1 /* 2 * linux/fs/nfs/direct.c 3 * 4 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com> 5 * 6 * High-performance uncached I/O for the Linux NFS client 7 * 8 * There are important applications whose performance or correctness 9 * depends on uncached access to file data. Database clusters 10 * (multiple copies of the same instance running on separate hosts) 11 * implement their own cache coherency protocol that subsumes file 12 * system cache protocols. Applications that process datasets 13 * considerably larger than the client's memory do not always benefit 14 * from a local cache. A streaming video server, for instance, has no 15 * need to cache the contents of a file. 16 * 17 * When an application requests uncached I/O, all read and write requests 18 * are made directly to the server; data stored or fetched via these 19 * requests is not cached in the Linux page cache. The client does not 20 * correct unaligned requests from applications. All requested bytes are 21 * held on permanent storage before a direct write system call returns to 22 * an application. 23 * 24 * Solaris implements an uncached I/O facility called directio() that 25 * is used for backups and sequential I/O to very large files. Solaris 26 * also supports uncaching whole NFS partitions with "-o forcedirectio," 27 * an undocumented mount option. 28 * 29 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with 30 * help from Andrew Morton. 31 * 32 * 18 Dec 2001 Initial implementation for 2.4 --cel 33 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy 34 * 08 Jun 2003 Port to 2.5 APIs --cel 35 * 31 Mar 2004 Handle direct I/O without VFS support --cel 36 * 15 Sep 2004 Parallel async reads --cel 37 * 04 May 2005 support O_DIRECT with aio --cel 38 * 39 */ 40 41 #include <linux/errno.h> 42 #include <linux/sched.h> 43 #include <linux/kernel.h> 44 #include <linux/file.h> 45 #include <linux/pagemap.h> 46 #include <linux/kref.h> 47 #include <linux/slab.h> 48 #include <linux/task_io_accounting_ops.h> 49 50 #include <linux/nfs_fs.h> 51 #include <linux/nfs_page.h> 52 #include <linux/sunrpc/clnt.h> 53 54 #include <asm/uaccess.h> 55 #include <linux/atomic.h> 56 57 #include "internal.h" 58 #include "iostat.h" 59 #include "pnfs.h" 60 61 #define NFSDBG_FACILITY NFSDBG_VFS 62 63 static struct kmem_cache *nfs_direct_cachep; 64 65 /* 66 * This represents a set of asynchronous requests that we're waiting on 67 */ 68 struct nfs_direct_req { 69 struct kref kref; /* release manager */ 70 71 /* I/O parameters */ 72 struct nfs_open_context *ctx; /* file open context info */ 73 struct nfs_lock_context *l_ctx; /* Lock context info */ 74 struct kiocb * iocb; /* controlling i/o request */ 75 struct inode * inode; /* target file of i/o */ 76 77 /* completion state */ 78 atomic_t io_count; /* i/os we're waiting for */ 79 spinlock_t lock; /* protect completion state */ 80 ssize_t count, /* bytes actually processed */ 81 error; /* any reported error */ 82 struct completion completion; /* wait for i/o completion */ 83 84 /* commit state */ 85 struct nfs_mds_commit_info mds_cinfo; /* Storage for cinfo */ 86 struct pnfs_ds_commit_info ds_cinfo; /* Storage for cinfo */ 87 struct work_struct work; 88 int flags; 89 #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */ 90 #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */ 91 struct nfs_writeverf verf; /* unstable write verifier */ 92 }; 93 94 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops; 95 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops; 96 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode); 97 static void nfs_direct_write_schedule_work(struct work_struct *work); 98 99 static inline void get_dreq(struct nfs_direct_req *dreq) 100 { 101 atomic_inc(&dreq->io_count); 102 } 103 104 static inline int put_dreq(struct nfs_direct_req *dreq) 105 { 106 return atomic_dec_and_test(&dreq->io_count); 107 } 108 109 /** 110 * nfs_direct_IO - NFS address space operation for direct I/O 111 * @rw: direction (read or write) 112 * @iocb: target I/O control block 113 * @iov: array of vectors that define I/O buffer 114 * @pos: offset in file to begin the operation 115 * @nr_segs: size of iovec array 116 * 117 * The presence of this routine in the address space ops vector means 118 * the NFS client supports direct I/O. However, for most direct IO, we 119 * shunt off direct read and write requests before the VFS gets them, 120 * so this method is only ever called for swap. 121 */ 122 ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs) 123 { 124 #ifndef CONFIG_NFS_SWAP 125 dprintk("NFS: nfs_direct_IO (%s) off/no(%Ld/%lu) EINVAL\n", 126 iocb->ki_filp->f_path.dentry->d_name.name, 127 (long long) pos, nr_segs); 128 129 return -EINVAL; 130 #else 131 VM_BUG_ON(iocb->ki_left != PAGE_SIZE); 132 VM_BUG_ON(iocb->ki_nbytes != PAGE_SIZE); 133 134 if (rw == READ || rw == KERNEL_READ) 135 return nfs_file_direct_read(iocb, iov, nr_segs, pos, 136 rw == READ ? true : false); 137 return nfs_file_direct_write(iocb, iov, nr_segs, pos, 138 rw == WRITE ? true : false); 139 #endif /* CONFIG_NFS_SWAP */ 140 } 141 142 static void nfs_direct_release_pages(struct page **pages, unsigned int npages) 143 { 144 unsigned int i; 145 for (i = 0; i < npages; i++) 146 page_cache_release(pages[i]); 147 } 148 149 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo, 150 struct nfs_direct_req *dreq) 151 { 152 cinfo->lock = &dreq->lock; 153 cinfo->mds = &dreq->mds_cinfo; 154 cinfo->ds = &dreq->ds_cinfo; 155 cinfo->dreq = dreq; 156 cinfo->completion_ops = &nfs_direct_commit_completion_ops; 157 } 158 159 static inline struct nfs_direct_req *nfs_direct_req_alloc(void) 160 { 161 struct nfs_direct_req *dreq; 162 163 dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL); 164 if (!dreq) 165 return NULL; 166 167 kref_init(&dreq->kref); 168 kref_get(&dreq->kref); 169 init_completion(&dreq->completion); 170 INIT_LIST_HEAD(&dreq->mds_cinfo.list); 171 INIT_WORK(&dreq->work, nfs_direct_write_schedule_work); 172 spin_lock_init(&dreq->lock); 173 174 return dreq; 175 } 176 177 static void nfs_direct_req_free(struct kref *kref) 178 { 179 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref); 180 181 if (dreq->l_ctx != NULL) 182 nfs_put_lock_context(dreq->l_ctx); 183 if (dreq->ctx != NULL) 184 put_nfs_open_context(dreq->ctx); 185 kmem_cache_free(nfs_direct_cachep, dreq); 186 } 187 188 static void nfs_direct_req_release(struct nfs_direct_req *dreq) 189 { 190 kref_put(&dreq->kref, nfs_direct_req_free); 191 } 192 193 /* 194 * Collects and returns the final error value/byte-count. 195 */ 196 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq) 197 { 198 ssize_t result = -EIOCBQUEUED; 199 200 /* Async requests don't wait here */ 201 if (dreq->iocb) 202 goto out; 203 204 result = wait_for_completion_killable(&dreq->completion); 205 206 if (!result) 207 result = dreq->error; 208 if (!result) 209 result = dreq->count; 210 211 out: 212 return (ssize_t) result; 213 } 214 215 /* 216 * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust 217 * the iocb is still valid here if this is a synchronous request. 218 */ 219 static void nfs_direct_complete(struct nfs_direct_req *dreq) 220 { 221 if (dreq->iocb) { 222 long res = (long) dreq->error; 223 if (!res) 224 res = (long) dreq->count; 225 aio_complete(dreq->iocb, res, 0); 226 } 227 complete_all(&dreq->completion); 228 229 nfs_direct_req_release(dreq); 230 } 231 232 static void nfs_direct_readpage_release(struct nfs_page *req) 233 { 234 dprintk("NFS: direct read done (%s/%lld %d@%lld)\n", 235 req->wb_context->dentry->d_inode->i_sb->s_id, 236 (long long)NFS_FILEID(req->wb_context->dentry->d_inode), 237 req->wb_bytes, 238 (long long)req_offset(req)); 239 nfs_release_request(req); 240 } 241 242 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr) 243 { 244 unsigned long bytes = 0; 245 struct nfs_direct_req *dreq = hdr->dreq; 246 247 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) 248 goto out_put; 249 250 spin_lock(&dreq->lock); 251 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0)) 252 dreq->error = hdr->error; 253 else 254 dreq->count += hdr->good_bytes; 255 spin_unlock(&dreq->lock); 256 257 while (!list_empty(&hdr->pages)) { 258 struct nfs_page *req = nfs_list_entry(hdr->pages.next); 259 struct page *page = req->wb_page; 260 261 if (test_bit(NFS_IOHDR_EOF, &hdr->flags)) { 262 if (bytes > hdr->good_bytes) 263 zero_user(page, 0, PAGE_SIZE); 264 else if (hdr->good_bytes - bytes < PAGE_SIZE) 265 zero_user_segment(page, 266 hdr->good_bytes & ~PAGE_MASK, 267 PAGE_SIZE); 268 } 269 if (!PageCompound(page)) { 270 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) { 271 if (bytes < hdr->good_bytes) 272 set_page_dirty(page); 273 } else 274 set_page_dirty(page); 275 } 276 bytes += req->wb_bytes; 277 nfs_list_remove_request(req); 278 nfs_direct_readpage_release(req); 279 } 280 out_put: 281 if (put_dreq(dreq)) 282 nfs_direct_complete(dreq); 283 hdr->release(hdr); 284 } 285 286 static void nfs_read_sync_pgio_error(struct list_head *head) 287 { 288 struct nfs_page *req; 289 290 while (!list_empty(head)) { 291 req = nfs_list_entry(head->next); 292 nfs_list_remove_request(req); 293 nfs_release_request(req); 294 } 295 } 296 297 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr) 298 { 299 get_dreq(hdr->dreq); 300 } 301 302 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = { 303 .error_cleanup = nfs_read_sync_pgio_error, 304 .init_hdr = nfs_direct_pgio_init, 305 .completion = nfs_direct_read_completion, 306 }; 307 308 /* 309 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ 310 * operation. If nfs_readdata_alloc() or get_user_pages() fails, 311 * bail and stop sending more reads. Read length accounting is 312 * handled automatically by nfs_direct_read_result(). Otherwise, if 313 * no requests have been sent, just return an error. 314 */ 315 static ssize_t nfs_direct_read_schedule_segment(struct nfs_pageio_descriptor *desc, 316 const struct iovec *iov, 317 loff_t pos, bool uio) 318 { 319 struct nfs_direct_req *dreq = desc->pg_dreq; 320 struct nfs_open_context *ctx = dreq->ctx; 321 struct inode *inode = ctx->dentry->d_inode; 322 unsigned long user_addr = (unsigned long)iov->iov_base; 323 size_t count = iov->iov_len; 324 size_t rsize = NFS_SERVER(inode)->rsize; 325 unsigned int pgbase; 326 int result; 327 ssize_t started = 0; 328 struct page **pagevec = NULL; 329 unsigned int npages; 330 331 do { 332 size_t bytes; 333 int i; 334 335 pgbase = user_addr & ~PAGE_MASK; 336 bytes = min(max_t(size_t, rsize, PAGE_SIZE), count); 337 338 result = -ENOMEM; 339 npages = nfs_page_array_len(pgbase, bytes); 340 if (!pagevec) 341 pagevec = kmalloc(npages * sizeof(struct page *), 342 GFP_KERNEL); 343 if (!pagevec) 344 break; 345 if (uio) { 346 down_read(¤t->mm->mmap_sem); 347 result = get_user_pages(current, current->mm, user_addr, 348 npages, 1, 0, pagevec, NULL); 349 up_read(¤t->mm->mmap_sem); 350 if (result < 0) 351 break; 352 } else { 353 WARN_ON(npages != 1); 354 result = get_kernel_page(user_addr, 1, pagevec); 355 if (WARN_ON(result != 1)) 356 break; 357 } 358 359 if ((unsigned)result < npages) { 360 bytes = result * PAGE_SIZE; 361 if (bytes <= pgbase) { 362 nfs_direct_release_pages(pagevec, result); 363 break; 364 } 365 bytes -= pgbase; 366 npages = result; 367 } 368 369 for (i = 0; i < npages; i++) { 370 struct nfs_page *req; 371 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase); 372 /* XXX do we need to do the eof zeroing found in async_filler? */ 373 req = nfs_create_request(dreq->ctx, dreq->inode, 374 pagevec[i], 375 pgbase, req_len); 376 if (IS_ERR(req)) { 377 result = PTR_ERR(req); 378 break; 379 } 380 req->wb_index = pos >> PAGE_SHIFT; 381 req->wb_offset = pos & ~PAGE_MASK; 382 if (!nfs_pageio_add_request(desc, req)) { 383 result = desc->pg_error; 384 nfs_release_request(req); 385 break; 386 } 387 pgbase = 0; 388 bytes -= req_len; 389 started += req_len; 390 user_addr += req_len; 391 pos += req_len; 392 count -= req_len; 393 } 394 /* The nfs_page now hold references to these pages */ 395 nfs_direct_release_pages(pagevec, npages); 396 } while (count != 0 && result >= 0); 397 398 kfree(pagevec); 399 400 if (started) 401 return started; 402 return result < 0 ? (ssize_t) result : -EFAULT; 403 } 404 405 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq, 406 const struct iovec *iov, 407 unsigned long nr_segs, 408 loff_t pos, bool uio) 409 { 410 struct nfs_pageio_descriptor desc; 411 ssize_t result = -EINVAL; 412 size_t requested_bytes = 0; 413 unsigned long seg; 414 415 NFS_PROTO(dreq->inode)->read_pageio_init(&desc, dreq->inode, 416 &nfs_direct_read_completion_ops); 417 get_dreq(dreq); 418 desc.pg_dreq = dreq; 419 420 for (seg = 0; seg < nr_segs; seg++) { 421 const struct iovec *vec = &iov[seg]; 422 result = nfs_direct_read_schedule_segment(&desc, vec, pos, uio); 423 if (result < 0) 424 break; 425 requested_bytes += result; 426 if ((size_t)result < vec->iov_len) 427 break; 428 pos += vec->iov_len; 429 } 430 431 nfs_pageio_complete(&desc); 432 433 /* 434 * If no bytes were started, return the error, and let the 435 * generic layer handle the completion. 436 */ 437 if (requested_bytes == 0) { 438 nfs_direct_req_release(dreq); 439 return result < 0 ? result : -EIO; 440 } 441 442 if (put_dreq(dreq)) 443 nfs_direct_complete(dreq); 444 return 0; 445 } 446 447 static ssize_t nfs_direct_read(struct kiocb *iocb, const struct iovec *iov, 448 unsigned long nr_segs, loff_t pos, bool uio) 449 { 450 ssize_t result = -ENOMEM; 451 struct inode *inode = iocb->ki_filp->f_mapping->host; 452 struct nfs_direct_req *dreq; 453 454 dreq = nfs_direct_req_alloc(); 455 if (dreq == NULL) 456 goto out; 457 458 dreq->inode = inode; 459 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp)); 460 dreq->l_ctx = nfs_get_lock_context(dreq->ctx); 461 if (dreq->l_ctx == NULL) 462 goto out_release; 463 if (!is_sync_kiocb(iocb)) 464 dreq->iocb = iocb; 465 466 result = nfs_direct_read_schedule_iovec(dreq, iov, nr_segs, pos, uio); 467 if (!result) 468 result = nfs_direct_wait(dreq); 469 NFS_I(inode)->read_io += result; 470 out_release: 471 nfs_direct_req_release(dreq); 472 out: 473 return result; 474 } 475 476 static void nfs_inode_dio_write_done(struct inode *inode) 477 { 478 nfs_zap_mapping(inode, inode->i_mapping); 479 inode_dio_done(inode); 480 } 481 482 #if IS_ENABLED(CONFIG_NFS_V3) || IS_ENABLED(CONFIG_NFS_V4) 483 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq) 484 { 485 struct nfs_pageio_descriptor desc; 486 struct nfs_page *req, *tmp; 487 LIST_HEAD(reqs); 488 struct nfs_commit_info cinfo; 489 LIST_HEAD(failed); 490 491 nfs_init_cinfo_from_dreq(&cinfo, dreq); 492 pnfs_recover_commit_reqs(dreq->inode, &reqs, &cinfo); 493 spin_lock(cinfo.lock); 494 nfs_scan_commit_list(&cinfo.mds->list, &reqs, &cinfo, 0); 495 spin_unlock(cinfo.lock); 496 497 dreq->count = 0; 498 get_dreq(dreq); 499 500 NFS_PROTO(dreq->inode)->write_pageio_init(&desc, dreq->inode, FLUSH_STABLE, 501 &nfs_direct_write_completion_ops); 502 desc.pg_dreq = dreq; 503 504 list_for_each_entry_safe(req, tmp, &reqs, wb_list) { 505 if (!nfs_pageio_add_request(&desc, req)) { 506 nfs_list_remove_request(req); 507 nfs_list_add_request(req, &failed); 508 spin_lock(cinfo.lock); 509 dreq->flags = 0; 510 dreq->error = -EIO; 511 spin_unlock(cinfo.lock); 512 } 513 nfs_release_request(req); 514 } 515 nfs_pageio_complete(&desc); 516 517 while (!list_empty(&failed)) { 518 req = nfs_list_entry(failed.next); 519 nfs_list_remove_request(req); 520 nfs_unlock_and_release_request(req); 521 } 522 523 if (put_dreq(dreq)) 524 nfs_direct_write_complete(dreq, dreq->inode); 525 } 526 527 static void nfs_direct_commit_complete(struct nfs_commit_data *data) 528 { 529 struct nfs_direct_req *dreq = data->dreq; 530 struct nfs_commit_info cinfo; 531 struct nfs_page *req; 532 int status = data->task.tk_status; 533 534 nfs_init_cinfo_from_dreq(&cinfo, dreq); 535 if (status < 0) { 536 dprintk("NFS: %5u commit failed with error %d.\n", 537 data->task.tk_pid, status); 538 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 539 } else if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) { 540 dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid); 541 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 542 } 543 544 dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status); 545 while (!list_empty(&data->pages)) { 546 req = nfs_list_entry(data->pages.next); 547 nfs_list_remove_request(req); 548 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) { 549 /* Note the rewrite will go through mds */ 550 nfs_mark_request_commit(req, NULL, &cinfo); 551 } else 552 nfs_release_request(req); 553 nfs_unlock_and_release_request(req); 554 } 555 556 if (atomic_dec_and_test(&cinfo.mds->rpcs_out)) 557 nfs_direct_write_complete(dreq, data->inode); 558 } 559 560 static void nfs_direct_error_cleanup(struct nfs_inode *nfsi) 561 { 562 /* There is no lock to clear */ 563 } 564 565 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = { 566 .completion = nfs_direct_commit_complete, 567 .error_cleanup = nfs_direct_error_cleanup, 568 }; 569 570 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq) 571 { 572 int res; 573 struct nfs_commit_info cinfo; 574 LIST_HEAD(mds_list); 575 576 nfs_init_cinfo_from_dreq(&cinfo, dreq); 577 nfs_scan_commit(dreq->inode, &mds_list, &cinfo); 578 res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo); 579 if (res < 0) /* res == -ENOMEM */ 580 nfs_direct_write_reschedule(dreq); 581 } 582 583 static void nfs_direct_write_schedule_work(struct work_struct *work) 584 { 585 struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work); 586 int flags = dreq->flags; 587 588 dreq->flags = 0; 589 switch (flags) { 590 case NFS_ODIRECT_DO_COMMIT: 591 nfs_direct_commit_schedule(dreq); 592 break; 593 case NFS_ODIRECT_RESCHED_WRITES: 594 nfs_direct_write_reschedule(dreq); 595 break; 596 default: 597 nfs_inode_dio_write_done(dreq->inode); 598 nfs_direct_complete(dreq); 599 } 600 } 601 602 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode) 603 { 604 schedule_work(&dreq->work); /* Calls nfs_direct_write_schedule_work */ 605 } 606 607 #else 608 static void nfs_direct_write_schedule_work(struct work_struct *work) 609 { 610 } 611 612 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode) 613 { 614 nfs_inode_dio_write_done(inode); 615 nfs_direct_complete(dreq); 616 } 617 #endif 618 619 /* 620 * NB: Return the value of the first error return code. Subsequent 621 * errors after the first one are ignored. 622 */ 623 /* 624 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE 625 * operation. If nfs_writedata_alloc() or get_user_pages() fails, 626 * bail and stop sending more writes. Write length accounting is 627 * handled automatically by nfs_direct_write_result(). Otherwise, if 628 * no requests have been sent, just return an error. 629 */ 630 static ssize_t nfs_direct_write_schedule_segment(struct nfs_pageio_descriptor *desc, 631 const struct iovec *iov, 632 loff_t pos, bool uio) 633 { 634 struct nfs_direct_req *dreq = desc->pg_dreq; 635 struct nfs_open_context *ctx = dreq->ctx; 636 struct inode *inode = ctx->dentry->d_inode; 637 unsigned long user_addr = (unsigned long)iov->iov_base; 638 size_t count = iov->iov_len; 639 size_t wsize = NFS_SERVER(inode)->wsize; 640 unsigned int pgbase; 641 int result; 642 ssize_t started = 0; 643 struct page **pagevec = NULL; 644 unsigned int npages; 645 646 do { 647 size_t bytes; 648 int i; 649 650 pgbase = user_addr & ~PAGE_MASK; 651 bytes = min(max_t(size_t, wsize, PAGE_SIZE), count); 652 653 result = -ENOMEM; 654 npages = nfs_page_array_len(pgbase, bytes); 655 if (!pagevec) 656 pagevec = kmalloc(npages * sizeof(struct page *), GFP_KERNEL); 657 if (!pagevec) 658 break; 659 660 if (uio) { 661 down_read(¤t->mm->mmap_sem); 662 result = get_user_pages(current, current->mm, user_addr, 663 npages, 0, 0, pagevec, NULL); 664 up_read(¤t->mm->mmap_sem); 665 if (result < 0) 666 break; 667 } else { 668 WARN_ON(npages != 1); 669 result = get_kernel_page(user_addr, 0, pagevec); 670 if (WARN_ON(result != 1)) 671 break; 672 } 673 674 if ((unsigned)result < npages) { 675 bytes = result * PAGE_SIZE; 676 if (bytes <= pgbase) { 677 nfs_direct_release_pages(pagevec, result); 678 break; 679 } 680 bytes -= pgbase; 681 npages = result; 682 } 683 684 for (i = 0; i < npages; i++) { 685 struct nfs_page *req; 686 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase); 687 688 req = nfs_create_request(dreq->ctx, dreq->inode, 689 pagevec[i], 690 pgbase, req_len); 691 if (IS_ERR(req)) { 692 result = PTR_ERR(req); 693 break; 694 } 695 nfs_lock_request(req); 696 req->wb_index = pos >> PAGE_SHIFT; 697 req->wb_offset = pos & ~PAGE_MASK; 698 if (!nfs_pageio_add_request(desc, req)) { 699 result = desc->pg_error; 700 nfs_unlock_and_release_request(req); 701 break; 702 } 703 pgbase = 0; 704 bytes -= req_len; 705 started += req_len; 706 user_addr += req_len; 707 pos += req_len; 708 count -= req_len; 709 } 710 /* The nfs_page now hold references to these pages */ 711 nfs_direct_release_pages(pagevec, npages); 712 } while (count != 0 && result >= 0); 713 714 kfree(pagevec); 715 716 if (started) 717 return started; 718 return result < 0 ? (ssize_t) result : -EFAULT; 719 } 720 721 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr) 722 { 723 struct nfs_direct_req *dreq = hdr->dreq; 724 struct nfs_commit_info cinfo; 725 int bit = -1; 726 struct nfs_page *req = nfs_list_entry(hdr->pages.next); 727 728 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) 729 goto out_put; 730 731 nfs_init_cinfo_from_dreq(&cinfo, dreq); 732 733 spin_lock(&dreq->lock); 734 735 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) { 736 dreq->flags = 0; 737 dreq->error = hdr->error; 738 } 739 if (dreq->error != 0) 740 bit = NFS_IOHDR_ERROR; 741 else { 742 dreq->count += hdr->good_bytes; 743 if (test_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags)) { 744 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 745 bit = NFS_IOHDR_NEED_RESCHED; 746 } else if (test_bit(NFS_IOHDR_NEED_COMMIT, &hdr->flags)) { 747 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) 748 bit = NFS_IOHDR_NEED_RESCHED; 749 else if (dreq->flags == 0) { 750 memcpy(&dreq->verf, hdr->verf, 751 sizeof(dreq->verf)); 752 bit = NFS_IOHDR_NEED_COMMIT; 753 dreq->flags = NFS_ODIRECT_DO_COMMIT; 754 } else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) { 755 if (memcmp(&dreq->verf, hdr->verf, sizeof(dreq->verf))) { 756 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 757 bit = NFS_IOHDR_NEED_RESCHED; 758 } else 759 bit = NFS_IOHDR_NEED_COMMIT; 760 } 761 } 762 } 763 spin_unlock(&dreq->lock); 764 765 while (!list_empty(&hdr->pages)) { 766 req = nfs_list_entry(hdr->pages.next); 767 nfs_list_remove_request(req); 768 switch (bit) { 769 case NFS_IOHDR_NEED_RESCHED: 770 case NFS_IOHDR_NEED_COMMIT: 771 kref_get(&req->wb_kref); 772 nfs_mark_request_commit(req, hdr->lseg, &cinfo); 773 } 774 nfs_unlock_and_release_request(req); 775 } 776 777 out_put: 778 if (put_dreq(dreq)) 779 nfs_direct_write_complete(dreq, hdr->inode); 780 hdr->release(hdr); 781 } 782 783 static void nfs_write_sync_pgio_error(struct list_head *head) 784 { 785 struct nfs_page *req; 786 787 while (!list_empty(head)) { 788 req = nfs_list_entry(head->next); 789 nfs_list_remove_request(req); 790 nfs_unlock_and_release_request(req); 791 } 792 } 793 794 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = { 795 .error_cleanup = nfs_write_sync_pgio_error, 796 .init_hdr = nfs_direct_pgio_init, 797 .completion = nfs_direct_write_completion, 798 }; 799 800 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq, 801 const struct iovec *iov, 802 unsigned long nr_segs, 803 loff_t pos, bool uio) 804 { 805 struct nfs_pageio_descriptor desc; 806 struct inode *inode = dreq->inode; 807 ssize_t result = 0; 808 size_t requested_bytes = 0; 809 unsigned long seg; 810 811 NFS_PROTO(inode)->write_pageio_init(&desc, inode, FLUSH_COND_STABLE, 812 &nfs_direct_write_completion_ops); 813 desc.pg_dreq = dreq; 814 get_dreq(dreq); 815 atomic_inc(&inode->i_dio_count); 816 817 for (seg = 0; seg < nr_segs; seg++) { 818 const struct iovec *vec = &iov[seg]; 819 result = nfs_direct_write_schedule_segment(&desc, vec, pos, uio); 820 if (result < 0) 821 break; 822 requested_bytes += result; 823 if ((size_t)result < vec->iov_len) 824 break; 825 pos += vec->iov_len; 826 } 827 nfs_pageio_complete(&desc); 828 NFS_I(dreq->inode)->write_io += desc.pg_bytes_written; 829 830 /* 831 * If no bytes were started, return the error, and let the 832 * generic layer handle the completion. 833 */ 834 if (requested_bytes == 0) { 835 inode_dio_done(inode); 836 nfs_direct_req_release(dreq); 837 return result < 0 ? result : -EIO; 838 } 839 840 if (put_dreq(dreq)) 841 nfs_direct_write_complete(dreq, dreq->inode); 842 return 0; 843 } 844 845 static ssize_t nfs_direct_write(struct kiocb *iocb, const struct iovec *iov, 846 unsigned long nr_segs, loff_t pos, 847 size_t count, bool uio) 848 { 849 ssize_t result = -ENOMEM; 850 struct inode *inode = iocb->ki_filp->f_mapping->host; 851 struct nfs_direct_req *dreq; 852 853 dreq = nfs_direct_req_alloc(); 854 if (!dreq) 855 goto out; 856 857 dreq->inode = inode; 858 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp)); 859 dreq->l_ctx = nfs_get_lock_context(dreq->ctx); 860 if (dreq->l_ctx == NULL) 861 goto out_release; 862 if (!is_sync_kiocb(iocb)) 863 dreq->iocb = iocb; 864 865 result = nfs_direct_write_schedule_iovec(dreq, iov, nr_segs, pos, uio); 866 if (!result) 867 result = nfs_direct_wait(dreq); 868 out_release: 869 nfs_direct_req_release(dreq); 870 out: 871 return result; 872 } 873 874 /** 875 * nfs_file_direct_read - file direct read operation for NFS files 876 * @iocb: target I/O control block 877 * @iov: vector of user buffers into which to read data 878 * @nr_segs: size of iov vector 879 * @pos: byte offset in file where reading starts 880 * 881 * We use this function for direct reads instead of calling 882 * generic_file_aio_read() in order to avoid gfar's check to see if 883 * the request starts before the end of the file. For that check 884 * to work, we must generate a GETATTR before each direct read, and 885 * even then there is a window between the GETATTR and the subsequent 886 * READ where the file size could change. Our preference is simply 887 * to do all reads the application wants, and the server will take 888 * care of managing the end of file boundary. 889 * 890 * This function also eliminates unnecessarily updating the file's 891 * atime locally, as the NFS server sets the file's atime, and this 892 * client must read the updated atime from the server back into its 893 * cache. 894 */ 895 ssize_t nfs_file_direct_read(struct kiocb *iocb, const struct iovec *iov, 896 unsigned long nr_segs, loff_t pos, bool uio) 897 { 898 ssize_t retval = -EINVAL; 899 struct file *file = iocb->ki_filp; 900 struct address_space *mapping = file->f_mapping; 901 size_t count; 902 903 count = iov_length(iov, nr_segs); 904 nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count); 905 906 dfprintk(FILE, "NFS: direct read(%s/%s, %zd@%Ld)\n", 907 file->f_path.dentry->d_parent->d_name.name, 908 file->f_path.dentry->d_name.name, 909 count, (long long) pos); 910 911 retval = 0; 912 if (!count) 913 goto out; 914 915 retval = nfs_sync_mapping(mapping); 916 if (retval) 917 goto out; 918 919 task_io_account_read(count); 920 921 retval = nfs_direct_read(iocb, iov, nr_segs, pos, uio); 922 if (retval > 0) 923 iocb->ki_pos = pos + retval; 924 925 out: 926 return retval; 927 } 928 929 /** 930 * nfs_file_direct_write - file direct write operation for NFS files 931 * @iocb: target I/O control block 932 * @iov: vector of user buffers from which to write data 933 * @nr_segs: size of iov vector 934 * @pos: byte offset in file where writing starts 935 * 936 * We use this function for direct writes instead of calling 937 * generic_file_aio_write() in order to avoid taking the inode 938 * semaphore and updating the i_size. The NFS server will set 939 * the new i_size and this client must read the updated size 940 * back into its cache. We let the server do generic write 941 * parameter checking and report problems. 942 * 943 * We eliminate local atime updates, see direct read above. 944 * 945 * We avoid unnecessary page cache invalidations for normal cached 946 * readers of this file. 947 * 948 * Note that O_APPEND is not supported for NFS direct writes, as there 949 * is no atomic O_APPEND write facility in the NFS protocol. 950 */ 951 ssize_t nfs_file_direct_write(struct kiocb *iocb, const struct iovec *iov, 952 unsigned long nr_segs, loff_t pos, bool uio) 953 { 954 ssize_t retval = -EINVAL; 955 struct file *file = iocb->ki_filp; 956 struct address_space *mapping = file->f_mapping; 957 size_t count; 958 959 count = iov_length(iov, nr_segs); 960 nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count); 961 962 dfprintk(FILE, "NFS: direct write(%s/%s, %zd@%Ld)\n", 963 file->f_path.dentry->d_parent->d_name.name, 964 file->f_path.dentry->d_name.name, 965 count, (long long) pos); 966 967 retval = generic_write_checks(file, &pos, &count, 0); 968 if (retval) 969 goto out; 970 971 retval = -EINVAL; 972 if ((ssize_t) count < 0) 973 goto out; 974 retval = 0; 975 if (!count) 976 goto out; 977 978 retval = nfs_sync_mapping(mapping); 979 if (retval) 980 goto out; 981 982 task_io_account_write(count); 983 984 retval = nfs_direct_write(iocb, iov, nr_segs, pos, count, uio); 985 if (retval > 0) { 986 struct inode *inode = mapping->host; 987 988 iocb->ki_pos = pos + retval; 989 spin_lock(&inode->i_lock); 990 if (i_size_read(inode) < iocb->ki_pos) 991 i_size_write(inode, iocb->ki_pos); 992 spin_unlock(&inode->i_lock); 993 } 994 out: 995 return retval; 996 } 997 998 /** 999 * nfs_init_directcache - create a slab cache for nfs_direct_req structures 1000 * 1001 */ 1002 int __init nfs_init_directcache(void) 1003 { 1004 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache", 1005 sizeof(struct nfs_direct_req), 1006 0, (SLAB_RECLAIM_ACCOUNT| 1007 SLAB_MEM_SPREAD), 1008 NULL); 1009 if (nfs_direct_cachep == NULL) 1010 return -ENOMEM; 1011 1012 return 0; 1013 } 1014 1015 /** 1016 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures 1017 * 1018 */ 1019 void nfs_destroy_directcache(void) 1020 { 1021 kmem_cache_destroy(nfs_direct_cachep); 1022 } 1023