xref: /openbmc/linux/fs/nfs/direct.c (revision 95e9fd10)
1 /*
2  * linux/fs/nfs/direct.c
3  *
4  * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
5  *
6  * High-performance uncached I/O for the Linux NFS client
7  *
8  * There are important applications whose performance or correctness
9  * depends on uncached access to file data.  Database clusters
10  * (multiple copies of the same instance running on separate hosts)
11  * implement their own cache coherency protocol that subsumes file
12  * system cache protocols.  Applications that process datasets
13  * considerably larger than the client's memory do not always benefit
14  * from a local cache.  A streaming video server, for instance, has no
15  * need to cache the contents of a file.
16  *
17  * When an application requests uncached I/O, all read and write requests
18  * are made directly to the server; data stored or fetched via these
19  * requests is not cached in the Linux page cache.  The client does not
20  * correct unaligned requests from applications.  All requested bytes are
21  * held on permanent storage before a direct write system call returns to
22  * an application.
23  *
24  * Solaris implements an uncached I/O facility called directio() that
25  * is used for backups and sequential I/O to very large files.  Solaris
26  * also supports uncaching whole NFS partitions with "-o forcedirectio,"
27  * an undocumented mount option.
28  *
29  * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
30  * help from Andrew Morton.
31  *
32  * 18 Dec 2001	Initial implementation for 2.4  --cel
33  * 08 Jul 2002	Version for 2.4.19, with bug fixes --trondmy
34  * 08 Jun 2003	Port to 2.5 APIs  --cel
35  * 31 Mar 2004	Handle direct I/O without VFS support  --cel
36  * 15 Sep 2004	Parallel async reads  --cel
37  * 04 May 2005	support O_DIRECT with aio  --cel
38  *
39  */
40 
41 #include <linux/errno.h>
42 #include <linux/sched.h>
43 #include <linux/kernel.h>
44 #include <linux/file.h>
45 #include <linux/pagemap.h>
46 #include <linux/kref.h>
47 #include <linux/slab.h>
48 #include <linux/task_io_accounting_ops.h>
49 
50 #include <linux/nfs_fs.h>
51 #include <linux/nfs_page.h>
52 #include <linux/sunrpc/clnt.h>
53 
54 #include <asm/uaccess.h>
55 #include <linux/atomic.h>
56 
57 #include "internal.h"
58 #include "iostat.h"
59 #include "pnfs.h"
60 
61 #define NFSDBG_FACILITY		NFSDBG_VFS
62 
63 static struct kmem_cache *nfs_direct_cachep;
64 
65 /*
66  * This represents a set of asynchronous requests that we're waiting on
67  */
68 struct nfs_direct_req {
69 	struct kref		kref;		/* release manager */
70 
71 	/* I/O parameters */
72 	struct nfs_open_context	*ctx;		/* file open context info */
73 	struct nfs_lock_context *l_ctx;		/* Lock context info */
74 	struct kiocb *		iocb;		/* controlling i/o request */
75 	struct inode *		inode;		/* target file of i/o */
76 
77 	/* completion state */
78 	atomic_t		io_count;	/* i/os we're waiting for */
79 	spinlock_t		lock;		/* protect completion state */
80 	ssize_t			count,		/* bytes actually processed */
81 				error;		/* any reported error */
82 	struct completion	completion;	/* wait for i/o completion */
83 
84 	/* commit state */
85 	struct nfs_mds_commit_info mds_cinfo;	/* Storage for cinfo */
86 	struct pnfs_ds_commit_info ds_cinfo;	/* Storage for cinfo */
87 	struct work_struct	work;
88 	int			flags;
89 #define NFS_ODIRECT_DO_COMMIT		(1)	/* an unstable reply was received */
90 #define NFS_ODIRECT_RESCHED_WRITES	(2)	/* write verification failed */
91 	struct nfs_writeverf	verf;		/* unstable write verifier */
92 };
93 
94 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
95 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
96 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
97 static void nfs_direct_write_schedule_work(struct work_struct *work);
98 
99 static inline void get_dreq(struct nfs_direct_req *dreq)
100 {
101 	atomic_inc(&dreq->io_count);
102 }
103 
104 static inline int put_dreq(struct nfs_direct_req *dreq)
105 {
106 	return atomic_dec_and_test(&dreq->io_count);
107 }
108 
109 /**
110  * nfs_direct_IO - NFS address space operation for direct I/O
111  * @rw: direction (read or write)
112  * @iocb: target I/O control block
113  * @iov: array of vectors that define I/O buffer
114  * @pos: offset in file to begin the operation
115  * @nr_segs: size of iovec array
116  *
117  * The presence of this routine in the address space ops vector means
118  * the NFS client supports direct I/O. However, for most direct IO, we
119  * shunt off direct read and write requests before the VFS gets them,
120  * so this method is only ever called for swap.
121  */
122 ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs)
123 {
124 #ifndef CONFIG_NFS_SWAP
125 	dprintk("NFS: nfs_direct_IO (%s) off/no(%Ld/%lu) EINVAL\n",
126 			iocb->ki_filp->f_path.dentry->d_name.name,
127 			(long long) pos, nr_segs);
128 
129 	return -EINVAL;
130 #else
131 	VM_BUG_ON(iocb->ki_left != PAGE_SIZE);
132 	VM_BUG_ON(iocb->ki_nbytes != PAGE_SIZE);
133 
134 	if (rw == READ || rw == KERNEL_READ)
135 		return nfs_file_direct_read(iocb, iov, nr_segs, pos,
136 				rw == READ ? true : false);
137 	return nfs_file_direct_write(iocb, iov, nr_segs, pos,
138 				rw == WRITE ? true : false);
139 #endif /* CONFIG_NFS_SWAP */
140 }
141 
142 static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
143 {
144 	unsigned int i;
145 	for (i = 0; i < npages; i++)
146 		page_cache_release(pages[i]);
147 }
148 
149 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
150 			      struct nfs_direct_req *dreq)
151 {
152 	cinfo->lock = &dreq->lock;
153 	cinfo->mds = &dreq->mds_cinfo;
154 	cinfo->ds = &dreq->ds_cinfo;
155 	cinfo->dreq = dreq;
156 	cinfo->completion_ops = &nfs_direct_commit_completion_ops;
157 }
158 
159 static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
160 {
161 	struct nfs_direct_req *dreq;
162 
163 	dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
164 	if (!dreq)
165 		return NULL;
166 
167 	kref_init(&dreq->kref);
168 	kref_get(&dreq->kref);
169 	init_completion(&dreq->completion);
170 	INIT_LIST_HEAD(&dreq->mds_cinfo.list);
171 	INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
172 	spin_lock_init(&dreq->lock);
173 
174 	return dreq;
175 }
176 
177 static void nfs_direct_req_free(struct kref *kref)
178 {
179 	struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
180 
181 	if (dreq->l_ctx != NULL)
182 		nfs_put_lock_context(dreq->l_ctx);
183 	if (dreq->ctx != NULL)
184 		put_nfs_open_context(dreq->ctx);
185 	kmem_cache_free(nfs_direct_cachep, dreq);
186 }
187 
188 static void nfs_direct_req_release(struct nfs_direct_req *dreq)
189 {
190 	kref_put(&dreq->kref, nfs_direct_req_free);
191 }
192 
193 /*
194  * Collects and returns the final error value/byte-count.
195  */
196 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
197 {
198 	ssize_t result = -EIOCBQUEUED;
199 
200 	/* Async requests don't wait here */
201 	if (dreq->iocb)
202 		goto out;
203 
204 	result = wait_for_completion_killable(&dreq->completion);
205 
206 	if (!result)
207 		result = dreq->error;
208 	if (!result)
209 		result = dreq->count;
210 
211 out:
212 	return (ssize_t) result;
213 }
214 
215 /*
216  * Synchronous I/O uses a stack-allocated iocb.  Thus we can't trust
217  * the iocb is still valid here if this is a synchronous request.
218  */
219 static void nfs_direct_complete(struct nfs_direct_req *dreq)
220 {
221 	if (dreq->iocb) {
222 		long res = (long) dreq->error;
223 		if (!res)
224 			res = (long) dreq->count;
225 		aio_complete(dreq->iocb, res, 0);
226 	}
227 	complete_all(&dreq->completion);
228 
229 	nfs_direct_req_release(dreq);
230 }
231 
232 static void nfs_direct_readpage_release(struct nfs_page *req)
233 {
234 	dprintk("NFS: direct read done (%s/%lld %d@%lld)\n",
235 		req->wb_context->dentry->d_inode->i_sb->s_id,
236 		(long long)NFS_FILEID(req->wb_context->dentry->d_inode),
237 		req->wb_bytes,
238 		(long long)req_offset(req));
239 	nfs_release_request(req);
240 }
241 
242 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
243 {
244 	unsigned long bytes = 0;
245 	struct nfs_direct_req *dreq = hdr->dreq;
246 
247 	if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
248 		goto out_put;
249 
250 	spin_lock(&dreq->lock);
251 	if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0))
252 		dreq->error = hdr->error;
253 	else
254 		dreq->count += hdr->good_bytes;
255 	spin_unlock(&dreq->lock);
256 
257 	while (!list_empty(&hdr->pages)) {
258 		struct nfs_page *req = nfs_list_entry(hdr->pages.next);
259 		struct page *page = req->wb_page;
260 
261 		if (test_bit(NFS_IOHDR_EOF, &hdr->flags)) {
262 			if (bytes > hdr->good_bytes)
263 				zero_user(page, 0, PAGE_SIZE);
264 			else if (hdr->good_bytes - bytes < PAGE_SIZE)
265 				zero_user_segment(page,
266 					hdr->good_bytes & ~PAGE_MASK,
267 					PAGE_SIZE);
268 		}
269 		if (!PageCompound(page)) {
270 			if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
271 				if (bytes < hdr->good_bytes)
272 					set_page_dirty(page);
273 			} else
274 				set_page_dirty(page);
275 		}
276 		bytes += req->wb_bytes;
277 		nfs_list_remove_request(req);
278 		nfs_direct_readpage_release(req);
279 	}
280 out_put:
281 	if (put_dreq(dreq))
282 		nfs_direct_complete(dreq);
283 	hdr->release(hdr);
284 }
285 
286 static void nfs_read_sync_pgio_error(struct list_head *head)
287 {
288 	struct nfs_page *req;
289 
290 	while (!list_empty(head)) {
291 		req = nfs_list_entry(head->next);
292 		nfs_list_remove_request(req);
293 		nfs_release_request(req);
294 	}
295 }
296 
297 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
298 {
299 	get_dreq(hdr->dreq);
300 }
301 
302 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
303 	.error_cleanup = nfs_read_sync_pgio_error,
304 	.init_hdr = nfs_direct_pgio_init,
305 	.completion = nfs_direct_read_completion,
306 };
307 
308 /*
309  * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
310  * operation.  If nfs_readdata_alloc() or get_user_pages() fails,
311  * bail and stop sending more reads.  Read length accounting is
312  * handled automatically by nfs_direct_read_result().  Otherwise, if
313  * no requests have been sent, just return an error.
314  */
315 static ssize_t nfs_direct_read_schedule_segment(struct nfs_pageio_descriptor *desc,
316 						const struct iovec *iov,
317 						loff_t pos, bool uio)
318 {
319 	struct nfs_direct_req *dreq = desc->pg_dreq;
320 	struct nfs_open_context *ctx = dreq->ctx;
321 	struct inode *inode = ctx->dentry->d_inode;
322 	unsigned long user_addr = (unsigned long)iov->iov_base;
323 	size_t count = iov->iov_len;
324 	size_t rsize = NFS_SERVER(inode)->rsize;
325 	unsigned int pgbase;
326 	int result;
327 	ssize_t started = 0;
328 	struct page **pagevec = NULL;
329 	unsigned int npages;
330 
331 	do {
332 		size_t bytes;
333 		int i;
334 
335 		pgbase = user_addr & ~PAGE_MASK;
336 		bytes = min(max_t(size_t, rsize, PAGE_SIZE), count);
337 
338 		result = -ENOMEM;
339 		npages = nfs_page_array_len(pgbase, bytes);
340 		if (!pagevec)
341 			pagevec = kmalloc(npages * sizeof(struct page *),
342 					  GFP_KERNEL);
343 		if (!pagevec)
344 			break;
345 		if (uio) {
346 			down_read(&current->mm->mmap_sem);
347 			result = get_user_pages(current, current->mm, user_addr,
348 					npages, 1, 0, pagevec, NULL);
349 			up_read(&current->mm->mmap_sem);
350 			if (result < 0)
351 				break;
352 		} else {
353 			WARN_ON(npages != 1);
354 			result = get_kernel_page(user_addr, 1, pagevec);
355 			if (WARN_ON(result != 1))
356 				break;
357 		}
358 
359 		if ((unsigned)result < npages) {
360 			bytes = result * PAGE_SIZE;
361 			if (bytes <= pgbase) {
362 				nfs_direct_release_pages(pagevec, result);
363 				break;
364 			}
365 			bytes -= pgbase;
366 			npages = result;
367 		}
368 
369 		for (i = 0; i < npages; i++) {
370 			struct nfs_page *req;
371 			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
372 			/* XXX do we need to do the eof zeroing found in async_filler? */
373 			req = nfs_create_request(dreq->ctx, dreq->inode,
374 						 pagevec[i],
375 						 pgbase, req_len);
376 			if (IS_ERR(req)) {
377 				result = PTR_ERR(req);
378 				break;
379 			}
380 			req->wb_index = pos >> PAGE_SHIFT;
381 			req->wb_offset = pos & ~PAGE_MASK;
382 			if (!nfs_pageio_add_request(desc, req)) {
383 				result = desc->pg_error;
384 				nfs_release_request(req);
385 				break;
386 			}
387 			pgbase = 0;
388 			bytes -= req_len;
389 			started += req_len;
390 			user_addr += req_len;
391 			pos += req_len;
392 			count -= req_len;
393 		}
394 		/* The nfs_page now hold references to these pages */
395 		nfs_direct_release_pages(pagevec, npages);
396 	} while (count != 0 && result >= 0);
397 
398 	kfree(pagevec);
399 
400 	if (started)
401 		return started;
402 	return result < 0 ? (ssize_t) result : -EFAULT;
403 }
404 
405 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
406 					      const struct iovec *iov,
407 					      unsigned long nr_segs,
408 					      loff_t pos, bool uio)
409 {
410 	struct nfs_pageio_descriptor desc;
411 	ssize_t result = -EINVAL;
412 	size_t requested_bytes = 0;
413 	unsigned long seg;
414 
415 	NFS_PROTO(dreq->inode)->read_pageio_init(&desc, dreq->inode,
416 			     &nfs_direct_read_completion_ops);
417 	get_dreq(dreq);
418 	desc.pg_dreq = dreq;
419 
420 	for (seg = 0; seg < nr_segs; seg++) {
421 		const struct iovec *vec = &iov[seg];
422 		result = nfs_direct_read_schedule_segment(&desc, vec, pos, uio);
423 		if (result < 0)
424 			break;
425 		requested_bytes += result;
426 		if ((size_t)result < vec->iov_len)
427 			break;
428 		pos += vec->iov_len;
429 	}
430 
431 	nfs_pageio_complete(&desc);
432 
433 	/*
434 	 * If no bytes were started, return the error, and let the
435 	 * generic layer handle the completion.
436 	 */
437 	if (requested_bytes == 0) {
438 		nfs_direct_req_release(dreq);
439 		return result < 0 ? result : -EIO;
440 	}
441 
442 	if (put_dreq(dreq))
443 		nfs_direct_complete(dreq);
444 	return 0;
445 }
446 
447 static ssize_t nfs_direct_read(struct kiocb *iocb, const struct iovec *iov,
448 			       unsigned long nr_segs, loff_t pos, bool uio)
449 {
450 	ssize_t result = -ENOMEM;
451 	struct inode *inode = iocb->ki_filp->f_mapping->host;
452 	struct nfs_direct_req *dreq;
453 
454 	dreq = nfs_direct_req_alloc();
455 	if (dreq == NULL)
456 		goto out;
457 
458 	dreq->inode = inode;
459 	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
460 	dreq->l_ctx = nfs_get_lock_context(dreq->ctx);
461 	if (dreq->l_ctx == NULL)
462 		goto out_release;
463 	if (!is_sync_kiocb(iocb))
464 		dreq->iocb = iocb;
465 
466 	result = nfs_direct_read_schedule_iovec(dreq, iov, nr_segs, pos, uio);
467 	if (!result)
468 		result = nfs_direct_wait(dreq);
469 	NFS_I(inode)->read_io += result;
470 out_release:
471 	nfs_direct_req_release(dreq);
472 out:
473 	return result;
474 }
475 
476 static void nfs_inode_dio_write_done(struct inode *inode)
477 {
478 	nfs_zap_mapping(inode, inode->i_mapping);
479 	inode_dio_done(inode);
480 }
481 
482 #if IS_ENABLED(CONFIG_NFS_V3) || IS_ENABLED(CONFIG_NFS_V4)
483 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
484 {
485 	struct nfs_pageio_descriptor desc;
486 	struct nfs_page *req, *tmp;
487 	LIST_HEAD(reqs);
488 	struct nfs_commit_info cinfo;
489 	LIST_HEAD(failed);
490 
491 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
492 	pnfs_recover_commit_reqs(dreq->inode, &reqs, &cinfo);
493 	spin_lock(cinfo.lock);
494 	nfs_scan_commit_list(&cinfo.mds->list, &reqs, &cinfo, 0);
495 	spin_unlock(cinfo.lock);
496 
497 	dreq->count = 0;
498 	get_dreq(dreq);
499 
500 	NFS_PROTO(dreq->inode)->write_pageio_init(&desc, dreq->inode, FLUSH_STABLE,
501 			      &nfs_direct_write_completion_ops);
502 	desc.pg_dreq = dreq;
503 
504 	list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
505 		if (!nfs_pageio_add_request(&desc, req)) {
506 			nfs_list_remove_request(req);
507 			nfs_list_add_request(req, &failed);
508 			spin_lock(cinfo.lock);
509 			dreq->flags = 0;
510 			dreq->error = -EIO;
511 			spin_unlock(cinfo.lock);
512 		}
513 		nfs_release_request(req);
514 	}
515 	nfs_pageio_complete(&desc);
516 
517 	while (!list_empty(&failed)) {
518 		req = nfs_list_entry(failed.next);
519 		nfs_list_remove_request(req);
520 		nfs_unlock_and_release_request(req);
521 	}
522 
523 	if (put_dreq(dreq))
524 		nfs_direct_write_complete(dreq, dreq->inode);
525 }
526 
527 static void nfs_direct_commit_complete(struct nfs_commit_data *data)
528 {
529 	struct nfs_direct_req *dreq = data->dreq;
530 	struct nfs_commit_info cinfo;
531 	struct nfs_page *req;
532 	int status = data->task.tk_status;
533 
534 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
535 	if (status < 0) {
536 		dprintk("NFS: %5u commit failed with error %d.\n",
537 			data->task.tk_pid, status);
538 		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
539 	} else if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) {
540 		dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid);
541 		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
542 	}
543 
544 	dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status);
545 	while (!list_empty(&data->pages)) {
546 		req = nfs_list_entry(data->pages.next);
547 		nfs_list_remove_request(req);
548 		if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) {
549 			/* Note the rewrite will go through mds */
550 			nfs_mark_request_commit(req, NULL, &cinfo);
551 		} else
552 			nfs_release_request(req);
553 		nfs_unlock_and_release_request(req);
554 	}
555 
556 	if (atomic_dec_and_test(&cinfo.mds->rpcs_out))
557 		nfs_direct_write_complete(dreq, data->inode);
558 }
559 
560 static void nfs_direct_error_cleanup(struct nfs_inode *nfsi)
561 {
562 	/* There is no lock to clear */
563 }
564 
565 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
566 	.completion = nfs_direct_commit_complete,
567 	.error_cleanup = nfs_direct_error_cleanup,
568 };
569 
570 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
571 {
572 	int res;
573 	struct nfs_commit_info cinfo;
574 	LIST_HEAD(mds_list);
575 
576 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
577 	nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
578 	res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
579 	if (res < 0) /* res == -ENOMEM */
580 		nfs_direct_write_reschedule(dreq);
581 }
582 
583 static void nfs_direct_write_schedule_work(struct work_struct *work)
584 {
585 	struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
586 	int flags = dreq->flags;
587 
588 	dreq->flags = 0;
589 	switch (flags) {
590 		case NFS_ODIRECT_DO_COMMIT:
591 			nfs_direct_commit_schedule(dreq);
592 			break;
593 		case NFS_ODIRECT_RESCHED_WRITES:
594 			nfs_direct_write_reschedule(dreq);
595 			break;
596 		default:
597 			nfs_inode_dio_write_done(dreq->inode);
598 			nfs_direct_complete(dreq);
599 	}
600 }
601 
602 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
603 {
604 	schedule_work(&dreq->work); /* Calls nfs_direct_write_schedule_work */
605 }
606 
607 #else
608 static void nfs_direct_write_schedule_work(struct work_struct *work)
609 {
610 }
611 
612 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
613 {
614 	nfs_inode_dio_write_done(inode);
615 	nfs_direct_complete(dreq);
616 }
617 #endif
618 
619 /*
620  * NB: Return the value of the first error return code.  Subsequent
621  *     errors after the first one are ignored.
622  */
623 /*
624  * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
625  * operation.  If nfs_writedata_alloc() or get_user_pages() fails,
626  * bail and stop sending more writes.  Write length accounting is
627  * handled automatically by nfs_direct_write_result().  Otherwise, if
628  * no requests have been sent, just return an error.
629  */
630 static ssize_t nfs_direct_write_schedule_segment(struct nfs_pageio_descriptor *desc,
631 						 const struct iovec *iov,
632 						 loff_t pos, bool uio)
633 {
634 	struct nfs_direct_req *dreq = desc->pg_dreq;
635 	struct nfs_open_context *ctx = dreq->ctx;
636 	struct inode *inode = ctx->dentry->d_inode;
637 	unsigned long user_addr = (unsigned long)iov->iov_base;
638 	size_t count = iov->iov_len;
639 	size_t wsize = NFS_SERVER(inode)->wsize;
640 	unsigned int pgbase;
641 	int result;
642 	ssize_t started = 0;
643 	struct page **pagevec = NULL;
644 	unsigned int npages;
645 
646 	do {
647 		size_t bytes;
648 		int i;
649 
650 		pgbase = user_addr & ~PAGE_MASK;
651 		bytes = min(max_t(size_t, wsize, PAGE_SIZE), count);
652 
653 		result = -ENOMEM;
654 		npages = nfs_page_array_len(pgbase, bytes);
655 		if (!pagevec)
656 			pagevec = kmalloc(npages * sizeof(struct page *), GFP_KERNEL);
657 		if (!pagevec)
658 			break;
659 
660 		if (uio) {
661 			down_read(&current->mm->mmap_sem);
662 			result = get_user_pages(current, current->mm, user_addr,
663 						npages, 0, 0, pagevec, NULL);
664 			up_read(&current->mm->mmap_sem);
665 			if (result < 0)
666 				break;
667 		} else {
668 			WARN_ON(npages != 1);
669 			result = get_kernel_page(user_addr, 0, pagevec);
670 			if (WARN_ON(result != 1))
671 				break;
672 		}
673 
674 		if ((unsigned)result < npages) {
675 			bytes = result * PAGE_SIZE;
676 			if (bytes <= pgbase) {
677 				nfs_direct_release_pages(pagevec, result);
678 				break;
679 			}
680 			bytes -= pgbase;
681 			npages = result;
682 		}
683 
684 		for (i = 0; i < npages; i++) {
685 			struct nfs_page *req;
686 			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
687 
688 			req = nfs_create_request(dreq->ctx, dreq->inode,
689 						 pagevec[i],
690 						 pgbase, req_len);
691 			if (IS_ERR(req)) {
692 				result = PTR_ERR(req);
693 				break;
694 			}
695 			nfs_lock_request(req);
696 			req->wb_index = pos >> PAGE_SHIFT;
697 			req->wb_offset = pos & ~PAGE_MASK;
698 			if (!nfs_pageio_add_request(desc, req)) {
699 				result = desc->pg_error;
700 				nfs_unlock_and_release_request(req);
701 				break;
702 			}
703 			pgbase = 0;
704 			bytes -= req_len;
705 			started += req_len;
706 			user_addr += req_len;
707 			pos += req_len;
708 			count -= req_len;
709 		}
710 		/* The nfs_page now hold references to these pages */
711 		nfs_direct_release_pages(pagevec, npages);
712 	} while (count != 0 && result >= 0);
713 
714 	kfree(pagevec);
715 
716 	if (started)
717 		return started;
718 	return result < 0 ? (ssize_t) result : -EFAULT;
719 }
720 
721 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
722 {
723 	struct nfs_direct_req *dreq = hdr->dreq;
724 	struct nfs_commit_info cinfo;
725 	int bit = -1;
726 	struct nfs_page *req = nfs_list_entry(hdr->pages.next);
727 
728 	if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
729 		goto out_put;
730 
731 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
732 
733 	spin_lock(&dreq->lock);
734 
735 	if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
736 		dreq->flags = 0;
737 		dreq->error = hdr->error;
738 	}
739 	if (dreq->error != 0)
740 		bit = NFS_IOHDR_ERROR;
741 	else {
742 		dreq->count += hdr->good_bytes;
743 		if (test_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags)) {
744 			dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
745 			bit = NFS_IOHDR_NEED_RESCHED;
746 		} else if (test_bit(NFS_IOHDR_NEED_COMMIT, &hdr->flags)) {
747 			if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES)
748 				bit = NFS_IOHDR_NEED_RESCHED;
749 			else if (dreq->flags == 0) {
750 				memcpy(&dreq->verf, hdr->verf,
751 				       sizeof(dreq->verf));
752 				bit = NFS_IOHDR_NEED_COMMIT;
753 				dreq->flags = NFS_ODIRECT_DO_COMMIT;
754 			} else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) {
755 				if (memcmp(&dreq->verf, hdr->verf, sizeof(dreq->verf))) {
756 					dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
757 					bit = NFS_IOHDR_NEED_RESCHED;
758 				} else
759 					bit = NFS_IOHDR_NEED_COMMIT;
760 			}
761 		}
762 	}
763 	spin_unlock(&dreq->lock);
764 
765 	while (!list_empty(&hdr->pages)) {
766 		req = nfs_list_entry(hdr->pages.next);
767 		nfs_list_remove_request(req);
768 		switch (bit) {
769 		case NFS_IOHDR_NEED_RESCHED:
770 		case NFS_IOHDR_NEED_COMMIT:
771 			kref_get(&req->wb_kref);
772 			nfs_mark_request_commit(req, hdr->lseg, &cinfo);
773 		}
774 		nfs_unlock_and_release_request(req);
775 	}
776 
777 out_put:
778 	if (put_dreq(dreq))
779 		nfs_direct_write_complete(dreq, hdr->inode);
780 	hdr->release(hdr);
781 }
782 
783 static void nfs_write_sync_pgio_error(struct list_head *head)
784 {
785 	struct nfs_page *req;
786 
787 	while (!list_empty(head)) {
788 		req = nfs_list_entry(head->next);
789 		nfs_list_remove_request(req);
790 		nfs_unlock_and_release_request(req);
791 	}
792 }
793 
794 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
795 	.error_cleanup = nfs_write_sync_pgio_error,
796 	.init_hdr = nfs_direct_pgio_init,
797 	.completion = nfs_direct_write_completion,
798 };
799 
800 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
801 					       const struct iovec *iov,
802 					       unsigned long nr_segs,
803 					       loff_t pos, bool uio)
804 {
805 	struct nfs_pageio_descriptor desc;
806 	struct inode *inode = dreq->inode;
807 	ssize_t result = 0;
808 	size_t requested_bytes = 0;
809 	unsigned long seg;
810 
811 	NFS_PROTO(inode)->write_pageio_init(&desc, inode, FLUSH_COND_STABLE,
812 			      &nfs_direct_write_completion_ops);
813 	desc.pg_dreq = dreq;
814 	get_dreq(dreq);
815 	atomic_inc(&inode->i_dio_count);
816 
817 	for (seg = 0; seg < nr_segs; seg++) {
818 		const struct iovec *vec = &iov[seg];
819 		result = nfs_direct_write_schedule_segment(&desc, vec, pos, uio);
820 		if (result < 0)
821 			break;
822 		requested_bytes += result;
823 		if ((size_t)result < vec->iov_len)
824 			break;
825 		pos += vec->iov_len;
826 	}
827 	nfs_pageio_complete(&desc);
828 	NFS_I(dreq->inode)->write_io += desc.pg_bytes_written;
829 
830 	/*
831 	 * If no bytes were started, return the error, and let the
832 	 * generic layer handle the completion.
833 	 */
834 	if (requested_bytes == 0) {
835 		inode_dio_done(inode);
836 		nfs_direct_req_release(dreq);
837 		return result < 0 ? result : -EIO;
838 	}
839 
840 	if (put_dreq(dreq))
841 		nfs_direct_write_complete(dreq, dreq->inode);
842 	return 0;
843 }
844 
845 static ssize_t nfs_direct_write(struct kiocb *iocb, const struct iovec *iov,
846 				unsigned long nr_segs, loff_t pos,
847 				size_t count, bool uio)
848 {
849 	ssize_t result = -ENOMEM;
850 	struct inode *inode = iocb->ki_filp->f_mapping->host;
851 	struct nfs_direct_req *dreq;
852 
853 	dreq = nfs_direct_req_alloc();
854 	if (!dreq)
855 		goto out;
856 
857 	dreq->inode = inode;
858 	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
859 	dreq->l_ctx = nfs_get_lock_context(dreq->ctx);
860 	if (dreq->l_ctx == NULL)
861 		goto out_release;
862 	if (!is_sync_kiocb(iocb))
863 		dreq->iocb = iocb;
864 
865 	result = nfs_direct_write_schedule_iovec(dreq, iov, nr_segs, pos, uio);
866 	if (!result)
867 		result = nfs_direct_wait(dreq);
868 out_release:
869 	nfs_direct_req_release(dreq);
870 out:
871 	return result;
872 }
873 
874 /**
875  * nfs_file_direct_read - file direct read operation for NFS files
876  * @iocb: target I/O control block
877  * @iov: vector of user buffers into which to read data
878  * @nr_segs: size of iov vector
879  * @pos: byte offset in file where reading starts
880  *
881  * We use this function for direct reads instead of calling
882  * generic_file_aio_read() in order to avoid gfar's check to see if
883  * the request starts before the end of the file.  For that check
884  * to work, we must generate a GETATTR before each direct read, and
885  * even then there is a window between the GETATTR and the subsequent
886  * READ where the file size could change.  Our preference is simply
887  * to do all reads the application wants, and the server will take
888  * care of managing the end of file boundary.
889  *
890  * This function also eliminates unnecessarily updating the file's
891  * atime locally, as the NFS server sets the file's atime, and this
892  * client must read the updated atime from the server back into its
893  * cache.
894  */
895 ssize_t nfs_file_direct_read(struct kiocb *iocb, const struct iovec *iov,
896 				unsigned long nr_segs, loff_t pos, bool uio)
897 {
898 	ssize_t retval = -EINVAL;
899 	struct file *file = iocb->ki_filp;
900 	struct address_space *mapping = file->f_mapping;
901 	size_t count;
902 
903 	count = iov_length(iov, nr_segs);
904 	nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
905 
906 	dfprintk(FILE, "NFS: direct read(%s/%s, %zd@%Ld)\n",
907 		file->f_path.dentry->d_parent->d_name.name,
908 		file->f_path.dentry->d_name.name,
909 		count, (long long) pos);
910 
911 	retval = 0;
912 	if (!count)
913 		goto out;
914 
915 	retval = nfs_sync_mapping(mapping);
916 	if (retval)
917 		goto out;
918 
919 	task_io_account_read(count);
920 
921 	retval = nfs_direct_read(iocb, iov, nr_segs, pos, uio);
922 	if (retval > 0)
923 		iocb->ki_pos = pos + retval;
924 
925 out:
926 	return retval;
927 }
928 
929 /**
930  * nfs_file_direct_write - file direct write operation for NFS files
931  * @iocb: target I/O control block
932  * @iov: vector of user buffers from which to write data
933  * @nr_segs: size of iov vector
934  * @pos: byte offset in file where writing starts
935  *
936  * We use this function for direct writes instead of calling
937  * generic_file_aio_write() in order to avoid taking the inode
938  * semaphore and updating the i_size.  The NFS server will set
939  * the new i_size and this client must read the updated size
940  * back into its cache.  We let the server do generic write
941  * parameter checking and report problems.
942  *
943  * We eliminate local atime updates, see direct read above.
944  *
945  * We avoid unnecessary page cache invalidations for normal cached
946  * readers of this file.
947  *
948  * Note that O_APPEND is not supported for NFS direct writes, as there
949  * is no atomic O_APPEND write facility in the NFS protocol.
950  */
951 ssize_t nfs_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
952 				unsigned long nr_segs, loff_t pos, bool uio)
953 {
954 	ssize_t retval = -EINVAL;
955 	struct file *file = iocb->ki_filp;
956 	struct address_space *mapping = file->f_mapping;
957 	size_t count;
958 
959 	count = iov_length(iov, nr_segs);
960 	nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
961 
962 	dfprintk(FILE, "NFS: direct write(%s/%s, %zd@%Ld)\n",
963 		file->f_path.dentry->d_parent->d_name.name,
964 		file->f_path.dentry->d_name.name,
965 		count, (long long) pos);
966 
967 	retval = generic_write_checks(file, &pos, &count, 0);
968 	if (retval)
969 		goto out;
970 
971 	retval = -EINVAL;
972 	if ((ssize_t) count < 0)
973 		goto out;
974 	retval = 0;
975 	if (!count)
976 		goto out;
977 
978 	retval = nfs_sync_mapping(mapping);
979 	if (retval)
980 		goto out;
981 
982 	task_io_account_write(count);
983 
984 	retval = nfs_direct_write(iocb, iov, nr_segs, pos, count, uio);
985 	if (retval > 0) {
986 		struct inode *inode = mapping->host;
987 
988 		iocb->ki_pos = pos + retval;
989 		spin_lock(&inode->i_lock);
990 		if (i_size_read(inode) < iocb->ki_pos)
991 			i_size_write(inode, iocb->ki_pos);
992 		spin_unlock(&inode->i_lock);
993 	}
994 out:
995 	return retval;
996 }
997 
998 /**
999  * nfs_init_directcache - create a slab cache for nfs_direct_req structures
1000  *
1001  */
1002 int __init nfs_init_directcache(void)
1003 {
1004 	nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
1005 						sizeof(struct nfs_direct_req),
1006 						0, (SLAB_RECLAIM_ACCOUNT|
1007 							SLAB_MEM_SPREAD),
1008 						NULL);
1009 	if (nfs_direct_cachep == NULL)
1010 		return -ENOMEM;
1011 
1012 	return 0;
1013 }
1014 
1015 /**
1016  * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
1017  *
1018  */
1019 void nfs_destroy_directcache(void)
1020 {
1021 	kmem_cache_destroy(nfs_direct_cachep);
1022 }
1023