xref: /openbmc/linux/fs/nfs/direct.c (revision 4f205687)
1 /*
2  * linux/fs/nfs/direct.c
3  *
4  * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
5  *
6  * High-performance uncached I/O for the Linux NFS client
7  *
8  * There are important applications whose performance or correctness
9  * depends on uncached access to file data.  Database clusters
10  * (multiple copies of the same instance running on separate hosts)
11  * implement their own cache coherency protocol that subsumes file
12  * system cache protocols.  Applications that process datasets
13  * considerably larger than the client's memory do not always benefit
14  * from a local cache.  A streaming video server, for instance, has no
15  * need to cache the contents of a file.
16  *
17  * When an application requests uncached I/O, all read and write requests
18  * are made directly to the server; data stored or fetched via these
19  * requests is not cached in the Linux page cache.  The client does not
20  * correct unaligned requests from applications.  All requested bytes are
21  * held on permanent storage before a direct write system call returns to
22  * an application.
23  *
24  * Solaris implements an uncached I/O facility called directio() that
25  * is used for backups and sequential I/O to very large files.  Solaris
26  * also supports uncaching whole NFS partitions with "-o forcedirectio,"
27  * an undocumented mount option.
28  *
29  * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
30  * help from Andrew Morton.
31  *
32  * 18 Dec 2001	Initial implementation for 2.4  --cel
33  * 08 Jul 2002	Version for 2.4.19, with bug fixes --trondmy
34  * 08 Jun 2003	Port to 2.5 APIs  --cel
35  * 31 Mar 2004	Handle direct I/O without VFS support  --cel
36  * 15 Sep 2004	Parallel async reads  --cel
37  * 04 May 2005	support O_DIRECT with aio  --cel
38  *
39  */
40 
41 #include <linux/errno.h>
42 #include <linux/sched.h>
43 #include <linux/kernel.h>
44 #include <linux/file.h>
45 #include <linux/pagemap.h>
46 #include <linux/kref.h>
47 #include <linux/slab.h>
48 #include <linux/task_io_accounting_ops.h>
49 #include <linux/module.h>
50 
51 #include <linux/nfs_fs.h>
52 #include <linux/nfs_page.h>
53 #include <linux/sunrpc/clnt.h>
54 
55 #include <asm/uaccess.h>
56 #include <linux/atomic.h>
57 
58 #include "internal.h"
59 #include "iostat.h"
60 #include "pnfs.h"
61 
62 #define NFSDBG_FACILITY		NFSDBG_VFS
63 
64 static struct kmem_cache *nfs_direct_cachep;
65 
66 /*
67  * This represents a set of asynchronous requests that we're waiting on
68  */
69 struct nfs_direct_mirror {
70 	ssize_t count;
71 };
72 
73 struct nfs_direct_req {
74 	struct kref		kref;		/* release manager */
75 
76 	/* I/O parameters */
77 	struct nfs_open_context	*ctx;		/* file open context info */
78 	struct nfs_lock_context *l_ctx;		/* Lock context info */
79 	struct kiocb *		iocb;		/* controlling i/o request */
80 	struct inode *		inode;		/* target file of i/o */
81 
82 	/* completion state */
83 	atomic_t		io_count;	/* i/os we're waiting for */
84 	spinlock_t		lock;		/* protect completion state */
85 
86 	struct nfs_direct_mirror mirrors[NFS_PAGEIO_DESCRIPTOR_MIRROR_MAX];
87 	int			mirror_count;
88 
89 	ssize_t			count,		/* bytes actually processed */
90 				max_count,	/* max expected count */
91 				bytes_left,	/* bytes left to be sent */
92 				io_start,	/* start of IO */
93 				error;		/* any reported error */
94 	struct completion	completion;	/* wait for i/o completion */
95 
96 	/* commit state */
97 	struct nfs_mds_commit_info mds_cinfo;	/* Storage for cinfo */
98 	struct pnfs_ds_commit_info ds_cinfo;	/* Storage for cinfo */
99 	struct work_struct	work;
100 	int			flags;
101 #define NFS_ODIRECT_DO_COMMIT		(1)	/* an unstable reply was received */
102 #define NFS_ODIRECT_RESCHED_WRITES	(2)	/* write verification failed */
103 	struct nfs_writeverf	verf;		/* unstable write verifier */
104 };
105 
106 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
107 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
108 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
109 static void nfs_direct_write_schedule_work(struct work_struct *work);
110 
111 static inline void get_dreq(struct nfs_direct_req *dreq)
112 {
113 	atomic_inc(&dreq->io_count);
114 }
115 
116 static inline int put_dreq(struct nfs_direct_req *dreq)
117 {
118 	return atomic_dec_and_test(&dreq->io_count);
119 }
120 
121 static void
122 nfs_direct_good_bytes(struct nfs_direct_req *dreq, struct nfs_pgio_header *hdr)
123 {
124 	int i;
125 	ssize_t count;
126 
127 	WARN_ON_ONCE(dreq->count >= dreq->max_count);
128 
129 	if (dreq->mirror_count == 1) {
130 		dreq->mirrors[hdr->pgio_mirror_idx].count += hdr->good_bytes;
131 		dreq->count += hdr->good_bytes;
132 	} else {
133 		/* mirrored writes */
134 		count = dreq->mirrors[hdr->pgio_mirror_idx].count;
135 		if (count + dreq->io_start < hdr->io_start + hdr->good_bytes) {
136 			count = hdr->io_start + hdr->good_bytes - dreq->io_start;
137 			dreq->mirrors[hdr->pgio_mirror_idx].count = count;
138 		}
139 		/* update the dreq->count by finding the minimum agreed count from all
140 		 * mirrors */
141 		count = dreq->mirrors[0].count;
142 
143 		for (i = 1; i < dreq->mirror_count; i++)
144 			count = min(count, dreq->mirrors[i].count);
145 
146 		dreq->count = count;
147 	}
148 }
149 
150 /*
151  * nfs_direct_select_verf - select the right verifier
152  * @dreq - direct request possibly spanning multiple servers
153  * @ds_clp - nfs_client of data server or NULL if MDS / non-pnfs
154  * @commit_idx - commit bucket index for the DS
155  *
156  * returns the correct verifier to use given the role of the server
157  */
158 static struct nfs_writeverf *
159 nfs_direct_select_verf(struct nfs_direct_req *dreq,
160 		       struct nfs_client *ds_clp,
161 		       int commit_idx)
162 {
163 	struct nfs_writeverf *verfp = &dreq->verf;
164 
165 #ifdef CONFIG_NFS_V4_1
166 	/*
167 	 * pNFS is in use, use the DS verf except commit_through_mds is set
168 	 * for layout segment where nbuckets is zero.
169 	 */
170 	if (ds_clp && dreq->ds_cinfo.nbuckets > 0) {
171 		if (commit_idx >= 0 && commit_idx < dreq->ds_cinfo.nbuckets)
172 			verfp = &dreq->ds_cinfo.buckets[commit_idx].direct_verf;
173 		else
174 			WARN_ON_ONCE(1);
175 	}
176 #endif
177 	return verfp;
178 }
179 
180 
181 /*
182  * nfs_direct_set_hdr_verf - set the write/commit verifier
183  * @dreq - direct request possibly spanning multiple servers
184  * @hdr - pageio header to validate against previously seen verfs
185  *
186  * Set the server's (MDS or DS) "seen" verifier
187  */
188 static void nfs_direct_set_hdr_verf(struct nfs_direct_req *dreq,
189 				    struct nfs_pgio_header *hdr)
190 {
191 	struct nfs_writeverf *verfp;
192 
193 	verfp = nfs_direct_select_verf(dreq, hdr->ds_clp, hdr->ds_commit_idx);
194 	WARN_ON_ONCE(verfp->committed >= 0);
195 	memcpy(verfp, &hdr->verf, sizeof(struct nfs_writeverf));
196 	WARN_ON_ONCE(verfp->committed < 0);
197 }
198 
199 /*
200  * nfs_direct_cmp_hdr_verf - compare verifier for pgio header
201  * @dreq - direct request possibly spanning multiple servers
202  * @hdr - pageio header to validate against previously seen verf
203  *
204  * set the server's "seen" verf if not initialized.
205  * returns result of comparison between @hdr->verf and the "seen"
206  * verf of the server used by @hdr (DS or MDS)
207  */
208 static int nfs_direct_set_or_cmp_hdr_verf(struct nfs_direct_req *dreq,
209 					  struct nfs_pgio_header *hdr)
210 {
211 	struct nfs_writeverf *verfp;
212 
213 	verfp = nfs_direct_select_verf(dreq, hdr->ds_clp, hdr->ds_commit_idx);
214 	if (verfp->committed < 0) {
215 		nfs_direct_set_hdr_verf(dreq, hdr);
216 		return 0;
217 	}
218 	return memcmp(verfp, &hdr->verf, sizeof(struct nfs_writeverf));
219 }
220 
221 /*
222  * nfs_direct_cmp_commit_data_verf - compare verifier for commit data
223  * @dreq - direct request possibly spanning multiple servers
224  * @data - commit data to validate against previously seen verf
225  *
226  * returns result of comparison between @data->verf and the verf of
227  * the server used by @data (DS or MDS)
228  */
229 static int nfs_direct_cmp_commit_data_verf(struct nfs_direct_req *dreq,
230 					   struct nfs_commit_data *data)
231 {
232 	struct nfs_writeverf *verfp;
233 
234 	verfp = nfs_direct_select_verf(dreq, data->ds_clp,
235 					 data->ds_commit_index);
236 
237 	/* verifier not set so always fail */
238 	if (verfp->committed < 0)
239 		return 1;
240 
241 	return memcmp(verfp, &data->verf, sizeof(struct nfs_writeverf));
242 }
243 
244 /**
245  * nfs_direct_IO - NFS address space operation for direct I/O
246  * @iocb: target I/O control block
247  * @iov: array of vectors that define I/O buffer
248  * @pos: offset in file to begin the operation
249  * @nr_segs: size of iovec array
250  *
251  * The presence of this routine in the address space ops vector means
252  * the NFS client supports direct I/O. However, for most direct IO, we
253  * shunt off direct read and write requests before the VFS gets them,
254  * so this method is only ever called for swap.
255  */
256 ssize_t nfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
257 {
258 	struct inode *inode = iocb->ki_filp->f_mapping->host;
259 
260 	/* we only support swap file calling nfs_direct_IO */
261 	if (!IS_SWAPFILE(inode))
262 		return 0;
263 
264 	VM_BUG_ON(iov_iter_count(iter) != PAGE_SIZE);
265 
266 	if (iov_iter_rw(iter) == READ)
267 		return nfs_file_direct_read(iocb, iter);
268 	return nfs_file_direct_write(iocb, iter);
269 }
270 
271 static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
272 {
273 	unsigned int i;
274 	for (i = 0; i < npages; i++)
275 		put_page(pages[i]);
276 }
277 
278 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
279 			      struct nfs_direct_req *dreq)
280 {
281 	cinfo->inode = dreq->inode;
282 	cinfo->mds = &dreq->mds_cinfo;
283 	cinfo->ds = &dreq->ds_cinfo;
284 	cinfo->dreq = dreq;
285 	cinfo->completion_ops = &nfs_direct_commit_completion_ops;
286 }
287 
288 static inline void nfs_direct_setup_mirroring(struct nfs_direct_req *dreq,
289 					     struct nfs_pageio_descriptor *pgio,
290 					     struct nfs_page *req)
291 {
292 	int mirror_count = 1;
293 
294 	if (pgio->pg_ops->pg_get_mirror_count)
295 		mirror_count = pgio->pg_ops->pg_get_mirror_count(pgio, req);
296 
297 	dreq->mirror_count = mirror_count;
298 }
299 
300 static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
301 {
302 	struct nfs_direct_req *dreq;
303 
304 	dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
305 	if (!dreq)
306 		return NULL;
307 
308 	kref_init(&dreq->kref);
309 	kref_get(&dreq->kref);
310 	init_completion(&dreq->completion);
311 	INIT_LIST_HEAD(&dreq->mds_cinfo.list);
312 	dreq->verf.committed = NFS_INVALID_STABLE_HOW;	/* not set yet */
313 	INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
314 	dreq->mirror_count = 1;
315 	spin_lock_init(&dreq->lock);
316 
317 	return dreq;
318 }
319 
320 static void nfs_direct_req_free(struct kref *kref)
321 {
322 	struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
323 
324 	nfs_free_pnfs_ds_cinfo(&dreq->ds_cinfo);
325 	if (dreq->l_ctx != NULL)
326 		nfs_put_lock_context(dreq->l_ctx);
327 	if (dreq->ctx != NULL)
328 		put_nfs_open_context(dreq->ctx);
329 	kmem_cache_free(nfs_direct_cachep, dreq);
330 }
331 
332 static void nfs_direct_req_release(struct nfs_direct_req *dreq)
333 {
334 	kref_put(&dreq->kref, nfs_direct_req_free);
335 }
336 
337 ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq)
338 {
339 	return dreq->bytes_left;
340 }
341 EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
342 
343 /*
344  * Collects and returns the final error value/byte-count.
345  */
346 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
347 {
348 	ssize_t result = -EIOCBQUEUED;
349 
350 	/* Async requests don't wait here */
351 	if (dreq->iocb)
352 		goto out;
353 
354 	result = wait_for_completion_killable(&dreq->completion);
355 
356 	if (!result) {
357 		result = dreq->count;
358 		WARN_ON_ONCE(dreq->count < 0);
359 	}
360 	if (!result)
361 		result = dreq->error;
362 
363 out:
364 	return (ssize_t) result;
365 }
366 
367 /*
368  * Synchronous I/O uses a stack-allocated iocb.  Thus we can't trust
369  * the iocb is still valid here if this is a synchronous request.
370  */
371 static void nfs_direct_complete(struct nfs_direct_req *dreq, bool write)
372 {
373 	struct inode *inode = dreq->inode;
374 
375 	if (dreq->iocb && write) {
376 		loff_t pos = dreq->iocb->ki_pos + dreq->count;
377 
378 		spin_lock(&inode->i_lock);
379 		if (i_size_read(inode) < pos)
380 			i_size_write(inode, pos);
381 		spin_unlock(&inode->i_lock);
382 	}
383 
384 	if (write)
385 		nfs_zap_mapping(inode, inode->i_mapping);
386 
387 	inode_dio_end(inode);
388 
389 	if (dreq->iocb) {
390 		long res = (long) dreq->error;
391 		if (dreq->count != 0) {
392 			res = (long) dreq->count;
393 			WARN_ON_ONCE(dreq->count < 0);
394 		}
395 		dreq->iocb->ki_complete(dreq->iocb, res, 0);
396 	}
397 
398 	complete_all(&dreq->completion);
399 
400 	nfs_direct_req_release(dreq);
401 }
402 
403 static void nfs_direct_readpage_release(struct nfs_page *req)
404 {
405 	dprintk("NFS: direct read done (%s/%llu %d@%lld)\n",
406 		req->wb_context->dentry->d_sb->s_id,
407 		(unsigned long long)NFS_FILEID(d_inode(req->wb_context->dentry)),
408 		req->wb_bytes,
409 		(long long)req_offset(req));
410 	nfs_release_request(req);
411 }
412 
413 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
414 {
415 	unsigned long bytes = 0;
416 	struct nfs_direct_req *dreq = hdr->dreq;
417 
418 	if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
419 		goto out_put;
420 
421 	spin_lock(&dreq->lock);
422 	if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0))
423 		dreq->error = hdr->error;
424 	else
425 		nfs_direct_good_bytes(dreq, hdr);
426 
427 	spin_unlock(&dreq->lock);
428 
429 	while (!list_empty(&hdr->pages)) {
430 		struct nfs_page *req = nfs_list_entry(hdr->pages.next);
431 		struct page *page = req->wb_page;
432 
433 		if (!PageCompound(page) && bytes < hdr->good_bytes)
434 			set_page_dirty(page);
435 		bytes += req->wb_bytes;
436 		nfs_list_remove_request(req);
437 		nfs_direct_readpage_release(req);
438 	}
439 out_put:
440 	if (put_dreq(dreq))
441 		nfs_direct_complete(dreq, false);
442 	hdr->release(hdr);
443 }
444 
445 static void nfs_read_sync_pgio_error(struct list_head *head)
446 {
447 	struct nfs_page *req;
448 
449 	while (!list_empty(head)) {
450 		req = nfs_list_entry(head->next);
451 		nfs_list_remove_request(req);
452 		nfs_release_request(req);
453 	}
454 }
455 
456 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
457 {
458 	get_dreq(hdr->dreq);
459 }
460 
461 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
462 	.error_cleanup = nfs_read_sync_pgio_error,
463 	.init_hdr = nfs_direct_pgio_init,
464 	.completion = nfs_direct_read_completion,
465 };
466 
467 /*
468  * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
469  * operation.  If nfs_readdata_alloc() or get_user_pages() fails,
470  * bail and stop sending more reads.  Read length accounting is
471  * handled automatically by nfs_direct_read_result().  Otherwise, if
472  * no requests have been sent, just return an error.
473  */
474 
475 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
476 					      struct iov_iter *iter,
477 					      loff_t pos)
478 {
479 	struct nfs_pageio_descriptor desc;
480 	struct inode *inode = dreq->inode;
481 	ssize_t result = -EINVAL;
482 	size_t requested_bytes = 0;
483 	size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE);
484 
485 	nfs_pageio_init_read(&desc, dreq->inode, false,
486 			     &nfs_direct_read_completion_ops);
487 	get_dreq(dreq);
488 	desc.pg_dreq = dreq;
489 	inode_dio_begin(inode);
490 
491 	while (iov_iter_count(iter)) {
492 		struct page **pagevec;
493 		size_t bytes;
494 		size_t pgbase;
495 		unsigned npages, i;
496 
497 		result = iov_iter_get_pages_alloc(iter, &pagevec,
498 						  rsize, &pgbase);
499 		if (result < 0)
500 			break;
501 
502 		bytes = result;
503 		iov_iter_advance(iter, bytes);
504 		npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
505 		for (i = 0; i < npages; i++) {
506 			struct nfs_page *req;
507 			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
508 			/* XXX do we need to do the eof zeroing found in async_filler? */
509 			req = nfs_create_request(dreq->ctx, pagevec[i], NULL,
510 						 pgbase, req_len);
511 			if (IS_ERR(req)) {
512 				result = PTR_ERR(req);
513 				break;
514 			}
515 			req->wb_index = pos >> PAGE_SHIFT;
516 			req->wb_offset = pos & ~PAGE_MASK;
517 			if (!nfs_pageio_add_request(&desc, req)) {
518 				result = desc.pg_error;
519 				nfs_release_request(req);
520 				break;
521 			}
522 			pgbase = 0;
523 			bytes -= req_len;
524 			requested_bytes += req_len;
525 			pos += req_len;
526 			dreq->bytes_left -= req_len;
527 		}
528 		nfs_direct_release_pages(pagevec, npages);
529 		kvfree(pagevec);
530 		if (result < 0)
531 			break;
532 	}
533 
534 	nfs_pageio_complete(&desc);
535 
536 	/*
537 	 * If no bytes were started, return the error, and let the
538 	 * generic layer handle the completion.
539 	 */
540 	if (requested_bytes == 0) {
541 		inode_dio_end(inode);
542 		nfs_direct_req_release(dreq);
543 		return result < 0 ? result : -EIO;
544 	}
545 
546 	if (put_dreq(dreq))
547 		nfs_direct_complete(dreq, false);
548 	return 0;
549 }
550 
551 /**
552  * nfs_file_direct_read - file direct read operation for NFS files
553  * @iocb: target I/O control block
554  * @iter: vector of user buffers into which to read data
555  *
556  * We use this function for direct reads instead of calling
557  * generic_file_aio_read() in order to avoid gfar's check to see if
558  * the request starts before the end of the file.  For that check
559  * to work, we must generate a GETATTR before each direct read, and
560  * even then there is a window between the GETATTR and the subsequent
561  * READ where the file size could change.  Our preference is simply
562  * to do all reads the application wants, and the server will take
563  * care of managing the end of file boundary.
564  *
565  * This function also eliminates unnecessarily updating the file's
566  * atime locally, as the NFS server sets the file's atime, and this
567  * client must read the updated atime from the server back into its
568  * cache.
569  */
570 ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter)
571 {
572 	struct file *file = iocb->ki_filp;
573 	struct address_space *mapping = file->f_mapping;
574 	struct inode *inode = mapping->host;
575 	struct nfs_direct_req *dreq;
576 	struct nfs_lock_context *l_ctx;
577 	ssize_t result = -EINVAL;
578 	size_t count = iov_iter_count(iter);
579 	nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
580 
581 	dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n",
582 		file, count, (long long) iocb->ki_pos);
583 
584 	result = 0;
585 	if (!count)
586 		goto out;
587 
588 	inode_lock(inode);
589 	result = nfs_sync_mapping(mapping);
590 	if (result)
591 		goto out_unlock;
592 
593 	task_io_account_read(count);
594 
595 	result = -ENOMEM;
596 	dreq = nfs_direct_req_alloc();
597 	if (dreq == NULL)
598 		goto out_unlock;
599 
600 	dreq->inode = inode;
601 	dreq->bytes_left = dreq->max_count = count;
602 	dreq->io_start = iocb->ki_pos;
603 	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
604 	l_ctx = nfs_get_lock_context(dreq->ctx);
605 	if (IS_ERR(l_ctx)) {
606 		result = PTR_ERR(l_ctx);
607 		goto out_release;
608 	}
609 	dreq->l_ctx = l_ctx;
610 	if (!is_sync_kiocb(iocb))
611 		dreq->iocb = iocb;
612 
613 	NFS_I(inode)->read_io += count;
614 	result = nfs_direct_read_schedule_iovec(dreq, iter, iocb->ki_pos);
615 
616 	inode_unlock(inode);
617 
618 	if (!result) {
619 		result = nfs_direct_wait(dreq);
620 		if (result > 0)
621 			iocb->ki_pos += result;
622 	}
623 
624 	nfs_direct_req_release(dreq);
625 	return result;
626 
627 out_release:
628 	nfs_direct_req_release(dreq);
629 out_unlock:
630 	inode_unlock(inode);
631 out:
632 	return result;
633 }
634 
635 static void
636 nfs_direct_write_scan_commit_list(struct inode *inode,
637 				  struct list_head *list,
638 				  struct nfs_commit_info *cinfo)
639 {
640 	spin_lock(&cinfo->inode->i_lock);
641 #ifdef CONFIG_NFS_V4_1
642 	if (cinfo->ds != NULL && cinfo->ds->nwritten != 0)
643 		NFS_SERVER(inode)->pnfs_curr_ld->recover_commit_reqs(list, cinfo);
644 #endif
645 	nfs_scan_commit_list(&cinfo->mds->list, list, cinfo, 0);
646 	spin_unlock(&cinfo->inode->i_lock);
647 }
648 
649 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
650 {
651 	struct nfs_pageio_descriptor desc;
652 	struct nfs_page *req, *tmp;
653 	LIST_HEAD(reqs);
654 	struct nfs_commit_info cinfo;
655 	LIST_HEAD(failed);
656 	int i;
657 
658 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
659 	nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
660 
661 	dreq->count = 0;
662 	for (i = 0; i < dreq->mirror_count; i++)
663 		dreq->mirrors[i].count = 0;
664 	get_dreq(dreq);
665 
666 	nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false,
667 			      &nfs_direct_write_completion_ops);
668 	desc.pg_dreq = dreq;
669 
670 	req = nfs_list_entry(reqs.next);
671 	nfs_direct_setup_mirroring(dreq, &desc, req);
672 	if (desc.pg_error < 0) {
673 		list_splice_init(&reqs, &failed);
674 		goto out_failed;
675 	}
676 
677 	list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
678 		if (!nfs_pageio_add_request(&desc, req)) {
679 			nfs_list_remove_request(req);
680 			nfs_list_add_request(req, &failed);
681 			spin_lock(&cinfo.inode->i_lock);
682 			dreq->flags = 0;
683 			if (desc.pg_error < 0)
684 				dreq->error = desc.pg_error;
685 			else
686 				dreq->error = -EIO;
687 			spin_unlock(&cinfo.inode->i_lock);
688 		}
689 		nfs_release_request(req);
690 	}
691 	nfs_pageio_complete(&desc);
692 
693 out_failed:
694 	while (!list_empty(&failed)) {
695 		req = nfs_list_entry(failed.next);
696 		nfs_list_remove_request(req);
697 		nfs_unlock_and_release_request(req);
698 	}
699 
700 	if (put_dreq(dreq))
701 		nfs_direct_write_complete(dreq, dreq->inode);
702 }
703 
704 static void nfs_direct_commit_complete(struct nfs_commit_data *data)
705 {
706 	struct nfs_direct_req *dreq = data->dreq;
707 	struct nfs_commit_info cinfo;
708 	struct nfs_page *req;
709 	int status = data->task.tk_status;
710 
711 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
712 	if (status < 0) {
713 		dprintk("NFS: %5u commit failed with error %d.\n",
714 			data->task.tk_pid, status);
715 		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
716 	} else if (nfs_direct_cmp_commit_data_verf(dreq, data)) {
717 		dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid);
718 		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
719 	}
720 
721 	dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status);
722 	while (!list_empty(&data->pages)) {
723 		req = nfs_list_entry(data->pages.next);
724 		nfs_list_remove_request(req);
725 		if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) {
726 			/* Note the rewrite will go through mds */
727 			nfs_mark_request_commit(req, NULL, &cinfo, 0);
728 		} else
729 			nfs_release_request(req);
730 		nfs_unlock_and_release_request(req);
731 	}
732 
733 	if (atomic_dec_and_test(&cinfo.mds->rpcs_out))
734 		nfs_direct_write_complete(dreq, data->inode);
735 }
736 
737 static void nfs_direct_resched_write(struct nfs_commit_info *cinfo,
738 		struct nfs_page *req)
739 {
740 	struct nfs_direct_req *dreq = cinfo->dreq;
741 
742 	spin_lock(&dreq->lock);
743 	dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
744 	spin_unlock(&dreq->lock);
745 	nfs_mark_request_commit(req, NULL, cinfo, 0);
746 }
747 
748 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
749 	.completion = nfs_direct_commit_complete,
750 	.resched_write = nfs_direct_resched_write,
751 };
752 
753 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
754 {
755 	int res;
756 	struct nfs_commit_info cinfo;
757 	LIST_HEAD(mds_list);
758 
759 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
760 	nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
761 	res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
762 	if (res < 0) /* res == -ENOMEM */
763 		nfs_direct_write_reschedule(dreq);
764 }
765 
766 static void nfs_direct_write_schedule_work(struct work_struct *work)
767 {
768 	struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
769 	int flags = dreq->flags;
770 
771 	dreq->flags = 0;
772 	switch (flags) {
773 		case NFS_ODIRECT_DO_COMMIT:
774 			nfs_direct_commit_schedule(dreq);
775 			break;
776 		case NFS_ODIRECT_RESCHED_WRITES:
777 			nfs_direct_write_reschedule(dreq);
778 			break;
779 		default:
780 			nfs_direct_complete(dreq, true);
781 	}
782 }
783 
784 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
785 {
786 	schedule_work(&dreq->work); /* Calls nfs_direct_write_schedule_work */
787 }
788 
789 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
790 {
791 	struct nfs_direct_req *dreq = hdr->dreq;
792 	struct nfs_commit_info cinfo;
793 	bool request_commit = false;
794 	struct nfs_page *req = nfs_list_entry(hdr->pages.next);
795 
796 	if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
797 		goto out_put;
798 
799 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
800 
801 	spin_lock(&dreq->lock);
802 
803 	if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
804 		dreq->flags = 0;
805 		dreq->error = hdr->error;
806 	}
807 	if (dreq->error == 0) {
808 		nfs_direct_good_bytes(dreq, hdr);
809 		if (nfs_write_need_commit(hdr)) {
810 			if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES)
811 				request_commit = true;
812 			else if (dreq->flags == 0) {
813 				nfs_direct_set_hdr_verf(dreq, hdr);
814 				request_commit = true;
815 				dreq->flags = NFS_ODIRECT_DO_COMMIT;
816 			} else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) {
817 				request_commit = true;
818 				if (nfs_direct_set_or_cmp_hdr_verf(dreq, hdr))
819 					dreq->flags =
820 						NFS_ODIRECT_RESCHED_WRITES;
821 			}
822 		}
823 	}
824 	spin_unlock(&dreq->lock);
825 
826 	while (!list_empty(&hdr->pages)) {
827 
828 		req = nfs_list_entry(hdr->pages.next);
829 		nfs_list_remove_request(req);
830 		if (request_commit) {
831 			kref_get(&req->wb_kref);
832 			nfs_mark_request_commit(req, hdr->lseg, &cinfo,
833 				hdr->ds_commit_idx);
834 		}
835 		nfs_unlock_and_release_request(req);
836 	}
837 
838 out_put:
839 	if (put_dreq(dreq))
840 		nfs_direct_write_complete(dreq, hdr->inode);
841 	hdr->release(hdr);
842 }
843 
844 static void nfs_write_sync_pgio_error(struct list_head *head)
845 {
846 	struct nfs_page *req;
847 
848 	while (!list_empty(head)) {
849 		req = nfs_list_entry(head->next);
850 		nfs_list_remove_request(req);
851 		nfs_unlock_and_release_request(req);
852 	}
853 }
854 
855 static void nfs_direct_write_reschedule_io(struct nfs_pgio_header *hdr)
856 {
857 	struct nfs_direct_req *dreq = hdr->dreq;
858 
859 	spin_lock(&dreq->lock);
860 	if (dreq->error == 0) {
861 		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
862 		/* fake unstable write to let common nfs resend pages */
863 		hdr->verf.committed = NFS_UNSTABLE;
864 		hdr->good_bytes = hdr->args.count;
865 	}
866 	spin_unlock(&dreq->lock);
867 }
868 
869 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
870 	.error_cleanup = nfs_write_sync_pgio_error,
871 	.init_hdr = nfs_direct_pgio_init,
872 	.completion = nfs_direct_write_completion,
873 	.reschedule_io = nfs_direct_write_reschedule_io,
874 };
875 
876 
877 /*
878  * NB: Return the value of the first error return code.  Subsequent
879  *     errors after the first one are ignored.
880  */
881 /*
882  * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
883  * operation.  If nfs_writedata_alloc() or get_user_pages() fails,
884  * bail and stop sending more writes.  Write length accounting is
885  * handled automatically by nfs_direct_write_result().  Otherwise, if
886  * no requests have been sent, just return an error.
887  */
888 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
889 					       struct iov_iter *iter,
890 					       loff_t pos)
891 {
892 	struct nfs_pageio_descriptor desc;
893 	struct inode *inode = dreq->inode;
894 	ssize_t result = 0;
895 	size_t requested_bytes = 0;
896 	size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE);
897 
898 	nfs_pageio_init_write(&desc, inode, FLUSH_COND_STABLE, false,
899 			      &nfs_direct_write_completion_ops);
900 	desc.pg_dreq = dreq;
901 	get_dreq(dreq);
902 	inode_dio_begin(inode);
903 
904 	NFS_I(inode)->write_io += iov_iter_count(iter);
905 	while (iov_iter_count(iter)) {
906 		struct page **pagevec;
907 		size_t bytes;
908 		size_t pgbase;
909 		unsigned npages, i;
910 
911 		result = iov_iter_get_pages_alloc(iter, &pagevec,
912 						  wsize, &pgbase);
913 		if (result < 0)
914 			break;
915 
916 		bytes = result;
917 		iov_iter_advance(iter, bytes);
918 		npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
919 		for (i = 0; i < npages; i++) {
920 			struct nfs_page *req;
921 			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
922 
923 			req = nfs_create_request(dreq->ctx, pagevec[i], NULL,
924 						 pgbase, req_len);
925 			if (IS_ERR(req)) {
926 				result = PTR_ERR(req);
927 				break;
928 			}
929 
930 			nfs_direct_setup_mirroring(dreq, &desc, req);
931 			if (desc.pg_error < 0) {
932 				nfs_free_request(req);
933 				result = desc.pg_error;
934 				break;
935 			}
936 
937 			nfs_lock_request(req);
938 			req->wb_index = pos >> PAGE_SHIFT;
939 			req->wb_offset = pos & ~PAGE_MASK;
940 			if (!nfs_pageio_add_request(&desc, req)) {
941 				result = desc.pg_error;
942 				nfs_unlock_and_release_request(req);
943 				break;
944 			}
945 			pgbase = 0;
946 			bytes -= req_len;
947 			requested_bytes += req_len;
948 			pos += req_len;
949 			dreq->bytes_left -= req_len;
950 		}
951 		nfs_direct_release_pages(pagevec, npages);
952 		kvfree(pagevec);
953 		if (result < 0)
954 			break;
955 	}
956 	nfs_pageio_complete(&desc);
957 
958 	/*
959 	 * If no bytes were started, return the error, and let the
960 	 * generic layer handle the completion.
961 	 */
962 	if (requested_bytes == 0) {
963 		inode_dio_end(inode);
964 		nfs_direct_req_release(dreq);
965 		return result < 0 ? result : -EIO;
966 	}
967 
968 	if (put_dreq(dreq))
969 		nfs_direct_write_complete(dreq, dreq->inode);
970 	return 0;
971 }
972 
973 /**
974  * nfs_file_direct_write - file direct write operation for NFS files
975  * @iocb: target I/O control block
976  * @iter: vector of user buffers from which to write data
977  *
978  * We use this function for direct writes instead of calling
979  * generic_file_aio_write() in order to avoid taking the inode
980  * semaphore and updating the i_size.  The NFS server will set
981  * the new i_size and this client must read the updated size
982  * back into its cache.  We let the server do generic write
983  * parameter checking and report problems.
984  *
985  * We eliminate local atime updates, see direct read above.
986  *
987  * We avoid unnecessary page cache invalidations for normal cached
988  * readers of this file.
989  *
990  * Note that O_APPEND is not supported for NFS direct writes, as there
991  * is no atomic O_APPEND write facility in the NFS protocol.
992  */
993 ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter)
994 {
995 	ssize_t result = -EINVAL;
996 	struct file *file = iocb->ki_filp;
997 	struct address_space *mapping = file->f_mapping;
998 	struct inode *inode = mapping->host;
999 	struct nfs_direct_req *dreq;
1000 	struct nfs_lock_context *l_ctx;
1001 	loff_t pos, end;
1002 
1003 	dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n",
1004 		file, iov_iter_count(iter), (long long) iocb->ki_pos);
1005 
1006 	nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES,
1007 		      iov_iter_count(iter));
1008 
1009 	pos = iocb->ki_pos;
1010 	end = (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT;
1011 
1012 	inode_lock(inode);
1013 
1014 	result = nfs_sync_mapping(mapping);
1015 	if (result)
1016 		goto out_unlock;
1017 
1018 	if (mapping->nrpages) {
1019 		result = invalidate_inode_pages2_range(mapping,
1020 					pos >> PAGE_SHIFT, end);
1021 		if (result)
1022 			goto out_unlock;
1023 	}
1024 
1025 	task_io_account_write(iov_iter_count(iter));
1026 
1027 	result = -ENOMEM;
1028 	dreq = nfs_direct_req_alloc();
1029 	if (!dreq)
1030 		goto out_unlock;
1031 
1032 	dreq->inode = inode;
1033 	dreq->bytes_left = dreq->max_count = iov_iter_count(iter);
1034 	dreq->io_start = pos;
1035 	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
1036 	l_ctx = nfs_get_lock_context(dreq->ctx);
1037 	if (IS_ERR(l_ctx)) {
1038 		result = PTR_ERR(l_ctx);
1039 		goto out_release;
1040 	}
1041 	dreq->l_ctx = l_ctx;
1042 	if (!is_sync_kiocb(iocb))
1043 		dreq->iocb = iocb;
1044 
1045 	result = nfs_direct_write_schedule_iovec(dreq, iter, pos);
1046 
1047 	if (mapping->nrpages) {
1048 		invalidate_inode_pages2_range(mapping,
1049 					      pos >> PAGE_SHIFT, end);
1050 	}
1051 
1052 	inode_unlock(inode);
1053 
1054 	if (!result) {
1055 		result = nfs_direct_wait(dreq);
1056 		if (result > 0) {
1057 			struct inode *inode = mapping->host;
1058 
1059 			iocb->ki_pos = pos + result;
1060 			spin_lock(&inode->i_lock);
1061 			if (i_size_read(inode) < iocb->ki_pos)
1062 				i_size_write(inode, iocb->ki_pos);
1063 			spin_unlock(&inode->i_lock);
1064 
1065 			/* XXX: should check the generic_write_sync retval */
1066 			generic_write_sync(iocb, result);
1067 		}
1068 	}
1069 	nfs_direct_req_release(dreq);
1070 	return result;
1071 
1072 out_release:
1073 	nfs_direct_req_release(dreq);
1074 out_unlock:
1075 	inode_unlock(inode);
1076 	return result;
1077 }
1078 
1079 /**
1080  * nfs_init_directcache - create a slab cache for nfs_direct_req structures
1081  *
1082  */
1083 int __init nfs_init_directcache(void)
1084 {
1085 	nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
1086 						sizeof(struct nfs_direct_req),
1087 						0, (SLAB_RECLAIM_ACCOUNT|
1088 							SLAB_MEM_SPREAD),
1089 						NULL);
1090 	if (nfs_direct_cachep == NULL)
1091 		return -ENOMEM;
1092 
1093 	return 0;
1094 }
1095 
1096 /**
1097  * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
1098  *
1099  */
1100 void nfs_destroy_directcache(void)
1101 {
1102 	kmem_cache_destroy(nfs_direct_cachep);
1103 }
1104