1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/nfs/direct.c 4 * 5 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com> 6 * 7 * High-performance uncached I/O for the Linux NFS client 8 * 9 * There are important applications whose performance or correctness 10 * depends on uncached access to file data. Database clusters 11 * (multiple copies of the same instance running on separate hosts) 12 * implement their own cache coherency protocol that subsumes file 13 * system cache protocols. Applications that process datasets 14 * considerably larger than the client's memory do not always benefit 15 * from a local cache. A streaming video server, for instance, has no 16 * need to cache the contents of a file. 17 * 18 * When an application requests uncached I/O, all read and write requests 19 * are made directly to the server; data stored or fetched via these 20 * requests is not cached in the Linux page cache. The client does not 21 * correct unaligned requests from applications. All requested bytes are 22 * held on permanent storage before a direct write system call returns to 23 * an application. 24 * 25 * Solaris implements an uncached I/O facility called directio() that 26 * is used for backups and sequential I/O to very large files. Solaris 27 * also supports uncaching whole NFS partitions with "-o forcedirectio," 28 * an undocumented mount option. 29 * 30 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with 31 * help from Andrew Morton. 32 * 33 * 18 Dec 2001 Initial implementation for 2.4 --cel 34 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy 35 * 08 Jun 2003 Port to 2.5 APIs --cel 36 * 31 Mar 2004 Handle direct I/O without VFS support --cel 37 * 15 Sep 2004 Parallel async reads --cel 38 * 04 May 2005 support O_DIRECT with aio --cel 39 * 40 */ 41 42 #include <linux/errno.h> 43 #include <linux/sched.h> 44 #include <linux/kernel.h> 45 #include <linux/file.h> 46 #include <linux/pagemap.h> 47 #include <linux/kref.h> 48 #include <linux/slab.h> 49 #include <linux/task_io_accounting_ops.h> 50 #include <linux/module.h> 51 52 #include <linux/nfs_fs.h> 53 #include <linux/nfs_page.h> 54 #include <linux/sunrpc/clnt.h> 55 56 #include <linux/uaccess.h> 57 #include <linux/atomic.h> 58 59 #include "internal.h" 60 #include "iostat.h" 61 #include "pnfs.h" 62 63 #define NFSDBG_FACILITY NFSDBG_VFS 64 65 static struct kmem_cache *nfs_direct_cachep; 66 67 /* 68 * This represents a set of asynchronous requests that we're waiting on 69 */ 70 struct nfs_direct_mirror { 71 ssize_t count; 72 }; 73 74 struct nfs_direct_req { 75 struct kref kref; /* release manager */ 76 77 /* I/O parameters */ 78 struct nfs_open_context *ctx; /* file open context info */ 79 struct nfs_lock_context *l_ctx; /* Lock context info */ 80 struct kiocb * iocb; /* controlling i/o request */ 81 struct inode * inode; /* target file of i/o */ 82 83 /* completion state */ 84 atomic_t io_count; /* i/os we're waiting for */ 85 spinlock_t lock; /* protect completion state */ 86 87 struct nfs_direct_mirror mirrors[NFS_PAGEIO_DESCRIPTOR_MIRROR_MAX]; 88 int mirror_count; 89 90 loff_t io_start; /* Start offset for I/O */ 91 ssize_t count, /* bytes actually processed */ 92 max_count, /* max expected count */ 93 bytes_left, /* bytes left to be sent */ 94 error; /* any reported error */ 95 struct completion completion; /* wait for i/o completion */ 96 97 /* commit state */ 98 struct nfs_mds_commit_info mds_cinfo; /* Storage for cinfo */ 99 struct pnfs_ds_commit_info ds_cinfo; /* Storage for cinfo */ 100 struct work_struct work; 101 int flags; 102 /* for write */ 103 #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */ 104 #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */ 105 /* for read */ 106 #define NFS_ODIRECT_SHOULD_DIRTY (3) /* dirty user-space page after read */ 107 struct nfs_writeverf verf; /* unstable write verifier */ 108 }; 109 110 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops; 111 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops; 112 static void nfs_direct_write_complete(struct nfs_direct_req *dreq); 113 static void nfs_direct_write_schedule_work(struct work_struct *work); 114 115 static inline void get_dreq(struct nfs_direct_req *dreq) 116 { 117 atomic_inc(&dreq->io_count); 118 } 119 120 static inline int put_dreq(struct nfs_direct_req *dreq) 121 { 122 return atomic_dec_and_test(&dreq->io_count); 123 } 124 125 static void 126 nfs_direct_good_bytes(struct nfs_direct_req *dreq, struct nfs_pgio_header *hdr) 127 { 128 int i; 129 ssize_t count; 130 131 WARN_ON_ONCE(dreq->count >= dreq->max_count); 132 133 if (dreq->mirror_count == 1) { 134 dreq->mirrors[hdr->pgio_mirror_idx].count += hdr->good_bytes; 135 dreq->count += hdr->good_bytes; 136 } else { 137 /* mirrored writes */ 138 count = dreq->mirrors[hdr->pgio_mirror_idx].count; 139 if (count + dreq->io_start < hdr->io_start + hdr->good_bytes) { 140 count = hdr->io_start + hdr->good_bytes - dreq->io_start; 141 dreq->mirrors[hdr->pgio_mirror_idx].count = count; 142 } 143 /* update the dreq->count by finding the minimum agreed count from all 144 * mirrors */ 145 count = dreq->mirrors[0].count; 146 147 for (i = 1; i < dreq->mirror_count; i++) 148 count = min(count, dreq->mirrors[i].count); 149 150 dreq->count = count; 151 } 152 } 153 154 /* 155 * nfs_direct_select_verf - select the right verifier 156 * @dreq - direct request possibly spanning multiple servers 157 * @ds_clp - nfs_client of data server or NULL if MDS / non-pnfs 158 * @commit_idx - commit bucket index for the DS 159 * 160 * returns the correct verifier to use given the role of the server 161 */ 162 static struct nfs_writeverf * 163 nfs_direct_select_verf(struct nfs_direct_req *dreq, 164 struct nfs_client *ds_clp, 165 int commit_idx) 166 { 167 struct nfs_writeverf *verfp = &dreq->verf; 168 169 #ifdef CONFIG_NFS_V4_1 170 /* 171 * pNFS is in use, use the DS verf except commit_through_mds is set 172 * for layout segment where nbuckets is zero. 173 */ 174 if (ds_clp && dreq->ds_cinfo.nbuckets > 0) { 175 if (commit_idx >= 0 && commit_idx < dreq->ds_cinfo.nbuckets) 176 verfp = &dreq->ds_cinfo.buckets[commit_idx].direct_verf; 177 else 178 WARN_ON_ONCE(1); 179 } 180 #endif 181 return verfp; 182 } 183 184 185 /* 186 * nfs_direct_set_hdr_verf - set the write/commit verifier 187 * @dreq - direct request possibly spanning multiple servers 188 * @hdr - pageio header to validate against previously seen verfs 189 * 190 * Set the server's (MDS or DS) "seen" verifier 191 */ 192 static void nfs_direct_set_hdr_verf(struct nfs_direct_req *dreq, 193 struct nfs_pgio_header *hdr) 194 { 195 struct nfs_writeverf *verfp; 196 197 verfp = nfs_direct_select_verf(dreq, hdr->ds_clp, hdr->ds_commit_idx); 198 WARN_ON_ONCE(verfp->committed >= 0); 199 memcpy(verfp, &hdr->verf, sizeof(struct nfs_writeverf)); 200 WARN_ON_ONCE(verfp->committed < 0); 201 } 202 203 static int nfs_direct_cmp_verf(const struct nfs_writeverf *v1, 204 const struct nfs_writeverf *v2) 205 { 206 return nfs_write_verifier_cmp(&v1->verifier, &v2->verifier); 207 } 208 209 /* 210 * nfs_direct_cmp_hdr_verf - compare verifier for pgio header 211 * @dreq - direct request possibly spanning multiple servers 212 * @hdr - pageio header to validate against previously seen verf 213 * 214 * set the server's "seen" verf if not initialized. 215 * returns result of comparison between @hdr->verf and the "seen" 216 * verf of the server used by @hdr (DS or MDS) 217 */ 218 static int nfs_direct_set_or_cmp_hdr_verf(struct nfs_direct_req *dreq, 219 struct nfs_pgio_header *hdr) 220 { 221 struct nfs_writeverf *verfp; 222 223 verfp = nfs_direct_select_verf(dreq, hdr->ds_clp, hdr->ds_commit_idx); 224 if (verfp->committed < 0) { 225 nfs_direct_set_hdr_verf(dreq, hdr); 226 return 0; 227 } 228 return nfs_direct_cmp_verf(verfp, &hdr->verf); 229 } 230 231 /* 232 * nfs_direct_cmp_commit_data_verf - compare verifier for commit data 233 * @dreq - direct request possibly spanning multiple servers 234 * @data - commit data to validate against previously seen verf 235 * 236 * returns result of comparison between @data->verf and the verf of 237 * the server used by @data (DS or MDS) 238 */ 239 static int nfs_direct_cmp_commit_data_verf(struct nfs_direct_req *dreq, 240 struct nfs_commit_data *data) 241 { 242 struct nfs_writeverf *verfp; 243 244 verfp = nfs_direct_select_verf(dreq, data->ds_clp, 245 data->ds_commit_index); 246 247 /* verifier not set so always fail */ 248 if (verfp->committed < 0) 249 return 1; 250 251 return nfs_direct_cmp_verf(verfp, &data->verf); 252 } 253 254 /** 255 * nfs_direct_IO - NFS address space operation for direct I/O 256 * @iocb: target I/O control block 257 * @iter: I/O buffer 258 * 259 * The presence of this routine in the address space ops vector means 260 * the NFS client supports direct I/O. However, for most direct IO, we 261 * shunt off direct read and write requests before the VFS gets them, 262 * so this method is only ever called for swap. 263 */ 264 ssize_t nfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 265 { 266 struct inode *inode = iocb->ki_filp->f_mapping->host; 267 268 /* we only support swap file calling nfs_direct_IO */ 269 if (!IS_SWAPFILE(inode)) 270 return 0; 271 272 VM_BUG_ON(iov_iter_count(iter) != PAGE_SIZE); 273 274 if (iov_iter_rw(iter) == READ) 275 return nfs_file_direct_read(iocb, iter); 276 return nfs_file_direct_write(iocb, iter); 277 } 278 279 static void nfs_direct_release_pages(struct page **pages, unsigned int npages) 280 { 281 unsigned int i; 282 for (i = 0; i < npages; i++) 283 put_page(pages[i]); 284 } 285 286 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo, 287 struct nfs_direct_req *dreq) 288 { 289 cinfo->inode = dreq->inode; 290 cinfo->mds = &dreq->mds_cinfo; 291 cinfo->ds = &dreq->ds_cinfo; 292 cinfo->dreq = dreq; 293 cinfo->completion_ops = &nfs_direct_commit_completion_ops; 294 } 295 296 static inline void nfs_direct_setup_mirroring(struct nfs_direct_req *dreq, 297 struct nfs_pageio_descriptor *pgio, 298 struct nfs_page *req) 299 { 300 int mirror_count = 1; 301 302 if (pgio->pg_ops->pg_get_mirror_count) 303 mirror_count = pgio->pg_ops->pg_get_mirror_count(pgio, req); 304 305 dreq->mirror_count = mirror_count; 306 } 307 308 static inline struct nfs_direct_req *nfs_direct_req_alloc(void) 309 { 310 struct nfs_direct_req *dreq; 311 312 dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL); 313 if (!dreq) 314 return NULL; 315 316 kref_init(&dreq->kref); 317 kref_get(&dreq->kref); 318 init_completion(&dreq->completion); 319 INIT_LIST_HEAD(&dreq->mds_cinfo.list); 320 dreq->verf.committed = NFS_INVALID_STABLE_HOW; /* not set yet */ 321 INIT_WORK(&dreq->work, nfs_direct_write_schedule_work); 322 dreq->mirror_count = 1; 323 spin_lock_init(&dreq->lock); 324 325 return dreq; 326 } 327 328 static void nfs_direct_req_free(struct kref *kref) 329 { 330 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref); 331 332 nfs_free_pnfs_ds_cinfo(&dreq->ds_cinfo); 333 if (dreq->l_ctx != NULL) 334 nfs_put_lock_context(dreq->l_ctx); 335 if (dreq->ctx != NULL) 336 put_nfs_open_context(dreq->ctx); 337 kmem_cache_free(nfs_direct_cachep, dreq); 338 } 339 340 static void nfs_direct_req_release(struct nfs_direct_req *dreq) 341 { 342 kref_put(&dreq->kref, nfs_direct_req_free); 343 } 344 345 ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq) 346 { 347 return dreq->bytes_left; 348 } 349 EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left); 350 351 /* 352 * Collects and returns the final error value/byte-count. 353 */ 354 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq) 355 { 356 ssize_t result = -EIOCBQUEUED; 357 358 /* Async requests don't wait here */ 359 if (dreq->iocb) 360 goto out; 361 362 result = wait_for_completion_killable(&dreq->completion); 363 364 if (!result) { 365 result = dreq->count; 366 WARN_ON_ONCE(dreq->count < 0); 367 } 368 if (!result) 369 result = dreq->error; 370 371 out: 372 return (ssize_t) result; 373 } 374 375 /* 376 * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust 377 * the iocb is still valid here if this is a synchronous request. 378 */ 379 static void nfs_direct_complete(struct nfs_direct_req *dreq) 380 { 381 struct inode *inode = dreq->inode; 382 383 inode_dio_end(inode); 384 385 if (dreq->iocb) { 386 long res = (long) dreq->error; 387 if (dreq->count != 0) { 388 res = (long) dreq->count; 389 WARN_ON_ONCE(dreq->count < 0); 390 } 391 dreq->iocb->ki_complete(dreq->iocb, res, 0); 392 } 393 394 complete(&dreq->completion); 395 396 nfs_direct_req_release(dreq); 397 } 398 399 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr) 400 { 401 unsigned long bytes = 0; 402 struct nfs_direct_req *dreq = hdr->dreq; 403 404 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) 405 goto out_put; 406 407 spin_lock(&dreq->lock); 408 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0)) 409 dreq->error = hdr->error; 410 else 411 nfs_direct_good_bytes(dreq, hdr); 412 413 spin_unlock(&dreq->lock); 414 415 while (!list_empty(&hdr->pages)) { 416 struct nfs_page *req = nfs_list_entry(hdr->pages.next); 417 struct page *page = req->wb_page; 418 419 if (!PageCompound(page) && bytes < hdr->good_bytes && 420 (dreq->flags == NFS_ODIRECT_SHOULD_DIRTY)) 421 set_page_dirty(page); 422 bytes += req->wb_bytes; 423 nfs_list_remove_request(req); 424 nfs_release_request(req); 425 } 426 out_put: 427 if (put_dreq(dreq)) 428 nfs_direct_complete(dreq); 429 hdr->release(hdr); 430 } 431 432 static void nfs_read_sync_pgio_error(struct list_head *head, int error) 433 { 434 struct nfs_page *req; 435 436 while (!list_empty(head)) { 437 req = nfs_list_entry(head->next); 438 nfs_list_remove_request(req); 439 nfs_release_request(req); 440 } 441 } 442 443 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr) 444 { 445 get_dreq(hdr->dreq); 446 } 447 448 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = { 449 .error_cleanup = nfs_read_sync_pgio_error, 450 .init_hdr = nfs_direct_pgio_init, 451 .completion = nfs_direct_read_completion, 452 }; 453 454 /* 455 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ 456 * operation. If nfs_readdata_alloc() or get_user_pages() fails, 457 * bail and stop sending more reads. Read length accounting is 458 * handled automatically by nfs_direct_read_result(). Otherwise, if 459 * no requests have been sent, just return an error. 460 */ 461 462 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq, 463 struct iov_iter *iter, 464 loff_t pos) 465 { 466 struct nfs_pageio_descriptor desc; 467 struct inode *inode = dreq->inode; 468 ssize_t result = -EINVAL; 469 size_t requested_bytes = 0; 470 size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE); 471 472 nfs_pageio_init_read(&desc, dreq->inode, false, 473 &nfs_direct_read_completion_ops); 474 get_dreq(dreq); 475 desc.pg_dreq = dreq; 476 inode_dio_begin(inode); 477 478 while (iov_iter_count(iter)) { 479 struct page **pagevec; 480 size_t bytes; 481 size_t pgbase; 482 unsigned npages, i; 483 484 result = iov_iter_get_pages_alloc(iter, &pagevec, 485 rsize, &pgbase); 486 if (result < 0) 487 break; 488 489 bytes = result; 490 iov_iter_advance(iter, bytes); 491 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE; 492 for (i = 0; i < npages; i++) { 493 struct nfs_page *req; 494 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase); 495 /* XXX do we need to do the eof zeroing found in async_filler? */ 496 req = nfs_create_request(dreq->ctx, pagevec[i], 497 pgbase, req_len); 498 if (IS_ERR(req)) { 499 result = PTR_ERR(req); 500 break; 501 } 502 req->wb_index = pos >> PAGE_SHIFT; 503 req->wb_offset = pos & ~PAGE_MASK; 504 if (!nfs_pageio_add_request(&desc, req)) { 505 result = desc.pg_error; 506 nfs_release_request(req); 507 break; 508 } 509 pgbase = 0; 510 bytes -= req_len; 511 requested_bytes += req_len; 512 pos += req_len; 513 dreq->bytes_left -= req_len; 514 } 515 nfs_direct_release_pages(pagevec, npages); 516 kvfree(pagevec); 517 if (result < 0) 518 break; 519 } 520 521 nfs_pageio_complete(&desc); 522 523 /* 524 * If no bytes were started, return the error, and let the 525 * generic layer handle the completion. 526 */ 527 if (requested_bytes == 0) { 528 inode_dio_end(inode); 529 nfs_direct_req_release(dreq); 530 return result < 0 ? result : -EIO; 531 } 532 533 if (put_dreq(dreq)) 534 nfs_direct_complete(dreq); 535 return requested_bytes; 536 } 537 538 /** 539 * nfs_file_direct_read - file direct read operation for NFS files 540 * @iocb: target I/O control block 541 * @iter: vector of user buffers into which to read data 542 * 543 * We use this function for direct reads instead of calling 544 * generic_file_aio_read() in order to avoid gfar's check to see if 545 * the request starts before the end of the file. For that check 546 * to work, we must generate a GETATTR before each direct read, and 547 * even then there is a window between the GETATTR and the subsequent 548 * READ where the file size could change. Our preference is simply 549 * to do all reads the application wants, and the server will take 550 * care of managing the end of file boundary. 551 * 552 * This function also eliminates unnecessarily updating the file's 553 * atime locally, as the NFS server sets the file's atime, and this 554 * client must read the updated atime from the server back into its 555 * cache. 556 */ 557 ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter) 558 { 559 struct file *file = iocb->ki_filp; 560 struct address_space *mapping = file->f_mapping; 561 struct inode *inode = mapping->host; 562 struct nfs_direct_req *dreq; 563 struct nfs_lock_context *l_ctx; 564 ssize_t result = -EINVAL, requested; 565 size_t count = iov_iter_count(iter); 566 nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count); 567 568 dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n", 569 file, count, (long long) iocb->ki_pos); 570 571 result = 0; 572 if (!count) 573 goto out; 574 575 task_io_account_read(count); 576 577 result = -ENOMEM; 578 dreq = nfs_direct_req_alloc(); 579 if (dreq == NULL) 580 goto out; 581 582 dreq->inode = inode; 583 dreq->bytes_left = dreq->max_count = count; 584 dreq->io_start = iocb->ki_pos; 585 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp)); 586 l_ctx = nfs_get_lock_context(dreq->ctx); 587 if (IS_ERR(l_ctx)) { 588 result = PTR_ERR(l_ctx); 589 goto out_release; 590 } 591 dreq->l_ctx = l_ctx; 592 if (!is_sync_kiocb(iocb)) 593 dreq->iocb = iocb; 594 595 if (iter_is_iovec(iter)) 596 dreq->flags = NFS_ODIRECT_SHOULD_DIRTY; 597 598 nfs_start_io_direct(inode); 599 600 NFS_I(inode)->read_io += count; 601 requested = nfs_direct_read_schedule_iovec(dreq, iter, iocb->ki_pos); 602 603 nfs_end_io_direct(inode); 604 605 if (requested > 0) { 606 result = nfs_direct_wait(dreq); 607 if (result > 0) { 608 requested -= result; 609 iocb->ki_pos += result; 610 } 611 iov_iter_revert(iter, requested); 612 } else { 613 result = requested; 614 } 615 616 out_release: 617 nfs_direct_req_release(dreq); 618 out: 619 return result; 620 } 621 622 static void 623 nfs_direct_write_scan_commit_list(struct inode *inode, 624 struct list_head *list, 625 struct nfs_commit_info *cinfo) 626 { 627 mutex_lock(&NFS_I(cinfo->inode)->commit_mutex); 628 #ifdef CONFIG_NFS_V4_1 629 if (cinfo->ds != NULL && cinfo->ds->nwritten != 0) 630 NFS_SERVER(inode)->pnfs_curr_ld->recover_commit_reqs(list, cinfo); 631 #endif 632 nfs_scan_commit_list(&cinfo->mds->list, list, cinfo, 0); 633 mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex); 634 } 635 636 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq) 637 { 638 struct nfs_pageio_descriptor desc; 639 struct nfs_page *req, *tmp; 640 LIST_HEAD(reqs); 641 struct nfs_commit_info cinfo; 642 LIST_HEAD(failed); 643 int i; 644 645 nfs_init_cinfo_from_dreq(&cinfo, dreq); 646 nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo); 647 648 dreq->count = 0; 649 dreq->verf.committed = NFS_INVALID_STABLE_HOW; 650 nfs_clear_pnfs_ds_commit_verifiers(&dreq->ds_cinfo); 651 for (i = 0; i < dreq->mirror_count; i++) 652 dreq->mirrors[i].count = 0; 653 get_dreq(dreq); 654 655 nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false, 656 &nfs_direct_write_completion_ops); 657 desc.pg_dreq = dreq; 658 659 req = nfs_list_entry(reqs.next); 660 nfs_direct_setup_mirroring(dreq, &desc, req); 661 if (desc.pg_error < 0) { 662 list_splice_init(&reqs, &failed); 663 goto out_failed; 664 } 665 666 list_for_each_entry_safe(req, tmp, &reqs, wb_list) { 667 /* Bump the transmission count */ 668 req->wb_nio++; 669 if (!nfs_pageio_add_request(&desc, req)) { 670 nfs_list_move_request(req, &failed); 671 spin_lock(&cinfo.inode->i_lock); 672 dreq->flags = 0; 673 if (desc.pg_error < 0) 674 dreq->error = desc.pg_error; 675 else 676 dreq->error = -EIO; 677 spin_unlock(&cinfo.inode->i_lock); 678 } 679 nfs_release_request(req); 680 } 681 nfs_pageio_complete(&desc); 682 683 out_failed: 684 while (!list_empty(&failed)) { 685 req = nfs_list_entry(failed.next); 686 nfs_list_remove_request(req); 687 nfs_unlock_and_release_request(req); 688 } 689 690 if (put_dreq(dreq)) 691 nfs_direct_write_complete(dreq); 692 } 693 694 static void nfs_direct_commit_complete(struct nfs_commit_data *data) 695 { 696 struct nfs_direct_req *dreq = data->dreq; 697 struct nfs_commit_info cinfo; 698 struct nfs_page *req; 699 int status = data->task.tk_status; 700 701 nfs_init_cinfo_from_dreq(&cinfo, dreq); 702 if (status < 0 || nfs_direct_cmp_commit_data_verf(dreq, data)) 703 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 704 705 while (!list_empty(&data->pages)) { 706 req = nfs_list_entry(data->pages.next); 707 nfs_list_remove_request(req); 708 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) { 709 /* 710 * Despite the reboot, the write was successful, 711 * so reset wb_nio. 712 */ 713 req->wb_nio = 0; 714 /* Note the rewrite will go through mds */ 715 nfs_mark_request_commit(req, NULL, &cinfo, 0); 716 } else 717 nfs_release_request(req); 718 nfs_unlock_and_release_request(req); 719 } 720 721 if (atomic_dec_and_test(&cinfo.mds->rpcs_out)) 722 nfs_direct_write_complete(dreq); 723 } 724 725 static void nfs_direct_resched_write(struct nfs_commit_info *cinfo, 726 struct nfs_page *req) 727 { 728 struct nfs_direct_req *dreq = cinfo->dreq; 729 730 spin_lock(&dreq->lock); 731 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 732 spin_unlock(&dreq->lock); 733 nfs_mark_request_commit(req, NULL, cinfo, 0); 734 } 735 736 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = { 737 .completion = nfs_direct_commit_complete, 738 .resched_write = nfs_direct_resched_write, 739 }; 740 741 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq) 742 { 743 int res; 744 struct nfs_commit_info cinfo; 745 LIST_HEAD(mds_list); 746 747 nfs_init_cinfo_from_dreq(&cinfo, dreq); 748 nfs_scan_commit(dreq->inode, &mds_list, &cinfo); 749 res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo); 750 if (res < 0) /* res == -ENOMEM */ 751 nfs_direct_write_reschedule(dreq); 752 } 753 754 static void nfs_direct_write_schedule_work(struct work_struct *work) 755 { 756 struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work); 757 int flags = dreq->flags; 758 759 dreq->flags = 0; 760 switch (flags) { 761 case NFS_ODIRECT_DO_COMMIT: 762 nfs_direct_commit_schedule(dreq); 763 break; 764 case NFS_ODIRECT_RESCHED_WRITES: 765 nfs_direct_write_reschedule(dreq); 766 break; 767 default: 768 nfs_zap_mapping(dreq->inode, dreq->inode->i_mapping); 769 nfs_direct_complete(dreq); 770 } 771 } 772 773 static void nfs_direct_write_complete(struct nfs_direct_req *dreq) 774 { 775 queue_work(nfsiod_workqueue, &dreq->work); /* Calls nfs_direct_write_schedule_work */ 776 } 777 778 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr) 779 { 780 struct nfs_direct_req *dreq = hdr->dreq; 781 struct nfs_commit_info cinfo; 782 bool request_commit = false; 783 struct nfs_page *req = nfs_list_entry(hdr->pages.next); 784 785 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) 786 goto out_put; 787 788 nfs_init_cinfo_from_dreq(&cinfo, dreq); 789 790 spin_lock(&dreq->lock); 791 792 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) 793 dreq->error = hdr->error; 794 if (dreq->error == 0) { 795 nfs_direct_good_bytes(dreq, hdr); 796 if (nfs_write_need_commit(hdr)) { 797 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) 798 request_commit = true; 799 else if (dreq->flags == 0) { 800 nfs_direct_set_hdr_verf(dreq, hdr); 801 request_commit = true; 802 dreq->flags = NFS_ODIRECT_DO_COMMIT; 803 } else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) { 804 request_commit = true; 805 if (nfs_direct_set_or_cmp_hdr_verf(dreq, hdr)) 806 dreq->flags = 807 NFS_ODIRECT_RESCHED_WRITES; 808 } 809 } 810 } 811 spin_unlock(&dreq->lock); 812 813 while (!list_empty(&hdr->pages)) { 814 815 req = nfs_list_entry(hdr->pages.next); 816 nfs_list_remove_request(req); 817 if (request_commit) { 818 kref_get(&req->wb_kref); 819 nfs_mark_request_commit(req, hdr->lseg, &cinfo, 820 hdr->ds_commit_idx); 821 } 822 nfs_unlock_and_release_request(req); 823 } 824 825 out_put: 826 if (put_dreq(dreq)) 827 nfs_direct_write_complete(dreq); 828 hdr->release(hdr); 829 } 830 831 static void nfs_write_sync_pgio_error(struct list_head *head, int error) 832 { 833 struct nfs_page *req; 834 835 while (!list_empty(head)) { 836 req = nfs_list_entry(head->next); 837 nfs_list_remove_request(req); 838 nfs_unlock_and_release_request(req); 839 } 840 } 841 842 static void nfs_direct_write_reschedule_io(struct nfs_pgio_header *hdr) 843 { 844 struct nfs_direct_req *dreq = hdr->dreq; 845 846 spin_lock(&dreq->lock); 847 if (dreq->error == 0) { 848 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 849 /* fake unstable write to let common nfs resend pages */ 850 hdr->verf.committed = NFS_UNSTABLE; 851 hdr->good_bytes = hdr->args.count; 852 } 853 spin_unlock(&dreq->lock); 854 } 855 856 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = { 857 .error_cleanup = nfs_write_sync_pgio_error, 858 .init_hdr = nfs_direct_pgio_init, 859 .completion = nfs_direct_write_completion, 860 .reschedule_io = nfs_direct_write_reschedule_io, 861 }; 862 863 864 /* 865 * NB: Return the value of the first error return code. Subsequent 866 * errors after the first one are ignored. 867 */ 868 /* 869 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE 870 * operation. If nfs_writedata_alloc() or get_user_pages() fails, 871 * bail and stop sending more writes. Write length accounting is 872 * handled automatically by nfs_direct_write_result(). Otherwise, if 873 * no requests have been sent, just return an error. 874 */ 875 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq, 876 struct iov_iter *iter, 877 loff_t pos) 878 { 879 struct nfs_pageio_descriptor desc; 880 struct inode *inode = dreq->inode; 881 ssize_t result = 0; 882 size_t requested_bytes = 0; 883 size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE); 884 885 nfs_pageio_init_write(&desc, inode, FLUSH_COND_STABLE, false, 886 &nfs_direct_write_completion_ops); 887 desc.pg_dreq = dreq; 888 get_dreq(dreq); 889 inode_dio_begin(inode); 890 891 NFS_I(inode)->write_io += iov_iter_count(iter); 892 while (iov_iter_count(iter)) { 893 struct page **pagevec; 894 size_t bytes; 895 size_t pgbase; 896 unsigned npages, i; 897 898 result = iov_iter_get_pages_alloc(iter, &pagevec, 899 wsize, &pgbase); 900 if (result < 0) 901 break; 902 903 bytes = result; 904 iov_iter_advance(iter, bytes); 905 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE; 906 for (i = 0; i < npages; i++) { 907 struct nfs_page *req; 908 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase); 909 910 req = nfs_create_request(dreq->ctx, pagevec[i], 911 pgbase, req_len); 912 if (IS_ERR(req)) { 913 result = PTR_ERR(req); 914 break; 915 } 916 917 nfs_direct_setup_mirroring(dreq, &desc, req); 918 if (desc.pg_error < 0) { 919 nfs_free_request(req); 920 result = desc.pg_error; 921 break; 922 } 923 924 nfs_lock_request(req); 925 req->wb_index = pos >> PAGE_SHIFT; 926 req->wb_offset = pos & ~PAGE_MASK; 927 if (!nfs_pageio_add_request(&desc, req)) { 928 result = desc.pg_error; 929 nfs_unlock_and_release_request(req); 930 break; 931 } 932 pgbase = 0; 933 bytes -= req_len; 934 requested_bytes += req_len; 935 pos += req_len; 936 dreq->bytes_left -= req_len; 937 } 938 nfs_direct_release_pages(pagevec, npages); 939 kvfree(pagevec); 940 if (result < 0) 941 break; 942 } 943 nfs_pageio_complete(&desc); 944 945 /* 946 * If no bytes were started, return the error, and let the 947 * generic layer handle the completion. 948 */ 949 if (requested_bytes == 0) { 950 inode_dio_end(inode); 951 nfs_direct_req_release(dreq); 952 return result < 0 ? result : -EIO; 953 } 954 955 if (put_dreq(dreq)) 956 nfs_direct_write_complete(dreq); 957 return requested_bytes; 958 } 959 960 /** 961 * nfs_file_direct_write - file direct write operation for NFS files 962 * @iocb: target I/O control block 963 * @iter: vector of user buffers from which to write data 964 * 965 * We use this function for direct writes instead of calling 966 * generic_file_aio_write() in order to avoid taking the inode 967 * semaphore and updating the i_size. The NFS server will set 968 * the new i_size and this client must read the updated size 969 * back into its cache. We let the server do generic write 970 * parameter checking and report problems. 971 * 972 * We eliminate local atime updates, see direct read above. 973 * 974 * We avoid unnecessary page cache invalidations for normal cached 975 * readers of this file. 976 * 977 * Note that O_APPEND is not supported for NFS direct writes, as there 978 * is no atomic O_APPEND write facility in the NFS protocol. 979 */ 980 ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter) 981 { 982 ssize_t result = -EINVAL, requested; 983 size_t count; 984 struct file *file = iocb->ki_filp; 985 struct address_space *mapping = file->f_mapping; 986 struct inode *inode = mapping->host; 987 struct nfs_direct_req *dreq; 988 struct nfs_lock_context *l_ctx; 989 loff_t pos, end; 990 991 dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n", 992 file, iov_iter_count(iter), (long long) iocb->ki_pos); 993 994 result = generic_write_checks(iocb, iter); 995 if (result <= 0) 996 return result; 997 count = result; 998 nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count); 999 1000 pos = iocb->ki_pos; 1001 end = (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT; 1002 1003 task_io_account_write(count); 1004 1005 result = -ENOMEM; 1006 dreq = nfs_direct_req_alloc(); 1007 if (!dreq) 1008 goto out; 1009 1010 dreq->inode = inode; 1011 dreq->bytes_left = dreq->max_count = count; 1012 dreq->io_start = pos; 1013 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp)); 1014 l_ctx = nfs_get_lock_context(dreq->ctx); 1015 if (IS_ERR(l_ctx)) { 1016 result = PTR_ERR(l_ctx); 1017 goto out_release; 1018 } 1019 dreq->l_ctx = l_ctx; 1020 if (!is_sync_kiocb(iocb)) 1021 dreq->iocb = iocb; 1022 1023 nfs_start_io_direct(inode); 1024 1025 requested = nfs_direct_write_schedule_iovec(dreq, iter, pos); 1026 1027 if (mapping->nrpages) { 1028 invalidate_inode_pages2_range(mapping, 1029 pos >> PAGE_SHIFT, end); 1030 } 1031 1032 nfs_end_io_direct(inode); 1033 1034 if (requested > 0) { 1035 result = nfs_direct_wait(dreq); 1036 if (result > 0) { 1037 requested -= result; 1038 iocb->ki_pos = pos + result; 1039 /* XXX: should check the generic_write_sync retval */ 1040 generic_write_sync(iocb, result); 1041 } 1042 iov_iter_revert(iter, requested); 1043 } else { 1044 result = requested; 1045 } 1046 out_release: 1047 nfs_direct_req_release(dreq); 1048 out: 1049 return result; 1050 } 1051 1052 /** 1053 * nfs_init_directcache - create a slab cache for nfs_direct_req structures 1054 * 1055 */ 1056 int __init nfs_init_directcache(void) 1057 { 1058 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache", 1059 sizeof(struct nfs_direct_req), 1060 0, (SLAB_RECLAIM_ACCOUNT| 1061 SLAB_MEM_SPREAD), 1062 NULL); 1063 if (nfs_direct_cachep == NULL) 1064 return -ENOMEM; 1065 1066 return 0; 1067 } 1068 1069 /** 1070 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures 1071 * 1072 */ 1073 void nfs_destroy_directcache(void) 1074 { 1075 kmem_cache_destroy(nfs_direct_cachep); 1076 } 1077