xref: /openbmc/linux/fs/nfs/direct.c (revision 94c7b6fc)
1 /*
2  * linux/fs/nfs/direct.c
3  *
4  * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
5  *
6  * High-performance uncached I/O for the Linux NFS client
7  *
8  * There are important applications whose performance or correctness
9  * depends on uncached access to file data.  Database clusters
10  * (multiple copies of the same instance running on separate hosts)
11  * implement their own cache coherency protocol that subsumes file
12  * system cache protocols.  Applications that process datasets
13  * considerably larger than the client's memory do not always benefit
14  * from a local cache.  A streaming video server, for instance, has no
15  * need to cache the contents of a file.
16  *
17  * When an application requests uncached I/O, all read and write requests
18  * are made directly to the server; data stored or fetched via these
19  * requests is not cached in the Linux page cache.  The client does not
20  * correct unaligned requests from applications.  All requested bytes are
21  * held on permanent storage before a direct write system call returns to
22  * an application.
23  *
24  * Solaris implements an uncached I/O facility called directio() that
25  * is used for backups and sequential I/O to very large files.  Solaris
26  * also supports uncaching whole NFS partitions with "-o forcedirectio,"
27  * an undocumented mount option.
28  *
29  * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
30  * help from Andrew Morton.
31  *
32  * 18 Dec 2001	Initial implementation for 2.4  --cel
33  * 08 Jul 2002	Version for 2.4.19, with bug fixes --trondmy
34  * 08 Jun 2003	Port to 2.5 APIs  --cel
35  * 31 Mar 2004	Handle direct I/O without VFS support  --cel
36  * 15 Sep 2004	Parallel async reads  --cel
37  * 04 May 2005	support O_DIRECT with aio  --cel
38  *
39  */
40 
41 #include <linux/errno.h>
42 #include <linux/sched.h>
43 #include <linux/kernel.h>
44 #include <linux/file.h>
45 #include <linux/pagemap.h>
46 #include <linux/kref.h>
47 #include <linux/slab.h>
48 #include <linux/task_io_accounting_ops.h>
49 #include <linux/module.h>
50 
51 #include <linux/nfs_fs.h>
52 #include <linux/nfs_page.h>
53 #include <linux/sunrpc/clnt.h>
54 
55 #include <asm/uaccess.h>
56 #include <linux/atomic.h>
57 
58 #include "internal.h"
59 #include "iostat.h"
60 #include "pnfs.h"
61 
62 #define NFSDBG_FACILITY		NFSDBG_VFS
63 
64 static struct kmem_cache *nfs_direct_cachep;
65 
66 /*
67  * This represents a set of asynchronous requests that we're waiting on
68  */
69 struct nfs_direct_req {
70 	struct kref		kref;		/* release manager */
71 
72 	/* I/O parameters */
73 	struct nfs_open_context	*ctx;		/* file open context info */
74 	struct nfs_lock_context *l_ctx;		/* Lock context info */
75 	struct kiocb *		iocb;		/* controlling i/o request */
76 	struct inode *		inode;		/* target file of i/o */
77 
78 	/* completion state */
79 	atomic_t		io_count;	/* i/os we're waiting for */
80 	spinlock_t		lock;		/* protect completion state */
81 	ssize_t			count,		/* bytes actually processed */
82 				bytes_left,	/* bytes left to be sent */
83 				error;		/* any reported error */
84 	struct completion	completion;	/* wait for i/o completion */
85 
86 	/* commit state */
87 	struct nfs_mds_commit_info mds_cinfo;	/* Storage for cinfo */
88 	struct pnfs_ds_commit_info ds_cinfo;	/* Storage for cinfo */
89 	struct work_struct	work;
90 	int			flags;
91 #define NFS_ODIRECT_DO_COMMIT		(1)	/* an unstable reply was received */
92 #define NFS_ODIRECT_RESCHED_WRITES	(2)	/* write verification failed */
93 	struct nfs_writeverf	verf;		/* unstable write verifier */
94 };
95 
96 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
97 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
98 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
99 static void nfs_direct_write_schedule_work(struct work_struct *work);
100 
101 static inline void get_dreq(struct nfs_direct_req *dreq)
102 {
103 	atomic_inc(&dreq->io_count);
104 }
105 
106 static inline int put_dreq(struct nfs_direct_req *dreq)
107 {
108 	return atomic_dec_and_test(&dreq->io_count);
109 }
110 
111 /*
112  * nfs_direct_select_verf - select the right verifier
113  * @dreq - direct request possibly spanning multiple servers
114  * @ds_clp - nfs_client of data server or NULL if MDS / non-pnfs
115  * @ds_idx - index of data server in data server list, only valid if ds_clp set
116  *
117  * returns the correct verifier to use given the role of the server
118  */
119 static struct nfs_writeverf *
120 nfs_direct_select_verf(struct nfs_direct_req *dreq,
121 		       struct nfs_client *ds_clp,
122 		       int ds_idx)
123 {
124 	struct nfs_writeverf *verfp = &dreq->verf;
125 
126 #ifdef CONFIG_NFS_V4_1
127 	if (ds_clp) {
128 		/* pNFS is in use, use the DS verf */
129 		if (ds_idx >= 0 && ds_idx < dreq->ds_cinfo.nbuckets)
130 			verfp = &dreq->ds_cinfo.buckets[ds_idx].direct_verf;
131 		else
132 			WARN_ON_ONCE(1);
133 	}
134 #endif
135 	return verfp;
136 }
137 
138 
139 /*
140  * nfs_direct_set_hdr_verf - set the write/commit verifier
141  * @dreq - direct request possibly spanning multiple servers
142  * @hdr - pageio header to validate against previously seen verfs
143  *
144  * Set the server's (MDS or DS) "seen" verifier
145  */
146 static void nfs_direct_set_hdr_verf(struct nfs_direct_req *dreq,
147 				    struct nfs_pgio_header *hdr)
148 {
149 	struct nfs_writeverf *verfp;
150 
151 	verfp = nfs_direct_select_verf(dreq, hdr->data->ds_clp,
152 				      hdr->data->ds_idx);
153 	WARN_ON_ONCE(verfp->committed >= 0);
154 	memcpy(verfp, &hdr->verf, sizeof(struct nfs_writeverf));
155 	WARN_ON_ONCE(verfp->committed < 0);
156 }
157 
158 /*
159  * nfs_direct_cmp_hdr_verf - compare verifier for pgio header
160  * @dreq - direct request possibly spanning multiple servers
161  * @hdr - pageio header to validate against previously seen verf
162  *
163  * set the server's "seen" verf if not initialized.
164  * returns result of comparison between @hdr->verf and the "seen"
165  * verf of the server used by @hdr (DS or MDS)
166  */
167 static int nfs_direct_set_or_cmp_hdr_verf(struct nfs_direct_req *dreq,
168 					  struct nfs_pgio_header *hdr)
169 {
170 	struct nfs_writeverf *verfp;
171 
172 	verfp = nfs_direct_select_verf(dreq, hdr->data->ds_clp,
173 					 hdr->data->ds_idx);
174 	if (verfp->committed < 0) {
175 		nfs_direct_set_hdr_verf(dreq, hdr);
176 		return 0;
177 	}
178 	return memcmp(verfp, &hdr->verf, sizeof(struct nfs_writeverf));
179 }
180 
181 #if IS_ENABLED(CONFIG_NFS_V3) || IS_ENABLED(CONFIG_NFS_V4)
182 /*
183  * nfs_direct_cmp_commit_data_verf - compare verifier for commit data
184  * @dreq - direct request possibly spanning multiple servers
185  * @data - commit data to validate against previously seen verf
186  *
187  * returns result of comparison between @data->verf and the verf of
188  * the server used by @data (DS or MDS)
189  */
190 static int nfs_direct_cmp_commit_data_verf(struct nfs_direct_req *dreq,
191 					   struct nfs_commit_data *data)
192 {
193 	struct nfs_writeverf *verfp;
194 
195 	verfp = nfs_direct_select_verf(dreq, data->ds_clp,
196 					 data->ds_commit_index);
197 	WARN_ON_ONCE(verfp->committed < 0);
198 	return memcmp(verfp, &data->verf, sizeof(struct nfs_writeverf));
199 }
200 #endif
201 
202 /**
203  * nfs_direct_IO - NFS address space operation for direct I/O
204  * @rw: direction (read or write)
205  * @iocb: target I/O control block
206  * @iov: array of vectors that define I/O buffer
207  * @pos: offset in file to begin the operation
208  * @nr_segs: size of iovec array
209  *
210  * The presence of this routine in the address space ops vector means
211  * the NFS client supports direct I/O. However, for most direct IO, we
212  * shunt off direct read and write requests before the VFS gets them,
213  * so this method is only ever called for swap.
214  */
215 ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, struct iov_iter *iter, loff_t pos)
216 {
217 #ifndef CONFIG_NFS_SWAP
218 	dprintk("NFS: nfs_direct_IO (%pD) off/no(%Ld/%lu) EINVAL\n",
219 			iocb->ki_filp, (long long) pos, iter->nr_segs);
220 
221 	return -EINVAL;
222 #else
223 	VM_BUG_ON(iocb->ki_nbytes != PAGE_SIZE);
224 
225 	if (rw == READ || rw == KERNEL_READ)
226 		return nfs_file_direct_read(iocb, iter, pos,
227 				rw == READ ? true : false);
228 	return nfs_file_direct_write(iocb, iter, pos,
229 				rw == WRITE ? true : false);
230 #endif /* CONFIG_NFS_SWAP */
231 }
232 
233 static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
234 {
235 	unsigned int i;
236 	for (i = 0; i < npages; i++)
237 		page_cache_release(pages[i]);
238 }
239 
240 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
241 			      struct nfs_direct_req *dreq)
242 {
243 	cinfo->lock = &dreq->lock;
244 	cinfo->mds = &dreq->mds_cinfo;
245 	cinfo->ds = &dreq->ds_cinfo;
246 	cinfo->dreq = dreq;
247 	cinfo->completion_ops = &nfs_direct_commit_completion_ops;
248 }
249 
250 static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
251 {
252 	struct nfs_direct_req *dreq;
253 
254 	dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
255 	if (!dreq)
256 		return NULL;
257 
258 	kref_init(&dreq->kref);
259 	kref_get(&dreq->kref);
260 	init_completion(&dreq->completion);
261 	INIT_LIST_HEAD(&dreq->mds_cinfo.list);
262 	dreq->verf.committed = NFS_INVALID_STABLE_HOW;	/* not set yet */
263 	INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
264 	spin_lock_init(&dreq->lock);
265 
266 	return dreq;
267 }
268 
269 static void nfs_direct_req_free(struct kref *kref)
270 {
271 	struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
272 
273 	if (dreq->l_ctx != NULL)
274 		nfs_put_lock_context(dreq->l_ctx);
275 	if (dreq->ctx != NULL)
276 		put_nfs_open_context(dreq->ctx);
277 	kmem_cache_free(nfs_direct_cachep, dreq);
278 }
279 
280 static void nfs_direct_req_release(struct nfs_direct_req *dreq)
281 {
282 	kref_put(&dreq->kref, nfs_direct_req_free);
283 }
284 
285 ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq)
286 {
287 	return dreq->bytes_left;
288 }
289 EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
290 
291 /*
292  * Collects and returns the final error value/byte-count.
293  */
294 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
295 {
296 	ssize_t result = -EIOCBQUEUED;
297 
298 	/* Async requests don't wait here */
299 	if (dreq->iocb)
300 		goto out;
301 
302 	result = wait_for_completion_killable(&dreq->completion);
303 
304 	if (!result)
305 		result = dreq->error;
306 	if (!result)
307 		result = dreq->count;
308 
309 out:
310 	return (ssize_t) result;
311 }
312 
313 /*
314  * Synchronous I/O uses a stack-allocated iocb.  Thus we can't trust
315  * the iocb is still valid here if this is a synchronous request.
316  */
317 static void nfs_direct_complete(struct nfs_direct_req *dreq, bool write)
318 {
319 	struct inode *inode = dreq->inode;
320 
321 	if (dreq->iocb && write) {
322 		loff_t pos = dreq->iocb->ki_pos + dreq->count;
323 
324 		spin_lock(&inode->i_lock);
325 		if (i_size_read(inode) < pos)
326 			i_size_write(inode, pos);
327 		spin_unlock(&inode->i_lock);
328 	}
329 
330 	if (write)
331 		nfs_zap_mapping(inode, inode->i_mapping);
332 
333 	inode_dio_done(inode);
334 
335 	if (dreq->iocb) {
336 		long res = (long) dreq->error;
337 		if (!res)
338 			res = (long) dreq->count;
339 		aio_complete(dreq->iocb, res, 0);
340 	}
341 
342 	complete_all(&dreq->completion);
343 
344 	nfs_direct_req_release(dreq);
345 }
346 
347 static void nfs_direct_readpage_release(struct nfs_page *req)
348 {
349 	dprintk("NFS: direct read done (%s/%llu %d@%lld)\n",
350 		req->wb_context->dentry->d_inode->i_sb->s_id,
351 		(unsigned long long)NFS_FILEID(req->wb_context->dentry->d_inode),
352 		req->wb_bytes,
353 		(long long)req_offset(req));
354 	nfs_release_request(req);
355 }
356 
357 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
358 {
359 	unsigned long bytes = 0;
360 	struct nfs_direct_req *dreq = hdr->dreq;
361 
362 	if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
363 		goto out_put;
364 
365 	spin_lock(&dreq->lock);
366 	if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0))
367 		dreq->error = hdr->error;
368 	else
369 		dreq->count += hdr->good_bytes;
370 	spin_unlock(&dreq->lock);
371 
372 	while (!list_empty(&hdr->pages)) {
373 		struct nfs_page *req = nfs_list_entry(hdr->pages.next);
374 		struct page *page = req->wb_page;
375 
376 		if (!PageCompound(page) && bytes < hdr->good_bytes)
377 			set_page_dirty(page);
378 		bytes += req->wb_bytes;
379 		nfs_list_remove_request(req);
380 		nfs_direct_readpage_release(req);
381 	}
382 out_put:
383 	if (put_dreq(dreq))
384 		nfs_direct_complete(dreq, false);
385 	hdr->release(hdr);
386 }
387 
388 static void nfs_read_sync_pgio_error(struct list_head *head)
389 {
390 	struct nfs_page *req;
391 
392 	while (!list_empty(head)) {
393 		req = nfs_list_entry(head->next);
394 		nfs_list_remove_request(req);
395 		nfs_release_request(req);
396 	}
397 }
398 
399 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
400 {
401 	get_dreq(hdr->dreq);
402 }
403 
404 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
405 	.error_cleanup = nfs_read_sync_pgio_error,
406 	.init_hdr = nfs_direct_pgio_init,
407 	.completion = nfs_direct_read_completion,
408 };
409 
410 /*
411  * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
412  * operation.  If nfs_readdata_alloc() or get_user_pages() fails,
413  * bail and stop sending more reads.  Read length accounting is
414  * handled automatically by nfs_direct_read_result().  Otherwise, if
415  * no requests have been sent, just return an error.
416  */
417 
418 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
419 					      struct iov_iter *iter,
420 					      loff_t pos)
421 {
422 	struct nfs_pageio_descriptor desc;
423 	struct inode *inode = dreq->inode;
424 	ssize_t result = -EINVAL;
425 	size_t requested_bytes = 0;
426 	size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE);
427 
428 	nfs_pageio_init_read(&desc, dreq->inode, false,
429 			     &nfs_direct_read_completion_ops);
430 	get_dreq(dreq);
431 	desc.pg_dreq = dreq;
432 	atomic_inc(&inode->i_dio_count);
433 
434 	while (iov_iter_count(iter)) {
435 		struct page **pagevec;
436 		size_t bytes;
437 		size_t pgbase;
438 		unsigned npages, i;
439 
440 		result = iov_iter_get_pages_alloc(iter, &pagevec,
441 						  rsize, &pgbase);
442 		if (result < 0)
443 			break;
444 
445 		bytes = result;
446 		iov_iter_advance(iter, bytes);
447 		npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
448 		for (i = 0; i < npages; i++) {
449 			struct nfs_page *req;
450 			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
451 			/* XXX do we need to do the eof zeroing found in async_filler? */
452 			req = nfs_create_request(dreq->ctx, pagevec[i], NULL,
453 						 pgbase, req_len);
454 			if (IS_ERR(req)) {
455 				result = PTR_ERR(req);
456 				break;
457 			}
458 			req->wb_index = pos >> PAGE_SHIFT;
459 			req->wb_offset = pos & ~PAGE_MASK;
460 			if (!nfs_pageio_add_request(&desc, req)) {
461 				result = desc.pg_error;
462 				nfs_release_request(req);
463 				break;
464 			}
465 			pgbase = 0;
466 			bytes -= req_len;
467 			requested_bytes += req_len;
468 			pos += req_len;
469 			dreq->bytes_left -= req_len;
470 		}
471 		nfs_direct_release_pages(pagevec, npages);
472 		kvfree(pagevec);
473 		if (result < 0)
474 			break;
475 	}
476 
477 	nfs_pageio_complete(&desc);
478 
479 	/*
480 	 * If no bytes were started, return the error, and let the
481 	 * generic layer handle the completion.
482 	 */
483 	if (requested_bytes == 0) {
484 		inode_dio_done(inode);
485 		nfs_direct_req_release(dreq);
486 		return result < 0 ? result : -EIO;
487 	}
488 
489 	if (put_dreq(dreq))
490 		nfs_direct_complete(dreq, false);
491 	return 0;
492 }
493 
494 /**
495  * nfs_file_direct_read - file direct read operation for NFS files
496  * @iocb: target I/O control block
497  * @iter: vector of user buffers into which to read data
498  * @pos: byte offset in file where reading starts
499  *
500  * We use this function for direct reads instead of calling
501  * generic_file_aio_read() in order to avoid gfar's check to see if
502  * the request starts before the end of the file.  For that check
503  * to work, we must generate a GETATTR before each direct read, and
504  * even then there is a window between the GETATTR and the subsequent
505  * READ where the file size could change.  Our preference is simply
506  * to do all reads the application wants, and the server will take
507  * care of managing the end of file boundary.
508  *
509  * This function also eliminates unnecessarily updating the file's
510  * atime locally, as the NFS server sets the file's atime, and this
511  * client must read the updated atime from the server back into its
512  * cache.
513  */
514 ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter,
515 				loff_t pos, bool uio)
516 {
517 	struct file *file = iocb->ki_filp;
518 	struct address_space *mapping = file->f_mapping;
519 	struct inode *inode = mapping->host;
520 	struct nfs_direct_req *dreq;
521 	struct nfs_lock_context *l_ctx;
522 	ssize_t result = -EINVAL;
523 	size_t count = iov_iter_count(iter);
524 	nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
525 
526 	dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n",
527 		file, count, (long long) pos);
528 
529 	result = 0;
530 	if (!count)
531 		goto out;
532 
533 	mutex_lock(&inode->i_mutex);
534 	result = nfs_sync_mapping(mapping);
535 	if (result)
536 		goto out_unlock;
537 
538 	task_io_account_read(count);
539 
540 	result = -ENOMEM;
541 	dreq = nfs_direct_req_alloc();
542 	if (dreq == NULL)
543 		goto out_unlock;
544 
545 	dreq->inode = inode;
546 	dreq->bytes_left = count;
547 	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
548 	l_ctx = nfs_get_lock_context(dreq->ctx);
549 	if (IS_ERR(l_ctx)) {
550 		result = PTR_ERR(l_ctx);
551 		goto out_release;
552 	}
553 	dreq->l_ctx = l_ctx;
554 	if (!is_sync_kiocb(iocb))
555 		dreq->iocb = iocb;
556 
557 	NFS_I(inode)->read_io += count;
558 	result = nfs_direct_read_schedule_iovec(dreq, iter, pos);
559 
560 	mutex_unlock(&inode->i_mutex);
561 
562 	if (!result) {
563 		result = nfs_direct_wait(dreq);
564 		if (result > 0)
565 			iocb->ki_pos = pos + result;
566 	}
567 
568 	nfs_direct_req_release(dreq);
569 	return result;
570 
571 out_release:
572 	nfs_direct_req_release(dreq);
573 out_unlock:
574 	mutex_unlock(&inode->i_mutex);
575 out:
576 	return result;
577 }
578 
579 #if IS_ENABLED(CONFIG_NFS_V3) || IS_ENABLED(CONFIG_NFS_V4)
580 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
581 {
582 	struct nfs_pageio_descriptor desc;
583 	struct nfs_page *req, *tmp;
584 	LIST_HEAD(reqs);
585 	struct nfs_commit_info cinfo;
586 	LIST_HEAD(failed);
587 
588 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
589 	pnfs_recover_commit_reqs(dreq->inode, &reqs, &cinfo);
590 	spin_lock(cinfo.lock);
591 	nfs_scan_commit_list(&cinfo.mds->list, &reqs, &cinfo, 0);
592 	spin_unlock(cinfo.lock);
593 
594 	dreq->count = 0;
595 	get_dreq(dreq);
596 
597 	nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false,
598 			      &nfs_direct_write_completion_ops);
599 	desc.pg_dreq = dreq;
600 
601 	list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
602 		if (!nfs_pageio_add_request(&desc, req)) {
603 			nfs_list_remove_request(req);
604 			nfs_list_add_request(req, &failed);
605 			spin_lock(cinfo.lock);
606 			dreq->flags = 0;
607 			dreq->error = -EIO;
608 			spin_unlock(cinfo.lock);
609 		}
610 		nfs_release_request(req);
611 	}
612 	nfs_pageio_complete(&desc);
613 
614 	while (!list_empty(&failed)) {
615 		req = nfs_list_entry(failed.next);
616 		nfs_list_remove_request(req);
617 		nfs_unlock_and_release_request(req);
618 	}
619 
620 	if (put_dreq(dreq))
621 		nfs_direct_write_complete(dreq, dreq->inode);
622 }
623 
624 static void nfs_direct_commit_complete(struct nfs_commit_data *data)
625 {
626 	struct nfs_direct_req *dreq = data->dreq;
627 	struct nfs_commit_info cinfo;
628 	struct nfs_page *req;
629 	int status = data->task.tk_status;
630 
631 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
632 	if (status < 0) {
633 		dprintk("NFS: %5u commit failed with error %d.\n",
634 			data->task.tk_pid, status);
635 		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
636 	} else if (nfs_direct_cmp_commit_data_verf(dreq, data)) {
637 		dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid);
638 		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
639 	}
640 
641 	dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status);
642 	while (!list_empty(&data->pages)) {
643 		req = nfs_list_entry(data->pages.next);
644 		nfs_list_remove_request(req);
645 		if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) {
646 			/* Note the rewrite will go through mds */
647 			nfs_mark_request_commit(req, NULL, &cinfo);
648 		} else
649 			nfs_release_request(req);
650 		nfs_unlock_and_release_request(req);
651 	}
652 
653 	if (atomic_dec_and_test(&cinfo.mds->rpcs_out))
654 		nfs_direct_write_complete(dreq, data->inode);
655 }
656 
657 static void nfs_direct_error_cleanup(struct nfs_inode *nfsi)
658 {
659 	/* There is no lock to clear */
660 }
661 
662 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
663 	.completion = nfs_direct_commit_complete,
664 	.error_cleanup = nfs_direct_error_cleanup,
665 };
666 
667 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
668 {
669 	int res;
670 	struct nfs_commit_info cinfo;
671 	LIST_HEAD(mds_list);
672 
673 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
674 	nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
675 	res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
676 	if (res < 0) /* res == -ENOMEM */
677 		nfs_direct_write_reschedule(dreq);
678 }
679 
680 static void nfs_direct_write_schedule_work(struct work_struct *work)
681 {
682 	struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
683 	int flags = dreq->flags;
684 
685 	dreq->flags = 0;
686 	switch (flags) {
687 		case NFS_ODIRECT_DO_COMMIT:
688 			nfs_direct_commit_schedule(dreq);
689 			break;
690 		case NFS_ODIRECT_RESCHED_WRITES:
691 			nfs_direct_write_reschedule(dreq);
692 			break;
693 		default:
694 			nfs_direct_complete(dreq, true);
695 	}
696 }
697 
698 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
699 {
700 	schedule_work(&dreq->work); /* Calls nfs_direct_write_schedule_work */
701 }
702 
703 #else
704 static void nfs_direct_write_schedule_work(struct work_struct *work)
705 {
706 }
707 
708 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
709 {
710 	nfs_direct_complete(dreq, true);
711 }
712 #endif
713 
714 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
715 {
716 	struct nfs_direct_req *dreq = hdr->dreq;
717 	struct nfs_commit_info cinfo;
718 	int bit = -1;
719 	struct nfs_page *req = nfs_list_entry(hdr->pages.next);
720 
721 	if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
722 		goto out_put;
723 
724 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
725 
726 	spin_lock(&dreq->lock);
727 
728 	if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
729 		dreq->flags = 0;
730 		dreq->error = hdr->error;
731 	}
732 	if (dreq->error != 0)
733 		bit = NFS_IOHDR_ERROR;
734 	else {
735 		dreq->count += hdr->good_bytes;
736 		if (test_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags)) {
737 			dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
738 			bit = NFS_IOHDR_NEED_RESCHED;
739 		} else if (test_bit(NFS_IOHDR_NEED_COMMIT, &hdr->flags)) {
740 			if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES)
741 				bit = NFS_IOHDR_NEED_RESCHED;
742 			else if (dreq->flags == 0) {
743 				nfs_direct_set_hdr_verf(dreq, hdr);
744 				bit = NFS_IOHDR_NEED_COMMIT;
745 				dreq->flags = NFS_ODIRECT_DO_COMMIT;
746 			} else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) {
747 				if (nfs_direct_set_or_cmp_hdr_verf(dreq, hdr)) {
748 					dreq->flags =
749 						NFS_ODIRECT_RESCHED_WRITES;
750 					bit = NFS_IOHDR_NEED_RESCHED;
751 				} else
752 					bit = NFS_IOHDR_NEED_COMMIT;
753 			}
754 		}
755 	}
756 	spin_unlock(&dreq->lock);
757 
758 	while (!list_empty(&hdr->pages)) {
759 		bool do_destroy = true;
760 
761 		req = nfs_list_entry(hdr->pages.next);
762 		nfs_list_remove_request(req);
763 		switch (bit) {
764 		case NFS_IOHDR_NEED_RESCHED:
765 		case NFS_IOHDR_NEED_COMMIT:
766 			kref_get(&req->wb_kref);
767 			nfs_mark_request_commit(req, hdr->lseg, &cinfo);
768 			do_destroy = false;
769 		}
770 		nfs_unlock_and_release_request(req);
771 	}
772 
773 out_put:
774 	if (put_dreq(dreq))
775 		nfs_direct_write_complete(dreq, hdr->inode);
776 	hdr->release(hdr);
777 }
778 
779 static void nfs_write_sync_pgio_error(struct list_head *head)
780 {
781 	struct nfs_page *req;
782 
783 	while (!list_empty(head)) {
784 		req = nfs_list_entry(head->next);
785 		nfs_list_remove_request(req);
786 		nfs_unlock_and_release_request(req);
787 	}
788 }
789 
790 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
791 	.error_cleanup = nfs_write_sync_pgio_error,
792 	.init_hdr = nfs_direct_pgio_init,
793 	.completion = nfs_direct_write_completion,
794 };
795 
796 
797 /*
798  * NB: Return the value of the first error return code.  Subsequent
799  *     errors after the first one are ignored.
800  */
801 /*
802  * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
803  * operation.  If nfs_writedata_alloc() or get_user_pages() fails,
804  * bail and stop sending more writes.  Write length accounting is
805  * handled automatically by nfs_direct_write_result().  Otherwise, if
806  * no requests have been sent, just return an error.
807  */
808 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
809 					       struct iov_iter *iter,
810 					       loff_t pos)
811 {
812 	struct nfs_pageio_descriptor desc;
813 	struct inode *inode = dreq->inode;
814 	ssize_t result = 0;
815 	size_t requested_bytes = 0;
816 	size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE);
817 
818 	nfs_pageio_init_write(&desc, inode, FLUSH_COND_STABLE, false,
819 			      &nfs_direct_write_completion_ops);
820 	desc.pg_dreq = dreq;
821 	get_dreq(dreq);
822 	atomic_inc(&inode->i_dio_count);
823 
824 	NFS_I(inode)->write_io += iov_iter_count(iter);
825 	while (iov_iter_count(iter)) {
826 		struct page **pagevec;
827 		size_t bytes;
828 		size_t pgbase;
829 		unsigned npages, i;
830 
831 		result = iov_iter_get_pages_alloc(iter, &pagevec,
832 						  wsize, &pgbase);
833 		if (result < 0)
834 			break;
835 
836 		bytes = result;
837 		iov_iter_advance(iter, bytes);
838 		npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
839 		for (i = 0; i < npages; i++) {
840 			struct nfs_page *req;
841 			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
842 
843 			req = nfs_create_request(dreq->ctx, pagevec[i], NULL,
844 						 pgbase, req_len);
845 			if (IS_ERR(req)) {
846 				result = PTR_ERR(req);
847 				break;
848 			}
849 			nfs_lock_request(req);
850 			req->wb_index = pos >> PAGE_SHIFT;
851 			req->wb_offset = pos & ~PAGE_MASK;
852 			if (!nfs_pageio_add_request(&desc, req)) {
853 				result = desc.pg_error;
854 				nfs_unlock_and_release_request(req);
855 				break;
856 			}
857 			pgbase = 0;
858 			bytes -= req_len;
859 			requested_bytes += req_len;
860 			pos += req_len;
861 			dreq->bytes_left -= req_len;
862 		}
863 		nfs_direct_release_pages(pagevec, npages);
864 		kvfree(pagevec);
865 		if (result < 0)
866 			break;
867 	}
868 	nfs_pageio_complete(&desc);
869 
870 	/*
871 	 * If no bytes were started, return the error, and let the
872 	 * generic layer handle the completion.
873 	 */
874 	if (requested_bytes == 0) {
875 		inode_dio_done(inode);
876 		nfs_direct_req_release(dreq);
877 		return result < 0 ? result : -EIO;
878 	}
879 
880 	if (put_dreq(dreq))
881 		nfs_direct_write_complete(dreq, dreq->inode);
882 	return 0;
883 }
884 
885 /**
886  * nfs_file_direct_write - file direct write operation for NFS files
887  * @iocb: target I/O control block
888  * @iter: vector of user buffers from which to write data
889  * @pos: byte offset in file where writing starts
890  *
891  * We use this function for direct writes instead of calling
892  * generic_file_aio_write() in order to avoid taking the inode
893  * semaphore and updating the i_size.  The NFS server will set
894  * the new i_size and this client must read the updated size
895  * back into its cache.  We let the server do generic write
896  * parameter checking and report problems.
897  *
898  * We eliminate local atime updates, see direct read above.
899  *
900  * We avoid unnecessary page cache invalidations for normal cached
901  * readers of this file.
902  *
903  * Note that O_APPEND is not supported for NFS direct writes, as there
904  * is no atomic O_APPEND write facility in the NFS protocol.
905  */
906 ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter,
907 				loff_t pos, bool uio)
908 {
909 	ssize_t result = -EINVAL;
910 	struct file *file = iocb->ki_filp;
911 	struct address_space *mapping = file->f_mapping;
912 	struct inode *inode = mapping->host;
913 	struct nfs_direct_req *dreq;
914 	struct nfs_lock_context *l_ctx;
915 	loff_t end;
916 	size_t count = iov_iter_count(iter);
917 	end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
918 
919 	nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
920 
921 	dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n",
922 		file, count, (long long) pos);
923 
924 	result = generic_write_checks(file, &pos, &count, 0);
925 	if (result)
926 		goto out;
927 
928 	result = -EINVAL;
929 	if ((ssize_t) count < 0)
930 		goto out;
931 	result = 0;
932 	if (!count)
933 		goto out;
934 
935 	mutex_lock(&inode->i_mutex);
936 
937 	result = nfs_sync_mapping(mapping);
938 	if (result)
939 		goto out_unlock;
940 
941 	if (mapping->nrpages) {
942 		result = invalidate_inode_pages2_range(mapping,
943 					pos >> PAGE_CACHE_SHIFT, end);
944 		if (result)
945 			goto out_unlock;
946 	}
947 
948 	task_io_account_write(count);
949 
950 	result = -ENOMEM;
951 	dreq = nfs_direct_req_alloc();
952 	if (!dreq)
953 		goto out_unlock;
954 
955 	dreq->inode = inode;
956 	dreq->bytes_left = count;
957 	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
958 	l_ctx = nfs_get_lock_context(dreq->ctx);
959 	if (IS_ERR(l_ctx)) {
960 		result = PTR_ERR(l_ctx);
961 		goto out_release;
962 	}
963 	dreq->l_ctx = l_ctx;
964 	if (!is_sync_kiocb(iocb))
965 		dreq->iocb = iocb;
966 
967 	result = nfs_direct_write_schedule_iovec(dreq, iter, pos);
968 
969 	if (mapping->nrpages) {
970 		invalidate_inode_pages2_range(mapping,
971 					      pos >> PAGE_CACHE_SHIFT, end);
972 	}
973 
974 	mutex_unlock(&inode->i_mutex);
975 
976 	if (!result) {
977 		result = nfs_direct_wait(dreq);
978 		if (result > 0) {
979 			struct inode *inode = mapping->host;
980 
981 			iocb->ki_pos = pos + result;
982 			spin_lock(&inode->i_lock);
983 			if (i_size_read(inode) < iocb->ki_pos)
984 				i_size_write(inode, iocb->ki_pos);
985 			spin_unlock(&inode->i_lock);
986 		}
987 	}
988 	nfs_direct_req_release(dreq);
989 	return result;
990 
991 out_release:
992 	nfs_direct_req_release(dreq);
993 out_unlock:
994 	mutex_unlock(&inode->i_mutex);
995 out:
996 	return result;
997 }
998 
999 /**
1000  * nfs_init_directcache - create a slab cache for nfs_direct_req structures
1001  *
1002  */
1003 int __init nfs_init_directcache(void)
1004 {
1005 	nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
1006 						sizeof(struct nfs_direct_req),
1007 						0, (SLAB_RECLAIM_ACCOUNT|
1008 							SLAB_MEM_SPREAD),
1009 						NULL);
1010 	if (nfs_direct_cachep == NULL)
1011 		return -ENOMEM;
1012 
1013 	return 0;
1014 }
1015 
1016 /**
1017  * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
1018  *
1019  */
1020 void nfs_destroy_directcache(void)
1021 {
1022 	kmem_cache_destroy(nfs_direct_cachep);
1023 }
1024