xref: /openbmc/linux/fs/nfs/direct.c (revision 236a9bf2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/fs/nfs/direct.c
4  *
5  * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
6  *
7  * High-performance uncached I/O for the Linux NFS client
8  *
9  * There are important applications whose performance or correctness
10  * depends on uncached access to file data.  Database clusters
11  * (multiple copies of the same instance running on separate hosts)
12  * implement their own cache coherency protocol that subsumes file
13  * system cache protocols.  Applications that process datasets
14  * considerably larger than the client's memory do not always benefit
15  * from a local cache.  A streaming video server, for instance, has no
16  * need to cache the contents of a file.
17  *
18  * When an application requests uncached I/O, all read and write requests
19  * are made directly to the server; data stored or fetched via these
20  * requests is not cached in the Linux page cache.  The client does not
21  * correct unaligned requests from applications.  All requested bytes are
22  * held on permanent storage before a direct write system call returns to
23  * an application.
24  *
25  * Solaris implements an uncached I/O facility called directio() that
26  * is used for backups and sequential I/O to very large files.  Solaris
27  * also supports uncaching whole NFS partitions with "-o forcedirectio,"
28  * an undocumented mount option.
29  *
30  * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
31  * help from Andrew Morton.
32  *
33  * 18 Dec 2001	Initial implementation for 2.4  --cel
34  * 08 Jul 2002	Version for 2.4.19, with bug fixes --trondmy
35  * 08 Jun 2003	Port to 2.5 APIs  --cel
36  * 31 Mar 2004	Handle direct I/O without VFS support  --cel
37  * 15 Sep 2004	Parallel async reads  --cel
38  * 04 May 2005	support O_DIRECT with aio  --cel
39  *
40  */
41 
42 #include <linux/errno.h>
43 #include <linux/sched.h>
44 #include <linux/kernel.h>
45 #include <linux/file.h>
46 #include <linux/pagemap.h>
47 #include <linux/kref.h>
48 #include <linux/slab.h>
49 #include <linux/task_io_accounting_ops.h>
50 #include <linux/module.h>
51 
52 #include <linux/nfs_fs.h>
53 #include <linux/nfs_page.h>
54 #include <linux/sunrpc/clnt.h>
55 
56 #include <linux/uaccess.h>
57 #include <linux/atomic.h>
58 
59 #include "internal.h"
60 #include "iostat.h"
61 #include "pnfs.h"
62 #include "fscache.h"
63 #include "nfstrace.h"
64 
65 #define NFSDBG_FACILITY		NFSDBG_VFS
66 
67 static struct kmem_cache *nfs_direct_cachep;
68 
69 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
70 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
71 static void nfs_direct_write_complete(struct nfs_direct_req *dreq);
72 static void nfs_direct_write_schedule_work(struct work_struct *work);
73 
74 static inline void get_dreq(struct nfs_direct_req *dreq)
75 {
76 	atomic_inc(&dreq->io_count);
77 }
78 
79 static inline int put_dreq(struct nfs_direct_req *dreq)
80 {
81 	return atomic_dec_and_test(&dreq->io_count);
82 }
83 
84 static void
85 nfs_direct_handle_truncated(struct nfs_direct_req *dreq,
86 			    const struct nfs_pgio_header *hdr,
87 			    ssize_t dreq_len)
88 {
89 	if (!(test_bit(NFS_IOHDR_ERROR, &hdr->flags) ||
90 	      test_bit(NFS_IOHDR_EOF, &hdr->flags)))
91 		return;
92 	if (dreq->max_count >= dreq_len) {
93 		dreq->max_count = dreq_len;
94 		if (dreq->count > dreq_len)
95 			dreq->count = dreq_len;
96 	}
97 
98 	if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && !dreq->error)
99 		dreq->error = hdr->error;
100 }
101 
102 static void
103 nfs_direct_count_bytes(struct nfs_direct_req *dreq,
104 		       const struct nfs_pgio_header *hdr)
105 {
106 	loff_t hdr_end = hdr->io_start + hdr->good_bytes;
107 	ssize_t dreq_len = 0;
108 
109 	if (hdr_end > dreq->io_start)
110 		dreq_len = hdr_end - dreq->io_start;
111 
112 	nfs_direct_handle_truncated(dreq, hdr, dreq_len);
113 
114 	if (dreq_len > dreq->max_count)
115 		dreq_len = dreq->max_count;
116 
117 	if (dreq->count < dreq_len)
118 		dreq->count = dreq_len;
119 }
120 
121 static void nfs_direct_truncate_request(struct nfs_direct_req *dreq,
122 					struct nfs_page *req)
123 {
124 	loff_t offs = req_offset(req);
125 	size_t req_start = (size_t)(offs - dreq->io_start);
126 
127 	if (req_start < dreq->max_count)
128 		dreq->max_count = req_start;
129 	if (req_start < dreq->count)
130 		dreq->count = req_start;
131 }
132 
133 /**
134  * nfs_swap_rw - NFS address space operation for swap I/O
135  * @iocb: target I/O control block
136  * @iter: I/O buffer
137  *
138  * Perform IO to the swap-file.  This is much like direct IO.
139  */
140 int nfs_swap_rw(struct kiocb *iocb, struct iov_iter *iter)
141 {
142 	ssize_t ret;
143 
144 	VM_BUG_ON(iov_iter_count(iter) != PAGE_SIZE);
145 
146 	if (iov_iter_rw(iter) == READ)
147 		ret = nfs_file_direct_read(iocb, iter, true);
148 	else
149 		ret = nfs_file_direct_write(iocb, iter, true);
150 	if (ret < 0)
151 		return ret;
152 	return 0;
153 }
154 
155 static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
156 {
157 	unsigned int i;
158 	for (i = 0; i < npages; i++)
159 		put_page(pages[i]);
160 }
161 
162 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
163 			      struct nfs_direct_req *dreq)
164 {
165 	cinfo->inode = dreq->inode;
166 	cinfo->mds = &dreq->mds_cinfo;
167 	cinfo->ds = &dreq->ds_cinfo;
168 	cinfo->dreq = dreq;
169 	cinfo->completion_ops = &nfs_direct_commit_completion_ops;
170 }
171 
172 static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
173 {
174 	struct nfs_direct_req *dreq;
175 
176 	dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
177 	if (!dreq)
178 		return NULL;
179 
180 	kref_init(&dreq->kref);
181 	kref_get(&dreq->kref);
182 	init_completion(&dreq->completion);
183 	INIT_LIST_HEAD(&dreq->mds_cinfo.list);
184 	pnfs_init_ds_commit_info(&dreq->ds_cinfo);
185 	INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
186 	spin_lock_init(&dreq->lock);
187 
188 	return dreq;
189 }
190 
191 static void nfs_direct_req_free(struct kref *kref)
192 {
193 	struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
194 
195 	pnfs_release_ds_info(&dreq->ds_cinfo, dreq->inode);
196 	if (dreq->l_ctx != NULL)
197 		nfs_put_lock_context(dreq->l_ctx);
198 	if (dreq->ctx != NULL)
199 		put_nfs_open_context(dreq->ctx);
200 	kmem_cache_free(nfs_direct_cachep, dreq);
201 }
202 
203 static void nfs_direct_req_release(struct nfs_direct_req *dreq)
204 {
205 	kref_put(&dreq->kref, nfs_direct_req_free);
206 }
207 
208 ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq, loff_t offset)
209 {
210 	loff_t start = offset - dreq->io_start;
211 	return dreq->max_count - start;
212 }
213 EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
214 
215 /*
216  * Collects and returns the final error value/byte-count.
217  */
218 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
219 {
220 	ssize_t result = -EIOCBQUEUED;
221 
222 	/* Async requests don't wait here */
223 	if (dreq->iocb)
224 		goto out;
225 
226 	result = wait_for_completion_killable(&dreq->completion);
227 
228 	if (!result) {
229 		result = dreq->count;
230 		WARN_ON_ONCE(dreq->count < 0);
231 	}
232 	if (!result)
233 		result = dreq->error;
234 
235 out:
236 	return (ssize_t) result;
237 }
238 
239 /*
240  * Synchronous I/O uses a stack-allocated iocb.  Thus we can't trust
241  * the iocb is still valid here if this is a synchronous request.
242  */
243 static void nfs_direct_complete(struct nfs_direct_req *dreq)
244 {
245 	struct inode *inode = dreq->inode;
246 
247 	inode_dio_end(inode);
248 
249 	if (dreq->iocb) {
250 		long res = (long) dreq->error;
251 		if (dreq->count != 0) {
252 			res = (long) dreq->count;
253 			WARN_ON_ONCE(dreq->count < 0);
254 		}
255 		dreq->iocb->ki_complete(dreq->iocb, res);
256 	}
257 
258 	complete(&dreq->completion);
259 
260 	nfs_direct_req_release(dreq);
261 }
262 
263 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
264 {
265 	unsigned long bytes = 0;
266 	struct nfs_direct_req *dreq = hdr->dreq;
267 
268 	spin_lock(&dreq->lock);
269 	if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) {
270 		spin_unlock(&dreq->lock);
271 		goto out_put;
272 	}
273 
274 	nfs_direct_count_bytes(dreq, hdr);
275 	spin_unlock(&dreq->lock);
276 
277 	while (!list_empty(&hdr->pages)) {
278 		struct nfs_page *req = nfs_list_entry(hdr->pages.next);
279 		struct page *page = req->wb_page;
280 
281 		if (!PageCompound(page) && bytes < hdr->good_bytes &&
282 		    (dreq->flags == NFS_ODIRECT_SHOULD_DIRTY))
283 			set_page_dirty(page);
284 		bytes += req->wb_bytes;
285 		nfs_list_remove_request(req);
286 		nfs_release_request(req);
287 	}
288 out_put:
289 	if (put_dreq(dreq))
290 		nfs_direct_complete(dreq);
291 	hdr->release(hdr);
292 }
293 
294 static void nfs_read_sync_pgio_error(struct list_head *head, int error)
295 {
296 	struct nfs_page *req;
297 
298 	while (!list_empty(head)) {
299 		req = nfs_list_entry(head->next);
300 		nfs_list_remove_request(req);
301 		nfs_release_request(req);
302 	}
303 }
304 
305 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
306 {
307 	get_dreq(hdr->dreq);
308 }
309 
310 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
311 	.error_cleanup = nfs_read_sync_pgio_error,
312 	.init_hdr = nfs_direct_pgio_init,
313 	.completion = nfs_direct_read_completion,
314 };
315 
316 /*
317  * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
318  * operation.  If nfs_readdata_alloc() or get_user_pages() fails,
319  * bail and stop sending more reads.  Read length accounting is
320  * handled automatically by nfs_direct_read_result().  Otherwise, if
321  * no requests have been sent, just return an error.
322  */
323 
324 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
325 					      struct iov_iter *iter,
326 					      loff_t pos)
327 {
328 	struct nfs_pageio_descriptor desc;
329 	struct inode *inode = dreq->inode;
330 	ssize_t result = -EINVAL;
331 	size_t requested_bytes = 0;
332 	size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE);
333 
334 	nfs_pageio_init_read(&desc, dreq->inode, false,
335 			     &nfs_direct_read_completion_ops);
336 	get_dreq(dreq);
337 	desc.pg_dreq = dreq;
338 	inode_dio_begin(inode);
339 
340 	while (iov_iter_count(iter)) {
341 		struct page **pagevec;
342 		size_t bytes;
343 		size_t pgbase;
344 		unsigned npages, i;
345 
346 		result = iov_iter_get_pages_alloc2(iter, &pagevec,
347 						  rsize, &pgbase);
348 		if (result < 0)
349 			break;
350 
351 		bytes = result;
352 		npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
353 		for (i = 0; i < npages; i++) {
354 			struct nfs_page *req;
355 			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
356 			/* XXX do we need to do the eof zeroing found in async_filler? */
357 			req = nfs_page_create_from_page(dreq->ctx, pagevec[i],
358 							pgbase, pos, req_len);
359 			if (IS_ERR(req)) {
360 				result = PTR_ERR(req);
361 				break;
362 			}
363 			if (!nfs_pageio_add_request(&desc, req)) {
364 				result = desc.pg_error;
365 				nfs_release_request(req);
366 				break;
367 			}
368 			pgbase = 0;
369 			bytes -= req_len;
370 			requested_bytes += req_len;
371 			pos += req_len;
372 			dreq->bytes_left -= req_len;
373 		}
374 		nfs_direct_release_pages(pagevec, npages);
375 		kvfree(pagevec);
376 		if (result < 0)
377 			break;
378 	}
379 
380 	nfs_pageio_complete(&desc);
381 
382 	/*
383 	 * If no bytes were started, return the error, and let the
384 	 * generic layer handle the completion.
385 	 */
386 	if (requested_bytes == 0) {
387 		inode_dio_end(inode);
388 		nfs_direct_req_release(dreq);
389 		return result < 0 ? result : -EIO;
390 	}
391 
392 	if (put_dreq(dreq))
393 		nfs_direct_complete(dreq);
394 	return requested_bytes;
395 }
396 
397 /**
398  * nfs_file_direct_read - file direct read operation for NFS files
399  * @iocb: target I/O control block
400  * @iter: vector of user buffers into which to read data
401  * @swap: flag indicating this is swap IO, not O_DIRECT IO
402  *
403  * We use this function for direct reads instead of calling
404  * generic_file_aio_read() in order to avoid gfar's check to see if
405  * the request starts before the end of the file.  For that check
406  * to work, we must generate a GETATTR before each direct read, and
407  * even then there is a window between the GETATTR and the subsequent
408  * READ where the file size could change.  Our preference is simply
409  * to do all reads the application wants, and the server will take
410  * care of managing the end of file boundary.
411  *
412  * This function also eliminates unnecessarily updating the file's
413  * atime locally, as the NFS server sets the file's atime, and this
414  * client must read the updated atime from the server back into its
415  * cache.
416  */
417 ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter,
418 			     bool swap)
419 {
420 	struct file *file = iocb->ki_filp;
421 	struct address_space *mapping = file->f_mapping;
422 	struct inode *inode = mapping->host;
423 	struct nfs_direct_req *dreq;
424 	struct nfs_lock_context *l_ctx;
425 	ssize_t result, requested;
426 	size_t count = iov_iter_count(iter);
427 	nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
428 
429 	dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n",
430 		file, count, (long long) iocb->ki_pos);
431 
432 	result = 0;
433 	if (!count)
434 		goto out;
435 
436 	task_io_account_read(count);
437 
438 	result = -ENOMEM;
439 	dreq = nfs_direct_req_alloc();
440 	if (dreq == NULL)
441 		goto out;
442 
443 	dreq->inode = inode;
444 	dreq->bytes_left = dreq->max_count = count;
445 	dreq->io_start = iocb->ki_pos;
446 	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
447 	l_ctx = nfs_get_lock_context(dreq->ctx);
448 	if (IS_ERR(l_ctx)) {
449 		result = PTR_ERR(l_ctx);
450 		nfs_direct_req_release(dreq);
451 		goto out_release;
452 	}
453 	dreq->l_ctx = l_ctx;
454 	if (!is_sync_kiocb(iocb))
455 		dreq->iocb = iocb;
456 
457 	if (user_backed_iter(iter))
458 		dreq->flags = NFS_ODIRECT_SHOULD_DIRTY;
459 
460 	if (!swap)
461 		nfs_start_io_direct(inode);
462 
463 	NFS_I(inode)->read_io += count;
464 	requested = nfs_direct_read_schedule_iovec(dreq, iter, iocb->ki_pos);
465 
466 	if (!swap)
467 		nfs_end_io_direct(inode);
468 
469 	if (requested > 0) {
470 		result = nfs_direct_wait(dreq);
471 		if (result > 0) {
472 			requested -= result;
473 			iocb->ki_pos += result;
474 		}
475 		iov_iter_revert(iter, requested);
476 	} else {
477 		result = requested;
478 	}
479 
480 out_release:
481 	nfs_direct_req_release(dreq);
482 out:
483 	return result;
484 }
485 
486 static void nfs_direct_add_page_head(struct list_head *list,
487 				     struct nfs_page *req)
488 {
489 	struct nfs_page *head = req->wb_head;
490 
491 	if (!list_empty(&head->wb_list) || !nfs_lock_request(head))
492 		return;
493 	if (!list_empty(&head->wb_list)) {
494 		nfs_unlock_request(head);
495 		return;
496 	}
497 	list_add(&head->wb_list, list);
498 	kref_get(&head->wb_kref);
499 	kref_get(&head->wb_kref);
500 }
501 
502 static void nfs_direct_join_group(struct list_head *list,
503 				  struct nfs_commit_info *cinfo,
504 				  struct inode *inode)
505 {
506 	struct nfs_page *req, *subreq;
507 
508 	list_for_each_entry(req, list, wb_list) {
509 		if (req->wb_head != req) {
510 			nfs_direct_add_page_head(&req->wb_list, req);
511 			continue;
512 		}
513 		subreq = req->wb_this_page;
514 		if (subreq == req)
515 			continue;
516 		do {
517 			/*
518 			 * Remove subrequests from this list before freeing
519 			 * them in the call to nfs_join_page_group().
520 			 */
521 			if (!list_empty(&subreq->wb_list)) {
522 				nfs_list_remove_request(subreq);
523 				nfs_release_request(subreq);
524 			}
525 		} while ((subreq = subreq->wb_this_page) != req);
526 		nfs_join_page_group(req, cinfo, inode);
527 	}
528 }
529 
530 static void
531 nfs_direct_write_scan_commit_list(struct inode *inode,
532 				  struct list_head *list,
533 				  struct nfs_commit_info *cinfo)
534 {
535 	mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
536 	pnfs_recover_commit_reqs(list, cinfo);
537 	nfs_scan_commit_list(&cinfo->mds->list, list, cinfo, 0);
538 	mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
539 }
540 
541 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
542 {
543 	struct nfs_pageio_descriptor desc;
544 	struct nfs_page *req;
545 	LIST_HEAD(reqs);
546 	struct nfs_commit_info cinfo;
547 
548 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
549 	nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
550 
551 	nfs_direct_join_group(&reqs, &cinfo, dreq->inode);
552 
553 	nfs_clear_pnfs_ds_commit_verifiers(&dreq->ds_cinfo);
554 	get_dreq(dreq);
555 
556 	nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false,
557 			      &nfs_direct_write_completion_ops);
558 	desc.pg_dreq = dreq;
559 
560 	while (!list_empty(&reqs)) {
561 		req = nfs_list_entry(reqs.next);
562 		/* Bump the transmission count */
563 		req->wb_nio++;
564 		if (!nfs_pageio_add_request(&desc, req)) {
565 			spin_lock(&dreq->lock);
566 			if (dreq->error < 0) {
567 				desc.pg_error = dreq->error;
568 			} else if (desc.pg_error != -EAGAIN) {
569 				dreq->flags = 0;
570 				if (!desc.pg_error)
571 					desc.pg_error = -EIO;
572 				dreq->error = desc.pg_error;
573 			} else
574 				dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
575 			spin_unlock(&dreq->lock);
576 			break;
577 		}
578 		nfs_release_request(req);
579 	}
580 	nfs_pageio_complete(&desc);
581 
582 	while (!list_empty(&reqs)) {
583 		req = nfs_list_entry(reqs.next);
584 		nfs_list_remove_request(req);
585 		nfs_unlock_and_release_request(req);
586 		if (desc.pg_error == -EAGAIN) {
587 			nfs_mark_request_commit(req, NULL, &cinfo, 0);
588 		} else {
589 			spin_lock(&dreq->lock);
590 			nfs_direct_truncate_request(dreq, req);
591 			spin_unlock(&dreq->lock);
592 			nfs_release_request(req);
593 		}
594 	}
595 
596 	if (put_dreq(dreq))
597 		nfs_direct_write_complete(dreq);
598 }
599 
600 static void nfs_direct_commit_complete(struct nfs_commit_data *data)
601 {
602 	const struct nfs_writeverf *verf = data->res.verf;
603 	struct nfs_direct_req *dreq = data->dreq;
604 	struct nfs_commit_info cinfo;
605 	struct nfs_page *req;
606 	int status = data->task.tk_status;
607 
608 	trace_nfs_direct_commit_complete(dreq);
609 
610 	if (status < 0) {
611 		/* Errors in commit are fatal */
612 		dreq->error = status;
613 		dreq->flags = NFS_ODIRECT_DONE;
614 	} else {
615 		status = dreq->error;
616 	}
617 
618 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
619 
620 	while (!list_empty(&data->pages)) {
621 		req = nfs_list_entry(data->pages.next);
622 		nfs_list_remove_request(req);
623 		if (status < 0) {
624 			spin_lock(&dreq->lock);
625 			nfs_direct_truncate_request(dreq, req);
626 			spin_unlock(&dreq->lock);
627 			nfs_release_request(req);
628 		} else if (!nfs_write_match_verf(verf, req)) {
629 			dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
630 			/*
631 			 * Despite the reboot, the write was successful,
632 			 * so reset wb_nio.
633 			 */
634 			req->wb_nio = 0;
635 			nfs_mark_request_commit(req, NULL, &cinfo, 0);
636 		} else
637 			nfs_release_request(req);
638 		nfs_unlock_and_release_request(req);
639 	}
640 
641 	if (nfs_commit_end(cinfo.mds))
642 		nfs_direct_write_complete(dreq);
643 }
644 
645 static void nfs_direct_resched_write(struct nfs_commit_info *cinfo,
646 		struct nfs_page *req)
647 {
648 	struct nfs_direct_req *dreq = cinfo->dreq;
649 
650 	trace_nfs_direct_resched_write(dreq);
651 
652 	spin_lock(&dreq->lock);
653 	if (dreq->flags != NFS_ODIRECT_DONE)
654 		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
655 	spin_unlock(&dreq->lock);
656 	nfs_mark_request_commit(req, NULL, cinfo, 0);
657 }
658 
659 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
660 	.completion = nfs_direct_commit_complete,
661 	.resched_write = nfs_direct_resched_write,
662 };
663 
664 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
665 {
666 	int res;
667 	struct nfs_commit_info cinfo;
668 	LIST_HEAD(mds_list);
669 
670 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
671 	nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
672 	res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
673 	if (res < 0) /* res == -ENOMEM */
674 		nfs_direct_write_reschedule(dreq);
675 }
676 
677 static void nfs_direct_write_clear_reqs(struct nfs_direct_req *dreq)
678 {
679 	struct nfs_commit_info cinfo;
680 	struct nfs_page *req;
681 	LIST_HEAD(reqs);
682 
683 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
684 	nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
685 
686 	while (!list_empty(&reqs)) {
687 		req = nfs_list_entry(reqs.next);
688 		nfs_list_remove_request(req);
689 		nfs_direct_truncate_request(dreq, req);
690 		nfs_release_request(req);
691 		nfs_unlock_and_release_request(req);
692 	}
693 }
694 
695 static void nfs_direct_write_schedule_work(struct work_struct *work)
696 {
697 	struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
698 	int flags = dreq->flags;
699 
700 	dreq->flags = 0;
701 	switch (flags) {
702 		case NFS_ODIRECT_DO_COMMIT:
703 			nfs_direct_commit_schedule(dreq);
704 			break;
705 		case NFS_ODIRECT_RESCHED_WRITES:
706 			nfs_direct_write_reschedule(dreq);
707 			break;
708 		default:
709 			nfs_direct_write_clear_reqs(dreq);
710 			nfs_zap_mapping(dreq->inode, dreq->inode->i_mapping);
711 			nfs_direct_complete(dreq);
712 	}
713 }
714 
715 static void nfs_direct_write_complete(struct nfs_direct_req *dreq)
716 {
717 	trace_nfs_direct_write_complete(dreq);
718 	queue_work(nfsiod_workqueue, &dreq->work); /* Calls nfs_direct_write_schedule_work */
719 }
720 
721 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
722 {
723 	struct nfs_direct_req *dreq = hdr->dreq;
724 	struct nfs_commit_info cinfo;
725 	struct nfs_page *req = nfs_list_entry(hdr->pages.next);
726 	int flags = NFS_ODIRECT_DONE;
727 
728 	trace_nfs_direct_write_completion(dreq);
729 
730 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
731 
732 	spin_lock(&dreq->lock);
733 	if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) {
734 		spin_unlock(&dreq->lock);
735 		goto out_put;
736 	}
737 
738 	nfs_direct_count_bytes(dreq, hdr);
739 	if (test_bit(NFS_IOHDR_UNSTABLE_WRITES, &hdr->flags) &&
740 	    !test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
741 		if (!dreq->flags)
742 			dreq->flags = NFS_ODIRECT_DO_COMMIT;
743 		flags = dreq->flags;
744 	}
745 	spin_unlock(&dreq->lock);
746 
747 	while (!list_empty(&hdr->pages)) {
748 
749 		req = nfs_list_entry(hdr->pages.next);
750 		nfs_list_remove_request(req);
751 		if (flags == NFS_ODIRECT_DO_COMMIT) {
752 			kref_get(&req->wb_kref);
753 			memcpy(&req->wb_verf, &hdr->verf.verifier,
754 			       sizeof(req->wb_verf));
755 			nfs_mark_request_commit(req, hdr->lseg, &cinfo,
756 				hdr->ds_commit_idx);
757 		} else if (flags == NFS_ODIRECT_RESCHED_WRITES) {
758 			kref_get(&req->wb_kref);
759 			nfs_mark_request_commit(req, NULL, &cinfo, 0);
760 		}
761 		nfs_unlock_and_release_request(req);
762 	}
763 
764 out_put:
765 	if (put_dreq(dreq))
766 		nfs_direct_write_complete(dreq);
767 	hdr->release(hdr);
768 }
769 
770 static void nfs_write_sync_pgio_error(struct list_head *head, int error)
771 {
772 	struct nfs_page *req;
773 
774 	while (!list_empty(head)) {
775 		req = nfs_list_entry(head->next);
776 		nfs_list_remove_request(req);
777 		nfs_unlock_and_release_request(req);
778 	}
779 }
780 
781 static void nfs_direct_write_reschedule_io(struct nfs_pgio_header *hdr)
782 {
783 	struct nfs_direct_req *dreq = hdr->dreq;
784 	struct nfs_page *req;
785 	struct nfs_commit_info cinfo;
786 
787 	trace_nfs_direct_write_reschedule_io(dreq);
788 
789 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
790 	spin_lock(&dreq->lock);
791 	if (dreq->error == 0)
792 		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
793 	set_bit(NFS_IOHDR_REDO, &hdr->flags);
794 	spin_unlock(&dreq->lock);
795 	while (!list_empty(&hdr->pages)) {
796 		req = nfs_list_entry(hdr->pages.next);
797 		nfs_list_remove_request(req);
798 		nfs_unlock_request(req);
799 		nfs_mark_request_commit(req, NULL, &cinfo, 0);
800 	}
801 }
802 
803 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
804 	.error_cleanup = nfs_write_sync_pgio_error,
805 	.init_hdr = nfs_direct_pgio_init,
806 	.completion = nfs_direct_write_completion,
807 	.reschedule_io = nfs_direct_write_reschedule_io,
808 };
809 
810 
811 /*
812  * NB: Return the value of the first error return code.  Subsequent
813  *     errors after the first one are ignored.
814  */
815 /*
816  * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
817  * operation.  If nfs_writedata_alloc() or get_user_pages() fails,
818  * bail and stop sending more writes.  Write length accounting is
819  * handled automatically by nfs_direct_write_result().  Otherwise, if
820  * no requests have been sent, just return an error.
821  */
822 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
823 					       struct iov_iter *iter,
824 					       loff_t pos, int ioflags)
825 {
826 	struct nfs_pageio_descriptor desc;
827 	struct inode *inode = dreq->inode;
828 	struct nfs_commit_info cinfo;
829 	ssize_t result = 0;
830 	size_t requested_bytes = 0;
831 	size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE);
832 	bool defer = false;
833 
834 	trace_nfs_direct_write_schedule_iovec(dreq);
835 
836 	nfs_pageio_init_write(&desc, inode, ioflags, false,
837 			      &nfs_direct_write_completion_ops);
838 	desc.pg_dreq = dreq;
839 	get_dreq(dreq);
840 	inode_dio_begin(inode);
841 
842 	NFS_I(inode)->write_io += iov_iter_count(iter);
843 	while (iov_iter_count(iter)) {
844 		struct page **pagevec;
845 		size_t bytes;
846 		size_t pgbase;
847 		unsigned npages, i;
848 
849 		result = iov_iter_get_pages_alloc2(iter, &pagevec,
850 						  wsize, &pgbase);
851 		if (result < 0)
852 			break;
853 
854 		bytes = result;
855 		npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
856 		for (i = 0; i < npages; i++) {
857 			struct nfs_page *req;
858 			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
859 
860 			req = nfs_page_create_from_page(dreq->ctx, pagevec[i],
861 							pgbase, pos, req_len);
862 			if (IS_ERR(req)) {
863 				result = PTR_ERR(req);
864 				break;
865 			}
866 
867 			if (desc.pg_error < 0) {
868 				nfs_free_request(req);
869 				result = desc.pg_error;
870 				break;
871 			}
872 
873 			pgbase = 0;
874 			bytes -= req_len;
875 			requested_bytes += req_len;
876 			pos += req_len;
877 			dreq->bytes_left -= req_len;
878 
879 			if (defer) {
880 				nfs_mark_request_commit(req, NULL, &cinfo, 0);
881 				continue;
882 			}
883 
884 			nfs_lock_request(req);
885 			if (nfs_pageio_add_request(&desc, req))
886 				continue;
887 
888 			/* Exit on hard errors */
889 			if (desc.pg_error < 0 && desc.pg_error != -EAGAIN) {
890 				result = desc.pg_error;
891 				nfs_unlock_and_release_request(req);
892 				break;
893 			}
894 
895 			/* If the error is soft, defer remaining requests */
896 			nfs_init_cinfo_from_dreq(&cinfo, dreq);
897 			spin_lock(&dreq->lock);
898 			dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
899 			spin_unlock(&dreq->lock);
900 			nfs_unlock_request(req);
901 			nfs_mark_request_commit(req, NULL, &cinfo, 0);
902 			desc.pg_error = 0;
903 			defer = true;
904 		}
905 		nfs_direct_release_pages(pagevec, npages);
906 		kvfree(pagevec);
907 		if (result < 0)
908 			break;
909 	}
910 	nfs_pageio_complete(&desc);
911 
912 	/*
913 	 * If no bytes were started, return the error, and let the
914 	 * generic layer handle the completion.
915 	 */
916 	if (requested_bytes == 0) {
917 		inode_dio_end(inode);
918 		nfs_direct_req_release(dreq);
919 		return result < 0 ? result : -EIO;
920 	}
921 
922 	if (put_dreq(dreq))
923 		nfs_direct_write_complete(dreq);
924 	return requested_bytes;
925 }
926 
927 /**
928  * nfs_file_direct_write - file direct write operation for NFS files
929  * @iocb: target I/O control block
930  * @iter: vector of user buffers from which to write data
931  * @swap: flag indicating this is swap IO, not O_DIRECT IO
932  *
933  * We use this function for direct writes instead of calling
934  * generic_file_aio_write() in order to avoid taking the inode
935  * semaphore and updating the i_size.  The NFS server will set
936  * the new i_size and this client must read the updated size
937  * back into its cache.  We let the server do generic write
938  * parameter checking and report problems.
939  *
940  * We eliminate local atime updates, see direct read above.
941  *
942  * We avoid unnecessary page cache invalidations for normal cached
943  * readers of this file.
944  *
945  * Note that O_APPEND is not supported for NFS direct writes, as there
946  * is no atomic O_APPEND write facility in the NFS protocol.
947  */
948 ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter,
949 			      bool swap)
950 {
951 	ssize_t result, requested;
952 	size_t count;
953 	struct file *file = iocb->ki_filp;
954 	struct address_space *mapping = file->f_mapping;
955 	struct inode *inode = mapping->host;
956 	struct nfs_direct_req *dreq;
957 	struct nfs_lock_context *l_ctx;
958 	loff_t pos, end;
959 
960 	dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n",
961 		file, iov_iter_count(iter), (long long) iocb->ki_pos);
962 
963 	if (swap)
964 		/* bypass generic checks */
965 		result =  iov_iter_count(iter);
966 	else
967 		result = generic_write_checks(iocb, iter);
968 	if (result <= 0)
969 		return result;
970 	count = result;
971 	nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
972 
973 	pos = iocb->ki_pos;
974 	end = (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT;
975 
976 	task_io_account_write(count);
977 
978 	result = -ENOMEM;
979 	dreq = nfs_direct_req_alloc();
980 	if (!dreq)
981 		goto out;
982 
983 	dreq->inode = inode;
984 	dreq->bytes_left = dreq->max_count = count;
985 	dreq->io_start = pos;
986 	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
987 	l_ctx = nfs_get_lock_context(dreq->ctx);
988 	if (IS_ERR(l_ctx)) {
989 		result = PTR_ERR(l_ctx);
990 		nfs_direct_req_release(dreq);
991 		goto out_release;
992 	}
993 	dreq->l_ctx = l_ctx;
994 	if (!is_sync_kiocb(iocb))
995 		dreq->iocb = iocb;
996 	pnfs_init_ds_commit_info_ops(&dreq->ds_cinfo, inode);
997 
998 	if (swap) {
999 		requested = nfs_direct_write_schedule_iovec(dreq, iter, pos,
1000 							    FLUSH_STABLE);
1001 	} else {
1002 		nfs_start_io_direct(inode);
1003 
1004 		requested = nfs_direct_write_schedule_iovec(dreq, iter, pos,
1005 							    FLUSH_COND_STABLE);
1006 
1007 		if (mapping->nrpages) {
1008 			invalidate_inode_pages2_range(mapping,
1009 						      pos >> PAGE_SHIFT, end);
1010 		}
1011 
1012 		nfs_end_io_direct(inode);
1013 	}
1014 
1015 	if (requested > 0) {
1016 		result = nfs_direct_wait(dreq);
1017 		if (result > 0) {
1018 			requested -= result;
1019 			iocb->ki_pos = pos + result;
1020 			/* XXX: should check the generic_write_sync retval */
1021 			generic_write_sync(iocb, result);
1022 		}
1023 		iov_iter_revert(iter, requested);
1024 	} else {
1025 		result = requested;
1026 	}
1027 	nfs_fscache_invalidate(inode, FSCACHE_INVAL_DIO_WRITE);
1028 out_release:
1029 	nfs_direct_req_release(dreq);
1030 out:
1031 	return result;
1032 }
1033 
1034 /**
1035  * nfs_init_directcache - create a slab cache for nfs_direct_req structures
1036  *
1037  */
1038 int __init nfs_init_directcache(void)
1039 {
1040 	nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
1041 						sizeof(struct nfs_direct_req),
1042 						0, (SLAB_RECLAIM_ACCOUNT|
1043 							SLAB_MEM_SPREAD),
1044 						NULL);
1045 	if (nfs_direct_cachep == NULL)
1046 		return -ENOMEM;
1047 
1048 	return 0;
1049 }
1050 
1051 /**
1052  * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
1053  *
1054  */
1055 void nfs_destroy_directcache(void)
1056 {
1057 	kmem_cache_destroy(nfs_direct_cachep);
1058 }
1059