nfs_mark_request_commit(req, hdr->lseg, &cinfo, 712 hdr->ds_commit_idx); 713 } else if (flags == NFS_ODIRECT_RESCHED_WRITES) { 714 kref_get(&req->wb_kref); 715 nfs_mark_request_commit(req, NULL, &cinfo, 0); 716 } 717 nfs_unlock_and_release_request(req); 718 } 719 720 out_put: 721 if (put_dreq(dreq)) 722 nfs_direct_write_complete(dreq); 723 hdr->release(hdr); 724 } 725 726 static void nfs_write_sync_pgio_error(struct list_head *head, int error) 727 { 728 struct nfs_page *req; 729 730 while (!list_empty(head)) { 731 req = nfs_list_entry(head->next); 732 nfs_list_remove_request(req); 733 nfs_unlock_and_release_request(req); 734 } 735 } 736 737 static void nfs_direct_write_reschedule_io(struct nfs_pgio_header *hdr) 738 { 739 struct nfs_direct_req *dreq = hdr->dreq; 740 741 trace_nfs_direct_write_reschedule_io(dreq); 742 743 spin_lock(&dreq->lock); 744 if (dreq->error == 0) { 745 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 746 /* fake unstable write to let common nfs resend pages */ 747 hdr->verf.committed = NFS_UNSTABLE; 748 hdr->good_bytes = hdr->args.offset + hdr->args.count - 749 hdr->io_start; 750 } 751 spin_unlock(&dreq->lock); 752 } 753 754 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = { 755 .error_cleanup = nfs_write_sync_pgio_error, 756 .init_hdr = nfs_direct_pgio_init, 757 .completion = nfs_direct_write_completion, 758 .reschedule_io = nfs_direct_write_reschedule_io, 759 }; 760 761 762 /* 763 * NB: Return the value of the first error return code. Subsequent 764 * errors after the first one are ignored. 765 */ 766 /* 767 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE 768 * operation. If nfs_writedata_alloc() or get_user_pages() fails, 769 * bail and stop sending more writes. Write length accounting is 770 * handled automatically by nfs_direct_write_result(). Otherwise, if 771 * no requests have been sent, just return an error. 772 */ 773 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq, 774 struct iov_iter *iter, 775 loff_t pos, int ioflags) 776 { 777 struct nfs_pageio_descriptor desc; 778 struct inode *inode = dreq->inode; 779 ssize_t result = 0; 780 size_t requested_bytes = 0; 781 size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE); 782 783 trace_nfs_direct_write_schedule_iovec(dreq); 784 785 nfs_pageio_init_write(&desc, inode, ioflags, false, 786 &nfs_direct_write_completion_ops); 787 desc.pg_dreq = dreq; 788 get_dreq(dreq); 789 inode_dio_begin(inode); 790 791 NFS_I(inode)->write_io += iov_iter_count(iter); 792 while (iov_iter_count(iter)) { 793 struct page **pagevec; 794 size_t bytes; 795 size_t pgbase; 796 unsigned npages, i; 797 798 result = iov_iter_get_pages_alloc2(iter, &pagevec, 799 wsize, &pgbase); 800 if (result < 0) 801 break; 802 803 bytes = result; 804 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE; 805 for (i = 0; i < npages; i++) { 806 struct nfs_page *req; 807 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase); 808 809 req = nfs_page_create_from_page(dreq->ctx, pagevec[i], 810 pgbase, pos, req_len); 811 if (IS_ERR(req)) { 812 result = PTR_ERR(req); 813 break; 814 } 815 816 if (desc.pg_error < 0) { 817 nfs_free_request(req); 818 result = desc.pg_error; 819 break; 820 } 821 822 nfs_lock_request(req); 823 if (!nfs_pageio_add_request(&desc, req)) { 824 result = desc.pg_error; 825 nfs_unlock_and_release_request(req); 826 break; 827 } 828 pgbase = 0; 829 bytes -= req_len; 830 requested_bytes += req_len; 831 pos += req_len; 832 dreq->bytes_left -= req_len; 833 } 834 nfs_direct_release_pages(pagevec, npages); 835 kvfree(pagevec); 836 if (result < 0) 837 break; 838 } 839 nfs_pageio_complete(&desc); 840 841 /* 842 * If no bytes were started, return the error, and let the 843 * generic layer handle the completion. 844 */ 845 if (requested_bytes == 0) { 846 inode_dio_end(inode); 847 nfs_direct_req_release(dreq); 848 return result < 0 ? result : -EIO; 849 } 850 851 if (put_dreq(dreq)) 852 nfs_direct_write_complete(dreq); 853 return requested_bytes; 854 } 855 856 /** 857 * nfs_file_direct_write - file direct write operation for NFS files 858 * @iocb: target I/O control block 859 * @iter: vector of user buffers from which to write data 860 * @swap: flag indicating this is swap IO, not O_DIRECT IO 861 * 862 * We use this function for direct writes instead of calling 863 * generic_file_aio_write() in order to avoid taking the inode 864 * semaphore and updating the i_size. The NFS server will set 865 * the new i_size and this client must read the updated size 866 * back into its cache. We let the server do generic write 867 * parameter checking and report problems. 868 * 869 * We eliminate local atime updates, see direct read above. 870 * 871 * We avoid unnecessary page cache invalidations for normal cached 872 * readers of this file. 873 * 874 * Note that O_APPEND is not supported for NFS direct writes, as there 875 * is no atomic O_APPEND write facility in the NFS protocol. 876 */ 877 ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter, 878 bool swap) 879 { 880 ssize_t result, requested; 881 size_t count; 882 struct file *file = iocb->ki_filp; 883 struct address_space *mapping = file->f_mapping; 884 struct inode *inode = mapping->host; 885 struct nfs_direct_req *dreq; 886 struct nfs_lock_context *l_ctx; 887 loff_t pos, end; 888 889 dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n", 890 file, iov_iter_count(iter), (long long) iocb->ki_pos); 891 892 if (swap) 893 /* bypass generic checks */ 894 result = iov_iter_count(iter); 895 else 896 result = generic_write_checks(iocb, iter); 897 if (result <= 0) 898 return result; 899 count = result; 900 nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count); 901 902 pos = iocb->ki_pos; 903 end = (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT; 904 905 task_io_account_write(count); 906 907 result = -ENOMEM; 908 dreq = nfs_direct_req_alloc(); 909 if (!dreq) 910 goto out; 911 912 dreq->inode = inode; 913 dreq->bytes_left = dreq->max_count = count; 914 dreq->io_start = pos; 915 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp)); 916 l_ctx = nfs_get_lock_context(dreq->ctx); 917 if (IS_ERR(l_ctx)) { 918 result = PTR_ERR(l_ctx); 919 nfs_direct_req_release(dreq); 920 goto out_release; 921 } 922 dreq->l_ctx = l_ctx; 923 if (!is_sync_kiocb(iocb)) 924 dreq->iocb = iocb; 925 pnfs_init_ds_commit_info_ops(&dreq->ds_cinfo, inode); 926 927 if (swap) { 928 requested = nfs_direct_write_schedule_iovec(dreq, iter, pos, 929 FLUSH_STABLE); 930 } else { 931 nfs_start_io_direct(inode); 932 933 requested = nfs_direct_write_schedule_iovec(dreq, iter, pos, 934 FLUSH_COND_STABLE); 935 936 if (mapping->nrpages) { 937 invalidate_inode_pages2_range(mapping, 938 pos >> PAGE_SHIFT, end); 939 } 940 941 nfs_end_io_direct(inode); 942 } 943 944 if (requested > 0) { 945 result = nfs_direct_wait(dreq); 946 if (result > 0) { 947 requested -= result; 948 iocb->ki_pos = pos + result; 949 /* XXX: should check the generic_write_sync retval */ 950 generic_write_sync(iocb, result); 951 } 952 iov_iter_revert(iter, requested); 953 } else { 954 result = requested; 955 } 956 nfs_fscache_invalidate(inode, FSCACHE_INVAL_DIO_WRITE); 957 out_release: 958 nfs_direct_req_release(dreq); 959 out: 960 return result; 961 } 962 963 /** 964 * nfs_init_directcache - create a slab cache for nfs_direct_req structures 965 * 966 */ 967 int __init nfs_init_directcache(void) 968 { 969 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache", 970 sizeof(struct nfs_direct_req), 971 0, (SLAB_RECLAIM_ACCOUNT| 972 SLAB_MEM_SPREAD), 973 NULL); 974 if (nfs_direct_cachep == NULL) 975 return -ENOMEM; 976 977 return 0; 978 } 979 980 /** 981 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures 982 * 983 */ 984 void nfs_destroy_directcache(void) 985 { 986 kmem_cache_destroy(nfs_direct_cachep); 987 } 988