xref: /openbmc/linux/fs/nfs/direct.c (revision 9cfc5c90)
1 /*
2  * linux/fs/nfs/direct.c
3  *
4  * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
5  *
6  * High-performance uncached I/O for the Linux NFS client
7  *
8  * There are important applications whose performance or correctness
9  * depends on uncached access to file data.  Database clusters
10  * (multiple copies of the same instance running on separate hosts)
11  * implement their own cache coherency protocol that subsumes file
12  * system cache protocols.  Applications that process datasets
13  * considerably larger than the client's memory do not always benefit
14  * from a local cache.  A streaming video server, for instance, has no
15  * need to cache the contents of a file.
16  *
17  * When an application requests uncached I/O, all read and write requests
18  * are made directly to the server; data stored or fetched via these
19  * requests is not cached in the Linux page cache.  The client does not
20  * correct unaligned requests from applications.  All requested bytes are
21  * held on permanent storage before a direct write system call returns to
22  * an application.
23  *
24  * Solaris implements an uncached I/O facility called directio() that
25  * is used for backups and sequential I/O to very large files.  Solaris
26  * also supports uncaching whole NFS partitions with "-o forcedirectio,"
27  * an undocumented mount option.
28  *
29  * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
30  * help from Andrew Morton.
31  *
32  * 18 Dec 2001	Initial implementation for 2.4  --cel
33  * 08 Jul 2002	Version for 2.4.19, with bug fixes --trondmy
34  * 08 Jun 2003	Port to 2.5 APIs  --cel
35  * 31 Mar 2004	Handle direct I/O without VFS support  --cel
36  * 15 Sep 2004	Parallel async reads  --cel
37  * 04 May 2005	support O_DIRECT with aio  --cel
38  *
39  */
40 
41 #include <linux/errno.h>
42 #include <linux/sched.h>
43 #include <linux/kernel.h>
44 #include <linux/file.h>
45 #include <linux/pagemap.h>
46 #include <linux/kref.h>
47 #include <linux/slab.h>
48 #include <linux/task_io_accounting_ops.h>
49 #include <linux/module.h>
50 
51 #include <linux/nfs_fs.h>
52 #include <linux/nfs_page.h>
53 #include <linux/sunrpc/clnt.h>
54 
55 #include <asm/uaccess.h>
56 #include <linux/atomic.h>
57 
58 #include "internal.h"
59 #include "iostat.h"
60 #include "pnfs.h"
61 
62 #define NFSDBG_FACILITY		NFSDBG_VFS
63 
64 static struct kmem_cache *nfs_direct_cachep;
65 
66 /*
67  * This represents a set of asynchronous requests that we're waiting on
68  */
69 struct nfs_direct_mirror {
70 	ssize_t count;
71 };
72 
73 struct nfs_direct_req {
74 	struct kref		kref;		/* release manager */
75 
76 	/* I/O parameters */
77 	struct nfs_open_context	*ctx;		/* file open context info */
78 	struct nfs_lock_context *l_ctx;		/* Lock context info */
79 	struct kiocb *		iocb;		/* controlling i/o request */
80 	struct inode *		inode;		/* target file of i/o */
81 
82 	/* completion state */
83 	atomic_t		io_count;	/* i/os we're waiting for */
84 	spinlock_t		lock;		/* protect completion state */
85 
86 	struct nfs_direct_mirror mirrors[NFS_PAGEIO_DESCRIPTOR_MIRROR_MAX];
87 	int			mirror_count;
88 
89 	ssize_t			count,		/* bytes actually processed */
90 				bytes_left,	/* bytes left to be sent */
91 				io_start,	/* start of IO */
92 				error;		/* any reported error */
93 	struct completion	completion;	/* wait for i/o completion */
94 
95 	/* commit state */
96 	struct nfs_mds_commit_info mds_cinfo;	/* Storage for cinfo */
97 	struct pnfs_ds_commit_info ds_cinfo;	/* Storage for cinfo */
98 	struct work_struct	work;
99 	int			flags;
100 #define NFS_ODIRECT_DO_COMMIT		(1)	/* an unstable reply was received */
101 #define NFS_ODIRECT_RESCHED_WRITES	(2)	/* write verification failed */
102 	struct nfs_writeverf	verf;		/* unstable write verifier */
103 };
104 
105 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
106 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
107 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
108 static void nfs_direct_write_schedule_work(struct work_struct *work);
109 
110 static inline void get_dreq(struct nfs_direct_req *dreq)
111 {
112 	atomic_inc(&dreq->io_count);
113 }
114 
115 static inline int put_dreq(struct nfs_direct_req *dreq)
116 {
117 	return atomic_dec_and_test(&dreq->io_count);
118 }
119 
120 void nfs_direct_set_resched_writes(struct nfs_direct_req *dreq)
121 {
122 	dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
123 }
124 EXPORT_SYMBOL_GPL(nfs_direct_set_resched_writes);
125 
126 static void
127 nfs_direct_good_bytes(struct nfs_direct_req *dreq, struct nfs_pgio_header *hdr)
128 {
129 	int i;
130 	ssize_t count;
131 
132 	if (dreq->mirror_count == 1) {
133 		dreq->mirrors[hdr->pgio_mirror_idx].count += hdr->good_bytes;
134 		dreq->count += hdr->good_bytes;
135 	} else {
136 		/* mirrored writes */
137 		count = dreq->mirrors[hdr->pgio_mirror_idx].count;
138 		if (count + dreq->io_start < hdr->io_start + hdr->good_bytes) {
139 			count = hdr->io_start + hdr->good_bytes - dreq->io_start;
140 			dreq->mirrors[hdr->pgio_mirror_idx].count = count;
141 		}
142 		/* update the dreq->count by finding the minimum agreed count from all
143 		 * mirrors */
144 		count = dreq->mirrors[0].count;
145 
146 		for (i = 1; i < dreq->mirror_count; i++)
147 			count = min(count, dreq->mirrors[i].count);
148 
149 		dreq->count = count;
150 	}
151 }
152 
153 /*
154  * nfs_direct_select_verf - select the right verifier
155  * @dreq - direct request possibly spanning multiple servers
156  * @ds_clp - nfs_client of data server or NULL if MDS / non-pnfs
157  * @commit_idx - commit bucket index for the DS
158  *
159  * returns the correct verifier to use given the role of the server
160  */
161 static struct nfs_writeverf *
162 nfs_direct_select_verf(struct nfs_direct_req *dreq,
163 		       struct nfs_client *ds_clp,
164 		       int commit_idx)
165 {
166 	struct nfs_writeverf *verfp = &dreq->verf;
167 
168 #ifdef CONFIG_NFS_V4_1
169 	/*
170 	 * pNFS is in use, use the DS verf except commit_through_mds is set
171 	 * for layout segment where nbuckets is zero.
172 	 */
173 	if (ds_clp && dreq->ds_cinfo.nbuckets > 0) {
174 		if (commit_idx >= 0 && commit_idx < dreq->ds_cinfo.nbuckets)
175 			verfp = &dreq->ds_cinfo.buckets[commit_idx].direct_verf;
176 		else
177 			WARN_ON_ONCE(1);
178 	}
179 #endif
180 	return verfp;
181 }
182 
183 
184 /*
185  * nfs_direct_set_hdr_verf - set the write/commit verifier
186  * @dreq - direct request possibly spanning multiple servers
187  * @hdr - pageio header to validate against previously seen verfs
188  *
189  * Set the server's (MDS or DS) "seen" verifier
190  */
191 static void nfs_direct_set_hdr_verf(struct nfs_direct_req *dreq,
192 				    struct nfs_pgio_header *hdr)
193 {
194 	struct nfs_writeverf *verfp;
195 
196 	verfp = nfs_direct_select_verf(dreq, hdr->ds_clp, hdr->ds_commit_idx);
197 	WARN_ON_ONCE(verfp->committed >= 0);
198 	memcpy(verfp, &hdr->verf, sizeof(struct nfs_writeverf));
199 	WARN_ON_ONCE(verfp->committed < 0);
200 }
201 
202 /*
203  * nfs_direct_cmp_hdr_verf - compare verifier for pgio header
204  * @dreq - direct request possibly spanning multiple servers
205  * @hdr - pageio header to validate against previously seen verf
206  *
207  * set the server's "seen" verf if not initialized.
208  * returns result of comparison between @hdr->verf and the "seen"
209  * verf of the server used by @hdr (DS or MDS)
210  */
211 static int nfs_direct_set_or_cmp_hdr_verf(struct nfs_direct_req *dreq,
212 					  struct nfs_pgio_header *hdr)
213 {
214 	struct nfs_writeverf *verfp;
215 
216 	verfp = nfs_direct_select_verf(dreq, hdr->ds_clp, hdr->ds_commit_idx);
217 	if (verfp->committed < 0) {
218 		nfs_direct_set_hdr_verf(dreq, hdr);
219 		return 0;
220 	}
221 	return memcmp(verfp, &hdr->verf, sizeof(struct nfs_writeverf));
222 }
223 
224 /*
225  * nfs_direct_cmp_commit_data_verf - compare verifier for commit data
226  * @dreq - direct request possibly spanning multiple servers
227  * @data - commit data to validate against previously seen verf
228  *
229  * returns result of comparison between @data->verf and the verf of
230  * the server used by @data (DS or MDS)
231  */
232 static int nfs_direct_cmp_commit_data_verf(struct nfs_direct_req *dreq,
233 					   struct nfs_commit_data *data)
234 {
235 	struct nfs_writeverf *verfp;
236 
237 	verfp = nfs_direct_select_verf(dreq, data->ds_clp,
238 					 data->ds_commit_index);
239 
240 	/* verifier not set so always fail */
241 	if (verfp->committed < 0)
242 		return 1;
243 
244 	return memcmp(verfp, &data->verf, sizeof(struct nfs_writeverf));
245 }
246 
247 /**
248  * nfs_direct_IO - NFS address space operation for direct I/O
249  * @iocb: target I/O control block
250  * @iov: array of vectors that define I/O buffer
251  * @pos: offset in file to begin the operation
252  * @nr_segs: size of iovec array
253  *
254  * The presence of this routine in the address space ops vector means
255  * the NFS client supports direct I/O. However, for most direct IO, we
256  * shunt off direct read and write requests before the VFS gets them,
257  * so this method is only ever called for swap.
258  */
259 ssize_t nfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter, loff_t pos)
260 {
261 	struct inode *inode = iocb->ki_filp->f_mapping->host;
262 
263 	/* we only support swap file calling nfs_direct_IO */
264 	if (!IS_SWAPFILE(inode))
265 		return 0;
266 
267 	VM_BUG_ON(iov_iter_count(iter) != PAGE_SIZE);
268 
269 	if (iov_iter_rw(iter) == READ)
270 		return nfs_file_direct_read(iocb, iter, pos);
271 	return nfs_file_direct_write(iocb, iter);
272 }
273 
274 static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
275 {
276 	unsigned int i;
277 	for (i = 0; i < npages; i++)
278 		page_cache_release(pages[i]);
279 }
280 
281 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
282 			      struct nfs_direct_req *dreq)
283 {
284 	cinfo->lock = &dreq->inode->i_lock;
285 	cinfo->mds = &dreq->mds_cinfo;
286 	cinfo->ds = &dreq->ds_cinfo;
287 	cinfo->dreq = dreq;
288 	cinfo->completion_ops = &nfs_direct_commit_completion_ops;
289 }
290 
291 static inline void nfs_direct_setup_mirroring(struct nfs_direct_req *dreq,
292 					     struct nfs_pageio_descriptor *pgio,
293 					     struct nfs_page *req)
294 {
295 	int mirror_count = 1;
296 
297 	if (pgio->pg_ops->pg_get_mirror_count)
298 		mirror_count = pgio->pg_ops->pg_get_mirror_count(pgio, req);
299 
300 	dreq->mirror_count = mirror_count;
301 }
302 
303 static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
304 {
305 	struct nfs_direct_req *dreq;
306 
307 	dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
308 	if (!dreq)
309 		return NULL;
310 
311 	kref_init(&dreq->kref);
312 	kref_get(&dreq->kref);
313 	init_completion(&dreq->completion);
314 	INIT_LIST_HEAD(&dreq->mds_cinfo.list);
315 	dreq->verf.committed = NFS_INVALID_STABLE_HOW;	/* not set yet */
316 	INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
317 	dreq->mirror_count = 1;
318 	spin_lock_init(&dreq->lock);
319 
320 	return dreq;
321 }
322 
323 static void nfs_direct_req_free(struct kref *kref)
324 {
325 	struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
326 
327 	nfs_free_pnfs_ds_cinfo(&dreq->ds_cinfo);
328 	if (dreq->l_ctx != NULL)
329 		nfs_put_lock_context(dreq->l_ctx);
330 	if (dreq->ctx != NULL)
331 		put_nfs_open_context(dreq->ctx);
332 	kmem_cache_free(nfs_direct_cachep, dreq);
333 }
334 
335 static void nfs_direct_req_release(struct nfs_direct_req *dreq)
336 {
337 	kref_put(&dreq->kref, nfs_direct_req_free);
338 }
339 
340 ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq)
341 {
342 	return dreq->bytes_left;
343 }
344 EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
345 
346 /*
347  * Collects and returns the final error value/byte-count.
348  */
349 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
350 {
351 	ssize_t result = -EIOCBQUEUED;
352 
353 	/* Async requests don't wait here */
354 	if (dreq->iocb)
355 		goto out;
356 
357 	result = wait_for_completion_killable(&dreq->completion);
358 
359 	if (!result)
360 		result = dreq->error;
361 	if (!result)
362 		result = dreq->count;
363 
364 out:
365 	return (ssize_t) result;
366 }
367 
368 /*
369  * Synchronous I/O uses a stack-allocated iocb.  Thus we can't trust
370  * the iocb is still valid here if this is a synchronous request.
371  */
372 static void nfs_direct_complete(struct nfs_direct_req *dreq, bool write)
373 {
374 	struct inode *inode = dreq->inode;
375 
376 	if (dreq->iocb && write) {
377 		loff_t pos = dreq->iocb->ki_pos + dreq->count;
378 
379 		spin_lock(&inode->i_lock);
380 		if (i_size_read(inode) < pos)
381 			i_size_write(inode, pos);
382 		spin_unlock(&inode->i_lock);
383 	}
384 
385 	if (write)
386 		nfs_zap_mapping(inode, inode->i_mapping);
387 
388 	inode_dio_end(inode);
389 
390 	if (dreq->iocb) {
391 		long res = (long) dreq->error;
392 		if (!res)
393 			res = (long) dreq->count;
394 		dreq->iocb->ki_complete(dreq->iocb, res, 0);
395 	}
396 
397 	complete_all(&dreq->completion);
398 
399 	nfs_direct_req_release(dreq);
400 }
401 
402 static void nfs_direct_readpage_release(struct nfs_page *req)
403 {
404 	dprintk("NFS: direct read done (%s/%llu %d@%lld)\n",
405 		d_inode(req->wb_context->dentry)->i_sb->s_id,
406 		(unsigned long long)NFS_FILEID(d_inode(req->wb_context->dentry)),
407 		req->wb_bytes,
408 		(long long)req_offset(req));
409 	nfs_release_request(req);
410 }
411 
412 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
413 {
414 	unsigned long bytes = 0;
415 	struct nfs_direct_req *dreq = hdr->dreq;
416 
417 	if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
418 		goto out_put;
419 
420 	spin_lock(&dreq->lock);
421 	if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0))
422 		dreq->error = hdr->error;
423 	else
424 		nfs_direct_good_bytes(dreq, hdr);
425 
426 	spin_unlock(&dreq->lock);
427 
428 	while (!list_empty(&hdr->pages)) {
429 		struct nfs_page *req = nfs_list_entry(hdr->pages.next);
430 		struct page *page = req->wb_page;
431 
432 		if (!PageCompound(page) && bytes < hdr->good_bytes)
433 			set_page_dirty(page);
434 		bytes += req->wb_bytes;
435 		nfs_list_remove_request(req);
436 		nfs_direct_readpage_release(req);
437 	}
438 out_put:
439 	if (put_dreq(dreq))
440 		nfs_direct_complete(dreq, false);
441 	hdr->release(hdr);
442 }
443 
444 static void nfs_read_sync_pgio_error(struct list_head *head)
445 {
446 	struct nfs_page *req;
447 
448 	while (!list_empty(head)) {
449 		req = nfs_list_entry(head->next);
450 		nfs_list_remove_request(req);
451 		nfs_release_request(req);
452 	}
453 }
454 
455 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
456 {
457 	get_dreq(hdr->dreq);
458 }
459 
460 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
461 	.error_cleanup = nfs_read_sync_pgio_error,
462 	.init_hdr = nfs_direct_pgio_init,
463 	.completion = nfs_direct_read_completion,
464 };
465 
466 /*
467  * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
468  * operation.  If nfs_readdata_alloc() or get_user_pages() fails,
469  * bail and stop sending more reads.  Read length accounting is
470  * handled automatically by nfs_direct_read_result().  Otherwise, if
471  * no requests have been sent, just return an error.
472  */
473 
474 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
475 					      struct iov_iter *iter,
476 					      loff_t pos)
477 {
478 	struct nfs_pageio_descriptor desc;
479 	struct inode *inode = dreq->inode;
480 	ssize_t result = -EINVAL;
481 	size_t requested_bytes = 0;
482 	size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE);
483 
484 	nfs_pageio_init_read(&desc, dreq->inode, false,
485 			     &nfs_direct_read_completion_ops);
486 	get_dreq(dreq);
487 	desc.pg_dreq = dreq;
488 	inode_dio_begin(inode);
489 
490 	while (iov_iter_count(iter)) {
491 		struct page **pagevec;
492 		size_t bytes;
493 		size_t pgbase;
494 		unsigned npages, i;
495 
496 		result = iov_iter_get_pages_alloc(iter, &pagevec,
497 						  rsize, &pgbase);
498 		if (result < 0)
499 			break;
500 
501 		bytes = result;
502 		iov_iter_advance(iter, bytes);
503 		npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
504 		for (i = 0; i < npages; i++) {
505 			struct nfs_page *req;
506 			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
507 			/* XXX do we need to do the eof zeroing found in async_filler? */
508 			req = nfs_create_request(dreq->ctx, pagevec[i], NULL,
509 						 pgbase, req_len);
510 			if (IS_ERR(req)) {
511 				result = PTR_ERR(req);
512 				break;
513 			}
514 			req->wb_index = pos >> PAGE_SHIFT;
515 			req->wb_offset = pos & ~PAGE_MASK;
516 			if (!nfs_pageio_add_request(&desc, req)) {
517 				result = desc.pg_error;
518 				nfs_release_request(req);
519 				break;
520 			}
521 			pgbase = 0;
522 			bytes -= req_len;
523 			requested_bytes += req_len;
524 			pos += req_len;
525 			dreq->bytes_left -= req_len;
526 		}
527 		nfs_direct_release_pages(pagevec, npages);
528 		kvfree(pagevec);
529 		if (result < 0)
530 			break;
531 	}
532 
533 	nfs_pageio_complete(&desc);
534 
535 	/*
536 	 * If no bytes were started, return the error, and let the
537 	 * generic layer handle the completion.
538 	 */
539 	if (requested_bytes == 0) {
540 		inode_dio_end(inode);
541 		nfs_direct_req_release(dreq);
542 		return result < 0 ? result : -EIO;
543 	}
544 
545 	if (put_dreq(dreq))
546 		nfs_direct_complete(dreq, false);
547 	return 0;
548 }
549 
550 /**
551  * nfs_file_direct_read - file direct read operation for NFS files
552  * @iocb: target I/O control block
553  * @iter: vector of user buffers into which to read data
554  * @pos: byte offset in file where reading starts
555  *
556  * We use this function for direct reads instead of calling
557  * generic_file_aio_read() in order to avoid gfar's check to see if
558  * the request starts before the end of the file.  For that check
559  * to work, we must generate a GETATTR before each direct read, and
560  * even then there is a window between the GETATTR and the subsequent
561  * READ where the file size could change.  Our preference is simply
562  * to do all reads the application wants, and the server will take
563  * care of managing the end of file boundary.
564  *
565  * This function also eliminates unnecessarily updating the file's
566  * atime locally, as the NFS server sets the file's atime, and this
567  * client must read the updated atime from the server back into its
568  * cache.
569  */
570 ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter,
571 				loff_t pos)
572 {
573 	struct file *file = iocb->ki_filp;
574 	struct address_space *mapping = file->f_mapping;
575 	struct inode *inode = mapping->host;
576 	struct nfs_direct_req *dreq;
577 	struct nfs_lock_context *l_ctx;
578 	ssize_t result = -EINVAL;
579 	size_t count = iov_iter_count(iter);
580 	nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
581 
582 	dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n",
583 		file, count, (long long) pos);
584 
585 	result = 0;
586 	if (!count)
587 		goto out;
588 
589 	mutex_lock(&inode->i_mutex);
590 	result = nfs_sync_mapping(mapping);
591 	if (result)
592 		goto out_unlock;
593 
594 	task_io_account_read(count);
595 
596 	result = -ENOMEM;
597 	dreq = nfs_direct_req_alloc();
598 	if (dreq == NULL)
599 		goto out_unlock;
600 
601 	dreq->inode = inode;
602 	dreq->bytes_left = count;
603 	dreq->io_start = pos;
604 	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
605 	l_ctx = nfs_get_lock_context(dreq->ctx);
606 	if (IS_ERR(l_ctx)) {
607 		result = PTR_ERR(l_ctx);
608 		goto out_release;
609 	}
610 	dreq->l_ctx = l_ctx;
611 	if (!is_sync_kiocb(iocb))
612 		dreq->iocb = iocb;
613 
614 	NFS_I(inode)->read_io += count;
615 	result = nfs_direct_read_schedule_iovec(dreq, iter, pos);
616 
617 	mutex_unlock(&inode->i_mutex);
618 
619 	if (!result) {
620 		result = nfs_direct_wait(dreq);
621 		if (result > 0)
622 			iocb->ki_pos = pos + result;
623 	}
624 
625 	nfs_direct_req_release(dreq);
626 	return result;
627 
628 out_release:
629 	nfs_direct_req_release(dreq);
630 out_unlock:
631 	mutex_unlock(&inode->i_mutex);
632 out:
633 	return result;
634 }
635 
636 static void
637 nfs_direct_write_scan_commit_list(struct inode *inode,
638 				  struct list_head *list,
639 				  struct nfs_commit_info *cinfo)
640 {
641 	spin_lock(cinfo->lock);
642 #ifdef CONFIG_NFS_V4_1
643 	if (cinfo->ds != NULL && cinfo->ds->nwritten != 0)
644 		NFS_SERVER(inode)->pnfs_curr_ld->recover_commit_reqs(list, cinfo);
645 #endif
646 	nfs_scan_commit_list(&cinfo->mds->list, list, cinfo, 0);
647 	spin_unlock(cinfo->lock);
648 }
649 
650 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
651 {
652 	struct nfs_pageio_descriptor desc;
653 	struct nfs_page *req, *tmp;
654 	LIST_HEAD(reqs);
655 	struct nfs_commit_info cinfo;
656 	LIST_HEAD(failed);
657 	int i;
658 
659 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
660 	nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
661 
662 	dreq->count = 0;
663 	for (i = 0; i < dreq->mirror_count; i++)
664 		dreq->mirrors[i].count = 0;
665 	get_dreq(dreq);
666 
667 	nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false,
668 			      &nfs_direct_write_completion_ops);
669 	desc.pg_dreq = dreq;
670 
671 	req = nfs_list_entry(reqs.next);
672 	nfs_direct_setup_mirroring(dreq, &desc, req);
673 
674 	list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
675 		if (!nfs_pageio_add_request(&desc, req)) {
676 			nfs_list_remove_request(req);
677 			nfs_list_add_request(req, &failed);
678 			spin_lock(cinfo.lock);
679 			dreq->flags = 0;
680 			dreq->error = -EIO;
681 			spin_unlock(cinfo.lock);
682 		}
683 		nfs_release_request(req);
684 	}
685 	nfs_pageio_complete(&desc);
686 
687 	while (!list_empty(&failed)) {
688 		req = nfs_list_entry(failed.next);
689 		nfs_list_remove_request(req);
690 		nfs_unlock_and_release_request(req);
691 	}
692 
693 	if (put_dreq(dreq))
694 		nfs_direct_write_complete(dreq, dreq->inode);
695 }
696 
697 static void nfs_direct_commit_complete(struct nfs_commit_data *data)
698 {
699 	struct nfs_direct_req *dreq = data->dreq;
700 	struct nfs_commit_info cinfo;
701 	struct nfs_page *req;
702 	int status = data->task.tk_status;
703 
704 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
705 	if (status < 0) {
706 		dprintk("NFS: %5u commit failed with error %d.\n",
707 			data->task.tk_pid, status);
708 		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
709 	} else if (nfs_direct_cmp_commit_data_verf(dreq, data)) {
710 		dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid);
711 		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
712 	}
713 
714 	dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status);
715 	while (!list_empty(&data->pages)) {
716 		req = nfs_list_entry(data->pages.next);
717 		nfs_list_remove_request(req);
718 		if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) {
719 			/* Note the rewrite will go through mds */
720 			nfs_mark_request_commit(req, NULL, &cinfo, 0);
721 		} else
722 			nfs_release_request(req);
723 		nfs_unlock_and_release_request(req);
724 	}
725 
726 	if (atomic_dec_and_test(&cinfo.mds->rpcs_out))
727 		nfs_direct_write_complete(dreq, data->inode);
728 }
729 
730 static void nfs_direct_error_cleanup(struct nfs_inode *nfsi)
731 {
732 	/* There is no lock to clear */
733 }
734 
735 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
736 	.completion = nfs_direct_commit_complete,
737 	.error_cleanup = nfs_direct_error_cleanup,
738 };
739 
740 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
741 {
742 	int res;
743 	struct nfs_commit_info cinfo;
744 	LIST_HEAD(mds_list);
745 
746 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
747 	nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
748 	res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
749 	if (res < 0) /* res == -ENOMEM */
750 		nfs_direct_write_reschedule(dreq);
751 }
752 
753 static void nfs_direct_write_schedule_work(struct work_struct *work)
754 {
755 	struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
756 	int flags = dreq->flags;
757 
758 	dreq->flags = 0;
759 	switch (flags) {
760 		case NFS_ODIRECT_DO_COMMIT:
761 			nfs_direct_commit_schedule(dreq);
762 			break;
763 		case NFS_ODIRECT_RESCHED_WRITES:
764 			nfs_direct_write_reschedule(dreq);
765 			break;
766 		default:
767 			nfs_direct_complete(dreq, true);
768 	}
769 }
770 
771 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
772 {
773 	schedule_work(&dreq->work); /* Calls nfs_direct_write_schedule_work */
774 }
775 
776 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
777 {
778 	struct nfs_direct_req *dreq = hdr->dreq;
779 	struct nfs_commit_info cinfo;
780 	bool request_commit = false;
781 	struct nfs_page *req = nfs_list_entry(hdr->pages.next);
782 
783 	if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
784 		goto out_put;
785 
786 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
787 
788 	spin_lock(&dreq->lock);
789 
790 	if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
791 		dreq->flags = 0;
792 		dreq->error = hdr->error;
793 	}
794 	if (dreq->error == 0) {
795 		nfs_direct_good_bytes(dreq, hdr);
796 		if (nfs_write_need_commit(hdr)) {
797 			if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES)
798 				request_commit = true;
799 			else if (dreq->flags == 0) {
800 				nfs_direct_set_hdr_verf(dreq, hdr);
801 				request_commit = true;
802 				dreq->flags = NFS_ODIRECT_DO_COMMIT;
803 			} else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) {
804 				request_commit = true;
805 				if (nfs_direct_set_or_cmp_hdr_verf(dreq, hdr))
806 					dreq->flags =
807 						NFS_ODIRECT_RESCHED_WRITES;
808 			}
809 		}
810 	}
811 	spin_unlock(&dreq->lock);
812 
813 	while (!list_empty(&hdr->pages)) {
814 
815 		req = nfs_list_entry(hdr->pages.next);
816 		nfs_list_remove_request(req);
817 		if (request_commit) {
818 			kref_get(&req->wb_kref);
819 			nfs_mark_request_commit(req, hdr->lseg, &cinfo,
820 				hdr->ds_commit_idx);
821 		}
822 		nfs_unlock_and_release_request(req);
823 	}
824 
825 out_put:
826 	if (put_dreq(dreq))
827 		nfs_direct_write_complete(dreq, hdr->inode);
828 	hdr->release(hdr);
829 }
830 
831 static void nfs_write_sync_pgio_error(struct list_head *head)
832 {
833 	struct nfs_page *req;
834 
835 	while (!list_empty(head)) {
836 		req = nfs_list_entry(head->next);
837 		nfs_list_remove_request(req);
838 		nfs_unlock_and_release_request(req);
839 	}
840 }
841 
842 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
843 	.error_cleanup = nfs_write_sync_pgio_error,
844 	.init_hdr = nfs_direct_pgio_init,
845 	.completion = nfs_direct_write_completion,
846 };
847 
848 
849 /*
850  * NB: Return the value of the first error return code.  Subsequent
851  *     errors after the first one are ignored.
852  */
853 /*
854  * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
855  * operation.  If nfs_writedata_alloc() or get_user_pages() fails,
856  * bail and stop sending more writes.  Write length accounting is
857  * handled automatically by nfs_direct_write_result().  Otherwise, if
858  * no requests have been sent, just return an error.
859  */
860 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
861 					       struct iov_iter *iter,
862 					       loff_t pos)
863 {
864 	struct nfs_pageio_descriptor desc;
865 	struct inode *inode = dreq->inode;
866 	ssize_t result = 0;
867 	size_t requested_bytes = 0;
868 	size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE);
869 
870 	nfs_pageio_init_write(&desc, inode, FLUSH_COND_STABLE, false,
871 			      &nfs_direct_write_completion_ops);
872 	desc.pg_dreq = dreq;
873 	get_dreq(dreq);
874 	inode_dio_begin(inode);
875 
876 	NFS_I(inode)->write_io += iov_iter_count(iter);
877 	while (iov_iter_count(iter)) {
878 		struct page **pagevec;
879 		size_t bytes;
880 		size_t pgbase;
881 		unsigned npages, i;
882 
883 		result = iov_iter_get_pages_alloc(iter, &pagevec,
884 						  wsize, &pgbase);
885 		if (result < 0)
886 			break;
887 
888 		bytes = result;
889 		iov_iter_advance(iter, bytes);
890 		npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
891 		for (i = 0; i < npages; i++) {
892 			struct nfs_page *req;
893 			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
894 
895 			req = nfs_create_request(dreq->ctx, pagevec[i], NULL,
896 						 pgbase, req_len);
897 			if (IS_ERR(req)) {
898 				result = PTR_ERR(req);
899 				break;
900 			}
901 
902 			nfs_direct_setup_mirroring(dreq, &desc, req);
903 
904 			nfs_lock_request(req);
905 			req->wb_index = pos >> PAGE_SHIFT;
906 			req->wb_offset = pos & ~PAGE_MASK;
907 			if (!nfs_pageio_add_request(&desc, req)) {
908 				result = desc.pg_error;
909 				nfs_unlock_and_release_request(req);
910 				break;
911 			}
912 			pgbase = 0;
913 			bytes -= req_len;
914 			requested_bytes += req_len;
915 			pos += req_len;
916 			dreq->bytes_left -= req_len;
917 		}
918 		nfs_direct_release_pages(pagevec, npages);
919 		kvfree(pagevec);
920 		if (result < 0)
921 			break;
922 	}
923 	nfs_pageio_complete(&desc);
924 
925 	/*
926 	 * If no bytes were started, return the error, and let the
927 	 * generic layer handle the completion.
928 	 */
929 	if (requested_bytes == 0) {
930 		inode_dio_end(inode);
931 		nfs_direct_req_release(dreq);
932 		return result < 0 ? result : -EIO;
933 	}
934 
935 	if (put_dreq(dreq))
936 		nfs_direct_write_complete(dreq, dreq->inode);
937 	return 0;
938 }
939 
940 /**
941  * nfs_file_direct_write - file direct write operation for NFS files
942  * @iocb: target I/O control block
943  * @iter: vector of user buffers from which to write data
944  * @pos: byte offset in file where writing starts
945  *
946  * We use this function for direct writes instead of calling
947  * generic_file_aio_write() in order to avoid taking the inode
948  * semaphore and updating the i_size.  The NFS server will set
949  * the new i_size and this client must read the updated size
950  * back into its cache.  We let the server do generic write
951  * parameter checking and report problems.
952  *
953  * We eliminate local atime updates, see direct read above.
954  *
955  * We avoid unnecessary page cache invalidations for normal cached
956  * readers of this file.
957  *
958  * Note that O_APPEND is not supported for NFS direct writes, as there
959  * is no atomic O_APPEND write facility in the NFS protocol.
960  */
961 ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter)
962 {
963 	ssize_t result = -EINVAL;
964 	struct file *file = iocb->ki_filp;
965 	struct address_space *mapping = file->f_mapping;
966 	struct inode *inode = mapping->host;
967 	struct nfs_direct_req *dreq;
968 	struct nfs_lock_context *l_ctx;
969 	loff_t pos, end;
970 
971 	dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n",
972 		file, iov_iter_count(iter), (long long) iocb->ki_pos);
973 
974 	nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES,
975 		      iov_iter_count(iter));
976 
977 	pos = iocb->ki_pos;
978 	end = (pos + iov_iter_count(iter) - 1) >> PAGE_CACHE_SHIFT;
979 
980 	mutex_lock(&inode->i_mutex);
981 
982 	result = nfs_sync_mapping(mapping);
983 	if (result)
984 		goto out_unlock;
985 
986 	if (mapping->nrpages) {
987 		result = invalidate_inode_pages2_range(mapping,
988 					pos >> PAGE_CACHE_SHIFT, end);
989 		if (result)
990 			goto out_unlock;
991 	}
992 
993 	task_io_account_write(iov_iter_count(iter));
994 
995 	result = -ENOMEM;
996 	dreq = nfs_direct_req_alloc();
997 	if (!dreq)
998 		goto out_unlock;
999 
1000 	dreq->inode = inode;
1001 	dreq->bytes_left = iov_iter_count(iter);
1002 	dreq->io_start = pos;
1003 	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
1004 	l_ctx = nfs_get_lock_context(dreq->ctx);
1005 	if (IS_ERR(l_ctx)) {
1006 		result = PTR_ERR(l_ctx);
1007 		goto out_release;
1008 	}
1009 	dreq->l_ctx = l_ctx;
1010 	if (!is_sync_kiocb(iocb))
1011 		dreq->iocb = iocb;
1012 
1013 	result = nfs_direct_write_schedule_iovec(dreq, iter, pos);
1014 
1015 	if (mapping->nrpages) {
1016 		invalidate_inode_pages2_range(mapping,
1017 					      pos >> PAGE_CACHE_SHIFT, end);
1018 	}
1019 
1020 	mutex_unlock(&inode->i_mutex);
1021 
1022 	if (!result) {
1023 		result = nfs_direct_wait(dreq);
1024 		if (result > 0) {
1025 			struct inode *inode = mapping->host;
1026 
1027 			iocb->ki_pos = pos + result;
1028 			spin_lock(&inode->i_lock);
1029 			if (i_size_read(inode) < iocb->ki_pos)
1030 				i_size_write(inode, iocb->ki_pos);
1031 			spin_unlock(&inode->i_lock);
1032 			generic_write_sync(file, pos, result);
1033 		}
1034 	}
1035 	nfs_direct_req_release(dreq);
1036 	return result;
1037 
1038 out_release:
1039 	nfs_direct_req_release(dreq);
1040 out_unlock:
1041 	mutex_unlock(&inode->i_mutex);
1042 	return result;
1043 }
1044 
1045 /**
1046  * nfs_init_directcache - create a slab cache for nfs_direct_req structures
1047  *
1048  */
1049 int __init nfs_init_directcache(void)
1050 {
1051 	nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
1052 						sizeof(struct nfs_direct_req),
1053 						0, (SLAB_RECLAIM_ACCOUNT|
1054 							SLAB_MEM_SPREAD),
1055 						NULL);
1056 	if (nfs_direct_cachep == NULL)
1057 		return -ENOMEM;
1058 
1059 	return 0;
1060 }
1061 
1062 /**
1063  * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
1064  *
1065  */
1066 void nfs_destroy_directcache(void)
1067 {
1068 	kmem_cache_destroy(nfs_direct_cachep);
1069 }
1070