xref: /openbmc/linux/fs/nfs/direct.c (revision 2fa5ebe3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/fs/nfs/direct.c
4  *
5  * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
6  *
7  * High-performance uncached I/O for the Linux NFS client
8  *
9  * There are important applications whose performance or correctness
10  * depends on uncached access to file data.  Database clusters
11  * (multiple copies of the same instance running on separate hosts)
12  * implement their own cache coherency protocol that subsumes file
13  * system cache protocols.  Applications that process datasets
14  * considerably larger than the client's memory do not always benefit
15  * from a local cache.  A streaming video server, for instance, has no
16  * need to cache the contents of a file.
17  *
18  * When an application requests uncached I/O, all read and write requests
19  * are made directly to the server; data stored or fetched via these
20  * requests is not cached in the Linux page cache.  The client does not
21  * correct unaligned requests from applications.  All requested bytes are
22  * held on permanent storage before a direct write system call returns to
23  * an application.
24  *
25  * Solaris implements an uncached I/O facility called directio() that
26  * is used for backups and sequential I/O to very large files.  Solaris
27  * also supports uncaching whole NFS partitions with "-o forcedirectio,"
28  * an undocumented mount option.
29  *
30  * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
31  * help from Andrew Morton.
32  *
33  * 18 Dec 2001	Initial implementation for 2.4  --cel
34  * 08 Jul 2002	Version for 2.4.19, with bug fixes --trondmy
35  * 08 Jun 2003	Port to 2.5 APIs  --cel
36  * 31 Mar 2004	Handle direct I/O without VFS support  --cel
37  * 15 Sep 2004	Parallel async reads  --cel
38  * 04 May 2005	support O_DIRECT with aio  --cel
39  *
40  */
41 
42 #include <linux/errno.h>
43 #include <linux/sched.h>
44 #include <linux/kernel.h>
45 #include <linux/file.h>
46 #include <linux/pagemap.h>
47 #include <linux/kref.h>
48 #include <linux/slab.h>
49 #include <linux/task_io_accounting_ops.h>
50 #include <linux/module.h>
51 
52 #include <linux/nfs_fs.h>
53 #include <linux/nfs_page.h>
54 #include <linux/sunrpc/clnt.h>
55 
56 #include <linux/uaccess.h>
57 #include <linux/atomic.h>
58 
59 #include "internal.h"
60 #include "iostat.h"
61 #include "pnfs.h"
62 #include "fscache.h"
63 #include "nfstrace.h"
64 
65 #define NFSDBG_FACILITY		NFSDBG_VFS
66 
67 static struct kmem_cache *nfs_direct_cachep;
68 
69 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
70 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
71 static void nfs_direct_write_complete(struct nfs_direct_req *dreq);
72 static void nfs_direct_write_schedule_work(struct work_struct *work);
73 
74 static inline void get_dreq(struct nfs_direct_req *dreq)
75 {
76 	atomic_inc(&dreq->io_count);
77 }
78 
79 static inline int put_dreq(struct nfs_direct_req *dreq)
80 {
81 	return atomic_dec_and_test(&dreq->io_count);
82 }
83 
84 static void
85 nfs_direct_handle_truncated(struct nfs_direct_req *dreq,
86 			    const struct nfs_pgio_header *hdr,
87 			    ssize_t dreq_len)
88 {
89 	if (!(test_bit(NFS_IOHDR_ERROR, &hdr->flags) ||
90 	      test_bit(NFS_IOHDR_EOF, &hdr->flags)))
91 		return;
92 	if (dreq->max_count >= dreq_len) {
93 		dreq->max_count = dreq_len;
94 		if (dreq->count > dreq_len)
95 			dreq->count = dreq_len;
96 
97 		if (test_bit(NFS_IOHDR_ERROR, &hdr->flags))
98 			dreq->error = hdr->error;
99 		else /* Clear outstanding error if this is EOF */
100 			dreq->error = 0;
101 	}
102 }
103 
104 static void
105 nfs_direct_count_bytes(struct nfs_direct_req *dreq,
106 		       const struct nfs_pgio_header *hdr)
107 {
108 	loff_t hdr_end = hdr->io_start + hdr->good_bytes;
109 	ssize_t dreq_len = 0;
110 
111 	if (hdr_end > dreq->io_start)
112 		dreq_len = hdr_end - dreq->io_start;
113 
114 	nfs_direct_handle_truncated(dreq, hdr, dreq_len);
115 
116 	if (dreq_len > dreq->max_count)
117 		dreq_len = dreq->max_count;
118 
119 	if (dreq->count < dreq_len)
120 		dreq->count = dreq_len;
121 }
122 
123 /**
124  * nfs_swap_rw - NFS address space operation for swap I/O
125  * @iocb: target I/O control block
126  * @iter: I/O buffer
127  *
128  * Perform IO to the swap-file.  This is much like direct IO.
129  */
130 int nfs_swap_rw(struct kiocb *iocb, struct iov_iter *iter)
131 {
132 	ssize_t ret;
133 
134 	VM_BUG_ON(iov_iter_count(iter) != PAGE_SIZE);
135 
136 	if (iov_iter_rw(iter) == READ)
137 		ret = nfs_file_direct_read(iocb, iter, true);
138 	else
139 		ret = nfs_file_direct_write(iocb, iter, true);
140 	if (ret < 0)
141 		return ret;
142 	return 0;
143 }
144 
145 static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
146 {
147 	unsigned int i;
148 	for (i = 0; i < npages; i++)
149 		put_page(pages[i]);
150 }
151 
152 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
153 			      struct nfs_direct_req *dreq)
154 {
155 	cinfo->inode = dreq->inode;
156 	cinfo->mds = &dreq->mds_cinfo;
157 	cinfo->ds = &dreq->ds_cinfo;
158 	cinfo->dreq = dreq;
159 	cinfo->completion_ops = &nfs_direct_commit_completion_ops;
160 }
161 
162 static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
163 {
164 	struct nfs_direct_req *dreq;
165 
166 	dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
167 	if (!dreq)
168 		return NULL;
169 
170 	kref_init(&dreq->kref);
171 	kref_get(&dreq->kref);
172 	init_completion(&dreq->completion);
173 	INIT_LIST_HEAD(&dreq->mds_cinfo.list);
174 	pnfs_init_ds_commit_info(&dreq->ds_cinfo);
175 	INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
176 	spin_lock_init(&dreq->lock);
177 
178 	return dreq;
179 }
180 
181 static void nfs_direct_req_free(struct kref *kref)
182 {
183 	struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
184 
185 	pnfs_release_ds_info(&dreq->ds_cinfo, dreq->inode);
186 	if (dreq->l_ctx != NULL)
187 		nfs_put_lock_context(dreq->l_ctx);
188 	if (dreq->ctx != NULL)
189 		put_nfs_open_context(dreq->ctx);
190 	kmem_cache_free(nfs_direct_cachep, dreq);
191 }
192 
193 static void nfs_direct_req_release(struct nfs_direct_req *dreq)
194 {
195 	kref_put(&dreq->kref, nfs_direct_req_free);
196 }
197 
198 ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq)
199 {
200 	return dreq->bytes_left;
201 }
202 EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
203 
204 /*
205  * Collects and returns the final error value/byte-count.
206  */
207 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
208 {
209 	ssize_t result = -EIOCBQUEUED;
210 
211 	/* Async requests don't wait here */
212 	if (dreq->iocb)
213 		goto out;
214 
215 	result = wait_for_completion_killable(&dreq->completion);
216 
217 	if (!result) {
218 		result = dreq->count;
219 		WARN_ON_ONCE(dreq->count < 0);
220 	}
221 	if (!result)
222 		result = dreq->error;
223 
224 out:
225 	return (ssize_t) result;
226 }
227 
228 /*
229  * Synchronous I/O uses a stack-allocated iocb.  Thus we can't trust
230  * the iocb is still valid here if this is a synchronous request.
231  */
232 static void nfs_direct_complete(struct nfs_direct_req *dreq)
233 {
234 	struct inode *inode = dreq->inode;
235 
236 	inode_dio_end(inode);
237 
238 	if (dreq->iocb) {
239 		long res = (long) dreq->error;
240 		if (dreq->count != 0) {
241 			res = (long) dreq->count;
242 			WARN_ON_ONCE(dreq->count < 0);
243 		}
244 		dreq->iocb->ki_complete(dreq->iocb, res);
245 	}
246 
247 	complete(&dreq->completion);
248 
249 	nfs_direct_req_release(dreq);
250 }
251 
252 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
253 {
254 	unsigned long bytes = 0;
255 	struct nfs_direct_req *dreq = hdr->dreq;
256 
257 	spin_lock(&dreq->lock);
258 	if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) {
259 		spin_unlock(&dreq->lock);
260 		goto out_put;
261 	}
262 
263 	nfs_direct_count_bytes(dreq, hdr);
264 	spin_unlock(&dreq->lock);
265 
266 	while (!list_empty(&hdr->pages)) {
267 		struct nfs_page *req = nfs_list_entry(hdr->pages.next);
268 		struct page *page = req->wb_page;
269 
270 		if (!PageCompound(page) && bytes < hdr->good_bytes &&
271 		    (dreq->flags == NFS_ODIRECT_SHOULD_DIRTY))
272 			set_page_dirty(page);
273 		bytes += req->wb_bytes;
274 		nfs_list_remove_request(req);
275 		nfs_release_request(req);
276 	}
277 out_put:
278 	if (put_dreq(dreq))
279 		nfs_direct_complete(dreq);
280 	hdr->release(hdr);
281 }
282 
283 static void nfs_read_sync_pgio_error(struct list_head *head, int error)
284 {
285 	struct nfs_page *req;
286 
287 	while (!list_empty(head)) {
288 		req = nfs_list_entry(head->next);
289 		nfs_list_remove_request(req);
290 		nfs_release_request(req);
291 	}
292 }
293 
294 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
295 {
296 	get_dreq(hdr->dreq);
297 }
298 
299 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
300 	.error_cleanup = nfs_read_sync_pgio_error,
301 	.init_hdr = nfs_direct_pgio_init,
302 	.completion = nfs_direct_read_completion,
303 };
304 
305 /*
306  * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
307  * operation.  If nfs_readdata_alloc() or get_user_pages() fails,
308  * bail and stop sending more reads.  Read length accounting is
309  * handled automatically by nfs_direct_read_result().  Otherwise, if
310  * no requests have been sent, just return an error.
311  */
312 
313 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
314 					      struct iov_iter *iter,
315 					      loff_t pos)
316 {
317 	struct nfs_pageio_descriptor desc;
318 	struct inode *inode = dreq->inode;
319 	ssize_t result = -EINVAL;
320 	size_t requested_bytes = 0;
321 	size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE);
322 
323 	nfs_pageio_init_read(&desc, dreq->inode, false,
324 			     &nfs_direct_read_completion_ops);
325 	get_dreq(dreq);
326 	desc.pg_dreq = dreq;
327 	inode_dio_begin(inode);
328 
329 	while (iov_iter_count(iter)) {
330 		struct page **pagevec;
331 		size_t bytes;
332 		size_t pgbase;
333 		unsigned npages, i;
334 
335 		result = iov_iter_get_pages_alloc2(iter, &pagevec,
336 						  rsize, &pgbase);
337 		if (result < 0)
338 			break;
339 
340 		bytes = result;
341 		npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
342 		for (i = 0; i < npages; i++) {
343 			struct nfs_page *req;
344 			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
345 			/* XXX do we need to do the eof zeroing found in async_filler? */
346 			req = nfs_page_create_from_page(dreq->ctx, pagevec[i],
347 							pgbase, pos, req_len);
348 			if (IS_ERR(req)) {
349 				result = PTR_ERR(req);
350 				break;
351 			}
352 			if (!nfs_pageio_add_request(&desc, req)) {
353 				result = desc.pg_error;
354 				nfs_release_request(req);
355 				break;
356 			}
357 			pgbase = 0;
358 			bytes -= req_len;
359 			requested_bytes += req_len;
360 			pos += req_len;
361 			dreq->bytes_left -= req_len;
362 		}
363 		nfs_direct_release_pages(pagevec, npages);
364 		kvfree(pagevec);
365 		if (result < 0)
366 			break;
367 	}
368 
369 	nfs_pageio_complete(&desc);
370 
371 	/*
372 	 * If no bytes were started, return the error, and let the
373 	 * generic layer handle the completion.
374 	 */
375 	if (requested_bytes == 0) {
376 		inode_dio_end(inode);
377 		nfs_direct_req_release(dreq);
378 		return result < 0 ? result : -EIO;
379 	}
380 
381 	if (put_dreq(dreq))
382 		nfs_direct_complete(dreq);
383 	return requested_bytes;
384 }
385 
386 /**
387  * nfs_file_direct_read - file direct read operation for NFS files
388  * @iocb: target I/O control block
389  * @iter: vector of user buffers into which to read data
390  * @swap: flag indicating this is swap IO, not O_DIRECT IO
391  *
392  * We use this function for direct reads instead of calling
393  * generic_file_aio_read() in order to avoid gfar's check to see if
394  * the request starts before the end of the file.  For that check
395  * to work, we must generate a GETATTR before each direct read, and
396  * even then there is a window between the GETATTR and the subsequent
397  * READ where the file size could change.  Our preference is simply
398  * to do all reads the application wants, and the server will take
399  * care of managing the end of file boundary.
400  *
401  * This function also eliminates unnecessarily updating the file's
402  * atime locally, as the NFS server sets the file's atime, and this
403  * client must read the updated atime from the server back into its
404  * cache.
405  */
406 ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter,
407 			     bool swap)
408 {
409 	struct file *file = iocb->ki_filp;
410 	struct address_space *mapping = file->f_mapping;
411 	struct inode *inode = mapping->host;
412 	struct nfs_direct_req *dreq;
413 	struct nfs_lock_context *l_ctx;
414 	ssize_t result, requested;
415 	size_t count = iov_iter_count(iter);
416 	nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
417 
418 	dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n",
419 		file, count, (long long) iocb->ki_pos);
420 
421 	result = 0;
422 	if (!count)
423 		goto out;
424 
425 	task_io_account_read(count);
426 
427 	result = -ENOMEM;
428 	dreq = nfs_direct_req_alloc();
429 	if (dreq == NULL)
430 		goto out;
431 
432 	dreq->inode = inode;
433 	dreq->bytes_left = dreq->max_count = count;
434 	dreq->io_start = iocb->ki_pos;
435 	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
436 	l_ctx = nfs_get_lock_context(dreq->ctx);
437 	if (IS_ERR(l_ctx)) {
438 		result = PTR_ERR(l_ctx);
439 		nfs_direct_req_release(dreq);
440 		goto out_release;
441 	}
442 	dreq->l_ctx = l_ctx;
443 	if (!is_sync_kiocb(iocb))
444 		dreq->iocb = iocb;
445 
446 	if (user_backed_iter(iter))
447 		dreq->flags = NFS_ODIRECT_SHOULD_DIRTY;
448 
449 	if (!swap)
450 		nfs_start_io_direct(inode);
451 
452 	NFS_I(inode)->read_io += count;
453 	requested = nfs_direct_read_schedule_iovec(dreq, iter, iocb->ki_pos);
454 
455 	if (!swap)
456 		nfs_end_io_direct(inode);
457 
458 	if (requested > 0) {
459 		result = nfs_direct_wait(dreq);
460 		if (result > 0) {
461 			requested -= result;
462 			iocb->ki_pos += result;
463 		}
464 		iov_iter_revert(iter, requested);
465 	} else {
466 		result = requested;
467 	}
468 
469 out_release:
470 	nfs_direct_req_release(dreq);
471 out:
472 	return result;
473 }
474 
475 static void
476 nfs_direct_join_group(struct list_head *list, struct inode *inode)
477 {
478 	struct nfs_page *req, *next;
479 
480 	list_for_each_entry(req, list, wb_list) {
481 		if (req->wb_head != req || req->wb_this_page == req)
482 			continue;
483 		for (next = req->wb_this_page;
484 				next != req->wb_head;
485 				next = next->wb_this_page) {
486 			nfs_list_remove_request(next);
487 			nfs_release_request(next);
488 		}
489 		nfs_join_page_group(req, inode);
490 	}
491 }
492 
493 static void
494 nfs_direct_write_scan_commit_list(struct inode *inode,
495 				  struct list_head *list,
496 				  struct nfs_commit_info *cinfo)
497 {
498 	mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
499 	pnfs_recover_commit_reqs(list, cinfo);
500 	nfs_scan_commit_list(&cinfo->mds->list, list, cinfo, 0);
501 	mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
502 }
503 
504 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
505 {
506 	struct nfs_pageio_descriptor desc;
507 	struct nfs_page *req, *tmp;
508 	LIST_HEAD(reqs);
509 	struct nfs_commit_info cinfo;
510 	LIST_HEAD(failed);
511 
512 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
513 	nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
514 
515 	nfs_direct_join_group(&reqs, dreq->inode);
516 
517 	dreq->count = 0;
518 	dreq->max_count = 0;
519 	list_for_each_entry(req, &reqs, wb_list)
520 		dreq->max_count += req->wb_bytes;
521 	nfs_clear_pnfs_ds_commit_verifiers(&dreq->ds_cinfo);
522 	get_dreq(dreq);
523 
524 	nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false,
525 			      &nfs_direct_write_completion_ops);
526 	desc.pg_dreq = dreq;
527 
528 	list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
529 		/* Bump the transmission count */
530 		req->wb_nio++;
531 		if (!nfs_pageio_add_request(&desc, req)) {
532 			nfs_list_move_request(req, &failed);
533 			spin_lock(&cinfo.inode->i_lock);
534 			dreq->flags = 0;
535 			if (desc.pg_error < 0)
536 				dreq->error = desc.pg_error;
537 			else
538 				dreq->error = -EIO;
539 			spin_unlock(&cinfo.inode->i_lock);
540 		}
541 		nfs_release_request(req);
542 	}
543 	nfs_pageio_complete(&desc);
544 
545 	while (!list_empty(&failed)) {
546 		req = nfs_list_entry(failed.next);
547 		nfs_list_remove_request(req);
548 		nfs_unlock_and_release_request(req);
549 	}
550 
551 	if (put_dreq(dreq))
552 		nfs_direct_write_complete(dreq);
553 }
554 
555 static void nfs_direct_commit_complete(struct nfs_commit_data *data)
556 {
557 	const struct nfs_writeverf *verf = data->res.verf;
558 	struct nfs_direct_req *dreq = data->dreq;
559 	struct nfs_commit_info cinfo;
560 	struct nfs_page *req;
561 	int status = data->task.tk_status;
562 
563 	trace_nfs_direct_commit_complete(dreq);
564 
565 	if (status < 0) {
566 		/* Errors in commit are fatal */
567 		dreq->error = status;
568 		dreq->max_count = 0;
569 		dreq->count = 0;
570 		dreq->flags = NFS_ODIRECT_DONE;
571 	} else {
572 		status = dreq->error;
573 	}
574 
575 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
576 
577 	while (!list_empty(&data->pages)) {
578 		req = nfs_list_entry(data->pages.next);
579 		nfs_list_remove_request(req);
580 		if (status >= 0 && !nfs_write_match_verf(verf, req)) {
581 			dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
582 			/*
583 			 * Despite the reboot, the write was successful,
584 			 * so reset wb_nio.
585 			 */
586 			req->wb_nio = 0;
587 			nfs_mark_request_commit(req, NULL, &cinfo, 0);
588 		} else /* Error or match */
589 			nfs_release_request(req);
590 		nfs_unlock_and_release_request(req);
591 	}
592 
593 	if (nfs_commit_end(cinfo.mds))
594 		nfs_direct_write_complete(dreq);
595 }
596 
597 static void nfs_direct_resched_write(struct nfs_commit_info *cinfo,
598 		struct nfs_page *req)
599 {
600 	struct nfs_direct_req *dreq = cinfo->dreq;
601 
602 	trace_nfs_direct_resched_write(dreq);
603 
604 	spin_lock(&dreq->lock);
605 	if (dreq->flags != NFS_ODIRECT_DONE)
606 		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
607 	spin_unlock(&dreq->lock);
608 	nfs_mark_request_commit(req, NULL, cinfo, 0);
609 }
610 
611 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
612 	.completion = nfs_direct_commit_complete,
613 	.resched_write = nfs_direct_resched_write,
614 };
615 
616 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
617 {
618 	int res;
619 	struct nfs_commit_info cinfo;
620 	LIST_HEAD(mds_list);
621 
622 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
623 	nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
624 	res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
625 	if (res < 0) /* res == -ENOMEM */
626 		nfs_direct_write_reschedule(dreq);
627 }
628 
629 static void nfs_direct_write_clear_reqs(struct nfs_direct_req *dreq)
630 {
631 	struct nfs_commit_info cinfo;
632 	struct nfs_page *req;
633 	LIST_HEAD(reqs);
634 
635 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
636 	nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
637 
638 	while (!list_empty(&reqs)) {
639 		req = nfs_list_entry(reqs.next);
640 		nfs_list_remove_request(req);
641 		nfs_release_request(req);
642 		nfs_unlock_and_release_request(req);
643 	}
644 }
645 
646 static void nfs_direct_write_schedule_work(struct work_struct *work)
647 {
648 	struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
649 	int flags = dreq->flags;
650 
651 	dreq->flags = 0;
652 	switch (flags) {
653 		case NFS_ODIRECT_DO_COMMIT:
654 			nfs_direct_commit_schedule(dreq);
655 			break;
656 		case NFS_ODIRECT_RESCHED_WRITES:
657 			nfs_direct_write_reschedule(dreq);
658 			break;
659 		default:
660 			nfs_direct_write_clear_reqs(dreq);
661 			nfs_zap_mapping(dreq->inode, dreq->inode->i_mapping);
662 			nfs_direct_complete(dreq);
663 	}
664 }
665 
666 static void nfs_direct_write_complete(struct nfs_direct_req *dreq)
667 {
668 	trace_nfs_direct_write_complete(dreq);
669 	queue_work(nfsiod_workqueue, &dreq->work); /* Calls nfs_direct_write_schedule_work */
670 }
671 
672 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
673 {
674 	struct nfs_direct_req *dreq = hdr->dreq;
675 	struct nfs_commit_info cinfo;
676 	struct nfs_page *req = nfs_list_entry(hdr->pages.next);
677 	int flags = NFS_ODIRECT_DONE;
678 
679 	trace_nfs_direct_write_completion(dreq);
680 
681 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
682 
683 	spin_lock(&dreq->lock);
684 	if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) {
685 		spin_unlock(&dreq->lock);
686 		goto out_put;
687 	}
688 
689 	nfs_direct_count_bytes(dreq, hdr);
690 	if (test_bit(NFS_IOHDR_UNSTABLE_WRITES, &hdr->flags)) {
691 		if (!dreq->flags)
692 			dreq->flags = NFS_ODIRECT_DO_COMMIT;
693 		flags = dreq->flags;
694 	}
695 	spin_unlock(&dreq->lock);
696 
697 	while (!list_empty(&hdr->pages)) {
698 
699 		req = nfs_list_entry(hdr->pages.next);
700 		nfs_list_remove_request(req);
701 		if (flags == NFS_ODIRECT_DO_COMMIT) {
702 			kref_get(&req->wb_kref);
703 			memcpy(&req->wb_verf, &hdr->verf.verifier,
704 			       sizeof(req->wb_verf));
705 			nfs_mark_request_commit(req, hdr->lseg, &cinfo,
706 				hdr->ds_commit_idx);
707 		} else if (flags == NFS_ODIRECT_RESCHED_WRITES) {
708 			kref_get(&req->wb_kref);
709 			nfs_mark_request_commit(req, NULL, &cinfo, 0);
710 		}
711 		nfs_unlock_and_release_request(req);
712 	}
713 
714 out_put:
715 	if (put_dreq(dreq))
716 		nfs_direct_write_complete(dreq);
717 	hdr->release(hdr);
718 }
719 
720 static void nfs_write_sync_pgio_error(struct list_head *head, int error)
721 {
722 	struct nfs_page *req;
723 
724 	while (!list_empty(head)) {
725 		req = nfs_list_entry(head->next);
726 		nfs_list_remove_request(req);
727 		nfs_unlock_and_release_request(req);
728 	}
729 }
730 
731 static void nfs_direct_write_reschedule_io(struct nfs_pgio_header *hdr)
732 {
733 	struct nfs_direct_req *dreq = hdr->dreq;
734 
735 	trace_nfs_direct_write_reschedule_io(dreq);
736 
737 	spin_lock(&dreq->lock);
738 	if (dreq->error == 0) {
739 		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
740 		/* fake unstable write to let common nfs resend pages */
741 		hdr->verf.committed = NFS_UNSTABLE;
742 		hdr->good_bytes = hdr->args.offset + hdr->args.count -
743 			hdr->io_start;
744 	}
745 	spin_unlock(&dreq->lock);
746 }
747 
748 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
749 	.error_cleanup = nfs_write_sync_pgio_error,
750 	.init_hdr = nfs_direct_pgio_init,
751 	.completion = nfs_direct_write_completion,
752 	.reschedule_io = nfs_direct_write_reschedule_io,
753 };
754 
755 
756 /*
757  * NB: Return the value of the first error return code.  Subsequent
758  *     errors after the first one are ignored.
759  */
760 /*
761  * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
762  * operation.  If nfs_writedata_alloc() or get_user_pages() fails,
763  * bail and stop sending more writes.  Write length accounting is
764  * handled automatically by nfs_direct_write_result().  Otherwise, if
765  * no requests have been sent, just return an error.
766  */
767 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
768 					       struct iov_iter *iter,
769 					       loff_t pos, int ioflags)
770 {
771 	struct nfs_pageio_descriptor desc;
772 	struct inode *inode = dreq->inode;
773 	ssize_t result = 0;
774 	size_t requested_bytes = 0;
775 	size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE);
776 
777 	trace_nfs_direct_write_schedule_iovec(dreq);
778 
779 	nfs_pageio_init_write(&desc, inode, ioflags, false,
780 			      &nfs_direct_write_completion_ops);
781 	desc.pg_dreq = dreq;
782 	get_dreq(dreq);
783 	inode_dio_begin(inode);
784 
785 	NFS_I(inode)->write_io += iov_iter_count(iter);
786 	while (iov_iter_count(iter)) {
787 		struct page **pagevec;
788 		size_t bytes;
789 		size_t pgbase;
790 		unsigned npages, i;
791 
792 		result = iov_iter_get_pages_alloc2(iter, &pagevec,
793 						  wsize, &pgbase);
794 		if (result < 0)
795 			break;
796 
797 		bytes = result;
798 		npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
799 		for (i = 0; i < npages; i++) {
800 			struct nfs_page *req;
801 			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
802 
803 			req = nfs_page_create_from_page(dreq->ctx, pagevec[i],
804 							pgbase, pos, req_len);
805 			if (IS_ERR(req)) {
806 				result = PTR_ERR(req);
807 				break;
808 			}
809 
810 			if (desc.pg_error < 0) {
811 				nfs_free_request(req);
812 				result = desc.pg_error;
813 				break;
814 			}
815 
816 			nfs_lock_request(req);
817 			if (!nfs_pageio_add_request(&desc, req)) {
818 				result = desc.pg_error;
819 				nfs_unlock_and_release_request(req);
820 				break;
821 			}
822 			pgbase = 0;
823 			bytes -= req_len;
824 			requested_bytes += req_len;
825 			pos += req_len;
826 			dreq->bytes_left -= req_len;
827 		}
828 		nfs_direct_release_pages(pagevec, npages);
829 		kvfree(pagevec);
830 		if (result < 0)
831 			break;
832 	}
833 	nfs_pageio_complete(&desc);
834 
835 	/*
836 	 * If no bytes were started, return the error, and let the
837 	 * generic layer handle the completion.
838 	 */
839 	if (requested_bytes == 0) {
840 		inode_dio_end(inode);
841 		nfs_direct_req_release(dreq);
842 		return result < 0 ? result : -EIO;
843 	}
844 
845 	if (put_dreq(dreq))
846 		nfs_direct_write_complete(dreq);
847 	return requested_bytes;
848 }
849 
850 /**
851  * nfs_file_direct_write - file direct write operation for NFS files
852  * @iocb: target I/O control block
853  * @iter: vector of user buffers from which to write data
854  * @swap: flag indicating this is swap IO, not O_DIRECT IO
855  *
856  * We use this function for direct writes instead of calling
857  * generic_file_aio_write() in order to avoid taking the inode
858  * semaphore and updating the i_size.  The NFS server will set
859  * the new i_size and this client must read the updated size
860  * back into its cache.  We let the server do generic write
861  * parameter checking and report problems.
862  *
863  * We eliminate local atime updates, see direct read above.
864  *
865  * We avoid unnecessary page cache invalidations for normal cached
866  * readers of this file.
867  *
868  * Note that O_APPEND is not supported for NFS direct writes, as there
869  * is no atomic O_APPEND write facility in the NFS protocol.
870  */
871 ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter,
872 			      bool swap)
873 {
874 	ssize_t result, requested;
875 	size_t count;
876 	struct file *file = iocb->ki_filp;
877 	struct address_space *mapping = file->f_mapping;
878 	struct inode *inode = mapping->host;
879 	struct nfs_direct_req *dreq;
880 	struct nfs_lock_context *l_ctx;
881 	loff_t pos, end;
882 
883 	dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n",
884 		file, iov_iter_count(iter), (long long) iocb->ki_pos);
885 
886 	if (swap)
887 		/* bypass generic checks */
888 		result =  iov_iter_count(iter);
889 	else
890 		result = generic_write_checks(iocb, iter);
891 	if (result <= 0)
892 		return result;
893 	count = result;
894 	nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
895 
896 	pos = iocb->ki_pos;
897 	end = (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT;
898 
899 	task_io_account_write(count);
900 
901 	result = -ENOMEM;
902 	dreq = nfs_direct_req_alloc();
903 	if (!dreq)
904 		goto out;
905 
906 	dreq->inode = inode;
907 	dreq->bytes_left = dreq->max_count = count;
908 	dreq->io_start = pos;
909 	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
910 	l_ctx = nfs_get_lock_context(dreq->ctx);
911 	if (IS_ERR(l_ctx)) {
912 		result = PTR_ERR(l_ctx);
913 		nfs_direct_req_release(dreq);
914 		goto out_release;
915 	}
916 	dreq->l_ctx = l_ctx;
917 	if (!is_sync_kiocb(iocb))
918 		dreq->iocb = iocb;
919 	pnfs_init_ds_commit_info_ops(&dreq->ds_cinfo, inode);
920 
921 	if (swap) {
922 		requested = nfs_direct_write_schedule_iovec(dreq, iter, pos,
923 							    FLUSH_STABLE);
924 	} else {
925 		nfs_start_io_direct(inode);
926 
927 		requested = nfs_direct_write_schedule_iovec(dreq, iter, pos,
928 							    FLUSH_COND_STABLE);
929 
930 		if (mapping->nrpages) {
931 			invalidate_inode_pages2_range(mapping,
932 						      pos >> PAGE_SHIFT, end);
933 		}
934 
935 		nfs_end_io_direct(inode);
936 	}
937 
938 	if (requested > 0) {
939 		result = nfs_direct_wait(dreq);
940 		if (result > 0) {
941 			requested -= result;
942 			iocb->ki_pos = pos + result;
943 			/* XXX: should check the generic_write_sync retval */
944 			generic_write_sync(iocb, result);
945 		}
946 		iov_iter_revert(iter, requested);
947 	} else {
948 		result = requested;
949 	}
950 	nfs_fscache_invalidate(inode, FSCACHE_INVAL_DIO_WRITE);
951 out_release:
952 	nfs_direct_req_release(dreq);
953 out:
954 	return result;
955 }
956 
957 /**
958  * nfs_init_directcache - create a slab cache for nfs_direct_req structures
959  *
960  */
961 int __init nfs_init_directcache(void)
962 {
963 	nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
964 						sizeof(struct nfs_direct_req),
965 						0, (SLAB_RECLAIM_ACCOUNT|
966 							SLAB_MEM_SPREAD),
967 						NULL);
968 	if (nfs_direct_cachep == NULL)
969 		return -ENOMEM;
970 
971 	return 0;
972 }
973 
974 /**
975  * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
976  *
977  */
978 void nfs_destroy_directcache(void)
979 {
980 	kmem_cache_destroy(nfs_direct_cachep);
981 }
982