xref: /openbmc/linux/fs/nfs/direct.c (revision afc98d90)
1 /*
2  * linux/fs/nfs/direct.c
3  *
4  * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
5  *
6  * High-performance uncached I/O for the Linux NFS client
7  *
8  * There are important applications whose performance or correctness
9  * depends on uncached access to file data.  Database clusters
10  * (multiple copies of the same instance running on separate hosts)
11  * implement their own cache coherency protocol that subsumes file
12  * system cache protocols.  Applications that process datasets
13  * considerably larger than the client's memory do not always benefit
14  * from a local cache.  A streaming video server, for instance, has no
15  * need to cache the contents of a file.
16  *
17  * When an application requests uncached I/O, all read and write requests
18  * are made directly to the server; data stored or fetched via these
19  * requests is not cached in the Linux page cache.  The client does not
20  * correct unaligned requests from applications.  All requested bytes are
21  * held on permanent storage before a direct write system call returns to
22  * an application.
23  *
24  * Solaris implements an uncached I/O facility called directio() that
25  * is used for backups and sequential I/O to very large files.  Solaris
26  * also supports uncaching whole NFS partitions with "-o forcedirectio,"
27  * an undocumented mount option.
28  *
29  * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
30  * help from Andrew Morton.
31  *
32  * 18 Dec 2001	Initial implementation for 2.4  --cel
33  * 08 Jul 2002	Version for 2.4.19, with bug fixes --trondmy
34  * 08 Jun 2003	Port to 2.5 APIs  --cel
35  * 31 Mar 2004	Handle direct I/O without VFS support  --cel
36  * 15 Sep 2004	Parallel async reads  --cel
37  * 04 May 2005	support O_DIRECT with aio  --cel
38  *
39  */
40 
41 #include <linux/errno.h>
42 #include <linux/sched.h>
43 #include <linux/kernel.h>
44 #include <linux/file.h>
45 #include <linux/pagemap.h>
46 #include <linux/kref.h>
47 #include <linux/slab.h>
48 #include <linux/task_io_accounting_ops.h>
49 #include <linux/module.h>
50 
51 #include <linux/nfs_fs.h>
52 #include <linux/nfs_page.h>
53 #include <linux/sunrpc/clnt.h>
54 
55 #include <asm/uaccess.h>
56 #include <linux/atomic.h>
57 
58 #include "internal.h"
59 #include "iostat.h"
60 #include "pnfs.h"
61 
62 #define NFSDBG_FACILITY		NFSDBG_VFS
63 
64 static struct kmem_cache *nfs_direct_cachep;
65 
66 /*
67  * This represents a set of asynchronous requests that we're waiting on
68  */
69 struct nfs_direct_req {
70 	struct kref		kref;		/* release manager */
71 
72 	/* I/O parameters */
73 	struct nfs_open_context	*ctx;		/* file open context info */
74 	struct nfs_lock_context *l_ctx;		/* Lock context info */
75 	struct kiocb *		iocb;		/* controlling i/o request */
76 	struct inode *		inode;		/* target file of i/o */
77 
78 	/* completion state */
79 	atomic_t		io_count;	/* i/os we're waiting for */
80 	spinlock_t		lock;		/* protect completion state */
81 	ssize_t			count,		/* bytes actually processed */
82 				bytes_left,	/* bytes left to be sent */
83 				error;		/* any reported error */
84 	struct completion	completion;	/* wait for i/o completion */
85 
86 	/* commit state */
87 	struct nfs_mds_commit_info mds_cinfo;	/* Storage for cinfo */
88 	struct pnfs_ds_commit_info ds_cinfo;	/* Storage for cinfo */
89 	struct work_struct	work;
90 	int			flags;
91 #define NFS_ODIRECT_DO_COMMIT		(1)	/* an unstable reply was received */
92 #define NFS_ODIRECT_RESCHED_WRITES	(2)	/* write verification failed */
93 	struct nfs_writeverf	verf;		/* unstable write verifier */
94 };
95 
96 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
97 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
98 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
99 static void nfs_direct_write_schedule_work(struct work_struct *work);
100 
101 static inline void get_dreq(struct nfs_direct_req *dreq)
102 {
103 	atomic_inc(&dreq->io_count);
104 }
105 
106 static inline int put_dreq(struct nfs_direct_req *dreq)
107 {
108 	return atomic_dec_and_test(&dreq->io_count);
109 }
110 
111 /**
112  * nfs_direct_IO - NFS address space operation for direct I/O
113  * @rw: direction (read or write)
114  * @iocb: target I/O control block
115  * @iov: array of vectors that define I/O buffer
116  * @pos: offset in file to begin the operation
117  * @nr_segs: size of iovec array
118  *
119  * The presence of this routine in the address space ops vector means
120  * the NFS client supports direct I/O. However, for most direct IO, we
121  * shunt off direct read and write requests before the VFS gets them,
122  * so this method is only ever called for swap.
123  */
124 ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs)
125 {
126 #ifndef CONFIG_NFS_SWAP
127 	dprintk("NFS: nfs_direct_IO (%pD) off/no(%Ld/%lu) EINVAL\n",
128 			iocb->ki_filp, (long long) pos, nr_segs);
129 
130 	return -EINVAL;
131 #else
132 	VM_BUG_ON(iocb->ki_nbytes != PAGE_SIZE);
133 
134 	if (rw == READ || rw == KERNEL_READ)
135 		return nfs_file_direct_read(iocb, iov, nr_segs, pos,
136 				rw == READ ? true : false);
137 	return nfs_file_direct_write(iocb, iov, nr_segs, pos,
138 				rw == WRITE ? true : false);
139 #endif /* CONFIG_NFS_SWAP */
140 }
141 
142 static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
143 {
144 	unsigned int i;
145 	for (i = 0; i < npages; i++)
146 		page_cache_release(pages[i]);
147 }
148 
149 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
150 			      struct nfs_direct_req *dreq)
151 {
152 	cinfo->lock = &dreq->lock;
153 	cinfo->mds = &dreq->mds_cinfo;
154 	cinfo->ds = &dreq->ds_cinfo;
155 	cinfo->dreq = dreq;
156 	cinfo->completion_ops = &nfs_direct_commit_completion_ops;
157 }
158 
159 static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
160 {
161 	struct nfs_direct_req *dreq;
162 
163 	dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
164 	if (!dreq)
165 		return NULL;
166 
167 	kref_init(&dreq->kref);
168 	kref_get(&dreq->kref);
169 	init_completion(&dreq->completion);
170 	INIT_LIST_HEAD(&dreq->mds_cinfo.list);
171 	INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
172 	spin_lock_init(&dreq->lock);
173 
174 	return dreq;
175 }
176 
177 static void nfs_direct_req_free(struct kref *kref)
178 {
179 	struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
180 
181 	if (dreq->l_ctx != NULL)
182 		nfs_put_lock_context(dreq->l_ctx);
183 	if (dreq->ctx != NULL)
184 		put_nfs_open_context(dreq->ctx);
185 	kmem_cache_free(nfs_direct_cachep, dreq);
186 }
187 
188 static void nfs_direct_req_release(struct nfs_direct_req *dreq)
189 {
190 	kref_put(&dreq->kref, nfs_direct_req_free);
191 }
192 
193 ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq)
194 {
195 	return dreq->bytes_left;
196 }
197 EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
198 
199 /*
200  * Collects and returns the final error value/byte-count.
201  */
202 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
203 {
204 	ssize_t result = -EIOCBQUEUED;
205 
206 	/* Async requests don't wait here */
207 	if (dreq->iocb)
208 		goto out;
209 
210 	result = wait_for_completion_killable(&dreq->completion);
211 
212 	if (!result)
213 		result = dreq->error;
214 	if (!result)
215 		result = dreq->count;
216 
217 out:
218 	return (ssize_t) result;
219 }
220 
221 /*
222  * Synchronous I/O uses a stack-allocated iocb.  Thus we can't trust
223  * the iocb is still valid here if this is a synchronous request.
224  */
225 static void nfs_direct_complete(struct nfs_direct_req *dreq, bool write)
226 {
227 	struct inode *inode = dreq->inode;
228 
229 	if (dreq->iocb && write) {
230 		loff_t pos = dreq->iocb->ki_pos + dreq->count;
231 
232 		spin_lock(&inode->i_lock);
233 		if (i_size_read(inode) < pos)
234 			i_size_write(inode, pos);
235 		spin_unlock(&inode->i_lock);
236 	}
237 
238 	if (write)
239 		nfs_zap_mapping(inode, inode->i_mapping);
240 
241 	inode_dio_done(inode);
242 
243 	if (dreq->iocb) {
244 		long res = (long) dreq->error;
245 		if (!res)
246 			res = (long) dreq->count;
247 		aio_complete(dreq->iocb, res, 0);
248 	}
249 
250 	complete_all(&dreq->completion);
251 
252 	nfs_direct_req_release(dreq);
253 }
254 
255 static void nfs_direct_readpage_release(struct nfs_page *req)
256 {
257 	dprintk("NFS: direct read done (%s/%llu %d@%lld)\n",
258 		req->wb_context->dentry->d_inode->i_sb->s_id,
259 		(unsigned long long)NFS_FILEID(req->wb_context->dentry->d_inode),
260 		req->wb_bytes,
261 		(long long)req_offset(req));
262 	nfs_release_request(req);
263 }
264 
265 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
266 {
267 	unsigned long bytes = 0;
268 	struct nfs_direct_req *dreq = hdr->dreq;
269 
270 	if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
271 		goto out_put;
272 
273 	spin_lock(&dreq->lock);
274 	if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0))
275 		dreq->error = hdr->error;
276 	else
277 		dreq->count += hdr->good_bytes;
278 	spin_unlock(&dreq->lock);
279 
280 	while (!list_empty(&hdr->pages)) {
281 		struct nfs_page *req = nfs_list_entry(hdr->pages.next);
282 		struct page *page = req->wb_page;
283 
284 		if (!PageCompound(page) && bytes < hdr->good_bytes)
285 			set_page_dirty(page);
286 		bytes += req->wb_bytes;
287 		nfs_list_remove_request(req);
288 		nfs_direct_readpage_release(req);
289 	}
290 out_put:
291 	if (put_dreq(dreq))
292 		nfs_direct_complete(dreq, false);
293 	hdr->release(hdr);
294 }
295 
296 static void nfs_read_sync_pgio_error(struct list_head *head)
297 {
298 	struct nfs_page *req;
299 
300 	while (!list_empty(head)) {
301 		req = nfs_list_entry(head->next);
302 		nfs_list_remove_request(req);
303 		nfs_release_request(req);
304 	}
305 }
306 
307 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
308 {
309 	get_dreq(hdr->dreq);
310 }
311 
312 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
313 	.error_cleanup = nfs_read_sync_pgio_error,
314 	.init_hdr = nfs_direct_pgio_init,
315 	.completion = nfs_direct_read_completion,
316 };
317 
318 /*
319  * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
320  * operation.  If nfs_readdata_alloc() or get_user_pages() fails,
321  * bail and stop sending more reads.  Read length accounting is
322  * handled automatically by nfs_direct_read_result().  Otherwise, if
323  * no requests have been sent, just return an error.
324  */
325 static ssize_t nfs_direct_read_schedule_segment(struct nfs_pageio_descriptor *desc,
326 						const struct iovec *iov,
327 						loff_t pos, bool uio)
328 {
329 	struct nfs_direct_req *dreq = desc->pg_dreq;
330 	struct nfs_open_context *ctx = dreq->ctx;
331 	struct inode *inode = ctx->dentry->d_inode;
332 	unsigned long user_addr = (unsigned long)iov->iov_base;
333 	size_t count = iov->iov_len;
334 	size_t rsize = NFS_SERVER(inode)->rsize;
335 	unsigned int pgbase;
336 	int result;
337 	ssize_t started = 0;
338 	struct page **pagevec = NULL;
339 	unsigned int npages;
340 
341 	do {
342 		size_t bytes;
343 		int i;
344 
345 		pgbase = user_addr & ~PAGE_MASK;
346 		bytes = min(max_t(size_t, rsize, PAGE_SIZE), count);
347 
348 		result = -ENOMEM;
349 		npages = nfs_page_array_len(pgbase, bytes);
350 		if (!pagevec)
351 			pagevec = kmalloc(npages * sizeof(struct page *),
352 					  GFP_KERNEL);
353 		if (!pagevec)
354 			break;
355 		if (uio) {
356 			down_read(&current->mm->mmap_sem);
357 			result = get_user_pages(current, current->mm, user_addr,
358 					npages, 1, 0, pagevec, NULL);
359 			up_read(&current->mm->mmap_sem);
360 			if (result < 0)
361 				break;
362 		} else {
363 			WARN_ON(npages != 1);
364 			result = get_kernel_page(user_addr, 1, pagevec);
365 			if (WARN_ON(result != 1))
366 				break;
367 		}
368 
369 		if ((unsigned)result < npages) {
370 			bytes = result * PAGE_SIZE;
371 			if (bytes <= pgbase) {
372 				nfs_direct_release_pages(pagevec, result);
373 				break;
374 			}
375 			bytes -= pgbase;
376 			npages = result;
377 		}
378 
379 		for (i = 0; i < npages; i++) {
380 			struct nfs_page *req;
381 			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
382 			/* XXX do we need to do the eof zeroing found in async_filler? */
383 			req = nfs_create_request(dreq->ctx, dreq->inode,
384 						 pagevec[i],
385 						 pgbase, req_len);
386 			if (IS_ERR(req)) {
387 				result = PTR_ERR(req);
388 				break;
389 			}
390 			req->wb_index = pos >> PAGE_SHIFT;
391 			req->wb_offset = pos & ~PAGE_MASK;
392 			if (!nfs_pageio_add_request(desc, req)) {
393 				result = desc->pg_error;
394 				nfs_release_request(req);
395 				break;
396 			}
397 			pgbase = 0;
398 			bytes -= req_len;
399 			started += req_len;
400 			user_addr += req_len;
401 			pos += req_len;
402 			count -= req_len;
403 			dreq->bytes_left -= req_len;
404 		}
405 		/* The nfs_page now hold references to these pages */
406 		nfs_direct_release_pages(pagevec, npages);
407 	} while (count != 0 && result >= 0);
408 
409 	kfree(pagevec);
410 
411 	if (started)
412 		return started;
413 	return result < 0 ? (ssize_t) result : -EFAULT;
414 }
415 
416 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
417 					      const struct iovec *iov,
418 					      unsigned long nr_segs,
419 					      loff_t pos, bool uio)
420 {
421 	struct nfs_pageio_descriptor desc;
422 	struct inode *inode = dreq->inode;
423 	ssize_t result = -EINVAL;
424 	size_t requested_bytes = 0;
425 	unsigned long seg;
426 
427 	NFS_PROTO(dreq->inode)->read_pageio_init(&desc, dreq->inode,
428 			     &nfs_direct_read_completion_ops);
429 	get_dreq(dreq);
430 	desc.pg_dreq = dreq;
431 	atomic_inc(&inode->i_dio_count);
432 
433 	for (seg = 0; seg < nr_segs; seg++) {
434 		const struct iovec *vec = &iov[seg];
435 		result = nfs_direct_read_schedule_segment(&desc, vec, pos, uio);
436 		if (result < 0)
437 			break;
438 		requested_bytes += result;
439 		if ((size_t)result < vec->iov_len)
440 			break;
441 		pos += vec->iov_len;
442 	}
443 
444 	nfs_pageio_complete(&desc);
445 
446 	/*
447 	 * If no bytes were started, return the error, and let the
448 	 * generic layer handle the completion.
449 	 */
450 	if (requested_bytes == 0) {
451 		inode_dio_done(inode);
452 		nfs_direct_req_release(dreq);
453 		return result < 0 ? result : -EIO;
454 	}
455 
456 	if (put_dreq(dreq))
457 		nfs_direct_complete(dreq, false);
458 	return 0;
459 }
460 
461 /**
462  * nfs_file_direct_read - file direct read operation for NFS files
463  * @iocb: target I/O control block
464  * @iov: vector of user buffers into which to read data
465  * @nr_segs: size of iov vector
466  * @pos: byte offset in file where reading starts
467  *
468  * We use this function for direct reads instead of calling
469  * generic_file_aio_read() in order to avoid gfar's check to see if
470  * the request starts before the end of the file.  For that check
471  * to work, we must generate a GETATTR before each direct read, and
472  * even then there is a window between the GETATTR and the subsequent
473  * READ where the file size could change.  Our preference is simply
474  * to do all reads the application wants, and the server will take
475  * care of managing the end of file boundary.
476  *
477  * This function also eliminates unnecessarily updating the file's
478  * atime locally, as the NFS server sets the file's atime, and this
479  * client must read the updated atime from the server back into its
480  * cache.
481  */
482 ssize_t nfs_file_direct_read(struct kiocb *iocb, const struct iovec *iov,
483 				unsigned long nr_segs, loff_t pos, bool uio)
484 {
485 	struct file *file = iocb->ki_filp;
486 	struct address_space *mapping = file->f_mapping;
487 	struct inode *inode = mapping->host;
488 	struct nfs_direct_req *dreq;
489 	struct nfs_lock_context *l_ctx;
490 	ssize_t result = -EINVAL;
491 	size_t count;
492 
493 	count = iov_length(iov, nr_segs);
494 	nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
495 
496 	dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n",
497 		file, count, (long long) pos);
498 
499 	result = 0;
500 	if (!count)
501 		goto out;
502 
503 	mutex_lock(&inode->i_mutex);
504 	result = nfs_sync_mapping(mapping);
505 	if (result)
506 		goto out_unlock;
507 
508 	task_io_account_read(count);
509 
510 	result = -ENOMEM;
511 	dreq = nfs_direct_req_alloc();
512 	if (dreq == NULL)
513 		goto out_unlock;
514 
515 	dreq->inode = inode;
516 	dreq->bytes_left = iov_length(iov, nr_segs);
517 	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
518 	l_ctx = nfs_get_lock_context(dreq->ctx);
519 	if (IS_ERR(l_ctx)) {
520 		result = PTR_ERR(l_ctx);
521 		goto out_release;
522 	}
523 	dreq->l_ctx = l_ctx;
524 	if (!is_sync_kiocb(iocb))
525 		dreq->iocb = iocb;
526 
527 	NFS_I(inode)->read_io += iov_length(iov, nr_segs);
528 	result = nfs_direct_read_schedule_iovec(dreq, iov, nr_segs, pos, uio);
529 
530 	mutex_unlock(&inode->i_mutex);
531 
532 	if (!result) {
533 		result = nfs_direct_wait(dreq);
534 		if (result > 0)
535 			iocb->ki_pos = pos + result;
536 	}
537 
538 	nfs_direct_req_release(dreq);
539 	return result;
540 
541 out_release:
542 	nfs_direct_req_release(dreq);
543 out_unlock:
544 	mutex_unlock(&inode->i_mutex);
545 out:
546 	return result;
547 }
548 
549 #if IS_ENABLED(CONFIG_NFS_V3) || IS_ENABLED(CONFIG_NFS_V4)
550 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
551 {
552 	struct nfs_pageio_descriptor desc;
553 	struct nfs_page *req, *tmp;
554 	LIST_HEAD(reqs);
555 	struct nfs_commit_info cinfo;
556 	LIST_HEAD(failed);
557 
558 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
559 	pnfs_recover_commit_reqs(dreq->inode, &reqs, &cinfo);
560 	spin_lock(cinfo.lock);
561 	nfs_scan_commit_list(&cinfo.mds->list, &reqs, &cinfo, 0);
562 	spin_unlock(cinfo.lock);
563 
564 	dreq->count = 0;
565 	get_dreq(dreq);
566 
567 	NFS_PROTO(dreq->inode)->write_pageio_init(&desc, dreq->inode, FLUSH_STABLE,
568 			      &nfs_direct_write_completion_ops);
569 	desc.pg_dreq = dreq;
570 
571 	list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
572 		if (!nfs_pageio_add_request(&desc, req)) {
573 			nfs_list_remove_request(req);
574 			nfs_list_add_request(req, &failed);
575 			spin_lock(cinfo.lock);
576 			dreq->flags = 0;
577 			dreq->error = -EIO;
578 			spin_unlock(cinfo.lock);
579 		}
580 		nfs_release_request(req);
581 	}
582 	nfs_pageio_complete(&desc);
583 
584 	while (!list_empty(&failed)) {
585 		req = nfs_list_entry(failed.next);
586 		nfs_list_remove_request(req);
587 		nfs_unlock_and_release_request(req);
588 	}
589 
590 	if (put_dreq(dreq))
591 		nfs_direct_write_complete(dreq, dreq->inode);
592 }
593 
594 static void nfs_direct_commit_complete(struct nfs_commit_data *data)
595 {
596 	struct nfs_direct_req *dreq = data->dreq;
597 	struct nfs_commit_info cinfo;
598 	struct nfs_page *req;
599 	int status = data->task.tk_status;
600 
601 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
602 	if (status < 0) {
603 		dprintk("NFS: %5u commit failed with error %d.\n",
604 			data->task.tk_pid, status);
605 		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
606 	} else if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) {
607 		dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid);
608 		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
609 	}
610 
611 	dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status);
612 	while (!list_empty(&data->pages)) {
613 		req = nfs_list_entry(data->pages.next);
614 		nfs_list_remove_request(req);
615 		if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) {
616 			/* Note the rewrite will go through mds */
617 			nfs_mark_request_commit(req, NULL, &cinfo);
618 		} else
619 			nfs_release_request(req);
620 		nfs_unlock_and_release_request(req);
621 	}
622 
623 	if (atomic_dec_and_test(&cinfo.mds->rpcs_out))
624 		nfs_direct_write_complete(dreq, data->inode);
625 }
626 
627 static void nfs_direct_error_cleanup(struct nfs_inode *nfsi)
628 {
629 	/* There is no lock to clear */
630 }
631 
632 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
633 	.completion = nfs_direct_commit_complete,
634 	.error_cleanup = nfs_direct_error_cleanup,
635 };
636 
637 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
638 {
639 	int res;
640 	struct nfs_commit_info cinfo;
641 	LIST_HEAD(mds_list);
642 
643 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
644 	nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
645 	res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
646 	if (res < 0) /* res == -ENOMEM */
647 		nfs_direct_write_reschedule(dreq);
648 }
649 
650 static void nfs_direct_write_schedule_work(struct work_struct *work)
651 {
652 	struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
653 	int flags = dreq->flags;
654 
655 	dreq->flags = 0;
656 	switch (flags) {
657 		case NFS_ODIRECT_DO_COMMIT:
658 			nfs_direct_commit_schedule(dreq);
659 			break;
660 		case NFS_ODIRECT_RESCHED_WRITES:
661 			nfs_direct_write_reschedule(dreq);
662 			break;
663 		default:
664 			nfs_direct_complete(dreq, true);
665 	}
666 }
667 
668 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
669 {
670 	schedule_work(&dreq->work); /* Calls nfs_direct_write_schedule_work */
671 }
672 
673 #else
674 static void nfs_direct_write_schedule_work(struct work_struct *work)
675 {
676 }
677 
678 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
679 {
680 	nfs_direct_complete(dreq, true);
681 }
682 #endif
683 
684 /*
685  * NB: Return the value of the first error return code.  Subsequent
686  *     errors after the first one are ignored.
687  */
688 /*
689  * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
690  * operation.  If nfs_writedata_alloc() or get_user_pages() fails,
691  * bail and stop sending more writes.  Write length accounting is
692  * handled automatically by nfs_direct_write_result().  Otherwise, if
693  * no requests have been sent, just return an error.
694  */
695 static ssize_t nfs_direct_write_schedule_segment(struct nfs_pageio_descriptor *desc,
696 						 const struct iovec *iov,
697 						 loff_t pos, bool uio)
698 {
699 	struct nfs_direct_req *dreq = desc->pg_dreq;
700 	struct nfs_open_context *ctx = dreq->ctx;
701 	struct inode *inode = ctx->dentry->d_inode;
702 	unsigned long user_addr = (unsigned long)iov->iov_base;
703 	size_t count = iov->iov_len;
704 	size_t wsize = NFS_SERVER(inode)->wsize;
705 	unsigned int pgbase;
706 	int result;
707 	ssize_t started = 0;
708 	struct page **pagevec = NULL;
709 	unsigned int npages;
710 
711 	do {
712 		size_t bytes;
713 		int i;
714 
715 		pgbase = user_addr & ~PAGE_MASK;
716 		bytes = min(max_t(size_t, wsize, PAGE_SIZE), count);
717 
718 		result = -ENOMEM;
719 		npages = nfs_page_array_len(pgbase, bytes);
720 		if (!pagevec)
721 			pagevec = kmalloc(npages * sizeof(struct page *), GFP_KERNEL);
722 		if (!pagevec)
723 			break;
724 
725 		if (uio) {
726 			down_read(&current->mm->mmap_sem);
727 			result = get_user_pages(current, current->mm, user_addr,
728 						npages, 0, 0, pagevec, NULL);
729 			up_read(&current->mm->mmap_sem);
730 			if (result < 0)
731 				break;
732 		} else {
733 			WARN_ON(npages != 1);
734 			result = get_kernel_page(user_addr, 0, pagevec);
735 			if (WARN_ON(result != 1))
736 				break;
737 		}
738 
739 		if ((unsigned)result < npages) {
740 			bytes = result * PAGE_SIZE;
741 			if (bytes <= pgbase) {
742 				nfs_direct_release_pages(pagevec, result);
743 				break;
744 			}
745 			bytes -= pgbase;
746 			npages = result;
747 		}
748 
749 		for (i = 0; i < npages; i++) {
750 			struct nfs_page *req;
751 			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
752 
753 			req = nfs_create_request(dreq->ctx, dreq->inode,
754 						 pagevec[i],
755 						 pgbase, req_len);
756 			if (IS_ERR(req)) {
757 				result = PTR_ERR(req);
758 				break;
759 			}
760 			nfs_lock_request(req);
761 			req->wb_index = pos >> PAGE_SHIFT;
762 			req->wb_offset = pos & ~PAGE_MASK;
763 			if (!nfs_pageio_add_request(desc, req)) {
764 				result = desc->pg_error;
765 				nfs_unlock_and_release_request(req);
766 				break;
767 			}
768 			pgbase = 0;
769 			bytes -= req_len;
770 			started += req_len;
771 			user_addr += req_len;
772 			pos += req_len;
773 			count -= req_len;
774 			dreq->bytes_left -= req_len;
775 		}
776 		/* The nfs_page now hold references to these pages */
777 		nfs_direct_release_pages(pagevec, npages);
778 	} while (count != 0 && result >= 0);
779 
780 	kfree(pagevec);
781 
782 	if (started)
783 		return started;
784 	return result < 0 ? (ssize_t) result : -EFAULT;
785 }
786 
787 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
788 {
789 	struct nfs_direct_req *dreq = hdr->dreq;
790 	struct nfs_commit_info cinfo;
791 	int bit = -1;
792 	struct nfs_page *req = nfs_list_entry(hdr->pages.next);
793 
794 	if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
795 		goto out_put;
796 
797 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
798 
799 	spin_lock(&dreq->lock);
800 
801 	if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
802 		dreq->flags = 0;
803 		dreq->error = hdr->error;
804 	}
805 	if (dreq->error != 0)
806 		bit = NFS_IOHDR_ERROR;
807 	else {
808 		dreq->count += hdr->good_bytes;
809 		if (test_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags)) {
810 			dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
811 			bit = NFS_IOHDR_NEED_RESCHED;
812 		} else if (test_bit(NFS_IOHDR_NEED_COMMIT, &hdr->flags)) {
813 			if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES)
814 				bit = NFS_IOHDR_NEED_RESCHED;
815 			else if (dreq->flags == 0) {
816 				memcpy(&dreq->verf, hdr->verf,
817 				       sizeof(dreq->verf));
818 				bit = NFS_IOHDR_NEED_COMMIT;
819 				dreq->flags = NFS_ODIRECT_DO_COMMIT;
820 			} else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) {
821 				if (memcmp(&dreq->verf, hdr->verf, sizeof(dreq->verf))) {
822 					dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
823 					bit = NFS_IOHDR_NEED_RESCHED;
824 				} else
825 					bit = NFS_IOHDR_NEED_COMMIT;
826 			}
827 		}
828 	}
829 	spin_unlock(&dreq->lock);
830 
831 	while (!list_empty(&hdr->pages)) {
832 		req = nfs_list_entry(hdr->pages.next);
833 		nfs_list_remove_request(req);
834 		switch (bit) {
835 		case NFS_IOHDR_NEED_RESCHED:
836 		case NFS_IOHDR_NEED_COMMIT:
837 			kref_get(&req->wb_kref);
838 			nfs_mark_request_commit(req, hdr->lseg, &cinfo);
839 		}
840 		nfs_unlock_and_release_request(req);
841 	}
842 
843 out_put:
844 	if (put_dreq(dreq))
845 		nfs_direct_write_complete(dreq, hdr->inode);
846 	hdr->release(hdr);
847 }
848 
849 static void nfs_write_sync_pgio_error(struct list_head *head)
850 {
851 	struct nfs_page *req;
852 
853 	while (!list_empty(head)) {
854 		req = nfs_list_entry(head->next);
855 		nfs_list_remove_request(req);
856 		nfs_unlock_and_release_request(req);
857 	}
858 }
859 
860 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
861 	.error_cleanup = nfs_write_sync_pgio_error,
862 	.init_hdr = nfs_direct_pgio_init,
863 	.completion = nfs_direct_write_completion,
864 };
865 
866 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
867 					       const struct iovec *iov,
868 					       unsigned long nr_segs,
869 					       loff_t pos, bool uio)
870 {
871 	struct nfs_pageio_descriptor desc;
872 	struct inode *inode = dreq->inode;
873 	ssize_t result = 0;
874 	size_t requested_bytes = 0;
875 	unsigned long seg;
876 
877 	NFS_PROTO(inode)->write_pageio_init(&desc, inode, FLUSH_COND_STABLE,
878 			      &nfs_direct_write_completion_ops);
879 	desc.pg_dreq = dreq;
880 	get_dreq(dreq);
881 	atomic_inc(&inode->i_dio_count);
882 
883 	NFS_I(dreq->inode)->write_io += iov_length(iov, nr_segs);
884 	for (seg = 0; seg < nr_segs; seg++) {
885 		const struct iovec *vec = &iov[seg];
886 		result = nfs_direct_write_schedule_segment(&desc, vec, pos, uio);
887 		if (result < 0)
888 			break;
889 		requested_bytes += result;
890 		if ((size_t)result < vec->iov_len)
891 			break;
892 		pos += vec->iov_len;
893 	}
894 	nfs_pageio_complete(&desc);
895 
896 	/*
897 	 * If no bytes were started, return the error, and let the
898 	 * generic layer handle the completion.
899 	 */
900 	if (requested_bytes == 0) {
901 		inode_dio_done(inode);
902 		nfs_direct_req_release(dreq);
903 		return result < 0 ? result : -EIO;
904 	}
905 
906 	if (put_dreq(dreq))
907 		nfs_direct_write_complete(dreq, dreq->inode);
908 	return 0;
909 }
910 
911 /**
912  * nfs_file_direct_write - file direct write operation for NFS files
913  * @iocb: target I/O control block
914  * @iov: vector of user buffers from which to write data
915  * @nr_segs: size of iov vector
916  * @pos: byte offset in file where writing starts
917  *
918  * We use this function for direct writes instead of calling
919  * generic_file_aio_write() in order to avoid taking the inode
920  * semaphore and updating the i_size.  The NFS server will set
921  * the new i_size and this client must read the updated size
922  * back into its cache.  We let the server do generic write
923  * parameter checking and report problems.
924  *
925  * We eliminate local atime updates, see direct read above.
926  *
927  * We avoid unnecessary page cache invalidations for normal cached
928  * readers of this file.
929  *
930  * Note that O_APPEND is not supported for NFS direct writes, as there
931  * is no atomic O_APPEND write facility in the NFS protocol.
932  */
933 ssize_t nfs_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
934 				unsigned long nr_segs, loff_t pos, bool uio)
935 {
936 	ssize_t result = -EINVAL;
937 	struct file *file = iocb->ki_filp;
938 	struct address_space *mapping = file->f_mapping;
939 	struct inode *inode = mapping->host;
940 	struct nfs_direct_req *dreq;
941 	struct nfs_lock_context *l_ctx;
942 	loff_t end;
943 	size_t count;
944 
945 	count = iov_length(iov, nr_segs);
946 	end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
947 
948 	nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
949 
950 	dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n",
951 		file, count, (long long) pos);
952 
953 	result = generic_write_checks(file, &pos, &count, 0);
954 	if (result)
955 		goto out;
956 
957 	result = -EINVAL;
958 	if ((ssize_t) count < 0)
959 		goto out;
960 	result = 0;
961 	if (!count)
962 		goto out;
963 
964 	mutex_lock(&inode->i_mutex);
965 
966 	result = nfs_sync_mapping(mapping);
967 	if (result)
968 		goto out_unlock;
969 
970 	if (mapping->nrpages) {
971 		result = invalidate_inode_pages2_range(mapping,
972 					pos >> PAGE_CACHE_SHIFT, end);
973 		if (result)
974 			goto out_unlock;
975 	}
976 
977 	task_io_account_write(count);
978 
979 	result = -ENOMEM;
980 	dreq = nfs_direct_req_alloc();
981 	if (!dreq)
982 		goto out_unlock;
983 
984 	dreq->inode = inode;
985 	dreq->bytes_left = count;
986 	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
987 	l_ctx = nfs_get_lock_context(dreq->ctx);
988 	if (IS_ERR(l_ctx)) {
989 		result = PTR_ERR(l_ctx);
990 		goto out_release;
991 	}
992 	dreq->l_ctx = l_ctx;
993 	if (!is_sync_kiocb(iocb))
994 		dreq->iocb = iocb;
995 
996 	result = nfs_direct_write_schedule_iovec(dreq, iov, nr_segs, pos, uio);
997 
998 	if (mapping->nrpages) {
999 		invalidate_inode_pages2_range(mapping,
1000 					      pos >> PAGE_CACHE_SHIFT, end);
1001 	}
1002 
1003 	mutex_unlock(&inode->i_mutex);
1004 
1005 	if (!result) {
1006 		result = nfs_direct_wait(dreq);
1007 		if (result > 0) {
1008 			struct inode *inode = mapping->host;
1009 
1010 			iocb->ki_pos = pos + result;
1011 			spin_lock(&inode->i_lock);
1012 			if (i_size_read(inode) < iocb->ki_pos)
1013 				i_size_write(inode, iocb->ki_pos);
1014 			spin_unlock(&inode->i_lock);
1015 		}
1016 	}
1017 	nfs_direct_req_release(dreq);
1018 	return result;
1019 
1020 out_release:
1021 	nfs_direct_req_release(dreq);
1022 out_unlock:
1023 	mutex_unlock(&inode->i_mutex);
1024 out:
1025 	return result;
1026 }
1027 
1028 /**
1029  * nfs_init_directcache - create a slab cache for nfs_direct_req structures
1030  *
1031  */
1032 int __init nfs_init_directcache(void)
1033 {
1034 	nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
1035 						sizeof(struct nfs_direct_req),
1036 						0, (SLAB_RECLAIM_ACCOUNT|
1037 							SLAB_MEM_SPREAD),
1038 						NULL);
1039 	if (nfs_direct_cachep == NULL)
1040 		return -ENOMEM;
1041 
1042 	return 0;
1043 }
1044 
1045 /**
1046  * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
1047  *
1048  */
1049 void nfs_destroy_directcache(void)
1050 {
1051 	kmem_cache_destroy(nfs_direct_cachep);
1052 }
1053