1 /* 2 * linux/fs/nfs/direct.c 3 * 4 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com> 5 * 6 * High-performance uncached I/O for the Linux NFS client 7 * 8 * There are important applications whose performance or correctness 9 * depends on uncached access to file data. Database clusters 10 * (multiple copies of the same instance running on separate hosts) 11 * implement their own cache coherency protocol that subsumes file 12 * system cache protocols. Applications that process datasets 13 * considerably larger than the client's memory do not always benefit 14 * from a local cache. A streaming video server, for instance, has no 15 * need to cache the contents of a file. 16 * 17 * When an application requests uncached I/O, all read and write requests 18 * are made directly to the server; data stored or fetched via these 19 * requests is not cached in the Linux page cache. The client does not 20 * correct unaligned requests from applications. All requested bytes are 21 * held on permanent storage before a direct write system call returns to 22 * an application. 23 * 24 * Solaris implements an uncached I/O facility called directio() that 25 * is used for backups and sequential I/O to very large files. Solaris 26 * also supports uncaching whole NFS partitions with "-o forcedirectio," 27 * an undocumented mount option. 28 * 29 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with 30 * help from Andrew Morton. 31 * 32 * 18 Dec 2001 Initial implementation for 2.4 --cel 33 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy 34 * 08 Jun 2003 Port to 2.5 APIs --cel 35 * 31 Mar 2004 Handle direct I/O without VFS support --cel 36 * 15 Sep 2004 Parallel async reads --cel 37 * 04 May 2005 support O_DIRECT with aio --cel 38 * 39 */ 40 41 #include <linux/errno.h> 42 #include <linux/sched.h> 43 #include <linux/kernel.h> 44 #include <linux/file.h> 45 #include <linux/pagemap.h> 46 #include <linux/kref.h> 47 #include <linux/slab.h> 48 #include <linux/task_io_accounting_ops.h> 49 #include <linux/module.h> 50 51 #include <linux/nfs_fs.h> 52 #include <linux/nfs_page.h> 53 #include <linux/sunrpc/clnt.h> 54 55 #include <asm/uaccess.h> 56 #include <linux/atomic.h> 57 58 #include "internal.h" 59 #include "iostat.h" 60 #include "pnfs.h" 61 62 #define NFSDBG_FACILITY NFSDBG_VFS 63 64 static struct kmem_cache *nfs_direct_cachep; 65 66 /* 67 * This represents a set of asynchronous requests that we're waiting on 68 */ 69 struct nfs_direct_req { 70 struct kref kref; /* release manager */ 71 72 /* I/O parameters */ 73 struct nfs_open_context *ctx; /* file open context info */ 74 struct nfs_lock_context *l_ctx; /* Lock context info */ 75 struct kiocb * iocb; /* controlling i/o request */ 76 struct inode * inode; /* target file of i/o */ 77 78 /* completion state */ 79 atomic_t io_count; /* i/os we're waiting for */ 80 spinlock_t lock; /* protect completion state */ 81 ssize_t count, /* bytes actually processed */ 82 bytes_left, /* bytes left to be sent */ 83 error; /* any reported error */ 84 struct completion completion; /* wait for i/o completion */ 85 86 /* commit state */ 87 struct nfs_mds_commit_info mds_cinfo; /* Storage for cinfo */ 88 struct pnfs_ds_commit_info ds_cinfo; /* Storage for cinfo */ 89 struct work_struct work; 90 int flags; 91 #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */ 92 #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */ 93 struct nfs_writeverf verf; /* unstable write verifier */ 94 }; 95 96 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops; 97 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops; 98 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode); 99 static void nfs_direct_write_schedule_work(struct work_struct *work); 100 101 static inline void get_dreq(struct nfs_direct_req *dreq) 102 { 103 atomic_inc(&dreq->io_count); 104 } 105 106 static inline int put_dreq(struct nfs_direct_req *dreq) 107 { 108 return atomic_dec_and_test(&dreq->io_count); 109 } 110 111 /** 112 * nfs_direct_IO - NFS address space operation for direct I/O 113 * @rw: direction (read or write) 114 * @iocb: target I/O control block 115 * @iov: array of vectors that define I/O buffer 116 * @pos: offset in file to begin the operation 117 * @nr_segs: size of iovec array 118 * 119 * The presence of this routine in the address space ops vector means 120 * the NFS client supports direct I/O. However, for most direct IO, we 121 * shunt off direct read and write requests before the VFS gets them, 122 * so this method is only ever called for swap. 123 */ 124 ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs) 125 { 126 #ifndef CONFIG_NFS_SWAP 127 dprintk("NFS: nfs_direct_IO (%pD) off/no(%Ld/%lu) EINVAL\n", 128 iocb->ki_filp, (long long) pos, nr_segs); 129 130 return -EINVAL; 131 #else 132 VM_BUG_ON(iocb->ki_nbytes != PAGE_SIZE); 133 134 if (rw == READ || rw == KERNEL_READ) 135 return nfs_file_direct_read(iocb, iov, nr_segs, pos, 136 rw == READ ? true : false); 137 return nfs_file_direct_write(iocb, iov, nr_segs, pos, 138 rw == WRITE ? true : false); 139 #endif /* CONFIG_NFS_SWAP */ 140 } 141 142 static void nfs_direct_release_pages(struct page **pages, unsigned int npages) 143 { 144 unsigned int i; 145 for (i = 0; i < npages; i++) 146 page_cache_release(pages[i]); 147 } 148 149 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo, 150 struct nfs_direct_req *dreq) 151 { 152 cinfo->lock = &dreq->lock; 153 cinfo->mds = &dreq->mds_cinfo; 154 cinfo->ds = &dreq->ds_cinfo; 155 cinfo->dreq = dreq; 156 cinfo->completion_ops = &nfs_direct_commit_completion_ops; 157 } 158 159 static inline struct nfs_direct_req *nfs_direct_req_alloc(void) 160 { 161 struct nfs_direct_req *dreq; 162 163 dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL); 164 if (!dreq) 165 return NULL; 166 167 kref_init(&dreq->kref); 168 kref_get(&dreq->kref); 169 init_completion(&dreq->completion); 170 INIT_LIST_HEAD(&dreq->mds_cinfo.list); 171 INIT_WORK(&dreq->work, nfs_direct_write_schedule_work); 172 spin_lock_init(&dreq->lock); 173 174 return dreq; 175 } 176 177 static void nfs_direct_req_free(struct kref *kref) 178 { 179 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref); 180 181 if (dreq->l_ctx != NULL) 182 nfs_put_lock_context(dreq->l_ctx); 183 if (dreq->ctx != NULL) 184 put_nfs_open_context(dreq->ctx); 185 kmem_cache_free(nfs_direct_cachep, dreq); 186 } 187 188 static void nfs_direct_req_release(struct nfs_direct_req *dreq) 189 { 190 kref_put(&dreq->kref, nfs_direct_req_free); 191 } 192 193 ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq) 194 { 195 return dreq->bytes_left; 196 } 197 EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left); 198 199 /* 200 * Collects and returns the final error value/byte-count. 201 */ 202 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq) 203 { 204 ssize_t result = -EIOCBQUEUED; 205 206 /* Async requests don't wait here */ 207 if (dreq->iocb) 208 goto out; 209 210 result = wait_for_completion_killable(&dreq->completion); 211 212 if (!result) 213 result = dreq->error; 214 if (!result) 215 result = dreq->count; 216 217 out: 218 return (ssize_t) result; 219 } 220 221 /* 222 * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust 223 * the iocb is still valid here if this is a synchronous request. 224 */ 225 static void nfs_direct_complete(struct nfs_direct_req *dreq, bool write) 226 { 227 struct inode *inode = dreq->inode; 228 229 if (dreq->iocb && write) { 230 loff_t pos = dreq->iocb->ki_pos + dreq->count; 231 232 spin_lock(&inode->i_lock); 233 if (i_size_read(inode) < pos) 234 i_size_write(inode, pos); 235 spin_unlock(&inode->i_lock); 236 } 237 238 if (write) 239 nfs_zap_mapping(inode, inode->i_mapping); 240 241 inode_dio_done(inode); 242 243 if (dreq->iocb) { 244 long res = (long) dreq->error; 245 if (!res) 246 res = (long) dreq->count; 247 aio_complete(dreq->iocb, res, 0); 248 } 249 250 complete_all(&dreq->completion); 251 252 nfs_direct_req_release(dreq); 253 } 254 255 static void nfs_direct_readpage_release(struct nfs_page *req) 256 { 257 dprintk("NFS: direct read done (%s/%llu %d@%lld)\n", 258 req->wb_context->dentry->d_inode->i_sb->s_id, 259 (unsigned long long)NFS_FILEID(req->wb_context->dentry->d_inode), 260 req->wb_bytes, 261 (long long)req_offset(req)); 262 nfs_release_request(req); 263 } 264 265 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr) 266 { 267 unsigned long bytes = 0; 268 struct nfs_direct_req *dreq = hdr->dreq; 269 270 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) 271 goto out_put; 272 273 spin_lock(&dreq->lock); 274 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0)) 275 dreq->error = hdr->error; 276 else 277 dreq->count += hdr->good_bytes; 278 spin_unlock(&dreq->lock); 279 280 while (!list_empty(&hdr->pages)) { 281 struct nfs_page *req = nfs_list_entry(hdr->pages.next); 282 struct page *page = req->wb_page; 283 284 if (!PageCompound(page) && bytes < hdr->good_bytes) 285 set_page_dirty(page); 286 bytes += req->wb_bytes; 287 nfs_list_remove_request(req); 288 nfs_direct_readpage_release(req); 289 } 290 out_put: 291 if (put_dreq(dreq)) 292 nfs_direct_complete(dreq, false); 293 hdr->release(hdr); 294 } 295 296 static void nfs_read_sync_pgio_error(struct list_head *head) 297 { 298 struct nfs_page *req; 299 300 while (!list_empty(head)) { 301 req = nfs_list_entry(head->next); 302 nfs_list_remove_request(req); 303 nfs_release_request(req); 304 } 305 } 306 307 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr) 308 { 309 get_dreq(hdr->dreq); 310 } 311 312 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = { 313 .error_cleanup = nfs_read_sync_pgio_error, 314 .init_hdr = nfs_direct_pgio_init, 315 .completion = nfs_direct_read_completion, 316 }; 317 318 /* 319 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ 320 * operation. If nfs_readdata_alloc() or get_user_pages() fails, 321 * bail and stop sending more reads. Read length accounting is 322 * handled automatically by nfs_direct_read_result(). Otherwise, if 323 * no requests have been sent, just return an error. 324 */ 325 static ssize_t nfs_direct_read_schedule_segment(struct nfs_pageio_descriptor *desc, 326 const struct iovec *iov, 327 loff_t pos, bool uio) 328 { 329 struct nfs_direct_req *dreq = desc->pg_dreq; 330 struct nfs_open_context *ctx = dreq->ctx; 331 struct inode *inode = ctx->dentry->d_inode; 332 unsigned long user_addr = (unsigned long)iov->iov_base; 333 size_t count = iov->iov_len; 334 size_t rsize = NFS_SERVER(inode)->rsize; 335 unsigned int pgbase; 336 int result; 337 ssize_t started = 0; 338 struct page **pagevec = NULL; 339 unsigned int npages; 340 341 do { 342 size_t bytes; 343 int i; 344 345 pgbase = user_addr & ~PAGE_MASK; 346 bytes = min(max_t(size_t, rsize, PAGE_SIZE), count); 347 348 result = -ENOMEM; 349 npages = nfs_page_array_len(pgbase, bytes); 350 if (!pagevec) 351 pagevec = kmalloc(npages * sizeof(struct page *), 352 GFP_KERNEL); 353 if (!pagevec) 354 break; 355 if (uio) { 356 down_read(¤t->mm->mmap_sem); 357 result = get_user_pages(current, current->mm, user_addr, 358 npages, 1, 0, pagevec, NULL); 359 up_read(¤t->mm->mmap_sem); 360 if (result < 0) 361 break; 362 } else { 363 WARN_ON(npages != 1); 364 result = get_kernel_page(user_addr, 1, pagevec); 365 if (WARN_ON(result != 1)) 366 break; 367 } 368 369 if ((unsigned)result < npages) { 370 bytes = result * PAGE_SIZE; 371 if (bytes <= pgbase) { 372 nfs_direct_release_pages(pagevec, result); 373 break; 374 } 375 bytes -= pgbase; 376 npages = result; 377 } 378 379 for (i = 0; i < npages; i++) { 380 struct nfs_page *req; 381 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase); 382 /* XXX do we need to do the eof zeroing found in async_filler? */ 383 req = nfs_create_request(dreq->ctx, dreq->inode, 384 pagevec[i], 385 pgbase, req_len); 386 if (IS_ERR(req)) { 387 result = PTR_ERR(req); 388 break; 389 } 390 req->wb_index = pos >> PAGE_SHIFT; 391 req->wb_offset = pos & ~PAGE_MASK; 392 if (!nfs_pageio_add_request(desc, req)) { 393 result = desc->pg_error; 394 nfs_release_request(req); 395 break; 396 } 397 pgbase = 0; 398 bytes -= req_len; 399 started += req_len; 400 user_addr += req_len; 401 pos += req_len; 402 count -= req_len; 403 dreq->bytes_left -= req_len; 404 } 405 /* The nfs_page now hold references to these pages */ 406 nfs_direct_release_pages(pagevec, npages); 407 } while (count != 0 && result >= 0); 408 409 kfree(pagevec); 410 411 if (started) 412 return started; 413 return result < 0 ? (ssize_t) result : -EFAULT; 414 } 415 416 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq, 417 const struct iovec *iov, 418 unsigned long nr_segs, 419 loff_t pos, bool uio) 420 { 421 struct nfs_pageio_descriptor desc; 422 struct inode *inode = dreq->inode; 423 ssize_t result = -EINVAL; 424 size_t requested_bytes = 0; 425 unsigned long seg; 426 427 NFS_PROTO(dreq->inode)->read_pageio_init(&desc, dreq->inode, 428 &nfs_direct_read_completion_ops); 429 get_dreq(dreq); 430 desc.pg_dreq = dreq; 431 atomic_inc(&inode->i_dio_count); 432 433 for (seg = 0; seg < nr_segs; seg++) { 434 const struct iovec *vec = &iov[seg]; 435 result = nfs_direct_read_schedule_segment(&desc, vec, pos, uio); 436 if (result < 0) 437 break; 438 requested_bytes += result; 439 if ((size_t)result < vec->iov_len) 440 break; 441 pos += vec->iov_len; 442 } 443 444 nfs_pageio_complete(&desc); 445 446 /* 447 * If no bytes were started, return the error, and let the 448 * generic layer handle the completion. 449 */ 450 if (requested_bytes == 0) { 451 inode_dio_done(inode); 452 nfs_direct_req_release(dreq); 453 return result < 0 ? result : -EIO; 454 } 455 456 if (put_dreq(dreq)) 457 nfs_direct_complete(dreq, false); 458 return 0; 459 } 460 461 /** 462 * nfs_file_direct_read - file direct read operation for NFS files 463 * @iocb: target I/O control block 464 * @iov: vector of user buffers into which to read data 465 * @nr_segs: size of iov vector 466 * @pos: byte offset in file where reading starts 467 * 468 * We use this function for direct reads instead of calling 469 * generic_file_aio_read() in order to avoid gfar's check to see if 470 * the request starts before the end of the file. For that check 471 * to work, we must generate a GETATTR before each direct read, and 472 * even then there is a window between the GETATTR and the subsequent 473 * READ where the file size could change. Our preference is simply 474 * to do all reads the application wants, and the server will take 475 * care of managing the end of file boundary. 476 * 477 * This function also eliminates unnecessarily updating the file's 478 * atime locally, as the NFS server sets the file's atime, and this 479 * client must read the updated atime from the server back into its 480 * cache. 481 */ 482 ssize_t nfs_file_direct_read(struct kiocb *iocb, const struct iovec *iov, 483 unsigned long nr_segs, loff_t pos, bool uio) 484 { 485 struct file *file = iocb->ki_filp; 486 struct address_space *mapping = file->f_mapping; 487 struct inode *inode = mapping->host; 488 struct nfs_direct_req *dreq; 489 struct nfs_lock_context *l_ctx; 490 ssize_t result = -EINVAL; 491 size_t count; 492 493 count = iov_length(iov, nr_segs); 494 nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count); 495 496 dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n", 497 file, count, (long long) pos); 498 499 result = 0; 500 if (!count) 501 goto out; 502 503 mutex_lock(&inode->i_mutex); 504 result = nfs_sync_mapping(mapping); 505 if (result) 506 goto out_unlock; 507 508 task_io_account_read(count); 509 510 result = -ENOMEM; 511 dreq = nfs_direct_req_alloc(); 512 if (dreq == NULL) 513 goto out_unlock; 514 515 dreq->inode = inode; 516 dreq->bytes_left = iov_length(iov, nr_segs); 517 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp)); 518 l_ctx = nfs_get_lock_context(dreq->ctx); 519 if (IS_ERR(l_ctx)) { 520 result = PTR_ERR(l_ctx); 521 goto out_release; 522 } 523 dreq->l_ctx = l_ctx; 524 if (!is_sync_kiocb(iocb)) 525 dreq->iocb = iocb; 526 527 NFS_I(inode)->read_io += iov_length(iov, nr_segs); 528 result = nfs_direct_read_schedule_iovec(dreq, iov, nr_segs, pos, uio); 529 530 mutex_unlock(&inode->i_mutex); 531 532 if (!result) { 533 result = nfs_direct_wait(dreq); 534 if (result > 0) 535 iocb->ki_pos = pos + result; 536 } 537 538 nfs_direct_req_release(dreq); 539 return result; 540 541 out_release: 542 nfs_direct_req_release(dreq); 543 out_unlock: 544 mutex_unlock(&inode->i_mutex); 545 out: 546 return result; 547 } 548 549 #if IS_ENABLED(CONFIG_NFS_V3) || IS_ENABLED(CONFIG_NFS_V4) 550 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq) 551 { 552 struct nfs_pageio_descriptor desc; 553 struct nfs_page *req, *tmp; 554 LIST_HEAD(reqs); 555 struct nfs_commit_info cinfo; 556 LIST_HEAD(failed); 557 558 nfs_init_cinfo_from_dreq(&cinfo, dreq); 559 pnfs_recover_commit_reqs(dreq->inode, &reqs, &cinfo); 560 spin_lock(cinfo.lock); 561 nfs_scan_commit_list(&cinfo.mds->list, &reqs, &cinfo, 0); 562 spin_unlock(cinfo.lock); 563 564 dreq->count = 0; 565 get_dreq(dreq); 566 567 NFS_PROTO(dreq->inode)->write_pageio_init(&desc, dreq->inode, FLUSH_STABLE, 568 &nfs_direct_write_completion_ops); 569 desc.pg_dreq = dreq; 570 571 list_for_each_entry_safe(req, tmp, &reqs, wb_list) { 572 if (!nfs_pageio_add_request(&desc, req)) { 573 nfs_list_remove_request(req); 574 nfs_list_add_request(req, &failed); 575 spin_lock(cinfo.lock); 576 dreq->flags = 0; 577 dreq->error = -EIO; 578 spin_unlock(cinfo.lock); 579 } 580 nfs_release_request(req); 581 } 582 nfs_pageio_complete(&desc); 583 584 while (!list_empty(&failed)) { 585 req = nfs_list_entry(failed.next); 586 nfs_list_remove_request(req); 587 nfs_unlock_and_release_request(req); 588 } 589 590 if (put_dreq(dreq)) 591 nfs_direct_write_complete(dreq, dreq->inode); 592 } 593 594 static void nfs_direct_commit_complete(struct nfs_commit_data *data) 595 { 596 struct nfs_direct_req *dreq = data->dreq; 597 struct nfs_commit_info cinfo; 598 struct nfs_page *req; 599 int status = data->task.tk_status; 600 601 nfs_init_cinfo_from_dreq(&cinfo, dreq); 602 if (status < 0) { 603 dprintk("NFS: %5u commit failed with error %d.\n", 604 data->task.tk_pid, status); 605 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 606 } else if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) { 607 dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid); 608 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 609 } 610 611 dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status); 612 while (!list_empty(&data->pages)) { 613 req = nfs_list_entry(data->pages.next); 614 nfs_list_remove_request(req); 615 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) { 616 /* Note the rewrite will go through mds */ 617 nfs_mark_request_commit(req, NULL, &cinfo); 618 } else 619 nfs_release_request(req); 620 nfs_unlock_and_release_request(req); 621 } 622 623 if (atomic_dec_and_test(&cinfo.mds->rpcs_out)) 624 nfs_direct_write_complete(dreq, data->inode); 625 } 626 627 static void nfs_direct_error_cleanup(struct nfs_inode *nfsi) 628 { 629 /* There is no lock to clear */ 630 } 631 632 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = { 633 .completion = nfs_direct_commit_complete, 634 .error_cleanup = nfs_direct_error_cleanup, 635 }; 636 637 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq) 638 { 639 int res; 640 struct nfs_commit_info cinfo; 641 LIST_HEAD(mds_list); 642 643 nfs_init_cinfo_from_dreq(&cinfo, dreq); 644 nfs_scan_commit(dreq->inode, &mds_list, &cinfo); 645 res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo); 646 if (res < 0) /* res == -ENOMEM */ 647 nfs_direct_write_reschedule(dreq); 648 } 649 650 static void nfs_direct_write_schedule_work(struct work_struct *work) 651 { 652 struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work); 653 int flags = dreq->flags; 654 655 dreq->flags = 0; 656 switch (flags) { 657 case NFS_ODIRECT_DO_COMMIT: 658 nfs_direct_commit_schedule(dreq); 659 break; 660 case NFS_ODIRECT_RESCHED_WRITES: 661 nfs_direct_write_reschedule(dreq); 662 break; 663 default: 664 nfs_direct_complete(dreq, true); 665 } 666 } 667 668 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode) 669 { 670 schedule_work(&dreq->work); /* Calls nfs_direct_write_schedule_work */ 671 } 672 673 #else 674 static void nfs_direct_write_schedule_work(struct work_struct *work) 675 { 676 } 677 678 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode) 679 { 680 nfs_direct_complete(dreq, true); 681 } 682 #endif 683 684 /* 685 * NB: Return the value of the first error return code. Subsequent 686 * errors after the first one are ignored. 687 */ 688 /* 689 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE 690 * operation. If nfs_writedata_alloc() or get_user_pages() fails, 691 * bail and stop sending more writes. Write length accounting is 692 * handled automatically by nfs_direct_write_result(). Otherwise, if 693 * no requests have been sent, just return an error. 694 */ 695 static ssize_t nfs_direct_write_schedule_segment(struct nfs_pageio_descriptor *desc, 696 const struct iovec *iov, 697 loff_t pos, bool uio) 698 { 699 struct nfs_direct_req *dreq = desc->pg_dreq; 700 struct nfs_open_context *ctx = dreq->ctx; 701 struct inode *inode = ctx->dentry->d_inode; 702 unsigned long user_addr = (unsigned long)iov->iov_base; 703 size_t count = iov->iov_len; 704 size_t wsize = NFS_SERVER(inode)->wsize; 705 unsigned int pgbase; 706 int result; 707 ssize_t started = 0; 708 struct page **pagevec = NULL; 709 unsigned int npages; 710 711 do { 712 size_t bytes; 713 int i; 714 715 pgbase = user_addr & ~PAGE_MASK; 716 bytes = min(max_t(size_t, wsize, PAGE_SIZE), count); 717 718 result = -ENOMEM; 719 npages = nfs_page_array_len(pgbase, bytes); 720 if (!pagevec) 721 pagevec = kmalloc(npages * sizeof(struct page *), GFP_KERNEL); 722 if (!pagevec) 723 break; 724 725 if (uio) { 726 down_read(¤t->mm->mmap_sem); 727 result = get_user_pages(current, current->mm, user_addr, 728 npages, 0, 0, pagevec, NULL); 729 up_read(¤t->mm->mmap_sem); 730 if (result < 0) 731 break; 732 } else { 733 WARN_ON(npages != 1); 734 result = get_kernel_page(user_addr, 0, pagevec); 735 if (WARN_ON(result != 1)) 736 break; 737 } 738 739 if ((unsigned)result < npages) { 740 bytes = result * PAGE_SIZE; 741 if (bytes <= pgbase) { 742 nfs_direct_release_pages(pagevec, result); 743 break; 744 } 745 bytes -= pgbase; 746 npages = result; 747 } 748 749 for (i = 0; i < npages; i++) { 750 struct nfs_page *req; 751 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase); 752 753 req = nfs_create_request(dreq->ctx, dreq->inode, 754 pagevec[i], 755 pgbase, req_len); 756 if (IS_ERR(req)) { 757 result = PTR_ERR(req); 758 break; 759 } 760 nfs_lock_request(req); 761 req->wb_index = pos >> PAGE_SHIFT; 762 req->wb_offset = pos & ~PAGE_MASK; 763 if (!nfs_pageio_add_request(desc, req)) { 764 result = desc->pg_error; 765 nfs_unlock_and_release_request(req); 766 break; 767 } 768 pgbase = 0; 769 bytes -= req_len; 770 started += req_len; 771 user_addr += req_len; 772 pos += req_len; 773 count -= req_len; 774 dreq->bytes_left -= req_len; 775 } 776 /* The nfs_page now hold references to these pages */ 777 nfs_direct_release_pages(pagevec, npages); 778 } while (count != 0 && result >= 0); 779 780 kfree(pagevec); 781 782 if (started) 783 return started; 784 return result < 0 ? (ssize_t) result : -EFAULT; 785 } 786 787 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr) 788 { 789 struct nfs_direct_req *dreq = hdr->dreq; 790 struct nfs_commit_info cinfo; 791 int bit = -1; 792 struct nfs_page *req = nfs_list_entry(hdr->pages.next); 793 794 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) 795 goto out_put; 796 797 nfs_init_cinfo_from_dreq(&cinfo, dreq); 798 799 spin_lock(&dreq->lock); 800 801 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) { 802 dreq->flags = 0; 803 dreq->error = hdr->error; 804 } 805 if (dreq->error != 0) 806 bit = NFS_IOHDR_ERROR; 807 else { 808 dreq->count += hdr->good_bytes; 809 if (test_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags)) { 810 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 811 bit = NFS_IOHDR_NEED_RESCHED; 812 } else if (test_bit(NFS_IOHDR_NEED_COMMIT, &hdr->flags)) { 813 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) 814 bit = NFS_IOHDR_NEED_RESCHED; 815 else if (dreq->flags == 0) { 816 memcpy(&dreq->verf, hdr->verf, 817 sizeof(dreq->verf)); 818 bit = NFS_IOHDR_NEED_COMMIT; 819 dreq->flags = NFS_ODIRECT_DO_COMMIT; 820 } else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) { 821 if (memcmp(&dreq->verf, hdr->verf, sizeof(dreq->verf))) { 822 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 823 bit = NFS_IOHDR_NEED_RESCHED; 824 } else 825 bit = NFS_IOHDR_NEED_COMMIT; 826 } 827 } 828 } 829 spin_unlock(&dreq->lock); 830 831 while (!list_empty(&hdr->pages)) { 832 req = nfs_list_entry(hdr->pages.next); 833 nfs_list_remove_request(req); 834 switch (bit) { 835 case NFS_IOHDR_NEED_RESCHED: 836 case NFS_IOHDR_NEED_COMMIT: 837 kref_get(&req->wb_kref); 838 nfs_mark_request_commit(req, hdr->lseg, &cinfo); 839 } 840 nfs_unlock_and_release_request(req); 841 } 842 843 out_put: 844 if (put_dreq(dreq)) 845 nfs_direct_write_complete(dreq, hdr->inode); 846 hdr->release(hdr); 847 } 848 849 static void nfs_write_sync_pgio_error(struct list_head *head) 850 { 851 struct nfs_page *req; 852 853 while (!list_empty(head)) { 854 req = nfs_list_entry(head->next); 855 nfs_list_remove_request(req); 856 nfs_unlock_and_release_request(req); 857 } 858 } 859 860 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = { 861 .error_cleanup = nfs_write_sync_pgio_error, 862 .init_hdr = nfs_direct_pgio_init, 863 .completion = nfs_direct_write_completion, 864 }; 865 866 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq, 867 const struct iovec *iov, 868 unsigned long nr_segs, 869 loff_t pos, bool uio) 870 { 871 struct nfs_pageio_descriptor desc; 872 struct inode *inode = dreq->inode; 873 ssize_t result = 0; 874 size_t requested_bytes = 0; 875 unsigned long seg; 876 877 NFS_PROTO(inode)->write_pageio_init(&desc, inode, FLUSH_COND_STABLE, 878 &nfs_direct_write_completion_ops); 879 desc.pg_dreq = dreq; 880 get_dreq(dreq); 881 atomic_inc(&inode->i_dio_count); 882 883 NFS_I(dreq->inode)->write_io += iov_length(iov, nr_segs); 884 for (seg = 0; seg < nr_segs; seg++) { 885 const struct iovec *vec = &iov[seg]; 886 result = nfs_direct_write_schedule_segment(&desc, vec, pos, uio); 887 if (result < 0) 888 break; 889 requested_bytes += result; 890 if ((size_t)result < vec->iov_len) 891 break; 892 pos += vec->iov_len; 893 } 894 nfs_pageio_complete(&desc); 895 896 /* 897 * If no bytes were started, return the error, and let the 898 * generic layer handle the completion. 899 */ 900 if (requested_bytes == 0) { 901 inode_dio_done(inode); 902 nfs_direct_req_release(dreq); 903 return result < 0 ? result : -EIO; 904 } 905 906 if (put_dreq(dreq)) 907 nfs_direct_write_complete(dreq, dreq->inode); 908 return 0; 909 } 910 911 /** 912 * nfs_file_direct_write - file direct write operation for NFS files 913 * @iocb: target I/O control block 914 * @iov: vector of user buffers from which to write data 915 * @nr_segs: size of iov vector 916 * @pos: byte offset in file where writing starts 917 * 918 * We use this function for direct writes instead of calling 919 * generic_file_aio_write() in order to avoid taking the inode 920 * semaphore and updating the i_size. The NFS server will set 921 * the new i_size and this client must read the updated size 922 * back into its cache. We let the server do generic write 923 * parameter checking and report problems. 924 * 925 * We eliminate local atime updates, see direct read above. 926 * 927 * We avoid unnecessary page cache invalidations for normal cached 928 * readers of this file. 929 * 930 * Note that O_APPEND is not supported for NFS direct writes, as there 931 * is no atomic O_APPEND write facility in the NFS protocol. 932 */ 933 ssize_t nfs_file_direct_write(struct kiocb *iocb, const struct iovec *iov, 934 unsigned long nr_segs, loff_t pos, bool uio) 935 { 936 ssize_t result = -EINVAL; 937 struct file *file = iocb->ki_filp; 938 struct address_space *mapping = file->f_mapping; 939 struct inode *inode = mapping->host; 940 struct nfs_direct_req *dreq; 941 struct nfs_lock_context *l_ctx; 942 loff_t end; 943 size_t count; 944 945 count = iov_length(iov, nr_segs); 946 end = (pos + count - 1) >> PAGE_CACHE_SHIFT; 947 948 nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count); 949 950 dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n", 951 file, count, (long long) pos); 952 953 result = generic_write_checks(file, &pos, &count, 0); 954 if (result) 955 goto out; 956 957 result = -EINVAL; 958 if ((ssize_t) count < 0) 959 goto out; 960 result = 0; 961 if (!count) 962 goto out; 963 964 mutex_lock(&inode->i_mutex); 965 966 result = nfs_sync_mapping(mapping); 967 if (result) 968 goto out_unlock; 969 970 if (mapping->nrpages) { 971 result = invalidate_inode_pages2_range(mapping, 972 pos >> PAGE_CACHE_SHIFT, end); 973 if (result) 974 goto out_unlock; 975 } 976 977 task_io_account_write(count); 978 979 result = -ENOMEM; 980 dreq = nfs_direct_req_alloc(); 981 if (!dreq) 982 goto out_unlock; 983 984 dreq->inode = inode; 985 dreq->bytes_left = count; 986 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp)); 987 l_ctx = nfs_get_lock_context(dreq->ctx); 988 if (IS_ERR(l_ctx)) { 989 result = PTR_ERR(l_ctx); 990 goto out_release; 991 } 992 dreq->l_ctx = l_ctx; 993 if (!is_sync_kiocb(iocb)) 994 dreq->iocb = iocb; 995 996 result = nfs_direct_write_schedule_iovec(dreq, iov, nr_segs, pos, uio); 997 998 if (mapping->nrpages) { 999 invalidate_inode_pages2_range(mapping, 1000 pos >> PAGE_CACHE_SHIFT, end); 1001 } 1002 1003 mutex_unlock(&inode->i_mutex); 1004 1005 if (!result) { 1006 result = nfs_direct_wait(dreq); 1007 if (result > 0) { 1008 struct inode *inode = mapping->host; 1009 1010 iocb->ki_pos = pos + result; 1011 spin_lock(&inode->i_lock); 1012 if (i_size_read(inode) < iocb->ki_pos) 1013 i_size_write(inode, iocb->ki_pos); 1014 spin_unlock(&inode->i_lock); 1015 } 1016 } 1017 nfs_direct_req_release(dreq); 1018 return result; 1019 1020 out_release: 1021 nfs_direct_req_release(dreq); 1022 out_unlock: 1023 mutex_unlock(&inode->i_mutex); 1024 out: 1025 return result; 1026 } 1027 1028 /** 1029 * nfs_init_directcache - create a slab cache for nfs_direct_req structures 1030 * 1031 */ 1032 int __init nfs_init_directcache(void) 1033 { 1034 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache", 1035 sizeof(struct nfs_direct_req), 1036 0, (SLAB_RECLAIM_ACCOUNT| 1037 SLAB_MEM_SPREAD), 1038 NULL); 1039 if (nfs_direct_cachep == NULL) 1040 return -ENOMEM; 1041 1042 return 0; 1043 } 1044 1045 /** 1046 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures 1047 * 1048 */ 1049 void nfs_destroy_directcache(void) 1050 { 1051 kmem_cache_destroy(nfs_direct_cachep); 1052 } 1053