1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/nfs/direct.c 4 * 5 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com> 6 * 7 * High-performance uncached I/O for the Linux NFS client 8 * 9 * There are important applications whose performance or correctness 10 * depends on uncached access to file data. Database clusters 11 * (multiple copies of the same instance running on separate hosts) 12 * implement their own cache coherency protocol that subsumes file 13 * system cache protocols. Applications that process datasets 14 * considerably larger than the client's memory do not always benefit 15 * from a local cache. A streaming video server, for instance, has no 16 * need to cache the contents of a file. 17 * 18 * When an application requests uncached I/O, all read and write requests 19 * are made directly to the server; data stored or fetched via these 20 * requests is not cached in the Linux page cache. The client does not 21 * correct unaligned requests from applications. All requested bytes are 22 * held on permanent storage before a direct write system call returns to 23 * an application. 24 * 25 * Solaris implements an uncached I/O facility called directio() that 26 * is used for backups and sequential I/O to very large files. Solaris 27 * also supports uncaching whole NFS partitions with "-o forcedirectio," 28 * an undocumented mount option. 29 * 30 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with 31 * help from Andrew Morton. 32 * 33 * 18 Dec 2001 Initial implementation for 2.4 --cel 34 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy 35 * 08 Jun 2003 Port to 2.5 APIs --cel 36 * 31 Mar 2004 Handle direct I/O without VFS support --cel 37 * 15 Sep 2004 Parallel async reads --cel 38 * 04 May 2005 support O_DIRECT with aio --cel 39 * 40 */ 41 42 #include <linux/errno.h> 43 #include <linux/sched.h> 44 #include <linux/kernel.h> 45 #include <linux/file.h> 46 #include <linux/pagemap.h> 47 #include <linux/kref.h> 48 #include <linux/slab.h> 49 #include <linux/task_io_accounting_ops.h> 50 #include <linux/module.h> 51 52 #include <linux/nfs_fs.h> 53 #include <linux/nfs_page.h> 54 #include <linux/sunrpc/clnt.h> 55 56 #include <linux/uaccess.h> 57 #include <linux/atomic.h> 58 59 #include "internal.h" 60 #include "iostat.h" 61 #include "pnfs.h" 62 63 #define NFSDBG_FACILITY NFSDBG_VFS 64 65 static struct kmem_cache *nfs_direct_cachep; 66 67 struct nfs_direct_req { 68 struct kref kref; /* release manager */ 69 70 /* I/O parameters */ 71 struct nfs_open_context *ctx; /* file open context info */ 72 struct nfs_lock_context *l_ctx; /* Lock context info */ 73 struct kiocb * iocb; /* controlling i/o request */ 74 struct inode * inode; /* target file of i/o */ 75 76 /* completion state */ 77 atomic_t io_count; /* i/os we're waiting for */ 78 spinlock_t lock; /* protect completion state */ 79 80 loff_t io_start; /* Start offset for I/O */ 81 ssize_t count, /* bytes actually processed */ 82 max_count, /* max expected count */ 83 bytes_left, /* bytes left to be sent */ 84 error; /* any reported error */ 85 struct completion completion; /* wait for i/o completion */ 86 87 /* commit state */ 88 struct nfs_mds_commit_info mds_cinfo; /* Storage for cinfo */ 89 struct pnfs_ds_commit_info ds_cinfo; /* Storage for cinfo */ 90 struct work_struct work; 91 int flags; 92 /* for write */ 93 #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */ 94 #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */ 95 /* for read */ 96 #define NFS_ODIRECT_SHOULD_DIRTY (3) /* dirty user-space page after read */ 97 #define NFS_ODIRECT_DONE INT_MAX /* write verification failed */ 98 }; 99 100 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops; 101 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops; 102 static void nfs_direct_write_complete(struct nfs_direct_req *dreq); 103 static void nfs_direct_write_schedule_work(struct work_struct *work); 104 105 static inline void get_dreq(struct nfs_direct_req *dreq) 106 { 107 atomic_inc(&dreq->io_count); 108 } 109 110 static inline int put_dreq(struct nfs_direct_req *dreq) 111 { 112 return atomic_dec_and_test(&dreq->io_count); 113 } 114 115 static void 116 nfs_direct_handle_truncated(struct nfs_direct_req *dreq, 117 const struct nfs_pgio_header *hdr, 118 ssize_t dreq_len) 119 { 120 if (!(test_bit(NFS_IOHDR_ERROR, &hdr->flags) || 121 test_bit(NFS_IOHDR_EOF, &hdr->flags))) 122 return; 123 if (dreq->max_count >= dreq_len) { 124 dreq->max_count = dreq_len; 125 if (dreq->count > dreq_len) 126 dreq->count = dreq_len; 127 128 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) 129 dreq->error = hdr->error; 130 else /* Clear outstanding error if this is EOF */ 131 dreq->error = 0; 132 } 133 } 134 135 static void 136 nfs_direct_count_bytes(struct nfs_direct_req *dreq, 137 const struct nfs_pgio_header *hdr) 138 { 139 loff_t hdr_end = hdr->io_start + hdr->good_bytes; 140 ssize_t dreq_len = 0; 141 142 if (hdr_end > dreq->io_start) 143 dreq_len = hdr_end - dreq->io_start; 144 145 nfs_direct_handle_truncated(dreq, hdr, dreq_len); 146 147 if (dreq_len > dreq->max_count) 148 dreq_len = dreq->max_count; 149 150 if (dreq->count < dreq_len) 151 dreq->count = dreq_len; 152 } 153 154 /** 155 * nfs_direct_IO - NFS address space operation for direct I/O 156 * @iocb: target I/O control block 157 * @iter: I/O buffer 158 * 159 * The presence of this routine in the address space ops vector means 160 * the NFS client supports direct I/O. However, for most direct IO, we 161 * shunt off direct read and write requests before the VFS gets them, 162 * so this method is only ever called for swap. 163 */ 164 ssize_t nfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 165 { 166 struct inode *inode = iocb->ki_filp->f_mapping->host; 167 168 /* we only support swap file calling nfs_direct_IO */ 169 if (!IS_SWAPFILE(inode)) 170 return 0; 171 172 VM_BUG_ON(iov_iter_count(iter) != PAGE_SIZE); 173 174 if (iov_iter_rw(iter) == READ) 175 return nfs_file_direct_read(iocb, iter); 176 return nfs_file_direct_write(iocb, iter); 177 } 178 179 static void nfs_direct_release_pages(struct page **pages, unsigned int npages) 180 { 181 unsigned int i; 182 for (i = 0; i < npages; i++) 183 put_page(pages[i]); 184 } 185 186 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo, 187 struct nfs_direct_req *dreq) 188 { 189 cinfo->inode = dreq->inode; 190 cinfo->mds = &dreq->mds_cinfo; 191 cinfo->ds = &dreq->ds_cinfo; 192 cinfo->dreq = dreq; 193 cinfo->completion_ops = &nfs_direct_commit_completion_ops; 194 } 195 196 static inline struct nfs_direct_req *nfs_direct_req_alloc(void) 197 { 198 struct nfs_direct_req *dreq; 199 200 dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL); 201 if (!dreq) 202 return NULL; 203 204 kref_init(&dreq->kref); 205 kref_get(&dreq->kref); 206 init_completion(&dreq->completion); 207 INIT_LIST_HEAD(&dreq->mds_cinfo.list); 208 pnfs_init_ds_commit_info(&dreq->ds_cinfo); 209 INIT_WORK(&dreq->work, nfs_direct_write_schedule_work); 210 spin_lock_init(&dreq->lock); 211 212 return dreq; 213 } 214 215 static void nfs_direct_req_free(struct kref *kref) 216 { 217 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref); 218 219 pnfs_release_ds_info(&dreq->ds_cinfo, dreq->inode); 220 if (dreq->l_ctx != NULL) 221 nfs_put_lock_context(dreq->l_ctx); 222 if (dreq->ctx != NULL) 223 put_nfs_open_context(dreq->ctx); 224 kmem_cache_free(nfs_direct_cachep, dreq); 225 } 226 227 static void nfs_direct_req_release(struct nfs_direct_req *dreq) 228 { 229 kref_put(&dreq->kref, nfs_direct_req_free); 230 } 231 232 ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq) 233 { 234 return dreq->bytes_left; 235 } 236 EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left); 237 238 /* 239 * Collects and returns the final error value/byte-count. 240 */ 241 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq) 242 { 243 ssize_t result = -EIOCBQUEUED; 244 245 /* Async requests don't wait here */ 246 if (dreq->iocb) 247 goto out; 248 249 result = wait_for_completion_killable(&dreq->completion); 250 251 if (!result) { 252 result = dreq->count; 253 WARN_ON_ONCE(dreq->count < 0); 254 } 255 if (!result) 256 result = dreq->error; 257 258 out: 259 return (ssize_t) result; 260 } 261 262 /* 263 * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust 264 * the iocb is still valid here if this is a synchronous request. 265 */ 266 static void nfs_direct_complete(struct nfs_direct_req *dreq) 267 { 268 struct inode *inode = dreq->inode; 269 270 inode_dio_end(inode); 271 272 if (dreq->iocb) { 273 long res = (long) dreq->error; 274 if (dreq->count != 0) { 275 res = (long) dreq->count; 276 WARN_ON_ONCE(dreq->count < 0); 277 } 278 dreq->iocb->ki_complete(dreq->iocb, res, 0); 279 } 280 281 complete(&dreq->completion); 282 283 nfs_direct_req_release(dreq); 284 } 285 286 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr) 287 { 288 unsigned long bytes = 0; 289 struct nfs_direct_req *dreq = hdr->dreq; 290 291 spin_lock(&dreq->lock); 292 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) { 293 spin_unlock(&dreq->lock); 294 goto out_put; 295 } 296 297 nfs_direct_count_bytes(dreq, hdr); 298 spin_unlock(&dreq->lock); 299 300 while (!list_empty(&hdr->pages)) { 301 struct nfs_page *req = nfs_list_entry(hdr->pages.next); 302 struct page *page = req->wb_page; 303 304 if (!PageCompound(page) && bytes < hdr->good_bytes && 305 (dreq->flags == NFS_ODIRECT_SHOULD_DIRTY)) 306 set_page_dirty(page); 307 bytes += req->wb_bytes; 308 nfs_list_remove_request(req); 309 nfs_release_request(req); 310 } 311 out_put: 312 if (put_dreq(dreq)) 313 nfs_direct_complete(dreq); 314 hdr->release(hdr); 315 } 316 317 static void nfs_read_sync_pgio_error(struct list_head *head, int error) 318 { 319 struct nfs_page *req; 320 321 while (!list_empty(head)) { 322 req = nfs_list_entry(head->next); 323 nfs_list_remove_request(req); 324 nfs_release_request(req); 325 } 326 } 327 328 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr) 329 { 330 get_dreq(hdr->dreq); 331 } 332 333 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = { 334 .error_cleanup = nfs_read_sync_pgio_error, 335 .init_hdr = nfs_direct_pgio_init, 336 .completion = nfs_direct_read_completion, 337 }; 338 339 /* 340 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ 341 * operation. If nfs_readdata_alloc() or get_user_pages() fails, 342 * bail and stop sending more reads. Read length accounting is 343 * handled automatically by nfs_direct_read_result(). Otherwise, if 344 * no requests have been sent, just return an error. 345 */ 346 347 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq, 348 struct iov_iter *iter, 349 loff_t pos) 350 { 351 struct nfs_pageio_descriptor desc; 352 struct inode *inode = dreq->inode; 353 ssize_t result = -EINVAL; 354 size_t requested_bytes = 0; 355 size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE); 356 357 nfs_pageio_init_read(&desc, dreq->inode, false, 358 &nfs_direct_read_completion_ops); 359 get_dreq(dreq); 360 desc.pg_dreq = dreq; 361 inode_dio_begin(inode); 362 363 while (iov_iter_count(iter)) { 364 struct page **pagevec; 365 size_t bytes; 366 size_t pgbase; 367 unsigned npages, i; 368 369 result = iov_iter_get_pages_alloc(iter, &pagevec, 370 rsize, &pgbase); 371 if (result < 0) 372 break; 373 374 bytes = result; 375 iov_iter_advance(iter, bytes); 376 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE; 377 for (i = 0; i < npages; i++) { 378 struct nfs_page *req; 379 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase); 380 /* XXX do we need to do the eof zeroing found in async_filler? */ 381 req = nfs_create_request(dreq->ctx, pagevec[i], 382 pgbase, req_len); 383 if (IS_ERR(req)) { 384 result = PTR_ERR(req); 385 break; 386 } 387 req->wb_index = pos >> PAGE_SHIFT; 388 req->wb_offset = pos & ~PAGE_MASK; 389 if (!nfs_pageio_add_request(&desc, req)) { 390 result = desc.pg_error; 391 nfs_release_request(req); 392 break; 393 } 394 pgbase = 0; 395 bytes -= req_len; 396 requested_bytes += req_len; 397 pos += req_len; 398 dreq->bytes_left -= req_len; 399 } 400 nfs_direct_release_pages(pagevec, npages); 401 kvfree(pagevec); 402 if (result < 0) 403 break; 404 } 405 406 nfs_pageio_complete(&desc); 407 408 /* 409 * If no bytes were started, return the error, and let the 410 * generic layer handle the completion. 411 */ 412 if (requested_bytes == 0) { 413 inode_dio_end(inode); 414 nfs_direct_req_release(dreq); 415 return result < 0 ? result : -EIO; 416 } 417 418 if (put_dreq(dreq)) 419 nfs_direct_complete(dreq); 420 return requested_bytes; 421 } 422 423 /** 424 * nfs_file_direct_read - file direct read operation for NFS files 425 * @iocb: target I/O control block 426 * @iter: vector of user buffers into which to read data 427 * 428 * We use this function for direct reads instead of calling 429 * generic_file_aio_read() in order to avoid gfar's check to see if 430 * the request starts before the end of the file. For that check 431 * to work, we must generate a GETATTR before each direct read, and 432 * even then there is a window between the GETATTR and the subsequent 433 * READ where the file size could change. Our preference is simply 434 * to do all reads the application wants, and the server will take 435 * care of managing the end of file boundary. 436 * 437 * This function also eliminates unnecessarily updating the file's 438 * atime locally, as the NFS server sets the file's atime, and this 439 * client must read the updated atime from the server back into its 440 * cache. 441 */ 442 ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter) 443 { 444 struct file *file = iocb->ki_filp; 445 struct address_space *mapping = file->f_mapping; 446 struct inode *inode = mapping->host; 447 struct nfs_direct_req *dreq; 448 struct nfs_lock_context *l_ctx; 449 ssize_t result, requested; 450 size_t count = iov_iter_count(iter); 451 nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count); 452 453 dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n", 454 file, count, (long long) iocb->ki_pos); 455 456 result = 0; 457 if (!count) 458 goto out; 459 460 task_io_account_read(count); 461 462 result = -ENOMEM; 463 dreq = nfs_direct_req_alloc(); 464 if (dreq == NULL) 465 goto out; 466 467 dreq->inode = inode; 468 dreq->bytes_left = dreq->max_count = count; 469 dreq->io_start = iocb->ki_pos; 470 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp)); 471 l_ctx = nfs_get_lock_context(dreq->ctx); 472 if (IS_ERR(l_ctx)) { 473 result = PTR_ERR(l_ctx); 474 nfs_direct_req_release(dreq); 475 goto out_release; 476 } 477 dreq->l_ctx = l_ctx; 478 if (!is_sync_kiocb(iocb)) 479 dreq->iocb = iocb; 480 481 if (iter_is_iovec(iter)) 482 dreq->flags = NFS_ODIRECT_SHOULD_DIRTY; 483 484 nfs_start_io_direct(inode); 485 486 NFS_I(inode)->read_io += count; 487 requested = nfs_direct_read_schedule_iovec(dreq, iter, iocb->ki_pos); 488 489 nfs_end_io_direct(inode); 490 491 if (requested > 0) { 492 result = nfs_direct_wait(dreq); 493 if (result > 0) { 494 requested -= result; 495 iocb->ki_pos += result; 496 } 497 iov_iter_revert(iter, requested); 498 } else { 499 result = requested; 500 } 501 502 out_release: 503 nfs_direct_req_release(dreq); 504 out: 505 return result; 506 } 507 508 static void 509 nfs_direct_join_group(struct list_head *list, struct inode *inode) 510 { 511 struct nfs_page *req, *next; 512 513 list_for_each_entry(req, list, wb_list) { 514 if (req->wb_head != req || req->wb_this_page == req) 515 continue; 516 for (next = req->wb_this_page; 517 next != req->wb_head; 518 next = next->wb_this_page) { 519 nfs_list_remove_request(next); 520 nfs_release_request(next); 521 } 522 nfs_join_page_group(req, inode); 523 } 524 } 525 526 static void 527 nfs_direct_write_scan_commit_list(struct inode *inode, 528 struct list_head *list, 529 struct nfs_commit_info *cinfo) 530 { 531 mutex_lock(&NFS_I(cinfo->inode)->commit_mutex); 532 pnfs_recover_commit_reqs(list, cinfo); 533 nfs_scan_commit_list(&cinfo->mds->list, list, cinfo, 0); 534 mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex); 535 } 536 537 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq) 538 { 539 struct nfs_pageio_descriptor desc; 540 struct nfs_page *req, *tmp; 541 LIST_HEAD(reqs); 542 struct nfs_commit_info cinfo; 543 LIST_HEAD(failed); 544 545 nfs_init_cinfo_from_dreq(&cinfo, dreq); 546 nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo); 547 548 nfs_direct_join_group(&reqs, dreq->inode); 549 550 dreq->count = 0; 551 dreq->max_count = 0; 552 list_for_each_entry(req, &reqs, wb_list) 553 dreq->max_count += req->wb_bytes; 554 nfs_clear_pnfs_ds_commit_verifiers(&dreq->ds_cinfo); 555 get_dreq(dreq); 556 557 nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false, 558 &nfs_direct_write_completion_ops); 559 desc.pg_dreq = dreq; 560 561 list_for_each_entry_safe(req, tmp, &reqs, wb_list) { 562 /* Bump the transmission count */ 563 req->wb_nio++; 564 if (!nfs_pageio_add_request(&desc, req)) { 565 nfs_list_move_request(req, &failed); 566 spin_lock(&cinfo.inode->i_lock); 567 dreq->flags = 0; 568 if (desc.pg_error < 0) 569 dreq->error = desc.pg_error; 570 else 571 dreq->error = -EIO; 572 spin_unlock(&cinfo.inode->i_lock); 573 } 574 nfs_release_request(req); 575 } 576 nfs_pageio_complete(&desc); 577 578 while (!list_empty(&failed)) { 579 req = nfs_list_entry(failed.next); 580 nfs_list_remove_request(req); 581 nfs_unlock_and_release_request(req); 582 } 583 584 if (put_dreq(dreq)) 585 nfs_direct_write_complete(dreq); 586 } 587 588 static void nfs_direct_commit_complete(struct nfs_commit_data *data) 589 { 590 const struct nfs_writeverf *verf = data->res.verf; 591 struct nfs_direct_req *dreq = data->dreq; 592 struct nfs_commit_info cinfo; 593 struct nfs_page *req; 594 int status = data->task.tk_status; 595 596 if (status < 0) { 597 /* Errors in commit are fatal */ 598 dreq->error = status; 599 dreq->max_count = 0; 600 dreq->count = 0; 601 dreq->flags = NFS_ODIRECT_DONE; 602 } else if (dreq->flags == NFS_ODIRECT_DONE) 603 status = dreq->error; 604 605 nfs_init_cinfo_from_dreq(&cinfo, dreq); 606 607 while (!list_empty(&data->pages)) { 608 req = nfs_list_entry(data->pages.next); 609 nfs_list_remove_request(req); 610 if (status >= 0 && !nfs_write_match_verf(verf, req)) { 611 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 612 /* 613 * Despite the reboot, the write was successful, 614 * so reset wb_nio. 615 */ 616 req->wb_nio = 0; 617 nfs_mark_request_commit(req, NULL, &cinfo, 0); 618 } else /* Error or match */ 619 nfs_release_request(req); 620 nfs_unlock_and_release_request(req); 621 } 622 623 if (atomic_dec_and_test(&cinfo.mds->rpcs_out)) 624 nfs_direct_write_complete(dreq); 625 } 626 627 static void nfs_direct_resched_write(struct nfs_commit_info *cinfo, 628 struct nfs_page *req) 629 { 630 struct nfs_direct_req *dreq = cinfo->dreq; 631 632 spin_lock(&dreq->lock); 633 if (dreq->flags != NFS_ODIRECT_DONE) 634 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 635 spin_unlock(&dreq->lock); 636 nfs_mark_request_commit(req, NULL, cinfo, 0); 637 } 638 639 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = { 640 .completion = nfs_direct_commit_complete, 641 .resched_write = nfs_direct_resched_write, 642 }; 643 644 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq) 645 { 646 int res; 647 struct nfs_commit_info cinfo; 648 LIST_HEAD(mds_list); 649 650 nfs_init_cinfo_from_dreq(&cinfo, dreq); 651 nfs_scan_commit(dreq->inode, &mds_list, &cinfo); 652 res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo); 653 if (res < 0) /* res == -ENOMEM */ 654 nfs_direct_write_reschedule(dreq); 655 } 656 657 static void nfs_direct_write_clear_reqs(struct nfs_direct_req *dreq) 658 { 659 struct nfs_commit_info cinfo; 660 struct nfs_page *req; 661 LIST_HEAD(reqs); 662 663 nfs_init_cinfo_from_dreq(&cinfo, dreq); 664 nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo); 665 666 while (!list_empty(&reqs)) { 667 req = nfs_list_entry(reqs.next); 668 nfs_list_remove_request(req); 669 nfs_release_request(req); 670 nfs_unlock_and_release_request(req); 671 } 672 } 673 674 static void nfs_direct_write_schedule_work(struct work_struct *work) 675 { 676 struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work); 677 int flags = dreq->flags; 678 679 dreq->flags = 0; 680 switch (flags) { 681 case NFS_ODIRECT_DO_COMMIT: 682 nfs_direct_commit_schedule(dreq); 683 break; 684 case NFS_ODIRECT_RESCHED_WRITES: 685 nfs_direct_write_reschedule(dreq); 686 break; 687 default: 688 nfs_direct_write_clear_reqs(dreq); 689 nfs_zap_mapping(dreq->inode, dreq->inode->i_mapping); 690 nfs_direct_complete(dreq); 691 } 692 } 693 694 static void nfs_direct_write_complete(struct nfs_direct_req *dreq) 695 { 696 queue_work(nfsiod_workqueue, &dreq->work); /* Calls nfs_direct_write_schedule_work */ 697 } 698 699 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr) 700 { 701 struct nfs_direct_req *dreq = hdr->dreq; 702 struct nfs_commit_info cinfo; 703 bool request_commit = false; 704 struct nfs_page *req = nfs_list_entry(hdr->pages.next); 705 706 nfs_init_cinfo_from_dreq(&cinfo, dreq); 707 708 spin_lock(&dreq->lock); 709 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) { 710 spin_unlock(&dreq->lock); 711 goto out_put; 712 } 713 714 nfs_direct_count_bytes(dreq, hdr); 715 if (hdr->good_bytes != 0 && nfs_write_need_commit(hdr)) { 716 switch (dreq->flags) { 717 case 0: 718 dreq->flags = NFS_ODIRECT_DO_COMMIT; 719 request_commit = true; 720 break; 721 case NFS_ODIRECT_RESCHED_WRITES: 722 case NFS_ODIRECT_DO_COMMIT: 723 request_commit = true; 724 } 725 } 726 spin_unlock(&dreq->lock); 727 728 while (!list_empty(&hdr->pages)) { 729 730 req = nfs_list_entry(hdr->pages.next); 731 nfs_list_remove_request(req); 732 if (request_commit) { 733 kref_get(&req->wb_kref); 734 memcpy(&req->wb_verf, &hdr->verf.verifier, 735 sizeof(req->wb_verf)); 736 nfs_mark_request_commit(req, hdr->lseg, &cinfo, 737 hdr->ds_commit_idx); 738 } 739 nfs_unlock_and_release_request(req); 740 } 741 742 out_put: 743 if (put_dreq(dreq)) 744 nfs_direct_write_complete(dreq); 745 hdr->release(hdr); 746 } 747 748 static void nfs_write_sync_pgio_error(struct list_head *head, int error) 749 { 750 struct nfs_page *req; 751 752 while (!list_empty(head)) { 753 req = nfs_list_entry(head->next); 754 nfs_list_remove_request(req); 755 nfs_unlock_and_release_request(req); 756 } 757 } 758 759 static void nfs_direct_write_reschedule_io(struct nfs_pgio_header *hdr) 760 { 761 struct nfs_direct_req *dreq = hdr->dreq; 762 763 spin_lock(&dreq->lock); 764 if (dreq->error == 0) { 765 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 766 /* fake unstable write to let common nfs resend pages */ 767 hdr->verf.committed = NFS_UNSTABLE; 768 hdr->good_bytes = hdr->args.offset + hdr->args.count - 769 hdr->io_start; 770 } 771 spin_unlock(&dreq->lock); 772 } 773 774 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = { 775 .error_cleanup = nfs_write_sync_pgio_error, 776 .init_hdr = nfs_direct_pgio_init, 777 .completion = nfs_direct_write_completion, 778 .reschedule_io = nfs_direct_write_reschedule_io, 779 }; 780 781 782 /* 783 * NB: Return the value of the first error return code. Subsequent 784 * errors after the first one are ignored. 785 */ 786 /* 787 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE 788 * operation. If nfs_writedata_alloc() or get_user_pages() fails, 789 * bail and stop sending more writes. Write length accounting is 790 * handled automatically by nfs_direct_write_result(). Otherwise, if 791 * no requests have been sent, just return an error. 792 */ 793 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq, 794 struct iov_iter *iter, 795 loff_t pos) 796 { 797 struct nfs_pageio_descriptor desc; 798 struct inode *inode = dreq->inode; 799 ssize_t result = 0; 800 size_t requested_bytes = 0; 801 size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE); 802 803 nfs_pageio_init_write(&desc, inode, FLUSH_COND_STABLE, false, 804 &nfs_direct_write_completion_ops); 805 desc.pg_dreq = dreq; 806 get_dreq(dreq); 807 inode_dio_begin(inode); 808 809 NFS_I(inode)->write_io += iov_iter_count(iter); 810 while (iov_iter_count(iter)) { 811 struct page **pagevec; 812 size_t bytes; 813 size_t pgbase; 814 unsigned npages, i; 815 816 result = iov_iter_get_pages_alloc(iter, &pagevec, 817 wsize, &pgbase); 818 if (result < 0) 819 break; 820 821 bytes = result; 822 iov_iter_advance(iter, bytes); 823 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE; 824 for (i = 0; i < npages; i++) { 825 struct nfs_page *req; 826 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase); 827 828 req = nfs_create_request(dreq->ctx, pagevec[i], 829 pgbase, req_len); 830 if (IS_ERR(req)) { 831 result = PTR_ERR(req); 832 break; 833 } 834 835 if (desc.pg_error < 0) { 836 nfs_free_request(req); 837 result = desc.pg_error; 838 break; 839 } 840 841 nfs_lock_request(req); 842 req->wb_index = pos >> PAGE_SHIFT; 843 req->wb_offset = pos & ~PAGE_MASK; 844 if (!nfs_pageio_add_request(&desc, req)) { 845 result = desc.pg_error; 846 nfs_unlock_and_release_request(req); 847 break; 848 } 849 pgbase = 0; 850 bytes -= req_len; 851 requested_bytes += req_len; 852 pos += req_len; 853 dreq->bytes_left -= req_len; 854 } 855 nfs_direct_release_pages(pagevec, npages); 856 kvfree(pagevec); 857 if (result < 0) 858 break; 859 } 860 nfs_pageio_complete(&desc); 861 862 /* 863 * If no bytes were started, return the error, and let the 864 * generic layer handle the completion. 865 */ 866 if (requested_bytes == 0) { 867 inode_dio_end(inode); 868 nfs_direct_req_release(dreq); 869 return result < 0 ? result : -EIO; 870 } 871 872 if (put_dreq(dreq)) 873 nfs_direct_write_complete(dreq); 874 return requested_bytes; 875 } 876 877 /** 878 * nfs_file_direct_write - file direct write operation for NFS files 879 * @iocb: target I/O control block 880 * @iter: vector of user buffers from which to write data 881 * 882 * We use this function for direct writes instead of calling 883 * generic_file_aio_write() in order to avoid taking the inode 884 * semaphore and updating the i_size. The NFS server will set 885 * the new i_size and this client must read the updated size 886 * back into its cache. We let the server do generic write 887 * parameter checking and report problems. 888 * 889 * We eliminate local atime updates, see direct read above. 890 * 891 * We avoid unnecessary page cache invalidations for normal cached 892 * readers of this file. 893 * 894 * Note that O_APPEND is not supported for NFS direct writes, as there 895 * is no atomic O_APPEND write facility in the NFS protocol. 896 */ 897 ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter) 898 { 899 ssize_t result, requested; 900 size_t count; 901 struct file *file = iocb->ki_filp; 902 struct address_space *mapping = file->f_mapping; 903 struct inode *inode = mapping->host; 904 struct nfs_direct_req *dreq; 905 struct nfs_lock_context *l_ctx; 906 loff_t pos, end; 907 908 dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n", 909 file, iov_iter_count(iter), (long long) iocb->ki_pos); 910 911 result = generic_write_checks(iocb, iter); 912 if (result <= 0) 913 return result; 914 count = result; 915 nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count); 916 917 pos = iocb->ki_pos; 918 end = (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT; 919 920 task_io_account_write(count); 921 922 result = -ENOMEM; 923 dreq = nfs_direct_req_alloc(); 924 if (!dreq) 925 goto out; 926 927 dreq->inode = inode; 928 dreq->bytes_left = dreq->max_count = count; 929 dreq->io_start = pos; 930 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp)); 931 l_ctx = nfs_get_lock_context(dreq->ctx); 932 if (IS_ERR(l_ctx)) { 933 result = PTR_ERR(l_ctx); 934 nfs_direct_req_release(dreq); 935 goto out_release; 936 } 937 dreq->l_ctx = l_ctx; 938 if (!is_sync_kiocb(iocb)) 939 dreq->iocb = iocb; 940 pnfs_init_ds_commit_info_ops(&dreq->ds_cinfo, inode); 941 942 nfs_start_io_direct(inode); 943 944 requested = nfs_direct_write_schedule_iovec(dreq, iter, pos); 945 946 if (mapping->nrpages) { 947 invalidate_inode_pages2_range(mapping, 948 pos >> PAGE_SHIFT, end); 949 } 950 951 nfs_end_io_direct(inode); 952 953 if (requested > 0) { 954 result = nfs_direct_wait(dreq); 955 if (result > 0) { 956 requested -= result; 957 iocb->ki_pos = pos + result; 958 /* XXX: should check the generic_write_sync retval */ 959 generic_write_sync(iocb, result); 960 } 961 iov_iter_revert(iter, requested); 962 } else { 963 result = requested; 964 } 965 out_release: 966 nfs_direct_req_release(dreq); 967 out: 968 return result; 969 } 970 971 /** 972 * nfs_init_directcache - create a slab cache for nfs_direct_req structures 973 * 974 */ 975 int __init nfs_init_directcache(void) 976 { 977 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache", 978 sizeof(struct nfs_direct_req), 979 0, (SLAB_RECLAIM_ACCOUNT| 980 SLAB_MEM_SPREAD), 981 NULL); 982 if (nfs_direct_cachep == NULL) 983 return -ENOMEM; 984 985 return 0; 986 } 987 988 /** 989 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures 990 * 991 */ 992 void nfs_destroy_directcache(void) 993 { 994 kmem_cache_destroy(nfs_direct_cachep); 995 } 996