1 /* 2 * linux/fs/nfs/direct.c 3 * 4 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com> 5 * 6 * High-performance uncached I/O for the Linux NFS client 7 * 8 * There are important applications whose performance or correctness 9 * depends on uncached access to file data. Database clusters 10 * (multiple copies of the same instance running on separate hosts) 11 * implement their own cache coherency protocol that subsumes file 12 * system cache protocols. Applications that process datasets 13 * considerably larger than the client's memory do not always benefit 14 * from a local cache. A streaming video server, for instance, has no 15 * need to cache the contents of a file. 16 * 17 * When an application requests uncached I/O, all read and write requests 18 * are made directly to the server; data stored or fetched via these 19 * requests is not cached in the Linux page cache. The client does not 20 * correct unaligned requests from applications. All requested bytes are 21 * held on permanent storage before a direct write system call returns to 22 * an application. 23 * 24 * Solaris implements an uncached I/O facility called directio() that 25 * is used for backups and sequential I/O to very large files. Solaris 26 * also supports uncaching whole NFS partitions with "-o forcedirectio," 27 * an undocumented mount option. 28 * 29 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with 30 * help from Andrew Morton. 31 * 32 * 18 Dec 2001 Initial implementation for 2.4 --cel 33 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy 34 * 08 Jun 2003 Port to 2.5 APIs --cel 35 * 31 Mar 2004 Handle direct I/O without VFS support --cel 36 * 15 Sep 2004 Parallel async reads --cel 37 * 04 May 2005 support O_DIRECT with aio --cel 38 * 39 */ 40 41 #include <linux/errno.h> 42 #include <linux/sched.h> 43 #include <linux/kernel.h> 44 #include <linux/file.h> 45 #include <linux/pagemap.h> 46 #include <linux/kref.h> 47 #include <linux/slab.h> 48 #include <linux/task_io_accounting_ops.h> 49 #include <linux/module.h> 50 51 #include <linux/nfs_fs.h> 52 #include <linux/nfs_page.h> 53 #include <linux/sunrpc/clnt.h> 54 55 #include <asm/uaccess.h> 56 #include <linux/atomic.h> 57 58 #include "internal.h" 59 #include "iostat.h" 60 #include "pnfs.h" 61 62 #define NFSDBG_FACILITY NFSDBG_VFS 63 64 static struct kmem_cache *nfs_direct_cachep; 65 66 /* 67 * This represents a set of asynchronous requests that we're waiting on 68 */ 69 struct nfs_direct_req { 70 struct kref kref; /* release manager */ 71 72 /* I/O parameters */ 73 struct nfs_open_context *ctx; /* file open context info */ 74 struct nfs_lock_context *l_ctx; /* Lock context info */ 75 struct kiocb * iocb; /* controlling i/o request */ 76 struct inode * inode; /* target file of i/o */ 77 78 /* completion state */ 79 atomic_t io_count; /* i/os we're waiting for */ 80 spinlock_t lock; /* protect completion state */ 81 ssize_t count, /* bytes actually processed */ 82 bytes_left, /* bytes left to be sent */ 83 error; /* any reported error */ 84 struct completion completion; /* wait for i/o completion */ 85 86 /* commit state */ 87 struct nfs_mds_commit_info mds_cinfo; /* Storage for cinfo */ 88 struct pnfs_ds_commit_info ds_cinfo; /* Storage for cinfo */ 89 struct work_struct work; 90 int flags; 91 #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */ 92 #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */ 93 struct nfs_writeverf verf; /* unstable write verifier */ 94 }; 95 96 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops; 97 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops; 98 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode); 99 static void nfs_direct_write_schedule_work(struct work_struct *work); 100 101 static inline void get_dreq(struct nfs_direct_req *dreq) 102 { 103 atomic_inc(&dreq->io_count); 104 } 105 106 static inline int put_dreq(struct nfs_direct_req *dreq) 107 { 108 return atomic_dec_and_test(&dreq->io_count); 109 } 110 111 /* 112 * nfs_direct_select_verf - select the right verifier 113 * @dreq - direct request possibly spanning multiple servers 114 * @ds_clp - nfs_client of data server or NULL if MDS / non-pnfs 115 * @ds_idx - index of data server in data server list, only valid if ds_clp set 116 * 117 * returns the correct verifier to use given the role of the server 118 */ 119 static struct nfs_writeverf * 120 nfs_direct_select_verf(struct nfs_direct_req *dreq, 121 struct nfs_client *ds_clp, 122 int ds_idx) 123 { 124 struct nfs_writeverf *verfp = &dreq->verf; 125 126 #ifdef CONFIG_NFS_V4_1 127 if (ds_clp) { 128 /* pNFS is in use, use the DS verf */ 129 if (ds_idx >= 0 && ds_idx < dreq->ds_cinfo.nbuckets) 130 verfp = &dreq->ds_cinfo.buckets[ds_idx].direct_verf; 131 else 132 WARN_ON_ONCE(1); 133 } 134 #endif 135 return verfp; 136 } 137 138 139 /* 140 * nfs_direct_set_hdr_verf - set the write/commit verifier 141 * @dreq - direct request possibly spanning multiple servers 142 * @hdr - pageio header to validate against previously seen verfs 143 * 144 * Set the server's (MDS or DS) "seen" verifier 145 */ 146 static void nfs_direct_set_hdr_verf(struct nfs_direct_req *dreq, 147 struct nfs_pgio_header *hdr) 148 { 149 struct nfs_writeverf *verfp; 150 151 verfp = nfs_direct_select_verf(dreq, hdr->ds_clp, 152 hdr->ds_idx); 153 WARN_ON_ONCE(verfp->committed >= 0); 154 memcpy(verfp, &hdr->verf, sizeof(struct nfs_writeverf)); 155 WARN_ON_ONCE(verfp->committed < 0); 156 } 157 158 /* 159 * nfs_direct_cmp_hdr_verf - compare verifier for pgio header 160 * @dreq - direct request possibly spanning multiple servers 161 * @hdr - pageio header to validate against previously seen verf 162 * 163 * set the server's "seen" verf if not initialized. 164 * returns result of comparison between @hdr->verf and the "seen" 165 * verf of the server used by @hdr (DS or MDS) 166 */ 167 static int nfs_direct_set_or_cmp_hdr_verf(struct nfs_direct_req *dreq, 168 struct nfs_pgio_header *hdr) 169 { 170 struct nfs_writeverf *verfp; 171 172 verfp = nfs_direct_select_verf(dreq, hdr->ds_clp, 173 hdr->ds_idx); 174 if (verfp->committed < 0) { 175 nfs_direct_set_hdr_verf(dreq, hdr); 176 return 0; 177 } 178 return memcmp(verfp, &hdr->verf, sizeof(struct nfs_writeverf)); 179 } 180 181 /* 182 * nfs_direct_cmp_commit_data_verf - compare verifier for commit data 183 * @dreq - direct request possibly spanning multiple servers 184 * @data - commit data to validate against previously seen verf 185 * 186 * returns result of comparison between @data->verf and the verf of 187 * the server used by @data (DS or MDS) 188 */ 189 static int nfs_direct_cmp_commit_data_verf(struct nfs_direct_req *dreq, 190 struct nfs_commit_data *data) 191 { 192 struct nfs_writeverf *verfp; 193 194 verfp = nfs_direct_select_verf(dreq, data->ds_clp, 195 data->ds_commit_index); 196 WARN_ON_ONCE(verfp->committed < 0); 197 return memcmp(verfp, &data->verf, sizeof(struct nfs_writeverf)); 198 } 199 200 /** 201 * nfs_direct_IO - NFS address space operation for direct I/O 202 * @rw: direction (read or write) 203 * @iocb: target I/O control block 204 * @iov: array of vectors that define I/O buffer 205 * @pos: offset in file to begin the operation 206 * @nr_segs: size of iovec array 207 * 208 * The presence of this routine in the address space ops vector means 209 * the NFS client supports direct I/O. However, for most direct IO, we 210 * shunt off direct read and write requests before the VFS gets them, 211 * so this method is only ever called for swap. 212 */ 213 ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, struct iov_iter *iter, loff_t pos) 214 { 215 struct inode *inode = iocb->ki_filp->f_mapping->host; 216 217 /* we only support swap file calling nfs_direct_IO */ 218 if (!IS_SWAPFILE(inode)) 219 return 0; 220 221 #ifndef CONFIG_NFS_SWAP 222 dprintk("NFS: nfs_direct_IO (%pD) off/no(%Ld/%lu) EINVAL\n", 223 iocb->ki_filp, (long long) pos, iter->nr_segs); 224 225 return -EINVAL; 226 #else 227 VM_BUG_ON(iocb->ki_nbytes != PAGE_SIZE); 228 229 if (rw == READ) 230 return nfs_file_direct_read(iocb, iter, pos); 231 return nfs_file_direct_write(iocb, iter, pos); 232 #endif /* CONFIG_NFS_SWAP */ 233 } 234 235 static void nfs_direct_release_pages(struct page **pages, unsigned int npages) 236 { 237 unsigned int i; 238 for (i = 0; i < npages; i++) 239 page_cache_release(pages[i]); 240 } 241 242 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo, 243 struct nfs_direct_req *dreq) 244 { 245 cinfo->lock = &dreq->lock; 246 cinfo->mds = &dreq->mds_cinfo; 247 cinfo->ds = &dreq->ds_cinfo; 248 cinfo->dreq = dreq; 249 cinfo->completion_ops = &nfs_direct_commit_completion_ops; 250 } 251 252 static inline struct nfs_direct_req *nfs_direct_req_alloc(void) 253 { 254 struct nfs_direct_req *dreq; 255 256 dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL); 257 if (!dreq) 258 return NULL; 259 260 kref_init(&dreq->kref); 261 kref_get(&dreq->kref); 262 init_completion(&dreq->completion); 263 INIT_LIST_HEAD(&dreq->mds_cinfo.list); 264 dreq->verf.committed = NFS_INVALID_STABLE_HOW; /* not set yet */ 265 INIT_WORK(&dreq->work, nfs_direct_write_schedule_work); 266 spin_lock_init(&dreq->lock); 267 268 return dreq; 269 } 270 271 static void nfs_direct_req_free(struct kref *kref) 272 { 273 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref); 274 275 nfs_free_pnfs_ds_cinfo(&dreq->ds_cinfo); 276 if (dreq->l_ctx != NULL) 277 nfs_put_lock_context(dreq->l_ctx); 278 if (dreq->ctx != NULL) 279 put_nfs_open_context(dreq->ctx); 280 kmem_cache_free(nfs_direct_cachep, dreq); 281 } 282 283 static void nfs_direct_req_release(struct nfs_direct_req *dreq) 284 { 285 kref_put(&dreq->kref, nfs_direct_req_free); 286 } 287 288 ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq) 289 { 290 return dreq->bytes_left; 291 } 292 EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left); 293 294 /* 295 * Collects and returns the final error value/byte-count. 296 */ 297 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq) 298 { 299 ssize_t result = -EIOCBQUEUED; 300 301 /* Async requests don't wait here */ 302 if (dreq->iocb) 303 goto out; 304 305 result = wait_for_completion_killable(&dreq->completion); 306 307 if (!result) 308 result = dreq->error; 309 if (!result) 310 result = dreq->count; 311 312 out: 313 return (ssize_t) result; 314 } 315 316 /* 317 * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust 318 * the iocb is still valid here if this is a synchronous request. 319 */ 320 static void nfs_direct_complete(struct nfs_direct_req *dreq, bool write) 321 { 322 struct inode *inode = dreq->inode; 323 324 if (dreq->iocb && write) { 325 loff_t pos = dreq->iocb->ki_pos + dreq->count; 326 327 spin_lock(&inode->i_lock); 328 if (i_size_read(inode) < pos) 329 i_size_write(inode, pos); 330 spin_unlock(&inode->i_lock); 331 } 332 333 if (write) 334 nfs_zap_mapping(inode, inode->i_mapping); 335 336 inode_dio_done(inode); 337 338 if (dreq->iocb) { 339 long res = (long) dreq->error; 340 if (!res) 341 res = (long) dreq->count; 342 aio_complete(dreq->iocb, res, 0); 343 } 344 345 complete_all(&dreq->completion); 346 347 nfs_direct_req_release(dreq); 348 } 349 350 static void nfs_direct_readpage_release(struct nfs_page *req) 351 { 352 dprintk("NFS: direct read done (%s/%llu %d@%lld)\n", 353 req->wb_context->dentry->d_inode->i_sb->s_id, 354 (unsigned long long)NFS_FILEID(req->wb_context->dentry->d_inode), 355 req->wb_bytes, 356 (long long)req_offset(req)); 357 nfs_release_request(req); 358 } 359 360 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr) 361 { 362 unsigned long bytes = 0; 363 struct nfs_direct_req *dreq = hdr->dreq; 364 365 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) 366 goto out_put; 367 368 spin_lock(&dreq->lock); 369 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0)) 370 dreq->error = hdr->error; 371 else 372 dreq->count += hdr->good_bytes; 373 spin_unlock(&dreq->lock); 374 375 while (!list_empty(&hdr->pages)) { 376 struct nfs_page *req = nfs_list_entry(hdr->pages.next); 377 struct page *page = req->wb_page; 378 379 if (!PageCompound(page) && bytes < hdr->good_bytes) 380 set_page_dirty(page); 381 bytes += req->wb_bytes; 382 nfs_list_remove_request(req); 383 nfs_direct_readpage_release(req); 384 } 385 out_put: 386 if (put_dreq(dreq)) 387 nfs_direct_complete(dreq, false); 388 hdr->release(hdr); 389 } 390 391 static void nfs_read_sync_pgio_error(struct list_head *head) 392 { 393 struct nfs_page *req; 394 395 while (!list_empty(head)) { 396 req = nfs_list_entry(head->next); 397 nfs_list_remove_request(req); 398 nfs_release_request(req); 399 } 400 } 401 402 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr) 403 { 404 get_dreq(hdr->dreq); 405 } 406 407 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = { 408 .error_cleanup = nfs_read_sync_pgio_error, 409 .init_hdr = nfs_direct_pgio_init, 410 .completion = nfs_direct_read_completion, 411 }; 412 413 /* 414 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ 415 * operation. If nfs_readdata_alloc() or get_user_pages() fails, 416 * bail and stop sending more reads. Read length accounting is 417 * handled automatically by nfs_direct_read_result(). Otherwise, if 418 * no requests have been sent, just return an error. 419 */ 420 421 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq, 422 struct iov_iter *iter, 423 loff_t pos) 424 { 425 struct nfs_pageio_descriptor desc; 426 struct inode *inode = dreq->inode; 427 ssize_t result = -EINVAL; 428 size_t requested_bytes = 0; 429 size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE); 430 431 nfs_pageio_init_read(&desc, dreq->inode, false, 432 &nfs_direct_read_completion_ops); 433 get_dreq(dreq); 434 desc.pg_dreq = dreq; 435 atomic_inc(&inode->i_dio_count); 436 437 while (iov_iter_count(iter)) { 438 struct page **pagevec; 439 size_t bytes; 440 size_t pgbase; 441 unsigned npages, i; 442 443 result = iov_iter_get_pages_alloc(iter, &pagevec, 444 rsize, &pgbase); 445 if (result < 0) 446 break; 447 448 bytes = result; 449 iov_iter_advance(iter, bytes); 450 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE; 451 for (i = 0; i < npages; i++) { 452 struct nfs_page *req; 453 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase); 454 /* XXX do we need to do the eof zeroing found in async_filler? */ 455 req = nfs_create_request(dreq->ctx, pagevec[i], NULL, 456 pgbase, req_len); 457 if (IS_ERR(req)) { 458 result = PTR_ERR(req); 459 break; 460 } 461 req->wb_index = pos >> PAGE_SHIFT; 462 req->wb_offset = pos & ~PAGE_MASK; 463 if (!nfs_pageio_add_request(&desc, req)) { 464 result = desc.pg_error; 465 nfs_release_request(req); 466 break; 467 } 468 pgbase = 0; 469 bytes -= req_len; 470 requested_bytes += req_len; 471 pos += req_len; 472 dreq->bytes_left -= req_len; 473 } 474 nfs_direct_release_pages(pagevec, npages); 475 kvfree(pagevec); 476 if (result < 0) 477 break; 478 } 479 480 nfs_pageio_complete(&desc); 481 482 /* 483 * If no bytes were started, return the error, and let the 484 * generic layer handle the completion. 485 */ 486 if (requested_bytes == 0) { 487 inode_dio_done(inode); 488 nfs_direct_req_release(dreq); 489 return result < 0 ? result : -EIO; 490 } 491 492 if (put_dreq(dreq)) 493 nfs_direct_complete(dreq, false); 494 return 0; 495 } 496 497 /** 498 * nfs_file_direct_read - file direct read operation for NFS files 499 * @iocb: target I/O control block 500 * @iter: vector of user buffers into which to read data 501 * @pos: byte offset in file where reading starts 502 * 503 * We use this function for direct reads instead of calling 504 * generic_file_aio_read() in order to avoid gfar's check to see if 505 * the request starts before the end of the file. For that check 506 * to work, we must generate a GETATTR before each direct read, and 507 * even then there is a window between the GETATTR and the subsequent 508 * READ where the file size could change. Our preference is simply 509 * to do all reads the application wants, and the server will take 510 * care of managing the end of file boundary. 511 * 512 * This function also eliminates unnecessarily updating the file's 513 * atime locally, as the NFS server sets the file's atime, and this 514 * client must read the updated atime from the server back into its 515 * cache. 516 */ 517 ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter, 518 loff_t pos) 519 { 520 struct file *file = iocb->ki_filp; 521 struct address_space *mapping = file->f_mapping; 522 struct inode *inode = mapping->host; 523 struct nfs_direct_req *dreq; 524 struct nfs_lock_context *l_ctx; 525 ssize_t result = -EINVAL; 526 size_t count = iov_iter_count(iter); 527 nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count); 528 529 dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n", 530 file, count, (long long) pos); 531 532 result = 0; 533 if (!count) 534 goto out; 535 536 mutex_lock(&inode->i_mutex); 537 result = nfs_sync_mapping(mapping); 538 if (result) 539 goto out_unlock; 540 541 task_io_account_read(count); 542 543 result = -ENOMEM; 544 dreq = nfs_direct_req_alloc(); 545 if (dreq == NULL) 546 goto out_unlock; 547 548 dreq->inode = inode; 549 dreq->bytes_left = count; 550 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp)); 551 l_ctx = nfs_get_lock_context(dreq->ctx); 552 if (IS_ERR(l_ctx)) { 553 result = PTR_ERR(l_ctx); 554 goto out_release; 555 } 556 dreq->l_ctx = l_ctx; 557 if (!is_sync_kiocb(iocb)) 558 dreq->iocb = iocb; 559 560 NFS_I(inode)->read_io += count; 561 result = nfs_direct_read_schedule_iovec(dreq, iter, pos); 562 563 mutex_unlock(&inode->i_mutex); 564 565 if (!result) { 566 result = nfs_direct_wait(dreq); 567 if (result > 0) 568 iocb->ki_pos = pos + result; 569 } 570 571 nfs_direct_req_release(dreq); 572 return result; 573 574 out_release: 575 nfs_direct_req_release(dreq); 576 out_unlock: 577 mutex_unlock(&inode->i_mutex); 578 out: 579 return result; 580 } 581 582 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq) 583 { 584 struct nfs_pageio_descriptor desc; 585 struct nfs_page *req, *tmp; 586 LIST_HEAD(reqs); 587 struct nfs_commit_info cinfo; 588 LIST_HEAD(failed); 589 590 nfs_init_cinfo_from_dreq(&cinfo, dreq); 591 pnfs_recover_commit_reqs(dreq->inode, &reqs, &cinfo); 592 spin_lock(cinfo.lock); 593 nfs_scan_commit_list(&cinfo.mds->list, &reqs, &cinfo, 0); 594 spin_unlock(cinfo.lock); 595 596 dreq->count = 0; 597 get_dreq(dreq); 598 599 nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false, 600 &nfs_direct_write_completion_ops); 601 desc.pg_dreq = dreq; 602 603 list_for_each_entry_safe(req, tmp, &reqs, wb_list) { 604 if (!nfs_pageio_add_request(&desc, req)) { 605 nfs_list_remove_request(req); 606 nfs_list_add_request(req, &failed); 607 spin_lock(cinfo.lock); 608 dreq->flags = 0; 609 dreq->error = -EIO; 610 spin_unlock(cinfo.lock); 611 } 612 nfs_release_request(req); 613 } 614 nfs_pageio_complete(&desc); 615 616 while (!list_empty(&failed)) { 617 req = nfs_list_entry(failed.next); 618 nfs_list_remove_request(req); 619 nfs_unlock_and_release_request(req); 620 } 621 622 if (put_dreq(dreq)) 623 nfs_direct_write_complete(dreq, dreq->inode); 624 } 625 626 static void nfs_direct_commit_complete(struct nfs_commit_data *data) 627 { 628 struct nfs_direct_req *dreq = data->dreq; 629 struct nfs_commit_info cinfo; 630 struct nfs_page *req; 631 int status = data->task.tk_status; 632 633 nfs_init_cinfo_from_dreq(&cinfo, dreq); 634 if (status < 0) { 635 dprintk("NFS: %5u commit failed with error %d.\n", 636 data->task.tk_pid, status); 637 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 638 } else if (nfs_direct_cmp_commit_data_verf(dreq, data)) { 639 dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid); 640 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 641 } 642 643 dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status); 644 while (!list_empty(&data->pages)) { 645 req = nfs_list_entry(data->pages.next); 646 nfs_list_remove_request(req); 647 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) { 648 /* Note the rewrite will go through mds */ 649 nfs_mark_request_commit(req, NULL, &cinfo); 650 } else 651 nfs_release_request(req); 652 nfs_unlock_and_release_request(req); 653 } 654 655 if (atomic_dec_and_test(&cinfo.mds->rpcs_out)) 656 nfs_direct_write_complete(dreq, data->inode); 657 } 658 659 static void nfs_direct_error_cleanup(struct nfs_inode *nfsi) 660 { 661 /* There is no lock to clear */ 662 } 663 664 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = { 665 .completion = nfs_direct_commit_complete, 666 .error_cleanup = nfs_direct_error_cleanup, 667 }; 668 669 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq) 670 { 671 int res; 672 struct nfs_commit_info cinfo; 673 LIST_HEAD(mds_list); 674 675 nfs_init_cinfo_from_dreq(&cinfo, dreq); 676 nfs_scan_commit(dreq->inode, &mds_list, &cinfo); 677 res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo); 678 if (res < 0) /* res == -ENOMEM */ 679 nfs_direct_write_reschedule(dreq); 680 } 681 682 static void nfs_direct_write_schedule_work(struct work_struct *work) 683 { 684 struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work); 685 int flags = dreq->flags; 686 687 dreq->flags = 0; 688 switch (flags) { 689 case NFS_ODIRECT_DO_COMMIT: 690 nfs_direct_commit_schedule(dreq); 691 break; 692 case NFS_ODIRECT_RESCHED_WRITES: 693 nfs_direct_write_reschedule(dreq); 694 break; 695 default: 696 nfs_direct_complete(dreq, true); 697 } 698 } 699 700 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode) 701 { 702 schedule_work(&dreq->work); /* Calls nfs_direct_write_schedule_work */ 703 } 704 705 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr) 706 { 707 struct nfs_direct_req *dreq = hdr->dreq; 708 struct nfs_commit_info cinfo; 709 bool request_commit = false; 710 struct nfs_page *req = nfs_list_entry(hdr->pages.next); 711 712 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) 713 goto out_put; 714 715 nfs_init_cinfo_from_dreq(&cinfo, dreq); 716 717 spin_lock(&dreq->lock); 718 719 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) { 720 dreq->flags = 0; 721 dreq->error = hdr->error; 722 } 723 if (dreq->error == 0) { 724 dreq->count += hdr->good_bytes; 725 if (nfs_write_need_commit(hdr)) { 726 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) 727 request_commit = true; 728 else if (dreq->flags == 0) { 729 nfs_direct_set_hdr_verf(dreq, hdr); 730 request_commit = true; 731 dreq->flags = NFS_ODIRECT_DO_COMMIT; 732 } else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) { 733 request_commit = true; 734 if (nfs_direct_set_or_cmp_hdr_verf(dreq, hdr)) 735 dreq->flags = 736 NFS_ODIRECT_RESCHED_WRITES; 737 } 738 } 739 } 740 spin_unlock(&dreq->lock); 741 742 while (!list_empty(&hdr->pages)) { 743 744 req = nfs_list_entry(hdr->pages.next); 745 nfs_list_remove_request(req); 746 if (request_commit) { 747 kref_get(&req->wb_kref); 748 nfs_mark_request_commit(req, hdr->lseg, &cinfo); 749 } 750 nfs_unlock_and_release_request(req); 751 } 752 753 out_put: 754 if (put_dreq(dreq)) 755 nfs_direct_write_complete(dreq, hdr->inode); 756 hdr->release(hdr); 757 } 758 759 static void nfs_write_sync_pgio_error(struct list_head *head) 760 { 761 struct nfs_page *req; 762 763 while (!list_empty(head)) { 764 req = nfs_list_entry(head->next); 765 nfs_list_remove_request(req); 766 nfs_unlock_and_release_request(req); 767 } 768 } 769 770 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = { 771 .error_cleanup = nfs_write_sync_pgio_error, 772 .init_hdr = nfs_direct_pgio_init, 773 .completion = nfs_direct_write_completion, 774 }; 775 776 777 /* 778 * NB: Return the value of the first error return code. Subsequent 779 * errors after the first one are ignored. 780 */ 781 /* 782 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE 783 * operation. If nfs_writedata_alloc() or get_user_pages() fails, 784 * bail and stop sending more writes. Write length accounting is 785 * handled automatically by nfs_direct_write_result(). Otherwise, if 786 * no requests have been sent, just return an error. 787 */ 788 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq, 789 struct iov_iter *iter, 790 loff_t pos) 791 { 792 struct nfs_pageio_descriptor desc; 793 struct inode *inode = dreq->inode; 794 ssize_t result = 0; 795 size_t requested_bytes = 0; 796 size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE); 797 798 nfs_pageio_init_write(&desc, inode, FLUSH_COND_STABLE, false, 799 &nfs_direct_write_completion_ops); 800 desc.pg_dreq = dreq; 801 get_dreq(dreq); 802 atomic_inc(&inode->i_dio_count); 803 804 NFS_I(inode)->write_io += iov_iter_count(iter); 805 while (iov_iter_count(iter)) { 806 struct page **pagevec; 807 size_t bytes; 808 size_t pgbase; 809 unsigned npages, i; 810 811 result = iov_iter_get_pages_alloc(iter, &pagevec, 812 wsize, &pgbase); 813 if (result < 0) 814 break; 815 816 bytes = result; 817 iov_iter_advance(iter, bytes); 818 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE; 819 for (i = 0; i < npages; i++) { 820 struct nfs_page *req; 821 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase); 822 823 req = nfs_create_request(dreq->ctx, pagevec[i], NULL, 824 pgbase, req_len); 825 if (IS_ERR(req)) { 826 result = PTR_ERR(req); 827 break; 828 } 829 nfs_lock_request(req); 830 req->wb_index = pos >> PAGE_SHIFT; 831 req->wb_offset = pos & ~PAGE_MASK; 832 if (!nfs_pageio_add_request(&desc, req)) { 833 result = desc.pg_error; 834 nfs_unlock_and_release_request(req); 835 break; 836 } 837 pgbase = 0; 838 bytes -= req_len; 839 requested_bytes += req_len; 840 pos += req_len; 841 dreq->bytes_left -= req_len; 842 } 843 nfs_direct_release_pages(pagevec, npages); 844 kvfree(pagevec); 845 if (result < 0) 846 break; 847 } 848 nfs_pageio_complete(&desc); 849 850 /* 851 * If no bytes were started, return the error, and let the 852 * generic layer handle the completion. 853 */ 854 if (requested_bytes == 0) { 855 inode_dio_done(inode); 856 nfs_direct_req_release(dreq); 857 return result < 0 ? result : -EIO; 858 } 859 860 if (put_dreq(dreq)) 861 nfs_direct_write_complete(dreq, dreq->inode); 862 return 0; 863 } 864 865 /** 866 * nfs_file_direct_write - file direct write operation for NFS files 867 * @iocb: target I/O control block 868 * @iter: vector of user buffers from which to write data 869 * @pos: byte offset in file where writing starts 870 * 871 * We use this function for direct writes instead of calling 872 * generic_file_aio_write() in order to avoid taking the inode 873 * semaphore and updating the i_size. The NFS server will set 874 * the new i_size and this client must read the updated size 875 * back into its cache. We let the server do generic write 876 * parameter checking and report problems. 877 * 878 * We eliminate local atime updates, see direct read above. 879 * 880 * We avoid unnecessary page cache invalidations for normal cached 881 * readers of this file. 882 * 883 * Note that O_APPEND is not supported for NFS direct writes, as there 884 * is no atomic O_APPEND write facility in the NFS protocol. 885 */ 886 ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter, 887 loff_t pos) 888 { 889 ssize_t result = -EINVAL; 890 struct file *file = iocb->ki_filp; 891 struct address_space *mapping = file->f_mapping; 892 struct inode *inode = mapping->host; 893 struct nfs_direct_req *dreq; 894 struct nfs_lock_context *l_ctx; 895 loff_t end; 896 size_t count = iov_iter_count(iter); 897 end = (pos + count - 1) >> PAGE_CACHE_SHIFT; 898 899 nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count); 900 901 dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n", 902 file, count, (long long) pos); 903 904 result = generic_write_checks(file, &pos, &count, 0); 905 if (result) 906 goto out; 907 908 result = -EINVAL; 909 if ((ssize_t) count < 0) 910 goto out; 911 result = 0; 912 if (!count) 913 goto out; 914 915 mutex_lock(&inode->i_mutex); 916 917 result = nfs_sync_mapping(mapping); 918 if (result) 919 goto out_unlock; 920 921 if (mapping->nrpages) { 922 result = invalidate_inode_pages2_range(mapping, 923 pos >> PAGE_CACHE_SHIFT, end); 924 if (result) 925 goto out_unlock; 926 } 927 928 task_io_account_write(count); 929 930 result = -ENOMEM; 931 dreq = nfs_direct_req_alloc(); 932 if (!dreq) 933 goto out_unlock; 934 935 dreq->inode = inode; 936 dreq->bytes_left = count; 937 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp)); 938 l_ctx = nfs_get_lock_context(dreq->ctx); 939 if (IS_ERR(l_ctx)) { 940 result = PTR_ERR(l_ctx); 941 goto out_release; 942 } 943 dreq->l_ctx = l_ctx; 944 if (!is_sync_kiocb(iocb)) 945 dreq->iocb = iocb; 946 947 result = nfs_direct_write_schedule_iovec(dreq, iter, pos); 948 949 if (mapping->nrpages) { 950 invalidate_inode_pages2_range(mapping, 951 pos >> PAGE_CACHE_SHIFT, end); 952 } 953 954 mutex_unlock(&inode->i_mutex); 955 956 if (!result) { 957 result = nfs_direct_wait(dreq); 958 if (result > 0) { 959 struct inode *inode = mapping->host; 960 961 iocb->ki_pos = pos + result; 962 spin_lock(&inode->i_lock); 963 if (i_size_read(inode) < iocb->ki_pos) 964 i_size_write(inode, iocb->ki_pos); 965 spin_unlock(&inode->i_lock); 966 } 967 } 968 nfs_direct_req_release(dreq); 969 return result; 970 971 out_release: 972 nfs_direct_req_release(dreq); 973 out_unlock: 974 mutex_unlock(&inode->i_mutex); 975 out: 976 return result; 977 } 978 979 /** 980 * nfs_init_directcache - create a slab cache for nfs_direct_req structures 981 * 982 */ 983 int __init nfs_init_directcache(void) 984 { 985 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache", 986 sizeof(struct nfs_direct_req), 987 0, (SLAB_RECLAIM_ACCOUNT| 988 SLAB_MEM_SPREAD), 989 NULL); 990 if (nfs_direct_cachep == NULL) 991 return -ENOMEM; 992 993 return 0; 994 } 995 996 /** 997 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures 998 * 999 */ 1000 void nfs_destroy_directcache(void) 1001 { 1002 kmem_cache_destroy(nfs_direct_cachep); 1003 } 1004