1 /* 2 * linux/fs/nfs/direct.c 3 * 4 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com> 5 * 6 * High-performance uncached I/O for the Linux NFS client 7 * 8 * There are important applications whose performance or correctness 9 * depends on uncached access to file data. Database clusters 10 * (multiple copies of the same instance running on separate hosts) 11 * implement their own cache coherency protocol that subsumes file 12 * system cache protocols. Applications that process datasets 13 * considerably larger than the client's memory do not always benefit 14 * from a local cache. A streaming video server, for instance, has no 15 * need to cache the contents of a file. 16 * 17 * When an application requests uncached I/O, all read and write requests 18 * are made directly to the server; data stored or fetched via these 19 * requests is not cached in the Linux page cache. The client does not 20 * correct unaligned requests from applications. All requested bytes are 21 * held on permanent storage before a direct write system call returns to 22 * an application. 23 * 24 * Solaris implements an uncached I/O facility called directio() that 25 * is used for backups and sequential I/O to very large files. Solaris 26 * also supports uncaching whole NFS partitions with "-o forcedirectio," 27 * an undocumented mount option. 28 * 29 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with 30 * help from Andrew Morton. 31 * 32 * 18 Dec 2001 Initial implementation for 2.4 --cel 33 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy 34 * 08 Jun 2003 Port to 2.5 APIs --cel 35 * 31 Mar 2004 Handle direct I/O without VFS support --cel 36 * 15 Sep 2004 Parallel async reads --cel 37 * 04 May 2005 support O_DIRECT with aio --cel 38 * 39 */ 40 41 #include <linux/errno.h> 42 #include <linux/sched.h> 43 #include <linux/kernel.h> 44 #include <linux/file.h> 45 #include <linux/pagemap.h> 46 #include <linux/kref.h> 47 #include <linux/slab.h> 48 #include <linux/task_io_accounting_ops.h> 49 #include <linux/module.h> 50 51 #include <linux/nfs_fs.h> 52 #include <linux/nfs_page.h> 53 #include <linux/sunrpc/clnt.h> 54 55 #include <asm/uaccess.h> 56 #include <linux/atomic.h> 57 58 #include "internal.h" 59 #include "iostat.h" 60 #include "pnfs.h" 61 62 #define NFSDBG_FACILITY NFSDBG_VFS 63 64 static struct kmem_cache *nfs_direct_cachep; 65 66 /* 67 * This represents a set of asynchronous requests that we're waiting on 68 */ 69 struct nfs_direct_req { 70 struct kref kref; /* release manager */ 71 72 /* I/O parameters */ 73 struct nfs_open_context *ctx; /* file open context info */ 74 struct nfs_lock_context *l_ctx; /* Lock context info */ 75 struct kiocb * iocb; /* controlling i/o request */ 76 struct inode * inode; /* target file of i/o */ 77 78 /* completion state */ 79 atomic_t io_count; /* i/os we're waiting for */ 80 spinlock_t lock; /* protect completion state */ 81 ssize_t count, /* bytes actually processed */ 82 bytes_left, /* bytes left to be sent */ 83 error; /* any reported error */ 84 struct completion completion; /* wait for i/o completion */ 85 86 /* commit state */ 87 struct nfs_mds_commit_info mds_cinfo; /* Storage for cinfo */ 88 struct pnfs_ds_commit_info ds_cinfo; /* Storage for cinfo */ 89 struct work_struct work; 90 int flags; 91 #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */ 92 #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */ 93 struct nfs_writeverf verf; /* unstable write verifier */ 94 }; 95 96 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops; 97 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops; 98 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode); 99 static void nfs_direct_write_schedule_work(struct work_struct *work); 100 101 static inline void get_dreq(struct nfs_direct_req *dreq) 102 { 103 atomic_inc(&dreq->io_count); 104 } 105 106 static inline int put_dreq(struct nfs_direct_req *dreq) 107 { 108 return atomic_dec_and_test(&dreq->io_count); 109 } 110 111 /** 112 * nfs_direct_IO - NFS address space operation for direct I/O 113 * @rw: direction (read or write) 114 * @iocb: target I/O control block 115 * @iov: array of vectors that define I/O buffer 116 * @pos: offset in file to begin the operation 117 * @nr_segs: size of iovec array 118 * 119 * The presence of this routine in the address space ops vector means 120 * the NFS client supports direct I/O. However, for most direct IO, we 121 * shunt off direct read and write requests before the VFS gets them, 122 * so this method is only ever called for swap. 123 */ 124 ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs) 125 { 126 #ifndef CONFIG_NFS_SWAP 127 dprintk("NFS: nfs_direct_IO (%pD) off/no(%Ld/%lu) EINVAL\n", 128 iocb->ki_filp, (long long) pos, nr_segs); 129 130 return -EINVAL; 131 #else 132 VM_BUG_ON(iocb->ki_nbytes != PAGE_SIZE); 133 134 if (rw == READ || rw == KERNEL_READ) 135 return nfs_file_direct_read(iocb, iov, nr_segs, pos, 136 rw == READ ? true : false); 137 return nfs_file_direct_write(iocb, iov, nr_segs, pos, 138 rw == WRITE ? true : false); 139 #endif /* CONFIG_NFS_SWAP */ 140 } 141 142 static void nfs_direct_release_pages(struct page **pages, unsigned int npages) 143 { 144 unsigned int i; 145 for (i = 0; i < npages; i++) 146 page_cache_release(pages[i]); 147 } 148 149 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo, 150 struct nfs_direct_req *dreq) 151 { 152 cinfo->lock = &dreq->lock; 153 cinfo->mds = &dreq->mds_cinfo; 154 cinfo->ds = &dreq->ds_cinfo; 155 cinfo->dreq = dreq; 156 cinfo->completion_ops = &nfs_direct_commit_completion_ops; 157 } 158 159 static inline struct nfs_direct_req *nfs_direct_req_alloc(void) 160 { 161 struct nfs_direct_req *dreq; 162 163 dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL); 164 if (!dreq) 165 return NULL; 166 167 kref_init(&dreq->kref); 168 kref_get(&dreq->kref); 169 init_completion(&dreq->completion); 170 INIT_LIST_HEAD(&dreq->mds_cinfo.list); 171 INIT_WORK(&dreq->work, nfs_direct_write_schedule_work); 172 spin_lock_init(&dreq->lock); 173 174 return dreq; 175 } 176 177 static void nfs_direct_req_free(struct kref *kref) 178 { 179 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref); 180 181 if (dreq->l_ctx != NULL) 182 nfs_put_lock_context(dreq->l_ctx); 183 if (dreq->ctx != NULL) 184 put_nfs_open_context(dreq->ctx); 185 kmem_cache_free(nfs_direct_cachep, dreq); 186 } 187 188 static void nfs_direct_req_release(struct nfs_direct_req *dreq) 189 { 190 kref_put(&dreq->kref, nfs_direct_req_free); 191 } 192 193 ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq) 194 { 195 return dreq->bytes_left; 196 } 197 EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left); 198 199 /* 200 * Collects and returns the final error value/byte-count. 201 */ 202 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq) 203 { 204 ssize_t result = -EIOCBQUEUED; 205 206 /* Async requests don't wait here */ 207 if (dreq->iocb) 208 goto out; 209 210 result = wait_for_completion_killable(&dreq->completion); 211 212 if (!result) 213 result = dreq->error; 214 if (!result) 215 result = dreq->count; 216 217 out: 218 return (ssize_t) result; 219 } 220 221 /* 222 * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust 223 * the iocb is still valid here if this is a synchronous request. 224 */ 225 static void nfs_direct_complete(struct nfs_direct_req *dreq) 226 { 227 if (dreq->iocb) { 228 long res = (long) dreq->error; 229 if (!res) 230 res = (long) dreq->count; 231 aio_complete(dreq->iocb, res, 0); 232 } 233 complete_all(&dreq->completion); 234 235 nfs_direct_req_release(dreq); 236 } 237 238 static void nfs_direct_readpage_release(struct nfs_page *req) 239 { 240 dprintk("NFS: direct read done (%s/%lld %d@%lld)\n", 241 req->wb_context->dentry->d_inode->i_sb->s_id, 242 (long long)NFS_FILEID(req->wb_context->dentry->d_inode), 243 req->wb_bytes, 244 (long long)req_offset(req)); 245 nfs_release_request(req); 246 } 247 248 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr) 249 { 250 unsigned long bytes = 0; 251 struct nfs_direct_req *dreq = hdr->dreq; 252 253 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) 254 goto out_put; 255 256 spin_lock(&dreq->lock); 257 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0)) 258 dreq->error = hdr->error; 259 else 260 dreq->count += hdr->good_bytes; 261 spin_unlock(&dreq->lock); 262 263 while (!list_empty(&hdr->pages)) { 264 struct nfs_page *req = nfs_list_entry(hdr->pages.next); 265 struct page *page = req->wb_page; 266 267 if (!PageCompound(page) && bytes < hdr->good_bytes) 268 set_page_dirty(page); 269 bytes += req->wb_bytes; 270 nfs_list_remove_request(req); 271 nfs_direct_readpage_release(req); 272 } 273 out_put: 274 if (put_dreq(dreq)) 275 nfs_direct_complete(dreq); 276 hdr->release(hdr); 277 } 278 279 static void nfs_read_sync_pgio_error(struct list_head *head) 280 { 281 struct nfs_page *req; 282 283 while (!list_empty(head)) { 284 req = nfs_list_entry(head->next); 285 nfs_list_remove_request(req); 286 nfs_release_request(req); 287 } 288 } 289 290 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr) 291 { 292 get_dreq(hdr->dreq); 293 } 294 295 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = { 296 .error_cleanup = nfs_read_sync_pgio_error, 297 .init_hdr = nfs_direct_pgio_init, 298 .completion = nfs_direct_read_completion, 299 }; 300 301 /* 302 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ 303 * operation. If nfs_readdata_alloc() or get_user_pages() fails, 304 * bail and stop sending more reads. Read length accounting is 305 * handled automatically by nfs_direct_read_result(). Otherwise, if 306 * no requests have been sent, just return an error. 307 */ 308 static ssize_t nfs_direct_read_schedule_segment(struct nfs_pageio_descriptor *desc, 309 const struct iovec *iov, 310 loff_t pos, bool uio) 311 { 312 struct nfs_direct_req *dreq = desc->pg_dreq; 313 struct nfs_open_context *ctx = dreq->ctx; 314 struct inode *inode = ctx->dentry->d_inode; 315 unsigned long user_addr = (unsigned long)iov->iov_base; 316 size_t count = iov->iov_len; 317 size_t rsize = NFS_SERVER(inode)->rsize; 318 unsigned int pgbase; 319 int result; 320 ssize_t started = 0; 321 struct page **pagevec = NULL; 322 unsigned int npages; 323 324 do { 325 size_t bytes; 326 int i; 327 328 pgbase = user_addr & ~PAGE_MASK; 329 bytes = min(max_t(size_t, rsize, PAGE_SIZE), count); 330 331 result = -ENOMEM; 332 npages = nfs_page_array_len(pgbase, bytes); 333 if (!pagevec) 334 pagevec = kmalloc(npages * sizeof(struct page *), 335 GFP_KERNEL); 336 if (!pagevec) 337 break; 338 if (uio) { 339 down_read(¤t->mm->mmap_sem); 340 result = get_user_pages(current, current->mm, user_addr, 341 npages, 1, 0, pagevec, NULL); 342 up_read(¤t->mm->mmap_sem); 343 if (result < 0) 344 break; 345 } else { 346 WARN_ON(npages != 1); 347 result = get_kernel_page(user_addr, 1, pagevec); 348 if (WARN_ON(result != 1)) 349 break; 350 } 351 352 if ((unsigned)result < npages) { 353 bytes = result * PAGE_SIZE; 354 if (bytes <= pgbase) { 355 nfs_direct_release_pages(pagevec, result); 356 break; 357 } 358 bytes -= pgbase; 359 npages = result; 360 } 361 362 for (i = 0; i < npages; i++) { 363 struct nfs_page *req; 364 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase); 365 /* XXX do we need to do the eof zeroing found in async_filler? */ 366 req = nfs_create_request(dreq->ctx, dreq->inode, 367 pagevec[i], 368 pgbase, req_len); 369 if (IS_ERR(req)) { 370 result = PTR_ERR(req); 371 break; 372 } 373 req->wb_index = pos >> PAGE_SHIFT; 374 req->wb_offset = pos & ~PAGE_MASK; 375 if (!nfs_pageio_add_request(desc, req)) { 376 result = desc->pg_error; 377 nfs_release_request(req); 378 break; 379 } 380 pgbase = 0; 381 bytes -= req_len; 382 started += req_len; 383 user_addr += req_len; 384 pos += req_len; 385 count -= req_len; 386 dreq->bytes_left -= req_len; 387 } 388 /* The nfs_page now hold references to these pages */ 389 nfs_direct_release_pages(pagevec, npages); 390 } while (count != 0 && result >= 0); 391 392 kfree(pagevec); 393 394 if (started) 395 return started; 396 return result < 0 ? (ssize_t) result : -EFAULT; 397 } 398 399 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq, 400 const struct iovec *iov, 401 unsigned long nr_segs, 402 loff_t pos, bool uio) 403 { 404 struct nfs_pageio_descriptor desc; 405 ssize_t result = -EINVAL; 406 size_t requested_bytes = 0; 407 unsigned long seg; 408 409 NFS_PROTO(dreq->inode)->read_pageio_init(&desc, dreq->inode, 410 &nfs_direct_read_completion_ops); 411 get_dreq(dreq); 412 desc.pg_dreq = dreq; 413 414 for (seg = 0; seg < nr_segs; seg++) { 415 const struct iovec *vec = &iov[seg]; 416 result = nfs_direct_read_schedule_segment(&desc, vec, pos, uio); 417 if (result < 0) 418 break; 419 requested_bytes += result; 420 if ((size_t)result < vec->iov_len) 421 break; 422 pos += vec->iov_len; 423 } 424 425 nfs_pageio_complete(&desc); 426 427 /* 428 * If no bytes were started, return the error, and let the 429 * generic layer handle the completion. 430 */ 431 if (requested_bytes == 0) { 432 nfs_direct_req_release(dreq); 433 return result < 0 ? result : -EIO; 434 } 435 436 if (put_dreq(dreq)) 437 nfs_direct_complete(dreq); 438 return 0; 439 } 440 441 static ssize_t nfs_direct_read(struct kiocb *iocb, const struct iovec *iov, 442 unsigned long nr_segs, loff_t pos, bool uio) 443 { 444 ssize_t result = -ENOMEM; 445 struct inode *inode = iocb->ki_filp->f_mapping->host; 446 struct nfs_direct_req *dreq; 447 struct nfs_lock_context *l_ctx; 448 449 dreq = nfs_direct_req_alloc(); 450 if (dreq == NULL) 451 goto out; 452 453 dreq->inode = inode; 454 dreq->bytes_left = iov_length(iov, nr_segs); 455 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp)); 456 l_ctx = nfs_get_lock_context(dreq->ctx); 457 if (IS_ERR(l_ctx)) { 458 result = PTR_ERR(l_ctx); 459 goto out_release; 460 } 461 dreq->l_ctx = l_ctx; 462 if (!is_sync_kiocb(iocb)) 463 dreq->iocb = iocb; 464 465 NFS_I(inode)->read_io += iov_length(iov, nr_segs); 466 result = nfs_direct_read_schedule_iovec(dreq, iov, nr_segs, pos, uio); 467 if (!result) 468 result = nfs_direct_wait(dreq); 469 out_release: 470 nfs_direct_req_release(dreq); 471 out: 472 return result; 473 } 474 475 static void nfs_inode_dio_write_done(struct inode *inode) 476 { 477 nfs_zap_mapping(inode, inode->i_mapping); 478 inode_dio_done(inode); 479 } 480 481 #if IS_ENABLED(CONFIG_NFS_V3) || IS_ENABLED(CONFIG_NFS_V4) 482 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq) 483 { 484 struct nfs_pageio_descriptor desc; 485 struct nfs_page *req, *tmp; 486 LIST_HEAD(reqs); 487 struct nfs_commit_info cinfo; 488 LIST_HEAD(failed); 489 490 nfs_init_cinfo_from_dreq(&cinfo, dreq); 491 pnfs_recover_commit_reqs(dreq->inode, &reqs, &cinfo); 492 spin_lock(cinfo.lock); 493 nfs_scan_commit_list(&cinfo.mds->list, &reqs, &cinfo, 0); 494 spin_unlock(cinfo.lock); 495 496 dreq->count = 0; 497 get_dreq(dreq); 498 499 NFS_PROTO(dreq->inode)->write_pageio_init(&desc, dreq->inode, FLUSH_STABLE, 500 &nfs_direct_write_completion_ops); 501 desc.pg_dreq = dreq; 502 503 list_for_each_entry_safe(req, tmp, &reqs, wb_list) { 504 if (!nfs_pageio_add_request(&desc, req)) { 505 nfs_list_remove_request(req); 506 nfs_list_add_request(req, &failed); 507 spin_lock(cinfo.lock); 508 dreq->flags = 0; 509 dreq->error = -EIO; 510 spin_unlock(cinfo.lock); 511 } 512 nfs_release_request(req); 513 } 514 nfs_pageio_complete(&desc); 515 516 while (!list_empty(&failed)) { 517 req = nfs_list_entry(failed.next); 518 nfs_list_remove_request(req); 519 nfs_unlock_and_release_request(req); 520 } 521 522 if (put_dreq(dreq)) 523 nfs_direct_write_complete(dreq, dreq->inode); 524 } 525 526 static void nfs_direct_commit_complete(struct nfs_commit_data *data) 527 { 528 struct nfs_direct_req *dreq = data->dreq; 529 struct nfs_commit_info cinfo; 530 struct nfs_page *req; 531 int status = data->task.tk_status; 532 533 nfs_init_cinfo_from_dreq(&cinfo, dreq); 534 if (status < 0) { 535 dprintk("NFS: %5u commit failed with error %d.\n", 536 data->task.tk_pid, status); 537 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 538 } else if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) { 539 dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid); 540 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 541 } 542 543 dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status); 544 while (!list_empty(&data->pages)) { 545 req = nfs_list_entry(data->pages.next); 546 nfs_list_remove_request(req); 547 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) { 548 /* Note the rewrite will go through mds */ 549 nfs_mark_request_commit(req, NULL, &cinfo); 550 } else 551 nfs_release_request(req); 552 nfs_unlock_and_release_request(req); 553 } 554 555 if (atomic_dec_and_test(&cinfo.mds->rpcs_out)) 556 nfs_direct_write_complete(dreq, data->inode); 557 } 558 559 static void nfs_direct_error_cleanup(struct nfs_inode *nfsi) 560 { 561 /* There is no lock to clear */ 562 } 563 564 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = { 565 .completion = nfs_direct_commit_complete, 566 .error_cleanup = nfs_direct_error_cleanup, 567 }; 568 569 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq) 570 { 571 int res; 572 struct nfs_commit_info cinfo; 573 LIST_HEAD(mds_list); 574 575 nfs_init_cinfo_from_dreq(&cinfo, dreq); 576 nfs_scan_commit(dreq->inode, &mds_list, &cinfo); 577 res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo); 578 if (res < 0) /* res == -ENOMEM */ 579 nfs_direct_write_reschedule(dreq); 580 } 581 582 static void nfs_direct_write_schedule_work(struct work_struct *work) 583 { 584 struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work); 585 int flags = dreq->flags; 586 587 dreq->flags = 0; 588 switch (flags) { 589 case NFS_ODIRECT_DO_COMMIT: 590 nfs_direct_commit_schedule(dreq); 591 break; 592 case NFS_ODIRECT_RESCHED_WRITES: 593 nfs_direct_write_reschedule(dreq); 594 break; 595 default: 596 nfs_inode_dio_write_done(dreq->inode); 597 nfs_direct_complete(dreq); 598 } 599 } 600 601 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode) 602 { 603 schedule_work(&dreq->work); /* Calls nfs_direct_write_schedule_work */ 604 } 605 606 #else 607 static void nfs_direct_write_schedule_work(struct work_struct *work) 608 { 609 } 610 611 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode) 612 { 613 nfs_inode_dio_write_done(inode); 614 nfs_direct_complete(dreq); 615 } 616 #endif 617 618 /* 619 * NB: Return the value of the first error return code. Subsequent 620 * errors after the first one are ignored. 621 */ 622 /* 623 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE 624 * operation. If nfs_writedata_alloc() or get_user_pages() fails, 625 * bail and stop sending more writes. Write length accounting is 626 * handled automatically by nfs_direct_write_result(). Otherwise, if 627 * no requests have been sent, just return an error. 628 */ 629 static ssize_t nfs_direct_write_schedule_segment(struct nfs_pageio_descriptor *desc, 630 const struct iovec *iov, 631 loff_t pos, bool uio) 632 { 633 struct nfs_direct_req *dreq = desc->pg_dreq; 634 struct nfs_open_context *ctx = dreq->ctx; 635 struct inode *inode = ctx->dentry->d_inode; 636 unsigned long user_addr = (unsigned long)iov->iov_base; 637 size_t count = iov->iov_len; 638 size_t wsize = NFS_SERVER(inode)->wsize; 639 unsigned int pgbase; 640 int result; 641 ssize_t started = 0; 642 struct page **pagevec = NULL; 643 unsigned int npages; 644 645 do { 646 size_t bytes; 647 int i; 648 649 pgbase = user_addr & ~PAGE_MASK; 650 bytes = min(max_t(size_t, wsize, PAGE_SIZE), count); 651 652 result = -ENOMEM; 653 npages = nfs_page_array_len(pgbase, bytes); 654 if (!pagevec) 655 pagevec = kmalloc(npages * sizeof(struct page *), GFP_KERNEL); 656 if (!pagevec) 657 break; 658 659 if (uio) { 660 down_read(¤t->mm->mmap_sem); 661 result = get_user_pages(current, current->mm, user_addr, 662 npages, 0, 0, pagevec, NULL); 663 up_read(¤t->mm->mmap_sem); 664 if (result < 0) 665 break; 666 } else { 667 WARN_ON(npages != 1); 668 result = get_kernel_page(user_addr, 0, pagevec); 669 if (WARN_ON(result != 1)) 670 break; 671 } 672 673 if ((unsigned)result < npages) { 674 bytes = result * PAGE_SIZE; 675 if (bytes <= pgbase) { 676 nfs_direct_release_pages(pagevec, result); 677 break; 678 } 679 bytes -= pgbase; 680 npages = result; 681 } 682 683 for (i = 0; i < npages; i++) { 684 struct nfs_page *req; 685 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase); 686 687 req = nfs_create_request(dreq->ctx, dreq->inode, 688 pagevec[i], 689 pgbase, req_len); 690 if (IS_ERR(req)) { 691 result = PTR_ERR(req); 692 break; 693 } 694 nfs_lock_request(req); 695 req->wb_index = pos >> PAGE_SHIFT; 696 req->wb_offset = pos & ~PAGE_MASK; 697 if (!nfs_pageio_add_request(desc, req)) { 698 result = desc->pg_error; 699 nfs_unlock_and_release_request(req); 700 break; 701 } 702 pgbase = 0; 703 bytes -= req_len; 704 started += req_len; 705 user_addr += req_len; 706 pos += req_len; 707 count -= req_len; 708 dreq->bytes_left -= req_len; 709 } 710 /* The nfs_page now hold references to these pages */ 711 nfs_direct_release_pages(pagevec, npages); 712 } while (count != 0 && result >= 0); 713 714 kfree(pagevec); 715 716 if (started) 717 return started; 718 return result < 0 ? (ssize_t) result : -EFAULT; 719 } 720 721 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr) 722 { 723 struct nfs_direct_req *dreq = hdr->dreq; 724 struct nfs_commit_info cinfo; 725 int bit = -1; 726 struct nfs_page *req = nfs_list_entry(hdr->pages.next); 727 728 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) 729 goto out_put; 730 731 nfs_init_cinfo_from_dreq(&cinfo, dreq); 732 733 spin_lock(&dreq->lock); 734 735 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) { 736 dreq->flags = 0; 737 dreq->error = hdr->error; 738 } 739 if (dreq->error != 0) 740 bit = NFS_IOHDR_ERROR; 741 else { 742 dreq->count += hdr->good_bytes; 743 if (test_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags)) { 744 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 745 bit = NFS_IOHDR_NEED_RESCHED; 746 } else if (test_bit(NFS_IOHDR_NEED_COMMIT, &hdr->flags)) { 747 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) 748 bit = NFS_IOHDR_NEED_RESCHED; 749 else if (dreq->flags == 0) { 750 memcpy(&dreq->verf, hdr->verf, 751 sizeof(dreq->verf)); 752 bit = NFS_IOHDR_NEED_COMMIT; 753 dreq->flags = NFS_ODIRECT_DO_COMMIT; 754 } else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) { 755 if (memcmp(&dreq->verf, hdr->verf, sizeof(dreq->verf))) { 756 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 757 bit = NFS_IOHDR_NEED_RESCHED; 758 } else 759 bit = NFS_IOHDR_NEED_COMMIT; 760 } 761 } 762 } 763 spin_unlock(&dreq->lock); 764 765 while (!list_empty(&hdr->pages)) { 766 req = nfs_list_entry(hdr->pages.next); 767 nfs_list_remove_request(req); 768 switch (bit) { 769 case NFS_IOHDR_NEED_RESCHED: 770 case NFS_IOHDR_NEED_COMMIT: 771 kref_get(&req->wb_kref); 772 nfs_mark_request_commit(req, hdr->lseg, &cinfo); 773 } 774 nfs_unlock_and_release_request(req); 775 } 776 777 out_put: 778 if (put_dreq(dreq)) 779 nfs_direct_write_complete(dreq, hdr->inode); 780 hdr->release(hdr); 781 } 782 783 static void nfs_write_sync_pgio_error(struct list_head *head) 784 { 785 struct nfs_page *req; 786 787 while (!list_empty(head)) { 788 req = nfs_list_entry(head->next); 789 nfs_list_remove_request(req); 790 nfs_unlock_and_release_request(req); 791 } 792 } 793 794 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = { 795 .error_cleanup = nfs_write_sync_pgio_error, 796 .init_hdr = nfs_direct_pgio_init, 797 .completion = nfs_direct_write_completion, 798 }; 799 800 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq, 801 const struct iovec *iov, 802 unsigned long nr_segs, 803 loff_t pos, bool uio) 804 { 805 struct nfs_pageio_descriptor desc; 806 struct inode *inode = dreq->inode; 807 ssize_t result = 0; 808 size_t requested_bytes = 0; 809 unsigned long seg; 810 811 NFS_PROTO(inode)->write_pageio_init(&desc, inode, FLUSH_COND_STABLE, 812 &nfs_direct_write_completion_ops); 813 desc.pg_dreq = dreq; 814 get_dreq(dreq); 815 atomic_inc(&inode->i_dio_count); 816 817 NFS_I(dreq->inode)->write_io += iov_length(iov, nr_segs); 818 for (seg = 0; seg < nr_segs; seg++) { 819 const struct iovec *vec = &iov[seg]; 820 result = nfs_direct_write_schedule_segment(&desc, vec, pos, uio); 821 if (result < 0) 822 break; 823 requested_bytes += result; 824 if ((size_t)result < vec->iov_len) 825 break; 826 pos += vec->iov_len; 827 } 828 nfs_pageio_complete(&desc); 829 830 /* 831 * If no bytes were started, return the error, and let the 832 * generic layer handle the completion. 833 */ 834 if (requested_bytes == 0) { 835 inode_dio_done(inode); 836 nfs_direct_req_release(dreq); 837 return result < 0 ? result : -EIO; 838 } 839 840 if (put_dreq(dreq)) 841 nfs_direct_write_complete(dreq, dreq->inode); 842 return 0; 843 } 844 845 static ssize_t nfs_direct_write(struct kiocb *iocb, const struct iovec *iov, 846 unsigned long nr_segs, loff_t pos, 847 size_t count, bool uio) 848 { 849 ssize_t result = -ENOMEM; 850 struct inode *inode = iocb->ki_filp->f_mapping->host; 851 struct nfs_direct_req *dreq; 852 struct nfs_lock_context *l_ctx; 853 854 dreq = nfs_direct_req_alloc(); 855 if (!dreq) 856 goto out; 857 858 dreq->inode = inode; 859 dreq->bytes_left = count; 860 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp)); 861 l_ctx = nfs_get_lock_context(dreq->ctx); 862 if (IS_ERR(l_ctx)) { 863 result = PTR_ERR(l_ctx); 864 goto out_release; 865 } 866 dreq->l_ctx = l_ctx; 867 if (!is_sync_kiocb(iocb)) 868 dreq->iocb = iocb; 869 870 result = nfs_direct_write_schedule_iovec(dreq, iov, nr_segs, pos, uio); 871 if (!result) 872 result = nfs_direct_wait(dreq); 873 out_release: 874 nfs_direct_req_release(dreq); 875 out: 876 return result; 877 } 878 879 /** 880 * nfs_file_direct_read - file direct read operation for NFS files 881 * @iocb: target I/O control block 882 * @iov: vector of user buffers into which to read data 883 * @nr_segs: size of iov vector 884 * @pos: byte offset in file where reading starts 885 * 886 * We use this function for direct reads instead of calling 887 * generic_file_aio_read() in order to avoid gfar's check to see if 888 * the request starts before the end of the file. For that check 889 * to work, we must generate a GETATTR before each direct read, and 890 * even then there is a window between the GETATTR and the subsequent 891 * READ where the file size could change. Our preference is simply 892 * to do all reads the application wants, and the server will take 893 * care of managing the end of file boundary. 894 * 895 * This function also eliminates unnecessarily updating the file's 896 * atime locally, as the NFS server sets the file's atime, and this 897 * client must read the updated atime from the server back into its 898 * cache. 899 */ 900 ssize_t nfs_file_direct_read(struct kiocb *iocb, const struct iovec *iov, 901 unsigned long nr_segs, loff_t pos, bool uio) 902 { 903 ssize_t retval = -EINVAL; 904 struct file *file = iocb->ki_filp; 905 struct address_space *mapping = file->f_mapping; 906 size_t count; 907 908 count = iov_length(iov, nr_segs); 909 nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count); 910 911 dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n", 912 file, count, (long long) pos); 913 914 retval = 0; 915 if (!count) 916 goto out; 917 918 retval = nfs_sync_mapping(mapping); 919 if (retval) 920 goto out; 921 922 task_io_account_read(count); 923 924 retval = nfs_direct_read(iocb, iov, nr_segs, pos, uio); 925 if (retval > 0) 926 iocb->ki_pos = pos + retval; 927 928 out: 929 return retval; 930 } 931 932 /** 933 * nfs_file_direct_write - file direct write operation for NFS files 934 * @iocb: target I/O control block 935 * @iov: vector of user buffers from which to write data 936 * @nr_segs: size of iov vector 937 * @pos: byte offset in file where writing starts 938 * 939 * We use this function for direct writes instead of calling 940 * generic_file_aio_write() in order to avoid taking the inode 941 * semaphore and updating the i_size. The NFS server will set 942 * the new i_size and this client must read the updated size 943 * back into its cache. We let the server do generic write 944 * parameter checking and report problems. 945 * 946 * We eliminate local atime updates, see direct read above. 947 * 948 * We avoid unnecessary page cache invalidations for normal cached 949 * readers of this file. 950 * 951 * Note that O_APPEND is not supported for NFS direct writes, as there 952 * is no atomic O_APPEND write facility in the NFS protocol. 953 */ 954 ssize_t nfs_file_direct_write(struct kiocb *iocb, const struct iovec *iov, 955 unsigned long nr_segs, loff_t pos, bool uio) 956 { 957 ssize_t retval = -EINVAL; 958 struct file *file = iocb->ki_filp; 959 struct address_space *mapping = file->f_mapping; 960 size_t count; 961 962 count = iov_length(iov, nr_segs); 963 nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count); 964 965 dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n", 966 file, count, (long long) pos); 967 968 retval = generic_write_checks(file, &pos, &count, 0); 969 if (retval) 970 goto out; 971 972 retval = -EINVAL; 973 if ((ssize_t) count < 0) 974 goto out; 975 retval = 0; 976 if (!count) 977 goto out; 978 979 retval = nfs_sync_mapping(mapping); 980 if (retval) 981 goto out; 982 983 task_io_account_write(count); 984 985 retval = nfs_direct_write(iocb, iov, nr_segs, pos, count, uio); 986 if (retval > 0) { 987 struct inode *inode = mapping->host; 988 989 iocb->ki_pos = pos + retval; 990 spin_lock(&inode->i_lock); 991 if (i_size_read(inode) < iocb->ki_pos) 992 i_size_write(inode, iocb->ki_pos); 993 spin_unlock(&inode->i_lock); 994 } 995 out: 996 return retval; 997 } 998 999 /** 1000 * nfs_init_directcache - create a slab cache for nfs_direct_req structures 1001 * 1002 */ 1003 int __init nfs_init_directcache(void) 1004 { 1005 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache", 1006 sizeof(struct nfs_direct_req), 1007 0, (SLAB_RECLAIM_ACCOUNT| 1008 SLAB_MEM_SPREAD), 1009 NULL); 1010 if (nfs_direct_cachep == NULL) 1011 return -ENOMEM; 1012 1013 return 0; 1014 } 1015 1016 /** 1017 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures 1018 * 1019 */ 1020 void nfs_destroy_directcache(void) 1021 { 1022 kmem_cache_destroy(nfs_direct_cachep); 1023 } 1024