xref: /openbmc/linux/fs/nfs/direct.c (revision 9f99d983)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/fs/nfs/direct.c
4  *
5  * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
6  *
7  * High-performance uncached I/O for the Linux NFS client
8  *
9  * There are important applications whose performance or correctness
10  * depends on uncached access to file data.  Database clusters
11  * (multiple copies of the same instance running on separate hosts)
12  * implement their own cache coherency protocol that subsumes file
13  * system cache protocols.  Applications that process datasets
14  * considerably larger than the client's memory do not always benefit
15  * from a local cache.  A streaming video server, for instance, has no
16  * need to cache the contents of a file.
17  *
18  * When an application requests uncached I/O, all read and write requests
19  * are made directly to the server; data stored or fetched via these
20  * requests is not cached in the Linux page cache.  The client does not
21  * correct unaligned requests from applications.  All requested bytes are
22  * held on permanent storage before a direct write system call returns to
23  * an application.
24  *
25  * Solaris implements an uncached I/O facility called directio() that
26  * is used for backups and sequential I/O to very large files.  Solaris
27  * also supports uncaching whole NFS partitions with "-o forcedirectio,"
28  * an undocumented mount option.
29  *
30  * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
31  * help from Andrew Morton.
32  *
33  * 18 Dec 2001	Initial implementation for 2.4  --cel
34  * 08 Jul 2002	Version for 2.4.19, with bug fixes --trondmy
35  * 08 Jun 2003	Port to 2.5 APIs  --cel
36  * 31 Mar 2004	Handle direct I/O without VFS support  --cel
37  * 15 Sep 2004	Parallel async reads  --cel
38  * 04 May 2005	support O_DIRECT with aio  --cel
39  *
40  */
41 
42 #include <linux/errno.h>
43 #include <linux/sched.h>
44 #include <linux/kernel.h>
45 #include <linux/file.h>
46 #include <linux/pagemap.h>
47 #include <linux/kref.h>
48 #include <linux/slab.h>
49 #include <linux/task_io_accounting_ops.h>
50 #include <linux/module.h>
51 
52 #include <linux/nfs_fs.h>
53 #include <linux/nfs_page.h>
54 #include <linux/sunrpc/clnt.h>
55 
56 #include <linux/uaccess.h>
57 #include <linux/atomic.h>
58 
59 #include "internal.h"
60 #include "iostat.h"
61 #include "pnfs.h"
62 #include "fscache.h"
63 
64 #define NFSDBG_FACILITY		NFSDBG_VFS
65 
66 static struct kmem_cache *nfs_direct_cachep;
67 
68 struct nfs_direct_req {
69 	struct kref		kref;		/* release manager */
70 
71 	/* I/O parameters */
72 	struct nfs_open_context	*ctx;		/* file open context info */
73 	struct nfs_lock_context *l_ctx;		/* Lock context info */
74 	struct kiocb *		iocb;		/* controlling i/o request */
75 	struct inode *		inode;		/* target file of i/o */
76 
77 	/* completion state */
78 	atomic_t		io_count;	/* i/os we're waiting for */
79 	spinlock_t		lock;		/* protect completion state */
80 
81 	loff_t			io_start;	/* Start offset for I/O */
82 	ssize_t			count,		/* bytes actually processed */
83 				max_count,	/* max expected count */
84 				bytes_left,	/* bytes left to be sent */
85 				error;		/* any reported error */
86 	struct completion	completion;	/* wait for i/o completion */
87 
88 	/* commit state */
89 	struct nfs_mds_commit_info mds_cinfo;	/* Storage for cinfo */
90 	struct pnfs_ds_commit_info ds_cinfo;	/* Storage for cinfo */
91 	struct work_struct	work;
92 	int			flags;
93 	/* for write */
94 #define NFS_ODIRECT_DO_COMMIT		(1)	/* an unstable reply was received */
95 #define NFS_ODIRECT_RESCHED_WRITES	(2)	/* write verification failed */
96 	/* for read */
97 #define NFS_ODIRECT_SHOULD_DIRTY	(3)	/* dirty user-space page after read */
98 #define NFS_ODIRECT_DONE		INT_MAX	/* write verification failed */
99 };
100 
101 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
102 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
103 static void nfs_direct_write_complete(struct nfs_direct_req *dreq);
104 static void nfs_direct_write_schedule_work(struct work_struct *work);
105 
106 static inline void get_dreq(struct nfs_direct_req *dreq)
107 {
108 	atomic_inc(&dreq->io_count);
109 }
110 
111 static inline int put_dreq(struct nfs_direct_req *dreq)
112 {
113 	return atomic_dec_and_test(&dreq->io_count);
114 }
115 
116 static void
117 nfs_direct_handle_truncated(struct nfs_direct_req *dreq,
118 			    const struct nfs_pgio_header *hdr,
119 			    ssize_t dreq_len)
120 {
121 	if (!(test_bit(NFS_IOHDR_ERROR, &hdr->flags) ||
122 	      test_bit(NFS_IOHDR_EOF, &hdr->flags)))
123 		return;
124 	if (dreq->max_count >= dreq_len) {
125 		dreq->max_count = dreq_len;
126 		if (dreq->count > dreq_len)
127 			dreq->count = dreq_len;
128 
129 		if (test_bit(NFS_IOHDR_ERROR, &hdr->flags))
130 			dreq->error = hdr->error;
131 		else /* Clear outstanding error if this is EOF */
132 			dreq->error = 0;
133 	}
134 }
135 
136 static void
137 nfs_direct_count_bytes(struct nfs_direct_req *dreq,
138 		       const struct nfs_pgio_header *hdr)
139 {
140 	loff_t hdr_end = hdr->io_start + hdr->good_bytes;
141 	ssize_t dreq_len = 0;
142 
143 	if (hdr_end > dreq->io_start)
144 		dreq_len = hdr_end - dreq->io_start;
145 
146 	nfs_direct_handle_truncated(dreq, hdr, dreq_len);
147 
148 	if (dreq_len > dreq->max_count)
149 		dreq_len = dreq->max_count;
150 
151 	if (dreq->count < dreq_len)
152 		dreq->count = dreq_len;
153 }
154 
155 /**
156  * nfs_direct_IO - NFS address space operation for direct I/O
157  * @iocb: target I/O control block
158  * @iter: I/O buffer
159  *
160  * The presence of this routine in the address space ops vector means
161  * the NFS client supports direct I/O. However, for most direct IO, we
162  * shunt off direct read and write requests before the VFS gets them,
163  * so this method is only ever called for swap.
164  */
165 ssize_t nfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
166 {
167 	struct inode *inode = iocb->ki_filp->f_mapping->host;
168 
169 	/* we only support swap file calling nfs_direct_IO */
170 	if (!IS_SWAPFILE(inode))
171 		return 0;
172 
173 	VM_BUG_ON(iov_iter_count(iter) != PAGE_SIZE);
174 
175 	if (iov_iter_rw(iter) == READ)
176 		return nfs_file_direct_read(iocb, iter);
177 	return nfs_file_direct_write(iocb, iter);
178 }
179 
180 static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
181 {
182 	unsigned int i;
183 	for (i = 0; i < npages; i++)
184 		put_page(pages[i]);
185 }
186 
187 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
188 			      struct nfs_direct_req *dreq)
189 {
190 	cinfo->inode = dreq->inode;
191 	cinfo->mds = &dreq->mds_cinfo;
192 	cinfo->ds = &dreq->ds_cinfo;
193 	cinfo->dreq = dreq;
194 	cinfo->completion_ops = &nfs_direct_commit_completion_ops;
195 }
196 
197 static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
198 {
199 	struct nfs_direct_req *dreq;
200 
201 	dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
202 	if (!dreq)
203 		return NULL;
204 
205 	kref_init(&dreq->kref);
206 	kref_get(&dreq->kref);
207 	init_completion(&dreq->completion);
208 	INIT_LIST_HEAD(&dreq->mds_cinfo.list);
209 	pnfs_init_ds_commit_info(&dreq->ds_cinfo);
210 	INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
211 	spin_lock_init(&dreq->lock);
212 
213 	return dreq;
214 }
215 
216 static void nfs_direct_req_free(struct kref *kref)
217 {
218 	struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
219 
220 	pnfs_release_ds_info(&dreq->ds_cinfo, dreq->inode);
221 	if (dreq->l_ctx != NULL)
222 		nfs_put_lock_context(dreq->l_ctx);
223 	if (dreq->ctx != NULL)
224 		put_nfs_open_context(dreq->ctx);
225 	kmem_cache_free(nfs_direct_cachep, dreq);
226 }
227 
228 static void nfs_direct_req_release(struct nfs_direct_req *dreq)
229 {
230 	kref_put(&dreq->kref, nfs_direct_req_free);
231 }
232 
233 ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq)
234 {
235 	return dreq->bytes_left;
236 }
237 EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
238 
239 /*
240  * Collects and returns the final error value/byte-count.
241  */
242 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
243 {
244 	ssize_t result = -EIOCBQUEUED;
245 
246 	/* Async requests don't wait here */
247 	if (dreq->iocb)
248 		goto out;
249 
250 	result = wait_for_completion_killable(&dreq->completion);
251 
252 	if (!result) {
253 		result = dreq->count;
254 		WARN_ON_ONCE(dreq->count < 0);
255 	}
256 	if (!result)
257 		result = dreq->error;
258 
259 out:
260 	return (ssize_t) result;
261 }
262 
263 /*
264  * Synchronous I/O uses a stack-allocated iocb.  Thus we can't trust
265  * the iocb is still valid here if this is a synchronous request.
266  */
267 static void nfs_direct_complete(struct nfs_direct_req *dreq)
268 {
269 	struct inode *inode = dreq->inode;
270 
271 	inode_dio_end(inode);
272 
273 	if (dreq->iocb) {
274 		long res = (long) dreq->error;
275 		if (dreq->count != 0) {
276 			res = (long) dreq->count;
277 			WARN_ON_ONCE(dreq->count < 0);
278 		}
279 		dreq->iocb->ki_complete(dreq->iocb, res);
280 	}
281 
282 	complete(&dreq->completion);
283 
284 	nfs_direct_req_release(dreq);
285 }
286 
287 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
288 {
289 	unsigned long bytes = 0;
290 	struct nfs_direct_req *dreq = hdr->dreq;
291 
292 	spin_lock(&dreq->lock);
293 	if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) {
294 		spin_unlock(&dreq->lock);
295 		goto out_put;
296 	}
297 
298 	nfs_direct_count_bytes(dreq, hdr);
299 	spin_unlock(&dreq->lock);
300 
301 	while (!list_empty(&hdr->pages)) {
302 		struct nfs_page *req = nfs_list_entry(hdr->pages.next);
303 		struct page *page = req->wb_page;
304 
305 		if (!PageCompound(page) && bytes < hdr->good_bytes &&
306 		    (dreq->flags == NFS_ODIRECT_SHOULD_DIRTY))
307 			set_page_dirty(page);
308 		bytes += req->wb_bytes;
309 		nfs_list_remove_request(req);
310 		nfs_release_request(req);
311 	}
312 out_put:
313 	if (put_dreq(dreq))
314 		nfs_direct_complete(dreq);
315 	hdr->release(hdr);
316 }
317 
318 static void nfs_read_sync_pgio_error(struct list_head *head, int error)
319 {
320 	struct nfs_page *req;
321 
322 	while (!list_empty(head)) {
323 		req = nfs_list_entry(head->next);
324 		nfs_list_remove_request(req);
325 		nfs_release_request(req);
326 	}
327 }
328 
329 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
330 {
331 	get_dreq(hdr->dreq);
332 }
333 
334 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
335 	.error_cleanup = nfs_read_sync_pgio_error,
336 	.init_hdr = nfs_direct_pgio_init,
337 	.completion = nfs_direct_read_completion,
338 };
339 
340 /*
341  * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
342  * operation.  If nfs_readdata_alloc() or get_user_pages() fails,
343  * bail and stop sending more reads.  Read length accounting is
344  * handled automatically by nfs_direct_read_result().  Otherwise, if
345  * no requests have been sent, just return an error.
346  */
347 
348 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
349 					      struct iov_iter *iter,
350 					      loff_t pos)
351 {
352 	struct nfs_pageio_descriptor desc;
353 	struct inode *inode = dreq->inode;
354 	ssize_t result = -EINVAL;
355 	size_t requested_bytes = 0;
356 	size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE);
357 
358 	nfs_pageio_init_read(&desc, dreq->inode, false,
359 			     &nfs_direct_read_completion_ops);
360 	get_dreq(dreq);
361 	desc.pg_dreq = dreq;
362 	inode_dio_begin(inode);
363 
364 	while (iov_iter_count(iter)) {
365 		struct page **pagevec;
366 		size_t bytes;
367 		size_t pgbase;
368 		unsigned npages, i;
369 
370 		result = iov_iter_get_pages_alloc(iter, &pagevec,
371 						  rsize, &pgbase);
372 		if (result < 0)
373 			break;
374 
375 		bytes = result;
376 		iov_iter_advance(iter, bytes);
377 		npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
378 		for (i = 0; i < npages; i++) {
379 			struct nfs_page *req;
380 			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
381 			/* XXX do we need to do the eof zeroing found in async_filler? */
382 			req = nfs_create_request(dreq->ctx, pagevec[i],
383 						 pgbase, req_len);
384 			if (IS_ERR(req)) {
385 				result = PTR_ERR(req);
386 				break;
387 			}
388 			req->wb_index = pos >> PAGE_SHIFT;
389 			req->wb_offset = pos & ~PAGE_MASK;
390 			if (!nfs_pageio_add_request(&desc, req)) {
391 				result = desc.pg_error;
392 				nfs_release_request(req);
393 				break;
394 			}
395 			pgbase = 0;
396 			bytes -= req_len;
397 			requested_bytes += req_len;
398 			pos += req_len;
399 			dreq->bytes_left -= req_len;
400 		}
401 		nfs_direct_release_pages(pagevec, npages);
402 		kvfree(pagevec);
403 		if (result < 0)
404 			break;
405 	}
406 
407 	nfs_pageio_complete(&desc);
408 
409 	/*
410 	 * If no bytes were started, return the error, and let the
411 	 * generic layer handle the completion.
412 	 */
413 	if (requested_bytes == 0) {
414 		inode_dio_end(inode);
415 		nfs_direct_req_release(dreq);
416 		return result < 0 ? result : -EIO;
417 	}
418 
419 	if (put_dreq(dreq))
420 		nfs_direct_complete(dreq);
421 	return requested_bytes;
422 }
423 
424 /**
425  * nfs_file_direct_read - file direct read operation for NFS files
426  * @iocb: target I/O control block
427  * @iter: vector of user buffers into which to read data
428  *
429  * We use this function for direct reads instead of calling
430  * generic_file_aio_read() in order to avoid gfar's check to see if
431  * the request starts before the end of the file.  For that check
432  * to work, we must generate a GETATTR before each direct read, and
433  * even then there is a window between the GETATTR and the subsequent
434  * READ where the file size could change.  Our preference is simply
435  * to do all reads the application wants, and the server will take
436  * care of managing the end of file boundary.
437  *
438  * This function also eliminates unnecessarily updating the file's
439  * atime locally, as the NFS server sets the file's atime, and this
440  * client must read the updated atime from the server back into its
441  * cache.
442  */
443 ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter)
444 {
445 	struct file *file = iocb->ki_filp;
446 	struct address_space *mapping = file->f_mapping;
447 	struct inode *inode = mapping->host;
448 	struct nfs_direct_req *dreq;
449 	struct nfs_lock_context *l_ctx;
450 	ssize_t result, requested;
451 	size_t count = iov_iter_count(iter);
452 	nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
453 
454 	dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n",
455 		file, count, (long long) iocb->ki_pos);
456 
457 	result = 0;
458 	if (!count)
459 		goto out;
460 
461 	task_io_account_read(count);
462 
463 	result = -ENOMEM;
464 	dreq = nfs_direct_req_alloc();
465 	if (dreq == NULL)
466 		goto out;
467 
468 	dreq->inode = inode;
469 	dreq->bytes_left = dreq->max_count = count;
470 	dreq->io_start = iocb->ki_pos;
471 	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
472 	l_ctx = nfs_get_lock_context(dreq->ctx);
473 	if (IS_ERR(l_ctx)) {
474 		result = PTR_ERR(l_ctx);
475 		nfs_direct_req_release(dreq);
476 		goto out_release;
477 	}
478 	dreq->l_ctx = l_ctx;
479 	if (!is_sync_kiocb(iocb))
480 		dreq->iocb = iocb;
481 
482 	if (iter_is_iovec(iter))
483 		dreq->flags = NFS_ODIRECT_SHOULD_DIRTY;
484 
485 	nfs_start_io_direct(inode);
486 
487 	NFS_I(inode)->read_io += count;
488 	requested = nfs_direct_read_schedule_iovec(dreq, iter, iocb->ki_pos);
489 
490 	nfs_end_io_direct(inode);
491 
492 	if (requested > 0) {
493 		result = nfs_direct_wait(dreq);
494 		if (result > 0) {
495 			requested -= result;
496 			iocb->ki_pos += result;
497 		}
498 		iov_iter_revert(iter, requested);
499 	} else {
500 		result = requested;
501 	}
502 
503 out_release:
504 	nfs_direct_req_release(dreq);
505 out:
506 	return result;
507 }
508 
509 static void
510 nfs_direct_join_group(struct list_head *list, struct inode *inode)
511 {
512 	struct nfs_page *req, *next;
513 
514 	list_for_each_entry(req, list, wb_list) {
515 		if (req->wb_head != req || req->wb_this_page == req)
516 			continue;
517 		for (next = req->wb_this_page;
518 				next != req->wb_head;
519 				next = next->wb_this_page) {
520 			nfs_list_remove_request(next);
521 			nfs_release_request(next);
522 		}
523 		nfs_join_page_group(req, inode);
524 	}
525 }
526 
527 static void
528 nfs_direct_write_scan_commit_list(struct inode *inode,
529 				  struct list_head *list,
530 				  struct nfs_commit_info *cinfo)
531 {
532 	mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
533 	pnfs_recover_commit_reqs(list, cinfo);
534 	nfs_scan_commit_list(&cinfo->mds->list, list, cinfo, 0);
535 	mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
536 }
537 
538 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
539 {
540 	struct nfs_pageio_descriptor desc;
541 	struct nfs_page *req, *tmp;
542 	LIST_HEAD(reqs);
543 	struct nfs_commit_info cinfo;
544 	LIST_HEAD(failed);
545 
546 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
547 	nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
548 
549 	nfs_direct_join_group(&reqs, dreq->inode);
550 
551 	dreq->count = 0;
552 	dreq->max_count = 0;
553 	list_for_each_entry(req, &reqs, wb_list)
554 		dreq->max_count += req->wb_bytes;
555 	nfs_clear_pnfs_ds_commit_verifiers(&dreq->ds_cinfo);
556 	get_dreq(dreq);
557 
558 	nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false,
559 			      &nfs_direct_write_completion_ops);
560 	desc.pg_dreq = dreq;
561 
562 	list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
563 		/* Bump the transmission count */
564 		req->wb_nio++;
565 		if (!nfs_pageio_add_request(&desc, req)) {
566 			nfs_list_move_request(req, &failed);
567 			spin_lock(&cinfo.inode->i_lock);
568 			dreq->flags = 0;
569 			if (desc.pg_error < 0)
570 				dreq->error = desc.pg_error;
571 			else
572 				dreq->error = -EIO;
573 			spin_unlock(&cinfo.inode->i_lock);
574 		}
575 		nfs_release_request(req);
576 	}
577 	nfs_pageio_complete(&desc);
578 
579 	while (!list_empty(&failed)) {
580 		req = nfs_list_entry(failed.next);
581 		nfs_list_remove_request(req);
582 		nfs_unlock_and_release_request(req);
583 	}
584 
585 	if (put_dreq(dreq))
586 		nfs_direct_write_complete(dreq);
587 }
588 
589 static void nfs_direct_commit_complete(struct nfs_commit_data *data)
590 {
591 	const struct nfs_writeverf *verf = data->res.verf;
592 	struct nfs_direct_req *dreq = data->dreq;
593 	struct nfs_commit_info cinfo;
594 	struct nfs_page *req;
595 	int status = data->task.tk_status;
596 
597 	if (status < 0) {
598 		/* Errors in commit are fatal */
599 		dreq->error = status;
600 		dreq->max_count = 0;
601 		dreq->count = 0;
602 		dreq->flags = NFS_ODIRECT_DONE;
603 	} else if (dreq->flags == NFS_ODIRECT_DONE)
604 		status = dreq->error;
605 
606 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
607 
608 	while (!list_empty(&data->pages)) {
609 		req = nfs_list_entry(data->pages.next);
610 		nfs_list_remove_request(req);
611 		if (status >= 0 && !nfs_write_match_verf(verf, req)) {
612 			dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
613 			/*
614 			 * Despite the reboot, the write was successful,
615 			 * so reset wb_nio.
616 			 */
617 			req->wb_nio = 0;
618 			nfs_mark_request_commit(req, NULL, &cinfo, 0);
619 		} else /* Error or match */
620 			nfs_release_request(req);
621 		nfs_unlock_and_release_request(req);
622 	}
623 
624 	if (nfs_commit_end(cinfo.mds))
625 		nfs_direct_write_complete(dreq);
626 }
627 
628 static void nfs_direct_resched_write(struct nfs_commit_info *cinfo,
629 		struct nfs_page *req)
630 {
631 	struct nfs_direct_req *dreq = cinfo->dreq;
632 
633 	spin_lock(&dreq->lock);
634 	if (dreq->flags != NFS_ODIRECT_DONE)
635 		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
636 	spin_unlock(&dreq->lock);
637 	nfs_mark_request_commit(req, NULL, cinfo, 0);
638 }
639 
640 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
641 	.completion = nfs_direct_commit_complete,
642 	.resched_write = nfs_direct_resched_write,
643 };
644 
645 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
646 {
647 	int res;
648 	struct nfs_commit_info cinfo;
649 	LIST_HEAD(mds_list);
650 
651 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
652 	nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
653 	res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
654 	if (res < 0) /* res == -ENOMEM */
655 		nfs_direct_write_reschedule(dreq);
656 }
657 
658 static void nfs_direct_write_clear_reqs(struct nfs_direct_req *dreq)
659 {
660 	struct nfs_commit_info cinfo;
661 	struct nfs_page *req;
662 	LIST_HEAD(reqs);
663 
664 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
665 	nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
666 
667 	while (!list_empty(&reqs)) {
668 		req = nfs_list_entry(reqs.next);
669 		nfs_list_remove_request(req);
670 		nfs_release_request(req);
671 		nfs_unlock_and_release_request(req);
672 	}
673 }
674 
675 static void nfs_direct_write_schedule_work(struct work_struct *work)
676 {
677 	struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
678 	int flags = dreq->flags;
679 
680 	dreq->flags = 0;
681 	switch (flags) {
682 		case NFS_ODIRECT_DO_COMMIT:
683 			nfs_direct_commit_schedule(dreq);
684 			break;
685 		case NFS_ODIRECT_RESCHED_WRITES:
686 			nfs_direct_write_reschedule(dreq);
687 			break;
688 		default:
689 			nfs_direct_write_clear_reqs(dreq);
690 			nfs_zap_mapping(dreq->inode, dreq->inode->i_mapping);
691 			nfs_direct_complete(dreq);
692 	}
693 }
694 
695 static void nfs_direct_write_complete(struct nfs_direct_req *dreq)
696 {
697 	queue_work(nfsiod_workqueue, &dreq->work); /* Calls nfs_direct_write_schedule_work */
698 }
699 
700 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
701 {
702 	struct nfs_direct_req *dreq = hdr->dreq;
703 	struct nfs_commit_info cinfo;
704 	struct nfs_page *req = nfs_list_entry(hdr->pages.next);
705 	int flags = NFS_ODIRECT_DONE;
706 
707 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
708 
709 	spin_lock(&dreq->lock);
710 	if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) {
711 		spin_unlock(&dreq->lock);
712 		goto out_put;
713 	}
714 
715 	nfs_direct_count_bytes(dreq, hdr);
716 	if (hdr->good_bytes != 0 && nfs_write_need_commit(hdr)) {
717 		if (!dreq->flags)
718 			dreq->flags = NFS_ODIRECT_DO_COMMIT;
719 		flags = dreq->flags;
720 	}
721 	spin_unlock(&dreq->lock);
722 
723 	while (!list_empty(&hdr->pages)) {
724 
725 		req = nfs_list_entry(hdr->pages.next);
726 		nfs_list_remove_request(req);
727 		if (flags == NFS_ODIRECT_DO_COMMIT) {
728 			kref_get(&req->wb_kref);
729 			memcpy(&req->wb_verf, &hdr->verf.verifier,
730 			       sizeof(req->wb_verf));
731 			nfs_mark_request_commit(req, hdr->lseg, &cinfo,
732 				hdr->ds_commit_idx);
733 		} else if (flags == NFS_ODIRECT_RESCHED_WRITES) {
734 			kref_get(&req->wb_kref);
735 			nfs_mark_request_commit(req, NULL, &cinfo, 0);
736 		}
737 		nfs_unlock_and_release_request(req);
738 	}
739 
740 out_put:
741 	if (put_dreq(dreq))
742 		nfs_direct_write_complete(dreq);
743 	hdr->release(hdr);
744 }
745 
746 static void nfs_write_sync_pgio_error(struct list_head *head, int error)
747 {
748 	struct nfs_page *req;
749 
750 	while (!list_empty(head)) {
751 		req = nfs_list_entry(head->next);
752 		nfs_list_remove_request(req);
753 		nfs_unlock_and_release_request(req);
754 	}
755 }
756 
757 static void nfs_direct_write_reschedule_io(struct nfs_pgio_header *hdr)
758 {
759 	struct nfs_direct_req *dreq = hdr->dreq;
760 
761 	spin_lock(&dreq->lock);
762 	if (dreq->error == 0) {
763 		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
764 		/* fake unstable write to let common nfs resend pages */
765 		hdr->verf.committed = NFS_UNSTABLE;
766 		hdr->good_bytes = hdr->args.offset + hdr->args.count -
767 			hdr->io_start;
768 	}
769 	spin_unlock(&dreq->lock);
770 }
771 
772 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
773 	.error_cleanup = nfs_write_sync_pgio_error,
774 	.init_hdr = nfs_direct_pgio_init,
775 	.completion = nfs_direct_write_completion,
776 	.reschedule_io = nfs_direct_write_reschedule_io,
777 };
778 
779 
780 /*
781  * NB: Return the value of the first error return code.  Subsequent
782  *     errors after the first one are ignored.
783  */
784 /*
785  * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
786  * operation.  If nfs_writedata_alloc() or get_user_pages() fails,
787  * bail and stop sending more writes.  Write length accounting is
788  * handled automatically by nfs_direct_write_result().  Otherwise, if
789  * no requests have been sent, just return an error.
790  */
791 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
792 					       struct iov_iter *iter,
793 					       loff_t pos)
794 {
795 	struct nfs_pageio_descriptor desc;
796 	struct inode *inode = dreq->inode;
797 	ssize_t result = 0;
798 	size_t requested_bytes = 0;
799 	size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE);
800 
801 	nfs_pageio_init_write(&desc, inode, FLUSH_COND_STABLE, false,
802 			      &nfs_direct_write_completion_ops);
803 	desc.pg_dreq = dreq;
804 	get_dreq(dreq);
805 	inode_dio_begin(inode);
806 
807 	NFS_I(inode)->write_io += iov_iter_count(iter);
808 	while (iov_iter_count(iter)) {
809 		struct page **pagevec;
810 		size_t bytes;
811 		size_t pgbase;
812 		unsigned npages, i;
813 
814 		result = iov_iter_get_pages_alloc(iter, &pagevec,
815 						  wsize, &pgbase);
816 		if (result < 0)
817 			break;
818 
819 		bytes = result;
820 		iov_iter_advance(iter, bytes);
821 		npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
822 		for (i = 0; i < npages; i++) {
823 			struct nfs_page *req;
824 			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
825 
826 			req = nfs_create_request(dreq->ctx, pagevec[i],
827 						 pgbase, req_len);
828 			if (IS_ERR(req)) {
829 				result = PTR_ERR(req);
830 				break;
831 			}
832 
833 			if (desc.pg_error < 0) {
834 				nfs_free_request(req);
835 				result = desc.pg_error;
836 				break;
837 			}
838 
839 			nfs_lock_request(req);
840 			req->wb_index = pos >> PAGE_SHIFT;
841 			req->wb_offset = pos & ~PAGE_MASK;
842 			if (!nfs_pageio_add_request(&desc, req)) {
843 				result = desc.pg_error;
844 				nfs_unlock_and_release_request(req);
845 				break;
846 			}
847 			pgbase = 0;
848 			bytes -= req_len;
849 			requested_bytes += req_len;
850 			pos += req_len;
851 			dreq->bytes_left -= req_len;
852 		}
853 		nfs_direct_release_pages(pagevec, npages);
854 		kvfree(pagevec);
855 		if (result < 0)
856 			break;
857 	}
858 	nfs_pageio_complete(&desc);
859 
860 	/*
861 	 * If no bytes were started, return the error, and let the
862 	 * generic layer handle the completion.
863 	 */
864 	if (requested_bytes == 0) {
865 		inode_dio_end(inode);
866 		nfs_direct_req_release(dreq);
867 		return result < 0 ? result : -EIO;
868 	}
869 
870 	if (put_dreq(dreq))
871 		nfs_direct_write_complete(dreq);
872 	return requested_bytes;
873 }
874 
875 /**
876  * nfs_file_direct_write - file direct write operation for NFS files
877  * @iocb: target I/O control block
878  * @iter: vector of user buffers from which to write data
879  *
880  * We use this function for direct writes instead of calling
881  * generic_file_aio_write() in order to avoid taking the inode
882  * semaphore and updating the i_size.  The NFS server will set
883  * the new i_size and this client must read the updated size
884  * back into its cache.  We let the server do generic write
885  * parameter checking and report problems.
886  *
887  * We eliminate local atime updates, see direct read above.
888  *
889  * We avoid unnecessary page cache invalidations for normal cached
890  * readers of this file.
891  *
892  * Note that O_APPEND is not supported for NFS direct writes, as there
893  * is no atomic O_APPEND write facility in the NFS protocol.
894  */
895 ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter)
896 {
897 	ssize_t result, requested;
898 	size_t count;
899 	struct file *file = iocb->ki_filp;
900 	struct address_space *mapping = file->f_mapping;
901 	struct inode *inode = mapping->host;
902 	struct nfs_direct_req *dreq;
903 	struct nfs_lock_context *l_ctx;
904 	loff_t pos, end;
905 
906 	dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n",
907 		file, iov_iter_count(iter), (long long) iocb->ki_pos);
908 
909 	result = generic_write_checks(iocb, iter);
910 	if (result <= 0)
911 		return result;
912 	count = result;
913 	nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
914 
915 	pos = iocb->ki_pos;
916 	end = (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT;
917 
918 	task_io_account_write(count);
919 
920 	result = -ENOMEM;
921 	dreq = nfs_direct_req_alloc();
922 	if (!dreq)
923 		goto out;
924 
925 	dreq->inode = inode;
926 	dreq->bytes_left = dreq->max_count = count;
927 	dreq->io_start = pos;
928 	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
929 	l_ctx = nfs_get_lock_context(dreq->ctx);
930 	if (IS_ERR(l_ctx)) {
931 		result = PTR_ERR(l_ctx);
932 		nfs_direct_req_release(dreq);
933 		goto out_release;
934 	}
935 	dreq->l_ctx = l_ctx;
936 	if (!is_sync_kiocb(iocb))
937 		dreq->iocb = iocb;
938 	pnfs_init_ds_commit_info_ops(&dreq->ds_cinfo, inode);
939 
940 	nfs_start_io_direct(inode);
941 
942 	requested = nfs_direct_write_schedule_iovec(dreq, iter, pos);
943 
944 	if (mapping->nrpages) {
945 		invalidate_inode_pages2_range(mapping,
946 					      pos >> PAGE_SHIFT, end);
947 	}
948 
949 	nfs_end_io_direct(inode);
950 
951 	if (requested > 0) {
952 		result = nfs_direct_wait(dreq);
953 		if (result > 0) {
954 			requested -= result;
955 			iocb->ki_pos = pos + result;
956 			/* XXX: should check the generic_write_sync retval */
957 			generic_write_sync(iocb, result);
958 		}
959 		iov_iter_revert(iter, requested);
960 	} else {
961 		result = requested;
962 	}
963 	nfs_fscache_invalidate(inode, FSCACHE_INVAL_DIO_WRITE);
964 out_release:
965 	nfs_direct_req_release(dreq);
966 out:
967 	return result;
968 }
969 
970 /**
971  * nfs_init_directcache - create a slab cache for nfs_direct_req structures
972  *
973  */
974 int __init nfs_init_directcache(void)
975 {
976 	nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
977 						sizeof(struct nfs_direct_req),
978 						0, (SLAB_RECLAIM_ACCOUNT|
979 							SLAB_MEM_SPREAD),
980 						NULL);
981 	if (nfs_direct_cachep == NULL)
982 		return -ENOMEM;
983 
984 	return 0;
985 }
986 
987 /**
988  * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
989  *
990  */
991 void nfs_destroy_directcache(void)
992 {
993 	kmem_cache_destroy(nfs_direct_cachep);
994 }
995