1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/nfs/direct.c 4 * 5 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com> 6 * 7 * High-performance uncached I/O for the Linux NFS client 8 * 9 * There are important applications whose performance or correctness 10 * depends on uncached access to file data. Database clusters 11 * (multiple copies of the same instance running on separate hosts) 12 * implement their own cache coherency protocol that subsumes file 13 * system cache protocols. Applications that process datasets 14 * considerably larger than the client's memory do not always benefit 15 * from a local cache. A streaming video server, for instance, has no 16 * need to cache the contents of a file. 17 * 18 * When an application requests uncached I/O, all read and write requests 19 * are made directly to the server; data stored or fetched via these 20 * requests is not cached in the Linux page cache. The client does not 21 * correct unaligned requests from applications. All requested bytes are 22 * held on permanent storage before a direct write system call returns to 23 * an application. 24 * 25 * Solaris implements an uncached I/O facility called directio() that 26 * is used for backups and sequential I/O to very large files. Solaris 27 * also supports uncaching whole NFS partitions with "-o forcedirectio," 28 * an undocumented mount option. 29 * 30 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with 31 * help from Andrew Morton. 32 * 33 * 18 Dec 2001 Initial implementation for 2.4 --cel 34 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy 35 * 08 Jun 2003 Port to 2.5 APIs --cel 36 * 31 Mar 2004 Handle direct I/O without VFS support --cel 37 * 15 Sep 2004 Parallel async reads --cel 38 * 04 May 2005 support O_DIRECT with aio --cel 39 * 40 */ 41 42 #include <linux/errno.h> 43 #include <linux/sched.h> 44 #include <linux/kernel.h> 45 #include <linux/file.h> 46 #include <linux/pagemap.h> 47 #include <linux/kref.h> 48 #include <linux/slab.h> 49 #include <linux/task_io_accounting_ops.h> 50 #include <linux/module.h> 51 52 #include <linux/nfs_fs.h> 53 #include <linux/nfs_page.h> 54 #include <linux/sunrpc/clnt.h> 55 56 #include <linux/uaccess.h> 57 #include <linux/atomic.h> 58 59 #include "internal.h" 60 #include "iostat.h" 61 #include "pnfs.h" 62 #include "fscache.h" 63 #include "nfstrace.h" 64 65 #define NFSDBG_FACILITY NFSDBG_VFS 66 67 static struct kmem_cache *nfs_direct_cachep; 68 69 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops; 70 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops; 71 static void nfs_direct_write_complete(struct nfs_direct_req *dreq); 72 static void nfs_direct_write_schedule_work(struct work_struct *work); 73 74 static inline void get_dreq(struct nfs_direct_req *dreq) 75 { 76 atomic_inc(&dreq->io_count); 77 } 78 79 static inline int put_dreq(struct nfs_direct_req *dreq) 80 { 81 return atomic_dec_and_test(&dreq->io_count); 82 } 83 84 static void 85 nfs_direct_handle_truncated(struct nfs_direct_req *dreq, 86 const struct nfs_pgio_header *hdr, 87 ssize_t dreq_len) 88 { 89 if (!(test_bit(NFS_IOHDR_ERROR, &hdr->flags) || 90 test_bit(NFS_IOHDR_EOF, &hdr->flags))) 91 return; 92 if (dreq->max_count >= dreq_len) { 93 dreq->max_count = dreq_len; 94 if (dreq->count > dreq_len) 95 dreq->count = dreq_len; 96 } 97 98 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && !dreq->error) 99 dreq->error = hdr->error; 100 } 101 102 static void 103 nfs_direct_count_bytes(struct nfs_direct_req *dreq, 104 const struct nfs_pgio_header *hdr) 105 { 106 loff_t hdr_end = hdr->io_start + hdr->good_bytes; 107 ssize_t dreq_len = 0; 108 109 if (hdr_end > dreq->io_start) 110 dreq_len = hdr_end - dreq->io_start; 111 112 nfs_direct_handle_truncated(dreq, hdr, dreq_len); 113 114 if (dreq_len > dreq->max_count) 115 dreq_len = dreq->max_count; 116 117 if (dreq->count < dreq_len) 118 dreq->count = dreq_len; 119 } 120 121 static void nfs_direct_truncate_request(struct nfs_direct_req *dreq, 122 struct nfs_page *req) 123 { 124 loff_t offs = req_offset(req); 125 size_t req_start = (size_t)(offs - dreq->io_start); 126 127 if (req_start < dreq->max_count) 128 dreq->max_count = req_start; 129 if (req_start < dreq->count) 130 dreq->count = req_start; 131 } 132 133 /** 134 * nfs_swap_rw - NFS address space operation for swap I/O 135 * @iocb: target I/O control block 136 * @iter: I/O buffer 137 * 138 * Perform IO to the swap-file. This is much like direct IO. 139 */ 140 int nfs_swap_rw(struct kiocb *iocb, struct iov_iter *iter) 141 { 142 ssize_t ret; 143 144 VM_BUG_ON(iov_iter_count(iter) != PAGE_SIZE); 145 146 if (iov_iter_rw(iter) == READ) 147 ret = nfs_file_direct_read(iocb, iter, true); 148 else 149 ret = nfs_file_direct_write(iocb, iter, true); 150 if (ret < 0) 151 return ret; 152 return 0; 153 } 154 155 static void nfs_direct_release_pages(struct page **pages, unsigned int npages) 156 { 157 unsigned int i; 158 for (i = 0; i < npages; i++) 159 put_page(pages[i]); 160 } 161 162 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo, 163 struct nfs_direct_req *dreq) 164 { 165 cinfo->inode = dreq->inode; 166 cinfo->mds = &dreq->mds_cinfo; 167 cinfo->ds = &dreq->ds_cinfo; 168 cinfo->dreq = dreq; 169 cinfo->completion_ops = &nfs_direct_commit_completion_ops; 170 } 171 172 static inline struct nfs_direct_req *nfs_direct_req_alloc(void) 173 { 174 struct nfs_direct_req *dreq; 175 176 dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL); 177 if (!dreq) 178 return NULL; 179 180 kref_init(&dreq->kref); 181 kref_get(&dreq->kref); 182 init_completion(&dreq->completion); 183 INIT_LIST_HEAD(&dreq->mds_cinfo.list); 184 pnfs_init_ds_commit_info(&dreq->ds_cinfo); 185 INIT_WORK(&dreq->work, nfs_direct_write_schedule_work); 186 spin_lock_init(&dreq->lock); 187 188 return dreq; 189 } 190 191 static void nfs_direct_req_free(struct kref *kref) 192 { 193 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref); 194 195 pnfs_release_ds_info(&dreq->ds_cinfo, dreq->inode); 196 if (dreq->l_ctx != NULL) 197 nfs_put_lock_context(dreq->l_ctx); 198 if (dreq->ctx != NULL) 199 put_nfs_open_context(dreq->ctx); 200 kmem_cache_free(nfs_direct_cachep, dreq); 201 } 202 203 static void nfs_direct_req_release(struct nfs_direct_req *dreq) 204 { 205 kref_put(&dreq->kref, nfs_direct_req_free); 206 } 207 208 ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq, loff_t offset) 209 { 210 loff_t start = offset - dreq->io_start; 211 return dreq->max_count - start; 212 } 213 EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left); 214 215 /* 216 * Collects and returns the final error value/byte-count. 217 */ 218 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq) 219 { 220 ssize_t result = -EIOCBQUEUED; 221 222 /* Async requests don't wait here */ 223 if (dreq->iocb) 224 goto out; 225 226 result = wait_for_completion_killable(&dreq->completion); 227 228 if (!result) { 229 result = dreq->count; 230 WARN_ON_ONCE(dreq->count < 0); 231 } 232 if (!result) 233 result = dreq->error; 234 235 out: 236 return (ssize_t) result; 237 } 238 239 /* 240 * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust 241 * the iocb is still valid here if this is a synchronous request. 242 */ 243 static void nfs_direct_complete(struct nfs_direct_req *dreq) 244 { 245 struct inode *inode = dreq->inode; 246 247 inode_dio_end(inode); 248 249 if (dreq->iocb) { 250 long res = (long) dreq->error; 251 if (dreq->count != 0) { 252 res = (long) dreq->count; 253 WARN_ON_ONCE(dreq->count < 0); 254 } 255 dreq->iocb->ki_complete(dreq->iocb, res); 256 } 257 258 complete(&dreq->completion); 259 260 nfs_direct_req_release(dreq); 261 } 262 263 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr) 264 { 265 unsigned long bytes = 0; 266 struct nfs_direct_req *dreq = hdr->dreq; 267 268 spin_lock(&dreq->lock); 269 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) { 270 spin_unlock(&dreq->lock); 271 goto out_put; 272 } 273 274 nfs_direct_count_bytes(dreq, hdr); 275 spin_unlock(&dreq->lock); 276 277 while (!list_empty(&hdr->pages)) { 278 struct nfs_page *req = nfs_list_entry(hdr->pages.next); 279 struct page *page = req->wb_page; 280 281 if (!PageCompound(page) && bytes < hdr->good_bytes && 282 (dreq->flags == NFS_ODIRECT_SHOULD_DIRTY)) 283 set_page_dirty(page); 284 bytes += req->wb_bytes; 285 nfs_list_remove_request(req); 286 nfs_release_request(req); 287 } 288 out_put: 289 if (put_dreq(dreq)) 290 nfs_direct_complete(dreq); 291 hdr->release(hdr); 292 } 293 294 static void nfs_read_sync_pgio_error(struct list_head *head, int error) 295 { 296 struct nfs_page *req; 297 298 while (!list_empty(head)) { 299 req = nfs_list_entry(head->next); 300 nfs_list_remove_request(req); 301 nfs_release_request(req); 302 } 303 } 304 305 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr) 306 { 307 get_dreq(hdr->dreq); 308 } 309 310 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = { 311 .error_cleanup = nfs_read_sync_pgio_error, 312 .init_hdr = nfs_direct_pgio_init, 313 .completion = nfs_direct_read_completion, 314 }; 315 316 /* 317 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ 318 * operation. If nfs_readdata_alloc() or get_user_pages() fails, 319 * bail and stop sending more reads. Read length accounting is 320 * handled automatically by nfs_direct_read_result(). Otherwise, if 321 * no requests have been sent, just return an error. 322 */ 323 324 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq, 325 struct iov_iter *iter, 326 loff_t pos) 327 { 328 struct nfs_pageio_descriptor desc; 329 struct inode *inode = dreq->inode; 330 ssize_t result = -EINVAL; 331 size_t requested_bytes = 0; 332 size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE); 333 334 nfs_pageio_init_read(&desc, dreq->inode, false, 335 &nfs_direct_read_completion_ops); 336 get_dreq(dreq); 337 desc.pg_dreq = dreq; 338 inode_dio_begin(inode); 339 340 while (iov_iter_count(iter)) { 341 struct page **pagevec; 342 size_t bytes; 343 size_t pgbase; 344 unsigned npages, i; 345 346 result = iov_iter_get_pages_alloc2(iter, &pagevec, 347 rsize, &pgbase); 348 if (result < 0) 349 break; 350 351 bytes = result; 352 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE; 353 for (i = 0; i < npages; i++) { 354 struct nfs_page *req; 355 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase); 356 /* XXX do we need to do the eof zeroing found in async_filler? */ 357 req = nfs_page_create_from_page(dreq->ctx, pagevec[i], 358 pgbase, pos, req_len); 359 if (IS_ERR(req)) { 360 result = PTR_ERR(req); 361 break; 362 } 363 if (!nfs_pageio_add_request(&desc, req)) { 364 result = desc.pg_error; 365 nfs_release_request(req); 366 break; 367 } 368 pgbase = 0; 369 bytes -= req_len; 370 requested_bytes += req_len; 371 pos += req_len; 372 dreq->bytes_left -= req_len; 373 } 374 nfs_direct_release_pages(pagevec, npages); 375 kvfree(pagevec); 376 if (result < 0) 377 break; 378 } 379 380 nfs_pageio_complete(&desc); 381 382 /* 383 * If no bytes were started, return the error, and let the 384 * generic layer handle the completion. 385 */ 386 if (requested_bytes == 0) { 387 inode_dio_end(inode); 388 nfs_direct_req_release(dreq); 389 return result < 0 ? result : -EIO; 390 } 391 392 if (put_dreq(dreq)) 393 nfs_direct_complete(dreq); 394 return requested_bytes; 395 } 396 397 /** 398 * nfs_file_direct_read - file direct read operation for NFS files 399 * @iocb: target I/O control block 400 * @iter: vector of user buffers into which to read data 401 * @swap: flag indicating this is swap IO, not O_DIRECT IO 402 * 403 * We use this function for direct reads instead of calling 404 * generic_file_aio_read() in order to avoid gfar's check to see if 405 * the request starts before the end of the file. For that check 406 * to work, we must generate a GETATTR before each direct read, and 407 * even then there is a window between the GETATTR and the subsequent 408 * READ where the file size could change. Our preference is simply 409 * to do all reads the application wants, and the server will take 410 * care of managing the end of file boundary. 411 * 412 * This function also eliminates unnecessarily updating the file's 413 * atime locally, as the NFS server sets the file's atime, and this 414 * client must read the updated atime from the server back into its 415 * cache. 416 */ 417 ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter, 418 bool swap) 419 { 420 struct file *file = iocb->ki_filp; 421 struct address_space *mapping = file->f_mapping; 422 struct inode *inode = mapping->host; 423 struct nfs_direct_req *dreq; 424 struct nfs_lock_context *l_ctx; 425 ssize_t result, requested; 426 size_t count = iov_iter_count(iter); 427 nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count); 428 429 dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n", 430 file, count, (long long) iocb->ki_pos); 431 432 result = 0; 433 if (!count) 434 goto out; 435 436 task_io_account_read(count); 437 438 result = -ENOMEM; 439 dreq = nfs_direct_req_alloc(); 440 if (dreq == NULL) 441 goto out; 442 443 dreq->inode = inode; 444 dreq->bytes_left = dreq->max_count = count; 445 dreq->io_start = iocb->ki_pos; 446 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp)); 447 l_ctx = nfs_get_lock_context(dreq->ctx); 448 if (IS_ERR(l_ctx)) { 449 result = PTR_ERR(l_ctx); 450 nfs_direct_req_release(dreq); 451 goto out_release; 452 } 453 dreq->l_ctx = l_ctx; 454 if (!is_sync_kiocb(iocb)) 455 dreq->iocb = iocb; 456 457 if (user_backed_iter(iter)) 458 dreq->flags = NFS_ODIRECT_SHOULD_DIRTY; 459 460 if (!swap) 461 nfs_start_io_direct(inode); 462 463 NFS_I(inode)->read_io += count; 464 requested = nfs_direct_read_schedule_iovec(dreq, iter, iocb->ki_pos); 465 466 if (!swap) 467 nfs_end_io_direct(inode); 468 469 if (requested > 0) { 470 result = nfs_direct_wait(dreq); 471 if (result > 0) { 472 requested -= result; 473 iocb->ki_pos += result; 474 } 475 iov_iter_revert(iter, requested); 476 } else { 477 result = requested; 478 } 479 480 out_release: 481 nfs_direct_req_release(dreq); 482 out: 483 return result; 484 } 485 486 static void nfs_direct_add_page_head(struct list_head *list, 487 struct nfs_page *req) 488 { 489 struct nfs_page *head = req->wb_head; 490 491 if (!list_empty(&head->wb_list) || !nfs_lock_request(head)) 492 return; 493 if (!list_empty(&head->wb_list)) { 494 nfs_unlock_request(head); 495 return; 496 } 497 list_add(&head->wb_list, list); 498 kref_get(&head->wb_kref); 499 kref_get(&head->wb_kref); 500 } 501 502 static void nfs_direct_join_group(struct list_head *list, 503 struct nfs_commit_info *cinfo, 504 struct inode *inode) 505 { 506 struct nfs_page *req, *subreq; 507 508 list_for_each_entry(req, list, wb_list) { 509 if (req->wb_head != req) { 510 nfs_direct_add_page_head(&req->wb_list, req); 511 continue; 512 } 513 subreq = req->wb_this_page; 514 if (subreq == req) 515 continue; 516 do { 517 /* 518 * Remove subrequests from this list before freeing 519 * them in the call to nfs_join_page_group(). 520 */ 521 if (!list_empty(&subreq->wb_list)) { 522 nfs_list_remove_request(subreq); 523 nfs_release_request(subreq); 524 } 525 } while ((subreq = subreq->wb_this_page) != req); 526 nfs_join_page_group(req, cinfo, inode); 527 } 528 } 529 530 static void 531 nfs_direct_write_scan_commit_list(struct inode *inode, 532 struct list_head *list, 533 struct nfs_commit_info *cinfo) 534 { 535 mutex_lock(&NFS_I(cinfo->inode)->commit_mutex); 536 pnfs_recover_commit_reqs(list, cinfo); 537 nfs_scan_commit_list(&cinfo->mds->list, list, cinfo, 0); 538 mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex); 539 } 540 541 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq) 542 { 543 struct nfs_pageio_descriptor desc; 544 struct nfs_page *req; 545 LIST_HEAD(reqs); 546 struct nfs_commit_info cinfo; 547 548 nfs_init_cinfo_from_dreq(&cinfo, dreq); 549 nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo); 550 551 nfs_direct_join_group(&reqs, &cinfo, dreq->inode); 552 553 nfs_clear_pnfs_ds_commit_verifiers(&dreq->ds_cinfo); 554 get_dreq(dreq); 555 556 nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false, 557 &nfs_direct_write_completion_ops); 558 desc.pg_dreq = dreq; 559 560 while (!list_empty(&reqs)) { 561 req = nfs_list_entry(reqs.next); 562 /* Bump the transmission count */ 563 req->wb_nio++; 564 if (!nfs_pageio_add_request(&desc, req)) { 565 spin_lock(&dreq->lock); 566 if (dreq->error < 0) { 567 desc.pg_error = dreq->error; 568 } else if (desc.pg_error != -EAGAIN) { 569 dreq->flags = 0; 570 if (!desc.pg_error) 571 desc.pg_error = -EIO; 572 dreq->error = desc.pg_error; 573 } else 574 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 575 spin_unlock(&dreq->lock); 576 break; 577 } 578 nfs_release_request(req); 579 } 580 nfs_pageio_complete(&desc); 581 582 while (!list_empty(&reqs)) { 583 req = nfs_list_entry(reqs.next); 584 nfs_list_remove_request(req); 585 nfs_unlock_and_release_request(req); 586 if (desc.pg_error == -EAGAIN) { 587 nfs_mark_request_commit(req, NULL, &cinfo, 0); 588 } else { 589 spin_lock(&dreq->lock); 590 nfs_direct_truncate_request(dreq, req); 591 spin_unlock(&dreq->lock); 592 nfs_release_request(req); 593 } 594 } 595 596 if (put_dreq(dreq)) 597 nfs_direct_write_complete(dreq); 598 } 599 600 static void nfs_direct_commit_complete(struct nfs_commit_data *data) 601 { 602 const struct nfs_writeverf *verf = data->res.verf; 603 struct nfs_direct_req *dreq = data->dreq; 604 struct nfs_commit_info cinfo; 605 struct nfs_page *req; 606 int status = data->task.tk_status; 607 608 trace_nfs_direct_commit_complete(dreq); 609 610 if (status < 0) { 611 /* Errors in commit are fatal */ 612 dreq->error = status; 613 dreq->flags = NFS_ODIRECT_DONE; 614 } else { 615 status = dreq->error; 616 } 617 618 nfs_init_cinfo_from_dreq(&cinfo, dreq); 619 620 while (!list_empty(&data->pages)) { 621 req = nfs_list_entry(data->pages.next); 622 nfs_list_remove_request(req); 623 if (status < 0) { 624 spin_lock(&dreq->lock); 625 nfs_direct_truncate_request(dreq, req); 626 spin_unlock(&dreq->lock); 627 nfs_release_request(req); 628 } else if (!nfs_write_match_verf(verf, req)) { 629 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 630 /* 631 * Despite the reboot, the write was successful, 632 * so reset wb_nio. 633 */ 634 req->wb_nio = 0; 635 nfs_mark_request_commit(req, NULL, &cinfo, 0); 636 } else 637 nfs_release_request(req); 638 nfs_unlock_and_release_request(req); 639 } 640 641 if (nfs_commit_end(cinfo.mds)) 642 nfs_direct_write_complete(dreq); 643 } 644 645 static void nfs_direct_resched_write(struct nfs_commit_info *cinfo, 646 struct nfs_page *req) 647 { 648 struct nfs_direct_req *dreq = cinfo->dreq; 649 650 trace_nfs_direct_resched_write(dreq); 651 652 spin_lock(&dreq->lock); 653 if (dreq->flags != NFS_ODIRECT_DONE) 654 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 655 spin_unlock(&dreq->lock); 656 nfs_mark_request_commit(req, NULL, cinfo, 0); 657 } 658 659 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = { 660 .completion = nfs_direct_commit_complete, 661 .resched_write = nfs_direct_resched_write, 662 }; 663 664 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq) 665 { 666 int res; 667 struct nfs_commit_info cinfo; 668 LIST_HEAD(mds_list); 669 670 nfs_init_cinfo_from_dreq(&cinfo, dreq); 671 nfs_commit_begin(cinfo.mds); 672 nfs_scan_commit(dreq->inode, &mds_list, &cinfo); 673 res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo); 674 if (res < 0) { /* res == -ENOMEM */ 675 spin_lock(&dreq->lock); 676 if (dreq->flags == 0) 677 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 678 spin_unlock(&dreq->lock); 679 } 680 if (nfs_commit_end(cinfo.mds)) 681 nfs_direct_write_complete(dreq); 682 } 683 684 static void nfs_direct_write_clear_reqs(struct nfs_direct_req *dreq) 685 { 686 struct nfs_commit_info cinfo; 687 struct nfs_page *req; 688 LIST_HEAD(reqs); 689 690 nfs_init_cinfo_from_dreq(&cinfo, dreq); 691 nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo); 692 693 while (!list_empty(&reqs)) { 694 req = nfs_list_entry(reqs.next); 695 nfs_list_remove_request(req); 696 nfs_direct_truncate_request(dreq, req); 697 nfs_release_request(req); 698 nfs_unlock_and_release_request(req); 699 } 700 } 701 702 static void nfs_direct_write_schedule_work(struct work_struct *work) 703 { 704 struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work); 705 int flags = dreq->flags; 706 707 dreq->flags = 0; 708 switch (flags) { 709 case NFS_ODIRECT_DO_COMMIT: 710 nfs_direct_commit_schedule(dreq); 711 break; 712 case NFS_ODIRECT_RESCHED_WRITES: 713 nfs_direct_write_reschedule(dreq); 714 break; 715 default: 716 nfs_direct_write_clear_reqs(dreq); 717 nfs_zap_mapping(dreq->inode, dreq->inode->i_mapping); 718 nfs_direct_complete(dreq); 719 } 720 } 721 722 static void nfs_direct_write_complete(struct nfs_direct_req *dreq) 723 { 724 trace_nfs_direct_write_complete(dreq); 725 queue_work(nfsiod_workqueue, &dreq->work); /* Calls nfs_direct_write_schedule_work */ 726 } 727 728 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr) 729 { 730 struct nfs_direct_req *dreq = hdr->dreq; 731 struct nfs_commit_info cinfo; 732 struct nfs_page *req = nfs_list_entry(hdr->pages.next); 733 int flags = NFS_ODIRECT_DONE; 734 735 trace_nfs_direct_write_completion(dreq); 736 737 nfs_init_cinfo_from_dreq(&cinfo, dreq); 738 739 spin_lock(&dreq->lock); 740 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) { 741 spin_unlock(&dreq->lock); 742 goto out_put; 743 } 744 745 nfs_direct_count_bytes(dreq, hdr); 746 if (test_bit(NFS_IOHDR_UNSTABLE_WRITES, &hdr->flags) && 747 !test_bit(NFS_IOHDR_ERROR, &hdr->flags)) { 748 if (!dreq->flags) 749 dreq->flags = NFS_ODIRECT_DO_COMMIT; 750 flags = dreq->flags; 751 } 752 spin_unlock(&dreq->lock); 753 754 while (!list_empty(&hdr->pages)) { 755 756 req = nfs_list_entry(hdr->pages.next); 757 nfs_list_remove_request(req); 758 if (flags == NFS_ODIRECT_DO_COMMIT) { 759 kref_get(&req->wb_kref); 760 memcpy(&req->wb_verf, &hdr->verf.verifier, 761 sizeof(req->wb_verf)); 762 nfs_mark_request_commit(req, hdr->lseg, &cinfo, 763 hdr->ds_commit_idx); 764 } else if (flags == NFS_ODIRECT_RESCHED_WRITES) { 765 kref_get(&req->wb_kref); 766 nfs_mark_request_commit(req, NULL, &cinfo, 0); 767 } 768 nfs_unlock_and_release_request(req); 769 } 770 771 out_put: 772 if (put_dreq(dreq)) 773 nfs_direct_write_complete(dreq); 774 hdr->release(hdr); 775 } 776 777 static void nfs_write_sync_pgio_error(struct list_head *head, int error) 778 { 779 struct nfs_page *req; 780 781 while (!list_empty(head)) { 782 req = nfs_list_entry(head->next); 783 nfs_list_remove_request(req); 784 nfs_unlock_and_release_request(req); 785 } 786 } 787 788 static void nfs_direct_write_reschedule_io(struct nfs_pgio_header *hdr) 789 { 790 struct nfs_direct_req *dreq = hdr->dreq; 791 struct nfs_page *req; 792 struct nfs_commit_info cinfo; 793 794 trace_nfs_direct_write_reschedule_io(dreq); 795 796 nfs_init_cinfo_from_dreq(&cinfo, dreq); 797 spin_lock(&dreq->lock); 798 if (dreq->error == 0) 799 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 800 set_bit(NFS_IOHDR_REDO, &hdr->flags); 801 spin_unlock(&dreq->lock); 802 while (!list_empty(&hdr->pages)) { 803 req = nfs_list_entry(hdr->pages.next); 804 nfs_list_remove_request(req); 805 nfs_unlock_request(req); 806 nfs_mark_request_commit(req, NULL, &cinfo, 0); 807 } 808 } 809 810 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = { 811 .error_cleanup = nfs_write_sync_pgio_error, 812 .init_hdr = nfs_direct_pgio_init, 813 .completion = nfs_direct_write_completion, 814 .reschedule_io = nfs_direct_write_reschedule_io, 815 }; 816 817 818 /* 819 * NB: Return the value of the first error return code. Subsequent 820 * errors after the first one are ignored. 821 */ 822 /* 823 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE 824 * operation. If nfs_writedata_alloc() or get_user_pages() fails, 825 * bail and stop sending more writes. Write length accounting is 826 * handled automatically by nfs_direct_write_result(). Otherwise, if 827 * no requests have been sent, just return an error. 828 */ 829 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq, 830 struct iov_iter *iter, 831 loff_t pos, int ioflags) 832 { 833 struct nfs_pageio_descriptor desc; 834 struct inode *inode = dreq->inode; 835 struct nfs_commit_info cinfo; 836 ssize_t result = 0; 837 size_t requested_bytes = 0; 838 size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE); 839 bool defer = false; 840 841 trace_nfs_direct_write_schedule_iovec(dreq); 842 843 nfs_pageio_init_write(&desc, inode, ioflags, false, 844 &nfs_direct_write_completion_ops); 845 desc.pg_dreq = dreq; 846 get_dreq(dreq); 847 inode_dio_begin(inode); 848 849 NFS_I(inode)->write_io += iov_iter_count(iter); 850 while (iov_iter_count(iter)) { 851 struct page **pagevec; 852 size_t bytes; 853 size_t pgbase; 854 unsigned npages, i; 855 856 result = iov_iter_get_pages_alloc2(iter, &pagevec, 857 wsize, &pgbase); 858 if (result < 0) 859 break; 860 861 bytes = result; 862 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE; 863 for (i = 0; i < npages; i++) { 864 struct nfs_page *req; 865 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase); 866 867 req = nfs_page_create_from_page(dreq->ctx, pagevec[i], 868 pgbase, pos, req_len); 869 if (IS_ERR(req)) { 870 result = PTR_ERR(req); 871 break; 872 } 873 874 if (desc.pg_error < 0) { 875 nfs_free_request(req); 876 result = desc.pg_error; 877 break; 878 } 879 880 pgbase = 0; 881 bytes -= req_len; 882 requested_bytes += req_len; 883 pos += req_len; 884 dreq->bytes_left -= req_len; 885 886 if (defer) { 887 nfs_mark_request_commit(req, NULL, &cinfo, 0); 888 continue; 889 } 890 891 nfs_lock_request(req); 892 if (nfs_pageio_add_request(&desc, req)) 893 continue; 894 895 /* Exit on hard errors */ 896 if (desc.pg_error < 0 && desc.pg_error != -EAGAIN) { 897 result = desc.pg_error; 898 nfs_unlock_and_release_request(req); 899 break; 900 } 901 902 /* If the error is soft, defer remaining requests */ 903 nfs_init_cinfo_from_dreq(&cinfo, dreq); 904 spin_lock(&dreq->lock); 905 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 906 spin_unlock(&dreq->lock); 907 nfs_unlock_request(req); 908 nfs_mark_request_commit(req, NULL, &cinfo, 0); 909 desc.pg_error = 0; 910 defer = true; 911 } 912 nfs_direct_release_pages(pagevec, npages); 913 kvfree(pagevec); 914 if (result < 0) 915 break; 916 } 917 nfs_pageio_complete(&desc); 918 919 /* 920 * If no bytes were started, return the error, and let the 921 * generic layer handle the completion. 922 */ 923 if (requested_bytes == 0) { 924 inode_dio_end(inode); 925 nfs_direct_req_release(dreq); 926 return result < 0 ? result : -EIO; 927 } 928 929 if (put_dreq(dreq)) 930 nfs_direct_write_complete(dreq); 931 return requested_bytes; 932 } 933 934 /** 935 * nfs_file_direct_write - file direct write operation for NFS files 936 * @iocb: target I/O control block 937 * @iter: vector of user buffers from which to write data 938 * @swap: flag indicating this is swap IO, not O_DIRECT IO 939 * 940 * We use this function for direct writes instead of calling 941 * generic_file_aio_write() in order to avoid taking the inode 942 * semaphore and updating the i_size. The NFS server will set 943 * the new i_size and this client must read the updated size 944 * back into its cache. We let the server do generic write 945 * parameter checking and report problems. 946 * 947 * We eliminate local atime updates, see direct read above. 948 * 949 * We avoid unnecessary page cache invalidations for normal cached 950 * readers of this file. 951 * 952 * Note that O_APPEND is not supported for NFS direct writes, as there 953 * is no atomic O_APPEND write facility in the NFS protocol. 954 */ 955 ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter, 956 bool swap) 957 { 958 ssize_t result, requested; 959 size_t count; 960 struct file *file = iocb->ki_filp; 961 struct address_space *mapping = file->f_mapping; 962 struct inode *inode = mapping->host; 963 struct nfs_direct_req *dreq; 964 struct nfs_lock_context *l_ctx; 965 loff_t pos, end; 966 967 dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n", 968 file, iov_iter_count(iter), (long long) iocb->ki_pos); 969 970 if (swap) 971 /* bypass generic checks */ 972 result = iov_iter_count(iter); 973 else 974 result = generic_write_checks(iocb, iter); 975 if (result <= 0) 976 return result; 977 count = result; 978 nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count); 979 980 pos = iocb->ki_pos; 981 end = (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT; 982 983 task_io_account_write(count); 984 985 result = -ENOMEM; 986 dreq = nfs_direct_req_alloc(); 987 if (!dreq) 988 goto out; 989 990 dreq->inode = inode; 991 dreq->bytes_left = dreq->max_count = count; 992 dreq->io_start = pos; 993 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp)); 994 l_ctx = nfs_get_lock_context(dreq->ctx); 995 if (IS_ERR(l_ctx)) { 996 result = PTR_ERR(l_ctx); 997 nfs_direct_req_release(dreq); 998 goto out_release; 999 } 1000 dreq->l_ctx = l_ctx; 1001 if (!is_sync_kiocb(iocb)) 1002 dreq->iocb = iocb; 1003 pnfs_init_ds_commit_info_ops(&dreq->ds_cinfo, inode); 1004 1005 if (swap) { 1006 requested = nfs_direct_write_schedule_iovec(dreq, iter, pos, 1007 FLUSH_STABLE); 1008 } else { 1009 nfs_start_io_direct(inode); 1010 1011 requested = nfs_direct_write_schedule_iovec(dreq, iter, pos, 1012 FLUSH_COND_STABLE); 1013 1014 if (mapping->nrpages) { 1015 invalidate_inode_pages2_range(mapping, 1016 pos >> PAGE_SHIFT, end); 1017 } 1018 1019 nfs_end_io_direct(inode); 1020 } 1021 1022 if (requested > 0) { 1023 result = nfs_direct_wait(dreq); 1024 if (result > 0) { 1025 requested -= result; 1026 iocb->ki_pos = pos + result; 1027 /* XXX: should check the generic_write_sync retval */ 1028 generic_write_sync(iocb, result); 1029 } 1030 iov_iter_revert(iter, requested); 1031 } else { 1032 result = requested; 1033 } 1034 nfs_fscache_invalidate(inode, FSCACHE_INVAL_DIO_WRITE); 1035 out_release: 1036 nfs_direct_req_release(dreq); 1037 out: 1038 return result; 1039 } 1040 1041 /** 1042 * nfs_init_directcache - create a slab cache for nfs_direct_req structures 1043 * 1044 */ 1045 int __init nfs_init_directcache(void) 1046 { 1047 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache", 1048 sizeof(struct nfs_direct_req), 1049 0, (SLAB_RECLAIM_ACCOUNT| 1050 SLAB_MEM_SPREAD), 1051 NULL); 1052 if (nfs_direct_cachep == NULL) 1053 return -ENOMEM; 1054 1055 return 0; 1056 } 1057 1058 /** 1059 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures 1060 * 1061 */ 1062 void nfs_destroy_directcache(void) 1063 { 1064 kmem_cache_destroy(nfs_direct_cachep); 1065 } 1066