xref: /openbmc/linux/fs/nfs/direct.c (revision 609e478b)
1 /*
2  * linux/fs/nfs/direct.c
3  *
4  * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
5  *
6  * High-performance uncached I/O for the Linux NFS client
7  *
8  * There are important applications whose performance or correctness
9  * depends on uncached access to file data.  Database clusters
10  * (multiple copies of the same instance running on separate hosts)
11  * implement their own cache coherency protocol that subsumes file
12  * system cache protocols.  Applications that process datasets
13  * considerably larger than the client's memory do not always benefit
14  * from a local cache.  A streaming video server, for instance, has no
15  * need to cache the contents of a file.
16  *
17  * When an application requests uncached I/O, all read and write requests
18  * are made directly to the server; data stored or fetched via these
19  * requests is not cached in the Linux page cache.  The client does not
20  * correct unaligned requests from applications.  All requested bytes are
21  * held on permanent storage before a direct write system call returns to
22  * an application.
23  *
24  * Solaris implements an uncached I/O facility called directio() that
25  * is used for backups and sequential I/O to very large files.  Solaris
26  * also supports uncaching whole NFS partitions with "-o forcedirectio,"
27  * an undocumented mount option.
28  *
29  * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
30  * help from Andrew Morton.
31  *
32  * 18 Dec 2001	Initial implementation for 2.4  --cel
33  * 08 Jul 2002	Version for 2.4.19, with bug fixes --trondmy
34  * 08 Jun 2003	Port to 2.5 APIs  --cel
35  * 31 Mar 2004	Handle direct I/O without VFS support  --cel
36  * 15 Sep 2004	Parallel async reads  --cel
37  * 04 May 2005	support O_DIRECT with aio  --cel
38  *
39  */
40 
41 #include <linux/errno.h>
42 #include <linux/sched.h>
43 #include <linux/kernel.h>
44 #include <linux/file.h>
45 #include <linux/pagemap.h>
46 #include <linux/kref.h>
47 #include <linux/slab.h>
48 #include <linux/task_io_accounting_ops.h>
49 #include <linux/module.h>
50 
51 #include <linux/nfs_fs.h>
52 #include <linux/nfs_page.h>
53 #include <linux/sunrpc/clnt.h>
54 
55 #include <asm/uaccess.h>
56 #include <linux/atomic.h>
57 
58 #include "internal.h"
59 #include "iostat.h"
60 #include "pnfs.h"
61 
62 #define NFSDBG_FACILITY		NFSDBG_VFS
63 
64 static struct kmem_cache *nfs_direct_cachep;
65 
66 /*
67  * This represents a set of asynchronous requests that we're waiting on
68  */
69 struct nfs_direct_req {
70 	struct kref		kref;		/* release manager */
71 
72 	/* I/O parameters */
73 	struct nfs_open_context	*ctx;		/* file open context info */
74 	struct nfs_lock_context *l_ctx;		/* Lock context info */
75 	struct kiocb *		iocb;		/* controlling i/o request */
76 	struct inode *		inode;		/* target file of i/o */
77 
78 	/* completion state */
79 	atomic_t		io_count;	/* i/os we're waiting for */
80 	spinlock_t		lock;		/* protect completion state */
81 	ssize_t			count,		/* bytes actually processed */
82 				bytes_left,	/* bytes left to be sent */
83 				error;		/* any reported error */
84 	struct completion	completion;	/* wait for i/o completion */
85 
86 	/* commit state */
87 	struct nfs_mds_commit_info mds_cinfo;	/* Storage for cinfo */
88 	struct pnfs_ds_commit_info ds_cinfo;	/* Storage for cinfo */
89 	struct work_struct	work;
90 	int			flags;
91 #define NFS_ODIRECT_DO_COMMIT		(1)	/* an unstable reply was received */
92 #define NFS_ODIRECT_RESCHED_WRITES	(2)	/* write verification failed */
93 	struct nfs_writeverf	verf;		/* unstable write verifier */
94 };
95 
96 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
97 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
98 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
99 static void nfs_direct_write_schedule_work(struct work_struct *work);
100 
101 static inline void get_dreq(struct nfs_direct_req *dreq)
102 {
103 	atomic_inc(&dreq->io_count);
104 }
105 
106 static inline int put_dreq(struct nfs_direct_req *dreq)
107 {
108 	return atomic_dec_and_test(&dreq->io_count);
109 }
110 
111 /*
112  * nfs_direct_select_verf - select the right verifier
113  * @dreq - direct request possibly spanning multiple servers
114  * @ds_clp - nfs_client of data server or NULL if MDS / non-pnfs
115  * @ds_idx - index of data server in data server list, only valid if ds_clp set
116  *
117  * returns the correct verifier to use given the role of the server
118  */
119 static struct nfs_writeverf *
120 nfs_direct_select_verf(struct nfs_direct_req *dreq,
121 		       struct nfs_client *ds_clp,
122 		       int ds_idx)
123 {
124 	struct nfs_writeverf *verfp = &dreq->verf;
125 
126 #ifdef CONFIG_NFS_V4_1
127 	if (ds_clp) {
128 		/* pNFS is in use, use the DS verf */
129 		if (ds_idx >= 0 && ds_idx < dreq->ds_cinfo.nbuckets)
130 			verfp = &dreq->ds_cinfo.buckets[ds_idx].direct_verf;
131 		else
132 			WARN_ON_ONCE(1);
133 	}
134 #endif
135 	return verfp;
136 }
137 
138 
139 /*
140  * nfs_direct_set_hdr_verf - set the write/commit verifier
141  * @dreq - direct request possibly spanning multiple servers
142  * @hdr - pageio header to validate against previously seen verfs
143  *
144  * Set the server's (MDS or DS) "seen" verifier
145  */
146 static void nfs_direct_set_hdr_verf(struct nfs_direct_req *dreq,
147 				    struct nfs_pgio_header *hdr)
148 {
149 	struct nfs_writeverf *verfp;
150 
151 	verfp = nfs_direct_select_verf(dreq, hdr->ds_clp,
152 				      hdr->ds_idx);
153 	WARN_ON_ONCE(verfp->committed >= 0);
154 	memcpy(verfp, &hdr->verf, sizeof(struct nfs_writeverf));
155 	WARN_ON_ONCE(verfp->committed < 0);
156 }
157 
158 /*
159  * nfs_direct_cmp_hdr_verf - compare verifier for pgio header
160  * @dreq - direct request possibly spanning multiple servers
161  * @hdr - pageio header to validate against previously seen verf
162  *
163  * set the server's "seen" verf if not initialized.
164  * returns result of comparison between @hdr->verf and the "seen"
165  * verf of the server used by @hdr (DS or MDS)
166  */
167 static int nfs_direct_set_or_cmp_hdr_verf(struct nfs_direct_req *dreq,
168 					  struct nfs_pgio_header *hdr)
169 {
170 	struct nfs_writeverf *verfp;
171 
172 	verfp = nfs_direct_select_verf(dreq, hdr->ds_clp,
173 					 hdr->ds_idx);
174 	if (verfp->committed < 0) {
175 		nfs_direct_set_hdr_verf(dreq, hdr);
176 		return 0;
177 	}
178 	return memcmp(verfp, &hdr->verf, sizeof(struct nfs_writeverf));
179 }
180 
181 /*
182  * nfs_direct_cmp_commit_data_verf - compare verifier for commit data
183  * @dreq - direct request possibly spanning multiple servers
184  * @data - commit data to validate against previously seen verf
185  *
186  * returns result of comparison between @data->verf and the verf of
187  * the server used by @data (DS or MDS)
188  */
189 static int nfs_direct_cmp_commit_data_verf(struct nfs_direct_req *dreq,
190 					   struct nfs_commit_data *data)
191 {
192 	struct nfs_writeverf *verfp;
193 
194 	verfp = nfs_direct_select_verf(dreq, data->ds_clp,
195 					 data->ds_commit_index);
196 	WARN_ON_ONCE(verfp->committed < 0);
197 	return memcmp(verfp, &data->verf, sizeof(struct nfs_writeverf));
198 }
199 
200 /**
201  * nfs_direct_IO - NFS address space operation for direct I/O
202  * @rw: direction (read or write)
203  * @iocb: target I/O control block
204  * @iov: array of vectors that define I/O buffer
205  * @pos: offset in file to begin the operation
206  * @nr_segs: size of iovec array
207  *
208  * The presence of this routine in the address space ops vector means
209  * the NFS client supports direct I/O. However, for most direct IO, we
210  * shunt off direct read and write requests before the VFS gets them,
211  * so this method is only ever called for swap.
212  */
213 ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, struct iov_iter *iter, loff_t pos)
214 {
215 #ifndef CONFIG_NFS_SWAP
216 	dprintk("NFS: nfs_direct_IO (%pD) off/no(%Ld/%lu) EINVAL\n",
217 			iocb->ki_filp, (long long) pos, iter->nr_segs);
218 
219 	return -EINVAL;
220 #else
221 	VM_BUG_ON(iocb->ki_nbytes != PAGE_SIZE);
222 
223 	if (rw == READ)
224 		return nfs_file_direct_read(iocb, iter, pos);
225 	return nfs_file_direct_write(iocb, iter, pos);
226 #endif /* CONFIG_NFS_SWAP */
227 }
228 
229 static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
230 {
231 	unsigned int i;
232 	for (i = 0; i < npages; i++)
233 		page_cache_release(pages[i]);
234 }
235 
236 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
237 			      struct nfs_direct_req *dreq)
238 {
239 	cinfo->lock = &dreq->lock;
240 	cinfo->mds = &dreq->mds_cinfo;
241 	cinfo->ds = &dreq->ds_cinfo;
242 	cinfo->dreq = dreq;
243 	cinfo->completion_ops = &nfs_direct_commit_completion_ops;
244 }
245 
246 static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
247 {
248 	struct nfs_direct_req *dreq;
249 
250 	dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
251 	if (!dreq)
252 		return NULL;
253 
254 	kref_init(&dreq->kref);
255 	kref_get(&dreq->kref);
256 	init_completion(&dreq->completion);
257 	INIT_LIST_HEAD(&dreq->mds_cinfo.list);
258 	dreq->verf.committed = NFS_INVALID_STABLE_HOW;	/* not set yet */
259 	INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
260 	spin_lock_init(&dreq->lock);
261 
262 	return dreq;
263 }
264 
265 static void nfs_direct_req_free(struct kref *kref)
266 {
267 	struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
268 
269 	if (dreq->l_ctx != NULL)
270 		nfs_put_lock_context(dreq->l_ctx);
271 	if (dreq->ctx != NULL)
272 		put_nfs_open_context(dreq->ctx);
273 	kmem_cache_free(nfs_direct_cachep, dreq);
274 }
275 
276 static void nfs_direct_req_release(struct nfs_direct_req *dreq)
277 {
278 	kref_put(&dreq->kref, nfs_direct_req_free);
279 }
280 
281 ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq)
282 {
283 	return dreq->bytes_left;
284 }
285 EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
286 
287 /*
288  * Collects and returns the final error value/byte-count.
289  */
290 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
291 {
292 	ssize_t result = -EIOCBQUEUED;
293 
294 	/* Async requests don't wait here */
295 	if (dreq->iocb)
296 		goto out;
297 
298 	result = wait_for_completion_killable(&dreq->completion);
299 
300 	if (!result)
301 		result = dreq->error;
302 	if (!result)
303 		result = dreq->count;
304 
305 out:
306 	return (ssize_t) result;
307 }
308 
309 /*
310  * Synchronous I/O uses a stack-allocated iocb.  Thus we can't trust
311  * the iocb is still valid here if this is a synchronous request.
312  */
313 static void nfs_direct_complete(struct nfs_direct_req *dreq, bool write)
314 {
315 	struct inode *inode = dreq->inode;
316 
317 	if (dreq->iocb && write) {
318 		loff_t pos = dreq->iocb->ki_pos + dreq->count;
319 
320 		spin_lock(&inode->i_lock);
321 		if (i_size_read(inode) < pos)
322 			i_size_write(inode, pos);
323 		spin_unlock(&inode->i_lock);
324 	}
325 
326 	if (write)
327 		nfs_zap_mapping(inode, inode->i_mapping);
328 
329 	inode_dio_done(inode);
330 
331 	if (dreq->iocb) {
332 		long res = (long) dreq->error;
333 		if (!res)
334 			res = (long) dreq->count;
335 		aio_complete(dreq->iocb, res, 0);
336 	}
337 
338 	complete_all(&dreq->completion);
339 
340 	nfs_direct_req_release(dreq);
341 }
342 
343 static void nfs_direct_readpage_release(struct nfs_page *req)
344 {
345 	dprintk("NFS: direct read done (%s/%llu %d@%lld)\n",
346 		req->wb_context->dentry->d_inode->i_sb->s_id,
347 		(unsigned long long)NFS_FILEID(req->wb_context->dentry->d_inode),
348 		req->wb_bytes,
349 		(long long)req_offset(req));
350 	nfs_release_request(req);
351 }
352 
353 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
354 {
355 	unsigned long bytes = 0;
356 	struct nfs_direct_req *dreq = hdr->dreq;
357 
358 	if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
359 		goto out_put;
360 
361 	spin_lock(&dreq->lock);
362 	if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0))
363 		dreq->error = hdr->error;
364 	else
365 		dreq->count += hdr->good_bytes;
366 	spin_unlock(&dreq->lock);
367 
368 	while (!list_empty(&hdr->pages)) {
369 		struct nfs_page *req = nfs_list_entry(hdr->pages.next);
370 		struct page *page = req->wb_page;
371 
372 		if (!PageCompound(page) && bytes < hdr->good_bytes)
373 			set_page_dirty(page);
374 		bytes += req->wb_bytes;
375 		nfs_list_remove_request(req);
376 		nfs_direct_readpage_release(req);
377 	}
378 out_put:
379 	if (put_dreq(dreq))
380 		nfs_direct_complete(dreq, false);
381 	hdr->release(hdr);
382 }
383 
384 static void nfs_read_sync_pgio_error(struct list_head *head)
385 {
386 	struct nfs_page *req;
387 
388 	while (!list_empty(head)) {
389 		req = nfs_list_entry(head->next);
390 		nfs_list_remove_request(req);
391 		nfs_release_request(req);
392 	}
393 }
394 
395 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
396 {
397 	get_dreq(hdr->dreq);
398 }
399 
400 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
401 	.error_cleanup = nfs_read_sync_pgio_error,
402 	.init_hdr = nfs_direct_pgio_init,
403 	.completion = nfs_direct_read_completion,
404 };
405 
406 /*
407  * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
408  * operation.  If nfs_readdata_alloc() or get_user_pages() fails,
409  * bail and stop sending more reads.  Read length accounting is
410  * handled automatically by nfs_direct_read_result().  Otherwise, if
411  * no requests have been sent, just return an error.
412  */
413 
414 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
415 					      struct iov_iter *iter,
416 					      loff_t pos)
417 {
418 	struct nfs_pageio_descriptor desc;
419 	struct inode *inode = dreq->inode;
420 	ssize_t result = -EINVAL;
421 	size_t requested_bytes = 0;
422 	size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE);
423 
424 	nfs_pageio_init_read(&desc, dreq->inode, false,
425 			     &nfs_direct_read_completion_ops);
426 	get_dreq(dreq);
427 	desc.pg_dreq = dreq;
428 	atomic_inc(&inode->i_dio_count);
429 
430 	while (iov_iter_count(iter)) {
431 		struct page **pagevec;
432 		size_t bytes;
433 		size_t pgbase;
434 		unsigned npages, i;
435 
436 		result = iov_iter_get_pages_alloc(iter, &pagevec,
437 						  rsize, &pgbase);
438 		if (result < 0)
439 			break;
440 
441 		bytes = result;
442 		iov_iter_advance(iter, bytes);
443 		npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
444 		for (i = 0; i < npages; i++) {
445 			struct nfs_page *req;
446 			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
447 			/* XXX do we need to do the eof zeroing found in async_filler? */
448 			req = nfs_create_request(dreq->ctx, pagevec[i], NULL,
449 						 pgbase, req_len);
450 			if (IS_ERR(req)) {
451 				result = PTR_ERR(req);
452 				break;
453 			}
454 			req->wb_index = pos >> PAGE_SHIFT;
455 			req->wb_offset = pos & ~PAGE_MASK;
456 			if (!nfs_pageio_add_request(&desc, req)) {
457 				result = desc.pg_error;
458 				nfs_release_request(req);
459 				break;
460 			}
461 			pgbase = 0;
462 			bytes -= req_len;
463 			requested_bytes += req_len;
464 			pos += req_len;
465 			dreq->bytes_left -= req_len;
466 		}
467 		nfs_direct_release_pages(pagevec, npages);
468 		kvfree(pagevec);
469 		if (result < 0)
470 			break;
471 	}
472 
473 	nfs_pageio_complete(&desc);
474 
475 	/*
476 	 * If no bytes were started, return the error, and let the
477 	 * generic layer handle the completion.
478 	 */
479 	if (requested_bytes == 0) {
480 		inode_dio_done(inode);
481 		nfs_direct_req_release(dreq);
482 		return result < 0 ? result : -EIO;
483 	}
484 
485 	if (put_dreq(dreq))
486 		nfs_direct_complete(dreq, false);
487 	return 0;
488 }
489 
490 /**
491  * nfs_file_direct_read - file direct read operation for NFS files
492  * @iocb: target I/O control block
493  * @iter: vector of user buffers into which to read data
494  * @pos: byte offset in file where reading starts
495  *
496  * We use this function for direct reads instead of calling
497  * generic_file_aio_read() in order to avoid gfar's check to see if
498  * the request starts before the end of the file.  For that check
499  * to work, we must generate a GETATTR before each direct read, and
500  * even then there is a window between the GETATTR and the subsequent
501  * READ where the file size could change.  Our preference is simply
502  * to do all reads the application wants, and the server will take
503  * care of managing the end of file boundary.
504  *
505  * This function also eliminates unnecessarily updating the file's
506  * atime locally, as the NFS server sets the file's atime, and this
507  * client must read the updated atime from the server back into its
508  * cache.
509  */
510 ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter,
511 				loff_t pos)
512 {
513 	struct file *file = iocb->ki_filp;
514 	struct address_space *mapping = file->f_mapping;
515 	struct inode *inode = mapping->host;
516 	struct nfs_direct_req *dreq;
517 	struct nfs_lock_context *l_ctx;
518 	ssize_t result = -EINVAL;
519 	size_t count = iov_iter_count(iter);
520 	nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
521 
522 	dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n",
523 		file, count, (long long) pos);
524 
525 	result = 0;
526 	if (!count)
527 		goto out;
528 
529 	mutex_lock(&inode->i_mutex);
530 	result = nfs_sync_mapping(mapping);
531 	if (result)
532 		goto out_unlock;
533 
534 	task_io_account_read(count);
535 
536 	result = -ENOMEM;
537 	dreq = nfs_direct_req_alloc();
538 	if (dreq == NULL)
539 		goto out_unlock;
540 
541 	dreq->inode = inode;
542 	dreq->bytes_left = count;
543 	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
544 	l_ctx = nfs_get_lock_context(dreq->ctx);
545 	if (IS_ERR(l_ctx)) {
546 		result = PTR_ERR(l_ctx);
547 		goto out_release;
548 	}
549 	dreq->l_ctx = l_ctx;
550 	if (!is_sync_kiocb(iocb))
551 		dreq->iocb = iocb;
552 
553 	NFS_I(inode)->read_io += count;
554 	result = nfs_direct_read_schedule_iovec(dreq, iter, pos);
555 
556 	mutex_unlock(&inode->i_mutex);
557 
558 	if (!result) {
559 		result = nfs_direct_wait(dreq);
560 		if (result > 0)
561 			iocb->ki_pos = pos + result;
562 	}
563 
564 	nfs_direct_req_release(dreq);
565 	return result;
566 
567 out_release:
568 	nfs_direct_req_release(dreq);
569 out_unlock:
570 	mutex_unlock(&inode->i_mutex);
571 out:
572 	return result;
573 }
574 
575 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
576 {
577 	struct nfs_pageio_descriptor desc;
578 	struct nfs_page *req, *tmp;
579 	LIST_HEAD(reqs);
580 	struct nfs_commit_info cinfo;
581 	LIST_HEAD(failed);
582 
583 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
584 	pnfs_recover_commit_reqs(dreq->inode, &reqs, &cinfo);
585 	spin_lock(cinfo.lock);
586 	nfs_scan_commit_list(&cinfo.mds->list, &reqs, &cinfo, 0);
587 	spin_unlock(cinfo.lock);
588 
589 	dreq->count = 0;
590 	get_dreq(dreq);
591 
592 	nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false,
593 			      &nfs_direct_write_completion_ops);
594 	desc.pg_dreq = dreq;
595 
596 	list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
597 		if (!nfs_pageio_add_request(&desc, req)) {
598 			nfs_list_remove_request(req);
599 			nfs_list_add_request(req, &failed);
600 			spin_lock(cinfo.lock);
601 			dreq->flags = 0;
602 			dreq->error = -EIO;
603 			spin_unlock(cinfo.lock);
604 		}
605 		nfs_release_request(req);
606 	}
607 	nfs_pageio_complete(&desc);
608 
609 	while (!list_empty(&failed)) {
610 		req = nfs_list_entry(failed.next);
611 		nfs_list_remove_request(req);
612 		nfs_unlock_and_release_request(req);
613 	}
614 
615 	if (put_dreq(dreq))
616 		nfs_direct_write_complete(dreq, dreq->inode);
617 }
618 
619 static void nfs_direct_commit_complete(struct nfs_commit_data *data)
620 {
621 	struct nfs_direct_req *dreq = data->dreq;
622 	struct nfs_commit_info cinfo;
623 	struct nfs_page *req;
624 	int status = data->task.tk_status;
625 
626 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
627 	if (status < 0) {
628 		dprintk("NFS: %5u commit failed with error %d.\n",
629 			data->task.tk_pid, status);
630 		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
631 	} else if (nfs_direct_cmp_commit_data_verf(dreq, data)) {
632 		dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid);
633 		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
634 	}
635 
636 	dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status);
637 	while (!list_empty(&data->pages)) {
638 		req = nfs_list_entry(data->pages.next);
639 		nfs_list_remove_request(req);
640 		if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) {
641 			/* Note the rewrite will go through mds */
642 			nfs_mark_request_commit(req, NULL, &cinfo);
643 		} else
644 			nfs_release_request(req);
645 		nfs_unlock_and_release_request(req);
646 	}
647 
648 	if (atomic_dec_and_test(&cinfo.mds->rpcs_out))
649 		nfs_direct_write_complete(dreq, data->inode);
650 }
651 
652 static void nfs_direct_error_cleanup(struct nfs_inode *nfsi)
653 {
654 	/* There is no lock to clear */
655 }
656 
657 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
658 	.completion = nfs_direct_commit_complete,
659 	.error_cleanup = nfs_direct_error_cleanup,
660 };
661 
662 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
663 {
664 	int res;
665 	struct nfs_commit_info cinfo;
666 	LIST_HEAD(mds_list);
667 
668 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
669 	nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
670 	res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
671 	if (res < 0) /* res == -ENOMEM */
672 		nfs_direct_write_reschedule(dreq);
673 }
674 
675 static void nfs_direct_write_schedule_work(struct work_struct *work)
676 {
677 	struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
678 	int flags = dreq->flags;
679 
680 	dreq->flags = 0;
681 	switch (flags) {
682 		case NFS_ODIRECT_DO_COMMIT:
683 			nfs_direct_commit_schedule(dreq);
684 			break;
685 		case NFS_ODIRECT_RESCHED_WRITES:
686 			nfs_direct_write_reschedule(dreq);
687 			break;
688 		default:
689 			nfs_direct_complete(dreq, true);
690 	}
691 }
692 
693 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
694 {
695 	schedule_work(&dreq->work); /* Calls nfs_direct_write_schedule_work */
696 }
697 
698 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
699 {
700 	struct nfs_direct_req *dreq = hdr->dreq;
701 	struct nfs_commit_info cinfo;
702 	bool request_commit = false;
703 	struct nfs_page *req = nfs_list_entry(hdr->pages.next);
704 
705 	if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
706 		goto out_put;
707 
708 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
709 
710 	spin_lock(&dreq->lock);
711 
712 	if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
713 		dreq->flags = 0;
714 		dreq->error = hdr->error;
715 	}
716 	if (dreq->error == 0) {
717 		dreq->count += hdr->good_bytes;
718 		if (nfs_write_need_commit(hdr)) {
719 			if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES)
720 				request_commit = true;
721 			else if (dreq->flags == 0) {
722 				nfs_direct_set_hdr_verf(dreq, hdr);
723 				request_commit = true;
724 				dreq->flags = NFS_ODIRECT_DO_COMMIT;
725 			} else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) {
726 				request_commit = true;
727 				if (nfs_direct_set_or_cmp_hdr_verf(dreq, hdr))
728 					dreq->flags =
729 						NFS_ODIRECT_RESCHED_WRITES;
730 			}
731 		}
732 	}
733 	spin_unlock(&dreq->lock);
734 
735 	while (!list_empty(&hdr->pages)) {
736 
737 		req = nfs_list_entry(hdr->pages.next);
738 		nfs_list_remove_request(req);
739 		if (request_commit) {
740 			kref_get(&req->wb_kref);
741 			nfs_mark_request_commit(req, hdr->lseg, &cinfo);
742 		}
743 		nfs_unlock_and_release_request(req);
744 	}
745 
746 out_put:
747 	if (put_dreq(dreq))
748 		nfs_direct_write_complete(dreq, hdr->inode);
749 	hdr->release(hdr);
750 }
751 
752 static void nfs_write_sync_pgio_error(struct list_head *head)
753 {
754 	struct nfs_page *req;
755 
756 	while (!list_empty(head)) {
757 		req = nfs_list_entry(head->next);
758 		nfs_list_remove_request(req);
759 		nfs_unlock_and_release_request(req);
760 	}
761 }
762 
763 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
764 	.error_cleanup = nfs_write_sync_pgio_error,
765 	.init_hdr = nfs_direct_pgio_init,
766 	.completion = nfs_direct_write_completion,
767 };
768 
769 
770 /*
771  * NB: Return the value of the first error return code.  Subsequent
772  *     errors after the first one are ignored.
773  */
774 /*
775  * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
776  * operation.  If nfs_writedata_alloc() or get_user_pages() fails,
777  * bail and stop sending more writes.  Write length accounting is
778  * handled automatically by nfs_direct_write_result().  Otherwise, if
779  * no requests have been sent, just return an error.
780  */
781 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
782 					       struct iov_iter *iter,
783 					       loff_t pos)
784 {
785 	struct nfs_pageio_descriptor desc;
786 	struct inode *inode = dreq->inode;
787 	ssize_t result = 0;
788 	size_t requested_bytes = 0;
789 	size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE);
790 
791 	nfs_pageio_init_write(&desc, inode, FLUSH_COND_STABLE, false,
792 			      &nfs_direct_write_completion_ops);
793 	desc.pg_dreq = dreq;
794 	get_dreq(dreq);
795 	atomic_inc(&inode->i_dio_count);
796 
797 	NFS_I(inode)->write_io += iov_iter_count(iter);
798 	while (iov_iter_count(iter)) {
799 		struct page **pagevec;
800 		size_t bytes;
801 		size_t pgbase;
802 		unsigned npages, i;
803 
804 		result = iov_iter_get_pages_alloc(iter, &pagevec,
805 						  wsize, &pgbase);
806 		if (result < 0)
807 			break;
808 
809 		bytes = result;
810 		iov_iter_advance(iter, bytes);
811 		npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
812 		for (i = 0; i < npages; i++) {
813 			struct nfs_page *req;
814 			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
815 
816 			req = nfs_create_request(dreq->ctx, pagevec[i], NULL,
817 						 pgbase, req_len);
818 			if (IS_ERR(req)) {
819 				result = PTR_ERR(req);
820 				break;
821 			}
822 			nfs_lock_request(req);
823 			req->wb_index = pos >> PAGE_SHIFT;
824 			req->wb_offset = pos & ~PAGE_MASK;
825 			if (!nfs_pageio_add_request(&desc, req)) {
826 				result = desc.pg_error;
827 				nfs_unlock_and_release_request(req);
828 				break;
829 			}
830 			pgbase = 0;
831 			bytes -= req_len;
832 			requested_bytes += req_len;
833 			pos += req_len;
834 			dreq->bytes_left -= req_len;
835 		}
836 		nfs_direct_release_pages(pagevec, npages);
837 		kvfree(pagevec);
838 		if (result < 0)
839 			break;
840 	}
841 	nfs_pageio_complete(&desc);
842 
843 	/*
844 	 * If no bytes were started, return the error, and let the
845 	 * generic layer handle the completion.
846 	 */
847 	if (requested_bytes == 0) {
848 		inode_dio_done(inode);
849 		nfs_direct_req_release(dreq);
850 		return result < 0 ? result : -EIO;
851 	}
852 
853 	if (put_dreq(dreq))
854 		nfs_direct_write_complete(dreq, dreq->inode);
855 	return 0;
856 }
857 
858 /**
859  * nfs_file_direct_write - file direct write operation for NFS files
860  * @iocb: target I/O control block
861  * @iter: vector of user buffers from which to write data
862  * @pos: byte offset in file where writing starts
863  *
864  * We use this function for direct writes instead of calling
865  * generic_file_aio_write() in order to avoid taking the inode
866  * semaphore and updating the i_size.  The NFS server will set
867  * the new i_size and this client must read the updated size
868  * back into its cache.  We let the server do generic write
869  * parameter checking and report problems.
870  *
871  * We eliminate local atime updates, see direct read above.
872  *
873  * We avoid unnecessary page cache invalidations for normal cached
874  * readers of this file.
875  *
876  * Note that O_APPEND is not supported for NFS direct writes, as there
877  * is no atomic O_APPEND write facility in the NFS protocol.
878  */
879 ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter,
880 				loff_t pos)
881 {
882 	ssize_t result = -EINVAL;
883 	struct file *file = iocb->ki_filp;
884 	struct address_space *mapping = file->f_mapping;
885 	struct inode *inode = mapping->host;
886 	struct nfs_direct_req *dreq;
887 	struct nfs_lock_context *l_ctx;
888 	loff_t end;
889 	size_t count = iov_iter_count(iter);
890 	end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
891 
892 	nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
893 
894 	dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n",
895 		file, count, (long long) pos);
896 
897 	result = generic_write_checks(file, &pos, &count, 0);
898 	if (result)
899 		goto out;
900 
901 	result = -EINVAL;
902 	if ((ssize_t) count < 0)
903 		goto out;
904 	result = 0;
905 	if (!count)
906 		goto out;
907 
908 	mutex_lock(&inode->i_mutex);
909 
910 	result = nfs_sync_mapping(mapping);
911 	if (result)
912 		goto out_unlock;
913 
914 	if (mapping->nrpages) {
915 		result = invalidate_inode_pages2_range(mapping,
916 					pos >> PAGE_CACHE_SHIFT, end);
917 		if (result)
918 			goto out_unlock;
919 	}
920 
921 	task_io_account_write(count);
922 
923 	result = -ENOMEM;
924 	dreq = nfs_direct_req_alloc();
925 	if (!dreq)
926 		goto out_unlock;
927 
928 	dreq->inode = inode;
929 	dreq->bytes_left = count;
930 	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
931 	l_ctx = nfs_get_lock_context(dreq->ctx);
932 	if (IS_ERR(l_ctx)) {
933 		result = PTR_ERR(l_ctx);
934 		goto out_release;
935 	}
936 	dreq->l_ctx = l_ctx;
937 	if (!is_sync_kiocb(iocb))
938 		dreq->iocb = iocb;
939 
940 	result = nfs_direct_write_schedule_iovec(dreq, iter, pos);
941 
942 	if (mapping->nrpages) {
943 		invalidate_inode_pages2_range(mapping,
944 					      pos >> PAGE_CACHE_SHIFT, end);
945 	}
946 
947 	mutex_unlock(&inode->i_mutex);
948 
949 	if (!result) {
950 		result = nfs_direct_wait(dreq);
951 		if (result > 0) {
952 			struct inode *inode = mapping->host;
953 
954 			iocb->ki_pos = pos + result;
955 			spin_lock(&inode->i_lock);
956 			if (i_size_read(inode) < iocb->ki_pos)
957 				i_size_write(inode, iocb->ki_pos);
958 			spin_unlock(&inode->i_lock);
959 		}
960 	}
961 	nfs_direct_req_release(dreq);
962 	return result;
963 
964 out_release:
965 	nfs_direct_req_release(dreq);
966 out_unlock:
967 	mutex_unlock(&inode->i_mutex);
968 out:
969 	return result;
970 }
971 
972 /**
973  * nfs_init_directcache - create a slab cache for nfs_direct_req structures
974  *
975  */
976 int __init nfs_init_directcache(void)
977 {
978 	nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
979 						sizeof(struct nfs_direct_req),
980 						0, (SLAB_RECLAIM_ACCOUNT|
981 							SLAB_MEM_SPREAD),
982 						NULL);
983 	if (nfs_direct_cachep == NULL)
984 		return -ENOMEM;
985 
986 	return 0;
987 }
988 
989 /**
990  * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
991  *
992  */
993 void nfs_destroy_directcache(void)
994 {
995 	kmem_cache_destroy(nfs_direct_cachep);
996 }
997