xref: /openbmc/linux/fs/nfs/direct.c (revision 2fe60ec9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/fs/nfs/direct.c
4  *
5  * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
6  *
7  * High-performance uncached I/O for the Linux NFS client
8  *
9  * There are important applications whose performance or correctness
10  * depends on uncached access to file data.  Database clusters
11  * (multiple copies of the same instance running on separate hosts)
12  * implement their own cache coherency protocol that subsumes file
13  * system cache protocols.  Applications that process datasets
14  * considerably larger than the client's memory do not always benefit
15  * from a local cache.  A streaming video server, for instance, has no
16  * need to cache the contents of a file.
17  *
18  * When an application requests uncached I/O, all read and write requests
19  * are made directly to the server; data stored or fetched via these
20  * requests is not cached in the Linux page cache.  The client does not
21  * correct unaligned requests from applications.  All requested bytes are
22  * held on permanent storage before a direct write system call returns to
23  * an application.
24  *
25  * Solaris implements an uncached I/O facility called directio() that
26  * is used for backups and sequential I/O to very large files.  Solaris
27  * also supports uncaching whole NFS partitions with "-o forcedirectio,"
28  * an undocumented mount option.
29  *
30  * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
31  * help from Andrew Morton.
32  *
33  * 18 Dec 2001	Initial implementation for 2.4  --cel
34  * 08 Jul 2002	Version for 2.4.19, with bug fixes --trondmy
35  * 08 Jun 2003	Port to 2.5 APIs  --cel
36  * 31 Mar 2004	Handle direct I/O without VFS support  --cel
37  * 15 Sep 2004	Parallel async reads  --cel
38  * 04 May 2005	support O_DIRECT with aio  --cel
39  *
40  */
41 
42 #include <linux/errno.h>
43 #include <linux/sched.h>
44 #include <linux/kernel.h>
45 #include <linux/file.h>
46 #include <linux/pagemap.h>
47 #include <linux/kref.h>
48 #include <linux/slab.h>
49 #include <linux/task_io_accounting_ops.h>
50 #include <linux/module.h>
51 
52 #include <linux/nfs_fs.h>
53 #include <linux/nfs_page.h>
54 #include <linux/sunrpc/clnt.h>
55 
56 #include <linux/uaccess.h>
57 #include <linux/atomic.h>
58 
59 #include "internal.h"
60 #include "iostat.h"
61 #include "pnfs.h"
62 #include "fscache.h"
63 
64 #define NFSDBG_FACILITY		NFSDBG_VFS
65 
66 static struct kmem_cache *nfs_direct_cachep;
67 
68 struct nfs_direct_req {
69 	struct kref		kref;		/* release manager */
70 
71 	/* I/O parameters */
72 	struct nfs_open_context	*ctx;		/* file open context info */
73 	struct nfs_lock_context *l_ctx;		/* Lock context info */
74 	struct kiocb *		iocb;		/* controlling i/o request */
75 	struct inode *		inode;		/* target file of i/o */
76 
77 	/* completion state */
78 	atomic_t		io_count;	/* i/os we're waiting for */
79 	spinlock_t		lock;		/* protect completion state */
80 
81 	loff_t			io_start;	/* Start offset for I/O */
82 	ssize_t			count,		/* bytes actually processed */
83 				max_count,	/* max expected count */
84 				bytes_left,	/* bytes left to be sent */
85 				error;		/* any reported error */
86 	struct completion	completion;	/* wait for i/o completion */
87 
88 	/* commit state */
89 	struct nfs_mds_commit_info mds_cinfo;	/* Storage for cinfo */
90 	struct pnfs_ds_commit_info ds_cinfo;	/* Storage for cinfo */
91 	struct work_struct	work;
92 	int			flags;
93 	/* for write */
94 #define NFS_ODIRECT_DO_COMMIT		(1)	/* an unstable reply was received */
95 #define NFS_ODIRECT_RESCHED_WRITES	(2)	/* write verification failed */
96 	/* for read */
97 #define NFS_ODIRECT_SHOULD_DIRTY	(3)	/* dirty user-space page after read */
98 #define NFS_ODIRECT_DONE		INT_MAX	/* write verification failed */
99 };
100 
101 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
102 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
103 static void nfs_direct_write_complete(struct nfs_direct_req *dreq);
104 static void nfs_direct_write_schedule_work(struct work_struct *work);
105 
106 static inline void get_dreq(struct nfs_direct_req *dreq)
107 {
108 	atomic_inc(&dreq->io_count);
109 }
110 
111 static inline int put_dreq(struct nfs_direct_req *dreq)
112 {
113 	return atomic_dec_and_test(&dreq->io_count);
114 }
115 
116 static void
117 nfs_direct_handle_truncated(struct nfs_direct_req *dreq,
118 			    const struct nfs_pgio_header *hdr,
119 			    ssize_t dreq_len)
120 {
121 	if (!(test_bit(NFS_IOHDR_ERROR, &hdr->flags) ||
122 	      test_bit(NFS_IOHDR_EOF, &hdr->flags)))
123 		return;
124 	if (dreq->max_count >= dreq_len) {
125 		dreq->max_count = dreq_len;
126 		if (dreq->count > dreq_len)
127 			dreq->count = dreq_len;
128 
129 		if (test_bit(NFS_IOHDR_ERROR, &hdr->flags))
130 			dreq->error = hdr->error;
131 		else /* Clear outstanding error if this is EOF */
132 			dreq->error = 0;
133 	}
134 }
135 
136 static void
137 nfs_direct_count_bytes(struct nfs_direct_req *dreq,
138 		       const struct nfs_pgio_header *hdr)
139 {
140 	loff_t hdr_end = hdr->io_start + hdr->good_bytes;
141 	ssize_t dreq_len = 0;
142 
143 	if (hdr_end > dreq->io_start)
144 		dreq_len = hdr_end - dreq->io_start;
145 
146 	nfs_direct_handle_truncated(dreq, hdr, dreq_len);
147 
148 	if (dreq_len > dreq->max_count)
149 		dreq_len = dreq->max_count;
150 
151 	if (dreq->count < dreq_len)
152 		dreq->count = dreq_len;
153 }
154 
155 /**
156  * nfs_swap_rw - NFS address space operation for swap I/O
157  * @iocb: target I/O control block
158  * @iter: I/O buffer
159  *
160  * Perform IO to the swap-file.  This is much like direct IO.
161  */
162 int nfs_swap_rw(struct kiocb *iocb, struct iov_iter *iter)
163 {
164 	ssize_t ret;
165 
166 	VM_BUG_ON(iov_iter_count(iter) != PAGE_SIZE);
167 
168 	if (iov_iter_rw(iter) == READ)
169 		ret = nfs_file_direct_read(iocb, iter, true);
170 	else
171 		ret = nfs_file_direct_write(iocb, iter, true);
172 	if (ret < 0)
173 		return ret;
174 	return 0;
175 }
176 
177 static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
178 {
179 	unsigned int i;
180 	for (i = 0; i < npages; i++)
181 		put_page(pages[i]);
182 }
183 
184 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
185 			      struct nfs_direct_req *dreq)
186 {
187 	cinfo->inode = dreq->inode;
188 	cinfo->mds = &dreq->mds_cinfo;
189 	cinfo->ds = &dreq->ds_cinfo;
190 	cinfo->dreq = dreq;
191 	cinfo->completion_ops = &nfs_direct_commit_completion_ops;
192 }
193 
194 static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
195 {
196 	struct nfs_direct_req *dreq;
197 
198 	dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
199 	if (!dreq)
200 		return NULL;
201 
202 	kref_init(&dreq->kref);
203 	kref_get(&dreq->kref);
204 	init_completion(&dreq->completion);
205 	INIT_LIST_HEAD(&dreq->mds_cinfo.list);
206 	pnfs_init_ds_commit_info(&dreq->ds_cinfo);
207 	INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
208 	spin_lock_init(&dreq->lock);
209 
210 	return dreq;
211 }
212 
213 static void nfs_direct_req_free(struct kref *kref)
214 {
215 	struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
216 
217 	pnfs_release_ds_info(&dreq->ds_cinfo, dreq->inode);
218 	if (dreq->l_ctx != NULL)
219 		nfs_put_lock_context(dreq->l_ctx);
220 	if (dreq->ctx != NULL)
221 		put_nfs_open_context(dreq->ctx);
222 	kmem_cache_free(nfs_direct_cachep, dreq);
223 }
224 
225 static void nfs_direct_req_release(struct nfs_direct_req *dreq)
226 {
227 	kref_put(&dreq->kref, nfs_direct_req_free);
228 }
229 
230 ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq)
231 {
232 	return dreq->bytes_left;
233 }
234 EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
235 
236 /*
237  * Collects and returns the final error value/byte-count.
238  */
239 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
240 {
241 	ssize_t result = -EIOCBQUEUED;
242 
243 	/* Async requests don't wait here */
244 	if (dreq->iocb)
245 		goto out;
246 
247 	result = wait_for_completion_killable(&dreq->completion);
248 
249 	if (!result) {
250 		result = dreq->count;
251 		WARN_ON_ONCE(dreq->count < 0);
252 	}
253 	if (!result)
254 		result = dreq->error;
255 
256 out:
257 	return (ssize_t) result;
258 }
259 
260 /*
261  * Synchronous I/O uses a stack-allocated iocb.  Thus we can't trust
262  * the iocb is still valid here if this is a synchronous request.
263  */
264 static void nfs_direct_complete(struct nfs_direct_req *dreq)
265 {
266 	struct inode *inode = dreq->inode;
267 
268 	inode_dio_end(inode);
269 
270 	if (dreq->iocb) {
271 		long res = (long) dreq->error;
272 		if (dreq->count != 0) {
273 			res = (long) dreq->count;
274 			WARN_ON_ONCE(dreq->count < 0);
275 		}
276 		dreq->iocb->ki_complete(dreq->iocb, res);
277 	}
278 
279 	complete(&dreq->completion);
280 
281 	nfs_direct_req_release(dreq);
282 }
283 
284 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
285 {
286 	unsigned long bytes = 0;
287 	struct nfs_direct_req *dreq = hdr->dreq;
288 
289 	spin_lock(&dreq->lock);
290 	if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) {
291 		spin_unlock(&dreq->lock);
292 		goto out_put;
293 	}
294 
295 	nfs_direct_count_bytes(dreq, hdr);
296 	spin_unlock(&dreq->lock);
297 
298 	while (!list_empty(&hdr->pages)) {
299 		struct nfs_page *req = nfs_list_entry(hdr->pages.next);
300 		struct page *page = req->wb_page;
301 
302 		if (!PageCompound(page) && bytes < hdr->good_bytes &&
303 		    (dreq->flags == NFS_ODIRECT_SHOULD_DIRTY))
304 			set_page_dirty(page);
305 		bytes += req->wb_bytes;
306 		nfs_list_remove_request(req);
307 		nfs_release_request(req);
308 	}
309 out_put:
310 	if (put_dreq(dreq))
311 		nfs_direct_complete(dreq);
312 	hdr->release(hdr);
313 }
314 
315 static void nfs_read_sync_pgio_error(struct list_head *head, int error)
316 {
317 	struct nfs_page *req;
318 
319 	while (!list_empty(head)) {
320 		req = nfs_list_entry(head->next);
321 		nfs_list_remove_request(req);
322 		nfs_release_request(req);
323 	}
324 }
325 
326 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
327 {
328 	get_dreq(hdr->dreq);
329 }
330 
331 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
332 	.error_cleanup = nfs_read_sync_pgio_error,
333 	.init_hdr = nfs_direct_pgio_init,
334 	.completion = nfs_direct_read_completion,
335 };
336 
337 /*
338  * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
339  * operation.  If nfs_readdata_alloc() or get_user_pages() fails,
340  * bail and stop sending more reads.  Read length accounting is
341  * handled automatically by nfs_direct_read_result().  Otherwise, if
342  * no requests have been sent, just return an error.
343  */
344 
345 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
346 					      struct iov_iter *iter,
347 					      loff_t pos)
348 {
349 	struct nfs_pageio_descriptor desc;
350 	struct inode *inode = dreq->inode;
351 	ssize_t result = -EINVAL;
352 	size_t requested_bytes = 0;
353 	size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE);
354 
355 	nfs_pageio_init_read(&desc, dreq->inode, false,
356 			     &nfs_direct_read_completion_ops);
357 	get_dreq(dreq);
358 	desc.pg_dreq = dreq;
359 	inode_dio_begin(inode);
360 
361 	while (iov_iter_count(iter)) {
362 		struct page **pagevec;
363 		size_t bytes;
364 		size_t pgbase;
365 		unsigned npages, i;
366 
367 		result = iov_iter_get_pages_alloc(iter, &pagevec,
368 						  rsize, &pgbase);
369 		if (result < 0)
370 			break;
371 
372 		bytes = result;
373 		iov_iter_advance(iter, bytes);
374 		npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
375 		for (i = 0; i < npages; i++) {
376 			struct nfs_page *req;
377 			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
378 			/* XXX do we need to do the eof zeroing found in async_filler? */
379 			req = nfs_create_request(dreq->ctx, pagevec[i],
380 						 pgbase, req_len);
381 			if (IS_ERR(req)) {
382 				result = PTR_ERR(req);
383 				break;
384 			}
385 			req->wb_index = pos >> PAGE_SHIFT;
386 			req->wb_offset = pos & ~PAGE_MASK;
387 			if (!nfs_pageio_add_request(&desc, req)) {
388 				result = desc.pg_error;
389 				nfs_release_request(req);
390 				break;
391 			}
392 			pgbase = 0;
393 			bytes -= req_len;
394 			requested_bytes += req_len;
395 			pos += req_len;
396 			dreq->bytes_left -= req_len;
397 		}
398 		nfs_direct_release_pages(pagevec, npages);
399 		kvfree(pagevec);
400 		if (result < 0)
401 			break;
402 	}
403 
404 	nfs_pageio_complete(&desc);
405 
406 	/*
407 	 * If no bytes were started, return the error, and let the
408 	 * generic layer handle the completion.
409 	 */
410 	if (requested_bytes == 0) {
411 		inode_dio_end(inode);
412 		nfs_direct_req_release(dreq);
413 		return result < 0 ? result : -EIO;
414 	}
415 
416 	if (put_dreq(dreq))
417 		nfs_direct_complete(dreq);
418 	return requested_bytes;
419 }
420 
421 /**
422  * nfs_file_direct_read - file direct read operation for NFS files
423  * @iocb: target I/O control block
424  * @iter: vector of user buffers into which to read data
425  * @swap: flag indicating this is swap IO, not O_DIRECT IO
426  *
427  * We use this function for direct reads instead of calling
428  * generic_file_aio_read() in order to avoid gfar's check to see if
429  * the request starts before the end of the file.  For that check
430  * to work, we must generate a GETATTR before each direct read, and
431  * even then there is a window between the GETATTR and the subsequent
432  * READ where the file size could change.  Our preference is simply
433  * to do all reads the application wants, and the server will take
434  * care of managing the end of file boundary.
435  *
436  * This function also eliminates unnecessarily updating the file's
437  * atime locally, as the NFS server sets the file's atime, and this
438  * client must read the updated atime from the server back into its
439  * cache.
440  */
441 ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter,
442 			     bool swap)
443 {
444 	struct file *file = iocb->ki_filp;
445 	struct address_space *mapping = file->f_mapping;
446 	struct inode *inode = mapping->host;
447 	struct nfs_direct_req *dreq;
448 	struct nfs_lock_context *l_ctx;
449 	ssize_t result, requested;
450 	size_t count = iov_iter_count(iter);
451 	nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
452 
453 	dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n",
454 		file, count, (long long) iocb->ki_pos);
455 
456 	result = 0;
457 	if (!count)
458 		goto out;
459 
460 	task_io_account_read(count);
461 
462 	result = -ENOMEM;
463 	dreq = nfs_direct_req_alloc();
464 	if (dreq == NULL)
465 		goto out;
466 
467 	dreq->inode = inode;
468 	dreq->bytes_left = dreq->max_count = count;
469 	dreq->io_start = iocb->ki_pos;
470 	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
471 	l_ctx = nfs_get_lock_context(dreq->ctx);
472 	if (IS_ERR(l_ctx)) {
473 		result = PTR_ERR(l_ctx);
474 		nfs_direct_req_release(dreq);
475 		goto out_release;
476 	}
477 	dreq->l_ctx = l_ctx;
478 	if (!is_sync_kiocb(iocb))
479 		dreq->iocb = iocb;
480 
481 	if (iter_is_iovec(iter))
482 		dreq->flags = NFS_ODIRECT_SHOULD_DIRTY;
483 
484 	if (!swap)
485 		nfs_start_io_direct(inode);
486 
487 	NFS_I(inode)->read_io += count;
488 	requested = nfs_direct_read_schedule_iovec(dreq, iter, iocb->ki_pos);
489 
490 	if (!swap)
491 		nfs_end_io_direct(inode);
492 
493 	if (requested > 0) {
494 		result = nfs_direct_wait(dreq);
495 		if (result > 0) {
496 			requested -= result;
497 			iocb->ki_pos += result;
498 		}
499 		iov_iter_revert(iter, requested);
500 	} else {
501 		result = requested;
502 	}
503 
504 out_release:
505 	nfs_direct_req_release(dreq);
506 out:
507 	return result;
508 }
509 
510 static void
511 nfs_direct_join_group(struct list_head *list, struct inode *inode)
512 {
513 	struct nfs_page *req, *next;
514 
515 	list_for_each_entry(req, list, wb_list) {
516 		if (req->wb_head != req || req->wb_this_page == req)
517 			continue;
518 		for (next = req->wb_this_page;
519 				next != req->wb_head;
520 				next = next->wb_this_page) {
521 			nfs_list_remove_request(next);
522 			nfs_release_request(next);
523 		}
524 		nfs_join_page_group(req, inode);
525 	}
526 }
527 
528 static void
529 nfs_direct_write_scan_commit_list(struct inode *inode,
530 				  struct list_head *list,
531 				  struct nfs_commit_info *cinfo)
532 {
533 	mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
534 	pnfs_recover_commit_reqs(list, cinfo);
535 	nfs_scan_commit_list(&cinfo->mds->list, list, cinfo, 0);
536 	mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
537 }
538 
539 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
540 {
541 	struct nfs_pageio_descriptor desc;
542 	struct nfs_page *req, *tmp;
543 	LIST_HEAD(reqs);
544 	struct nfs_commit_info cinfo;
545 	LIST_HEAD(failed);
546 
547 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
548 	nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
549 
550 	nfs_direct_join_group(&reqs, dreq->inode);
551 
552 	dreq->count = 0;
553 	dreq->max_count = 0;
554 	list_for_each_entry(req, &reqs, wb_list)
555 		dreq->max_count += req->wb_bytes;
556 	nfs_clear_pnfs_ds_commit_verifiers(&dreq->ds_cinfo);
557 	get_dreq(dreq);
558 
559 	nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false,
560 			      &nfs_direct_write_completion_ops);
561 	desc.pg_dreq = dreq;
562 
563 	list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
564 		/* Bump the transmission count */
565 		req->wb_nio++;
566 		if (!nfs_pageio_add_request(&desc, req)) {
567 			nfs_list_move_request(req, &failed);
568 			spin_lock(&cinfo.inode->i_lock);
569 			dreq->flags = 0;
570 			if (desc.pg_error < 0)
571 				dreq->error = desc.pg_error;
572 			else
573 				dreq->error = -EIO;
574 			spin_unlock(&cinfo.inode->i_lock);
575 		}
576 		nfs_release_request(req);
577 	}
578 	nfs_pageio_complete(&desc);
579 
580 	while (!list_empty(&failed)) {
581 		req = nfs_list_entry(failed.next);
582 		nfs_list_remove_request(req);
583 		nfs_unlock_and_release_request(req);
584 	}
585 
586 	if (put_dreq(dreq))
587 		nfs_direct_write_complete(dreq);
588 }
589 
590 static void nfs_direct_commit_complete(struct nfs_commit_data *data)
591 {
592 	const struct nfs_writeverf *verf = data->res.verf;
593 	struct nfs_direct_req *dreq = data->dreq;
594 	struct nfs_commit_info cinfo;
595 	struct nfs_page *req;
596 	int status = data->task.tk_status;
597 
598 	if (status < 0) {
599 		/* Errors in commit are fatal */
600 		dreq->error = status;
601 		dreq->max_count = 0;
602 		dreq->count = 0;
603 		dreq->flags = NFS_ODIRECT_DONE;
604 	} else if (dreq->flags == NFS_ODIRECT_DONE)
605 		status = dreq->error;
606 
607 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
608 
609 	while (!list_empty(&data->pages)) {
610 		req = nfs_list_entry(data->pages.next);
611 		nfs_list_remove_request(req);
612 		if (status >= 0 && !nfs_write_match_verf(verf, req)) {
613 			dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
614 			/*
615 			 * Despite the reboot, the write was successful,
616 			 * so reset wb_nio.
617 			 */
618 			req->wb_nio = 0;
619 			nfs_mark_request_commit(req, NULL, &cinfo, 0);
620 		} else /* Error or match */
621 			nfs_release_request(req);
622 		nfs_unlock_and_release_request(req);
623 	}
624 
625 	if (nfs_commit_end(cinfo.mds))
626 		nfs_direct_write_complete(dreq);
627 }
628 
629 static void nfs_direct_resched_write(struct nfs_commit_info *cinfo,
630 		struct nfs_page *req)
631 {
632 	struct nfs_direct_req *dreq = cinfo->dreq;
633 
634 	spin_lock(&dreq->lock);
635 	if (dreq->flags != NFS_ODIRECT_DONE)
636 		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
637 	spin_unlock(&dreq->lock);
638 	nfs_mark_request_commit(req, NULL, cinfo, 0);
639 }
640 
641 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
642 	.completion = nfs_direct_commit_complete,
643 	.resched_write = nfs_direct_resched_write,
644 };
645 
646 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
647 {
648 	int res;
649 	struct nfs_commit_info cinfo;
650 	LIST_HEAD(mds_list);
651 
652 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
653 	nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
654 	res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
655 	if (res < 0) /* res == -ENOMEM */
656 		nfs_direct_write_reschedule(dreq);
657 }
658 
659 static void nfs_direct_write_clear_reqs(struct nfs_direct_req *dreq)
660 {
661 	struct nfs_commit_info cinfo;
662 	struct nfs_page *req;
663 	LIST_HEAD(reqs);
664 
665 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
666 	nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
667 
668 	while (!list_empty(&reqs)) {
669 		req = nfs_list_entry(reqs.next);
670 		nfs_list_remove_request(req);
671 		nfs_release_request(req);
672 		nfs_unlock_and_release_request(req);
673 	}
674 }
675 
676 static void nfs_direct_write_schedule_work(struct work_struct *work)
677 {
678 	struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
679 	int flags = dreq->flags;
680 
681 	dreq->flags = 0;
682 	switch (flags) {
683 		case NFS_ODIRECT_DO_COMMIT:
684 			nfs_direct_commit_schedule(dreq);
685 			break;
686 		case NFS_ODIRECT_RESCHED_WRITES:
687 			nfs_direct_write_reschedule(dreq);
688 			break;
689 		default:
690 			nfs_direct_write_clear_reqs(dreq);
691 			nfs_zap_mapping(dreq->inode, dreq->inode->i_mapping);
692 			nfs_direct_complete(dreq);
693 	}
694 }
695 
696 static void nfs_direct_write_complete(struct nfs_direct_req *dreq)
697 {
698 	queue_work(nfsiod_workqueue, &dreq->work); /* Calls nfs_direct_write_schedule_work */
699 }
700 
701 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
702 {
703 	struct nfs_direct_req *dreq = hdr->dreq;
704 	struct nfs_commit_info cinfo;
705 	struct nfs_page *req = nfs_list_entry(hdr->pages.next);
706 	int flags = NFS_ODIRECT_DONE;
707 
708 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
709 
710 	spin_lock(&dreq->lock);
711 	if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) {
712 		spin_unlock(&dreq->lock);
713 		goto out_put;
714 	}
715 
716 	nfs_direct_count_bytes(dreq, hdr);
717 	if (hdr->good_bytes != 0 && nfs_write_need_commit(hdr)) {
718 		if (!dreq->flags)
719 			dreq->flags = NFS_ODIRECT_DO_COMMIT;
720 		flags = dreq->flags;
721 	}
722 	spin_unlock(&dreq->lock);
723 
724 	while (!list_empty(&hdr->pages)) {
725 
726 		req = nfs_list_entry(hdr->pages.next);
727 		nfs_list_remove_request(req);
728 		if (flags == NFS_ODIRECT_DO_COMMIT) {
729 			kref_get(&req->wb_kref);
730 			memcpy(&req->wb_verf, &hdr->verf.verifier,
731 			       sizeof(req->wb_verf));
732 			nfs_mark_request_commit(req, hdr->lseg, &cinfo,
733 				hdr->ds_commit_idx);
734 		} else if (flags == NFS_ODIRECT_RESCHED_WRITES) {
735 			kref_get(&req->wb_kref);
736 			nfs_mark_request_commit(req, NULL, &cinfo, 0);
737 		}
738 		nfs_unlock_and_release_request(req);
739 	}
740 
741 out_put:
742 	if (put_dreq(dreq))
743 		nfs_direct_write_complete(dreq);
744 	hdr->release(hdr);
745 }
746 
747 static void nfs_write_sync_pgio_error(struct list_head *head, int error)
748 {
749 	struct nfs_page *req;
750 
751 	while (!list_empty(head)) {
752 		req = nfs_list_entry(head->next);
753 		nfs_list_remove_request(req);
754 		nfs_unlock_and_release_request(req);
755 	}
756 }
757 
758 static void nfs_direct_write_reschedule_io(struct nfs_pgio_header *hdr)
759 {
760 	struct nfs_direct_req *dreq = hdr->dreq;
761 
762 	spin_lock(&dreq->lock);
763 	if (dreq->error == 0) {
764 		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
765 		/* fake unstable write to let common nfs resend pages */
766 		hdr->verf.committed = NFS_UNSTABLE;
767 		hdr->good_bytes = hdr->args.offset + hdr->args.count -
768 			hdr->io_start;
769 	}
770 	spin_unlock(&dreq->lock);
771 }
772 
773 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
774 	.error_cleanup = nfs_write_sync_pgio_error,
775 	.init_hdr = nfs_direct_pgio_init,
776 	.completion = nfs_direct_write_completion,
777 	.reschedule_io = nfs_direct_write_reschedule_io,
778 };
779 
780 
781 /*
782  * NB: Return the value of the first error return code.  Subsequent
783  *     errors after the first one are ignored.
784  */
785 /*
786  * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
787  * operation.  If nfs_writedata_alloc() or get_user_pages() fails,
788  * bail and stop sending more writes.  Write length accounting is
789  * handled automatically by nfs_direct_write_result().  Otherwise, if
790  * no requests have been sent, just return an error.
791  */
792 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
793 					       struct iov_iter *iter,
794 					       loff_t pos, int ioflags)
795 {
796 	struct nfs_pageio_descriptor desc;
797 	struct inode *inode = dreq->inode;
798 	ssize_t result = 0;
799 	size_t requested_bytes = 0;
800 	size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE);
801 
802 	nfs_pageio_init_write(&desc, inode, ioflags, false,
803 			      &nfs_direct_write_completion_ops);
804 	desc.pg_dreq = dreq;
805 	get_dreq(dreq);
806 	inode_dio_begin(inode);
807 
808 	NFS_I(inode)->write_io += iov_iter_count(iter);
809 	while (iov_iter_count(iter)) {
810 		struct page **pagevec;
811 		size_t bytes;
812 		size_t pgbase;
813 		unsigned npages, i;
814 
815 		result = iov_iter_get_pages_alloc(iter, &pagevec,
816 						  wsize, &pgbase);
817 		if (result < 0)
818 			break;
819 
820 		bytes = result;
821 		iov_iter_advance(iter, bytes);
822 		npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
823 		for (i = 0; i < npages; i++) {
824 			struct nfs_page *req;
825 			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
826 
827 			req = nfs_create_request(dreq->ctx, pagevec[i],
828 						 pgbase, req_len);
829 			if (IS_ERR(req)) {
830 				result = PTR_ERR(req);
831 				break;
832 			}
833 
834 			if (desc.pg_error < 0) {
835 				nfs_free_request(req);
836 				result = desc.pg_error;
837 				break;
838 			}
839 
840 			nfs_lock_request(req);
841 			req->wb_index = pos >> PAGE_SHIFT;
842 			req->wb_offset = pos & ~PAGE_MASK;
843 			if (!nfs_pageio_add_request(&desc, req)) {
844 				result = desc.pg_error;
845 				nfs_unlock_and_release_request(req);
846 				break;
847 			}
848 			pgbase = 0;
849 			bytes -= req_len;
850 			requested_bytes += req_len;
851 			pos += req_len;
852 			dreq->bytes_left -= req_len;
853 		}
854 		nfs_direct_release_pages(pagevec, npages);
855 		kvfree(pagevec);
856 		if (result < 0)
857 			break;
858 	}
859 	nfs_pageio_complete(&desc);
860 
861 	/*
862 	 * If no bytes were started, return the error, and let the
863 	 * generic layer handle the completion.
864 	 */
865 	if (requested_bytes == 0) {
866 		inode_dio_end(inode);
867 		nfs_direct_req_release(dreq);
868 		return result < 0 ? result : -EIO;
869 	}
870 
871 	if (put_dreq(dreq))
872 		nfs_direct_write_complete(dreq);
873 	return requested_bytes;
874 }
875 
876 /**
877  * nfs_file_direct_write - file direct write operation for NFS files
878  * @iocb: target I/O control block
879  * @iter: vector of user buffers from which to write data
880  * @swap: flag indicating this is swap IO, not O_DIRECT IO
881  *
882  * We use this function for direct writes instead of calling
883  * generic_file_aio_write() in order to avoid taking the inode
884  * semaphore and updating the i_size.  The NFS server will set
885  * the new i_size and this client must read the updated size
886  * back into its cache.  We let the server do generic write
887  * parameter checking and report problems.
888  *
889  * We eliminate local atime updates, see direct read above.
890  *
891  * We avoid unnecessary page cache invalidations for normal cached
892  * readers of this file.
893  *
894  * Note that O_APPEND is not supported for NFS direct writes, as there
895  * is no atomic O_APPEND write facility in the NFS protocol.
896  */
897 ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter,
898 			      bool swap)
899 {
900 	ssize_t result, requested;
901 	size_t count;
902 	struct file *file = iocb->ki_filp;
903 	struct address_space *mapping = file->f_mapping;
904 	struct inode *inode = mapping->host;
905 	struct nfs_direct_req *dreq;
906 	struct nfs_lock_context *l_ctx;
907 	loff_t pos, end;
908 
909 	dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n",
910 		file, iov_iter_count(iter), (long long) iocb->ki_pos);
911 
912 	if (swap)
913 		/* bypass generic checks */
914 		result =  iov_iter_count(iter);
915 	else
916 		result = generic_write_checks(iocb, iter);
917 	if (result <= 0)
918 		return result;
919 	count = result;
920 	nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
921 
922 	pos = iocb->ki_pos;
923 	end = (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT;
924 
925 	task_io_account_write(count);
926 
927 	result = -ENOMEM;
928 	dreq = nfs_direct_req_alloc();
929 	if (!dreq)
930 		goto out;
931 
932 	dreq->inode = inode;
933 	dreq->bytes_left = dreq->max_count = count;
934 	dreq->io_start = pos;
935 	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
936 	l_ctx = nfs_get_lock_context(dreq->ctx);
937 	if (IS_ERR(l_ctx)) {
938 		result = PTR_ERR(l_ctx);
939 		nfs_direct_req_release(dreq);
940 		goto out_release;
941 	}
942 	dreq->l_ctx = l_ctx;
943 	if (!is_sync_kiocb(iocb))
944 		dreq->iocb = iocb;
945 	pnfs_init_ds_commit_info_ops(&dreq->ds_cinfo, inode);
946 
947 	if (swap) {
948 		requested = nfs_direct_write_schedule_iovec(dreq, iter, pos,
949 							    FLUSH_STABLE);
950 	} else {
951 		nfs_start_io_direct(inode);
952 
953 		requested = nfs_direct_write_schedule_iovec(dreq, iter, pos,
954 							    FLUSH_COND_STABLE);
955 
956 		if (mapping->nrpages) {
957 			invalidate_inode_pages2_range(mapping,
958 						      pos >> PAGE_SHIFT, end);
959 		}
960 
961 		nfs_end_io_direct(inode);
962 	}
963 
964 	if (requested > 0) {
965 		result = nfs_direct_wait(dreq);
966 		if (result > 0) {
967 			requested -= result;
968 			iocb->ki_pos = pos + result;
969 			/* XXX: should check the generic_write_sync retval */
970 			generic_write_sync(iocb, result);
971 		}
972 		iov_iter_revert(iter, requested);
973 	} else {
974 		result = requested;
975 	}
976 	nfs_fscache_invalidate(inode, FSCACHE_INVAL_DIO_WRITE);
977 out_release:
978 	nfs_direct_req_release(dreq);
979 out:
980 	return result;
981 }
982 
983 /**
984  * nfs_init_directcache - create a slab cache for nfs_direct_req structures
985  *
986  */
987 int __init nfs_init_directcache(void)
988 {
989 	nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
990 						sizeof(struct nfs_direct_req),
991 						0, (SLAB_RECLAIM_ACCOUNT|
992 							SLAB_MEM_SPREAD),
993 						NULL);
994 	if (nfs_direct_cachep == NULL)
995 		return -ENOMEM;
996 
997 	return 0;
998 }
999 
1000 /**
1001  * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
1002  *
1003  */
1004 void nfs_destroy_directcache(void)
1005 {
1006 	kmem_cache_destroy(nfs_direct_cachep);
1007 }
1008