1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/nfs/direct.c 4 * 5 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com> 6 * 7 * High-performance uncached I/O for the Linux NFS client 8 * 9 * There are important applications whose performance or correctness 10 * depends on uncached access to file data. Database clusters 11 * (multiple copies of the same instance running on separate hosts) 12 * implement their own cache coherency protocol that subsumes file 13 * system cache protocols. Applications that process datasets 14 * considerably larger than the client's memory do not always benefit 15 * from a local cache. A streaming video server, for instance, has no 16 * need to cache the contents of a file. 17 * 18 * When an application requests uncached I/O, all read and write requests 19 * are made directly to the server; data stored or fetched via these 20 * requests is not cached in the Linux page cache. The client does not 21 * correct unaligned requests from applications. All requested bytes are 22 * held on permanent storage before a direct write system call returns to 23 * an application. 24 * 25 * Solaris implements an uncached I/O facility called directio() that 26 * is used for backups and sequential I/O to very large files. Solaris 27 * also supports uncaching whole NFS partitions with "-o forcedirectio," 28 * an undocumented mount option. 29 * 30 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with 31 * help from Andrew Morton. 32 * 33 * 18 Dec 2001 Initial implementation for 2.4 --cel 34 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy 35 * 08 Jun 2003 Port to 2.5 APIs --cel 36 * 31 Mar 2004 Handle direct I/O without VFS support --cel 37 * 15 Sep 2004 Parallel async reads --cel 38 * 04 May 2005 support O_DIRECT with aio --cel 39 * 40 */ 41 42 #include <linux/errno.h> 43 #include <linux/sched.h> 44 #include <linux/kernel.h> 45 #include <linux/file.h> 46 #include <linux/pagemap.h> 47 #include <linux/kref.h> 48 #include <linux/slab.h> 49 #include <linux/task_io_accounting_ops.h> 50 #include <linux/module.h> 51 52 #include <linux/nfs_fs.h> 53 #include <linux/nfs_page.h> 54 #include <linux/sunrpc/clnt.h> 55 56 #include <linux/uaccess.h> 57 #include <linux/atomic.h> 58 59 #include "internal.h" 60 #include "iostat.h" 61 #include "pnfs.h" 62 #include "fscache.h" 63 64 #define NFSDBG_FACILITY NFSDBG_VFS 65 66 static struct kmem_cache *nfs_direct_cachep; 67 68 struct nfs_direct_req { 69 struct kref kref; /* release manager */ 70 71 /* I/O parameters */ 72 struct nfs_open_context *ctx; /* file open context info */ 73 struct nfs_lock_context *l_ctx; /* Lock context info */ 74 struct kiocb * iocb; /* controlling i/o request */ 75 struct inode * inode; /* target file of i/o */ 76 77 /* completion state */ 78 atomic_t io_count; /* i/os we're waiting for */ 79 spinlock_t lock; /* protect completion state */ 80 81 loff_t io_start; /* Start offset for I/O */ 82 ssize_t count, /* bytes actually processed */ 83 max_count, /* max expected count */ 84 bytes_left, /* bytes left to be sent */ 85 error; /* any reported error */ 86 struct completion completion; /* wait for i/o completion */ 87 88 /* commit state */ 89 struct nfs_mds_commit_info mds_cinfo; /* Storage for cinfo */ 90 struct pnfs_ds_commit_info ds_cinfo; /* Storage for cinfo */ 91 struct work_struct work; 92 int flags; 93 /* for write */ 94 #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */ 95 #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */ 96 /* for read */ 97 #define NFS_ODIRECT_SHOULD_DIRTY (3) /* dirty user-space page after read */ 98 #define NFS_ODIRECT_DONE INT_MAX /* write verification failed */ 99 }; 100 101 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops; 102 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops; 103 static void nfs_direct_write_complete(struct nfs_direct_req *dreq); 104 static void nfs_direct_write_schedule_work(struct work_struct *work); 105 106 static inline void get_dreq(struct nfs_direct_req *dreq) 107 { 108 atomic_inc(&dreq->io_count); 109 } 110 111 static inline int put_dreq(struct nfs_direct_req *dreq) 112 { 113 return atomic_dec_and_test(&dreq->io_count); 114 } 115 116 static void 117 nfs_direct_handle_truncated(struct nfs_direct_req *dreq, 118 const struct nfs_pgio_header *hdr, 119 ssize_t dreq_len) 120 { 121 if (!(test_bit(NFS_IOHDR_ERROR, &hdr->flags) || 122 test_bit(NFS_IOHDR_EOF, &hdr->flags))) 123 return; 124 if (dreq->max_count >= dreq_len) { 125 dreq->max_count = dreq_len; 126 if (dreq->count > dreq_len) 127 dreq->count = dreq_len; 128 129 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) 130 dreq->error = hdr->error; 131 else /* Clear outstanding error if this is EOF */ 132 dreq->error = 0; 133 } 134 } 135 136 static void 137 nfs_direct_count_bytes(struct nfs_direct_req *dreq, 138 const struct nfs_pgio_header *hdr) 139 { 140 loff_t hdr_end = hdr->io_start + hdr->good_bytes; 141 ssize_t dreq_len = 0; 142 143 if (hdr_end > dreq->io_start) 144 dreq_len = hdr_end - dreq->io_start; 145 146 nfs_direct_handle_truncated(dreq, hdr, dreq_len); 147 148 if (dreq_len > dreq->max_count) 149 dreq_len = dreq->max_count; 150 151 if (dreq->count < dreq_len) 152 dreq->count = dreq_len; 153 } 154 155 /** 156 * nfs_swap_rw - NFS address space operation for swap I/O 157 * @iocb: target I/O control block 158 * @iter: I/O buffer 159 * 160 * Perform IO to the swap-file. This is much like direct IO. 161 */ 162 int nfs_swap_rw(struct kiocb *iocb, struct iov_iter *iter) 163 { 164 ssize_t ret; 165 166 VM_BUG_ON(iov_iter_count(iter) != PAGE_SIZE); 167 168 if (iov_iter_rw(iter) == READ) 169 ret = nfs_file_direct_read(iocb, iter, true); 170 else 171 ret = nfs_file_direct_write(iocb, iter, true); 172 if (ret < 0) 173 return ret; 174 return 0; 175 } 176 177 static void nfs_direct_release_pages(struct page **pages, unsigned int npages) 178 { 179 unsigned int i; 180 for (i = 0; i < npages; i++) 181 put_page(pages[i]); 182 } 183 184 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo, 185 struct nfs_direct_req *dreq) 186 { 187 cinfo->inode = dreq->inode; 188 cinfo->mds = &dreq->mds_cinfo; 189 cinfo->ds = &dreq->ds_cinfo; 190 cinfo->dreq = dreq; 191 cinfo->completion_ops = &nfs_direct_commit_completion_ops; 192 } 193 194 static inline struct nfs_direct_req *nfs_direct_req_alloc(void) 195 { 196 struct nfs_direct_req *dreq; 197 198 dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL); 199 if (!dreq) 200 return NULL; 201 202 kref_init(&dreq->kref); 203 kref_get(&dreq->kref); 204 init_completion(&dreq->completion); 205 INIT_LIST_HEAD(&dreq->mds_cinfo.list); 206 pnfs_init_ds_commit_info(&dreq->ds_cinfo); 207 INIT_WORK(&dreq->work, nfs_direct_write_schedule_work); 208 spin_lock_init(&dreq->lock); 209 210 return dreq; 211 } 212 213 static void nfs_direct_req_free(struct kref *kref) 214 { 215 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref); 216 217 pnfs_release_ds_info(&dreq->ds_cinfo, dreq->inode); 218 if (dreq->l_ctx != NULL) 219 nfs_put_lock_context(dreq->l_ctx); 220 if (dreq->ctx != NULL) 221 put_nfs_open_context(dreq->ctx); 222 kmem_cache_free(nfs_direct_cachep, dreq); 223 } 224 225 static void nfs_direct_req_release(struct nfs_direct_req *dreq) 226 { 227 kref_put(&dreq->kref, nfs_direct_req_free); 228 } 229 230 ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq) 231 { 232 return dreq->bytes_left; 233 } 234 EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left); 235 236 /* 237 * Collects and returns the final error value/byte-count. 238 */ 239 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq) 240 { 241 ssize_t result = -EIOCBQUEUED; 242 243 /* Async requests don't wait here */ 244 if (dreq->iocb) 245 goto out; 246 247 result = wait_for_completion_killable(&dreq->completion); 248 249 if (!result) { 250 result = dreq->count; 251 WARN_ON_ONCE(dreq->count < 0); 252 } 253 if (!result) 254 result = dreq->error; 255 256 out: 257 return (ssize_t) result; 258 } 259 260 /* 261 * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust 262 * the iocb is still valid here if this is a synchronous request. 263 */ 264 static void nfs_direct_complete(struct nfs_direct_req *dreq) 265 { 266 struct inode *inode = dreq->inode; 267 268 inode_dio_end(inode); 269 270 if (dreq->iocb) { 271 long res = (long) dreq->error; 272 if (dreq->count != 0) { 273 res = (long) dreq->count; 274 WARN_ON_ONCE(dreq->count < 0); 275 } 276 dreq->iocb->ki_complete(dreq->iocb, res); 277 } 278 279 complete(&dreq->completion); 280 281 nfs_direct_req_release(dreq); 282 } 283 284 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr) 285 { 286 unsigned long bytes = 0; 287 struct nfs_direct_req *dreq = hdr->dreq; 288 289 spin_lock(&dreq->lock); 290 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) { 291 spin_unlock(&dreq->lock); 292 goto out_put; 293 } 294 295 nfs_direct_count_bytes(dreq, hdr); 296 spin_unlock(&dreq->lock); 297 298 while (!list_empty(&hdr->pages)) { 299 struct nfs_page *req = nfs_list_entry(hdr->pages.next); 300 struct page *page = req->wb_page; 301 302 if (!PageCompound(page) && bytes < hdr->good_bytes && 303 (dreq->flags == NFS_ODIRECT_SHOULD_DIRTY)) 304 set_page_dirty(page); 305 bytes += req->wb_bytes; 306 nfs_list_remove_request(req); 307 nfs_release_request(req); 308 } 309 out_put: 310 if (put_dreq(dreq)) 311 nfs_direct_complete(dreq); 312 hdr->release(hdr); 313 } 314 315 static void nfs_read_sync_pgio_error(struct list_head *head, int error) 316 { 317 struct nfs_page *req; 318 319 while (!list_empty(head)) { 320 req = nfs_list_entry(head->next); 321 nfs_list_remove_request(req); 322 nfs_release_request(req); 323 } 324 } 325 326 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr) 327 { 328 get_dreq(hdr->dreq); 329 } 330 331 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = { 332 .error_cleanup = nfs_read_sync_pgio_error, 333 .init_hdr = nfs_direct_pgio_init, 334 .completion = nfs_direct_read_completion, 335 }; 336 337 /* 338 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ 339 * operation. If nfs_readdata_alloc() or get_user_pages() fails, 340 * bail and stop sending more reads. Read length accounting is 341 * handled automatically by nfs_direct_read_result(). Otherwise, if 342 * no requests have been sent, just return an error. 343 */ 344 345 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq, 346 struct iov_iter *iter, 347 loff_t pos) 348 { 349 struct nfs_pageio_descriptor desc; 350 struct inode *inode = dreq->inode; 351 ssize_t result = -EINVAL; 352 size_t requested_bytes = 0; 353 size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE); 354 355 nfs_pageio_init_read(&desc, dreq->inode, false, 356 &nfs_direct_read_completion_ops); 357 get_dreq(dreq); 358 desc.pg_dreq = dreq; 359 inode_dio_begin(inode); 360 361 while (iov_iter_count(iter)) { 362 struct page **pagevec; 363 size_t bytes; 364 size_t pgbase; 365 unsigned npages, i; 366 367 result = iov_iter_get_pages_alloc2(iter, &pagevec, 368 rsize, &pgbase); 369 if (result < 0) 370 break; 371 372 bytes = result; 373 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE; 374 for (i = 0; i < npages; i++) { 375 struct nfs_page *req; 376 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase); 377 /* XXX do we need to do the eof zeroing found in async_filler? */ 378 req = nfs_create_request(dreq->ctx, pagevec[i], 379 pgbase, req_len); 380 if (IS_ERR(req)) { 381 result = PTR_ERR(req); 382 break; 383 } 384 req->wb_index = pos >> PAGE_SHIFT; 385 req->wb_offset = pos & ~PAGE_MASK; 386 if (!nfs_pageio_add_request(&desc, req)) { 387 result = desc.pg_error; 388 nfs_release_request(req); 389 break; 390 } 391 pgbase = 0; 392 bytes -= req_len; 393 requested_bytes += req_len; 394 pos += req_len; 395 dreq->bytes_left -= req_len; 396 } 397 nfs_direct_release_pages(pagevec, npages); 398 kvfree(pagevec); 399 if (result < 0) 400 break; 401 } 402 403 nfs_pageio_complete(&desc); 404 405 /* 406 * If no bytes were started, return the error, and let the 407 * generic layer handle the completion. 408 */ 409 if (requested_bytes == 0) { 410 inode_dio_end(inode); 411 nfs_direct_req_release(dreq); 412 return result < 0 ? result : -EIO; 413 } 414 415 if (put_dreq(dreq)) 416 nfs_direct_complete(dreq); 417 return requested_bytes; 418 } 419 420 /** 421 * nfs_file_direct_read - file direct read operation for NFS files 422 * @iocb: target I/O control block 423 * @iter: vector of user buffers into which to read data 424 * @swap: flag indicating this is swap IO, not O_DIRECT IO 425 * 426 * We use this function for direct reads instead of calling 427 * generic_file_aio_read() in order to avoid gfar's check to see if 428 * the request starts before the end of the file. For that check 429 * to work, we must generate a GETATTR before each direct read, and 430 * even then there is a window between the GETATTR and the subsequent 431 * READ where the file size could change. Our preference is simply 432 * to do all reads the application wants, and the server will take 433 * care of managing the end of file boundary. 434 * 435 * This function also eliminates unnecessarily updating the file's 436 * atime locally, as the NFS server sets the file's atime, and this 437 * client must read the updated atime from the server back into its 438 * cache. 439 */ 440 ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter, 441 bool swap) 442 { 443 struct file *file = iocb->ki_filp; 444 struct address_space *mapping = file->f_mapping; 445 struct inode *inode = mapping->host; 446 struct nfs_direct_req *dreq; 447 struct nfs_lock_context *l_ctx; 448 ssize_t result, requested; 449 size_t count = iov_iter_count(iter); 450 nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count); 451 452 dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n", 453 file, count, (long long) iocb->ki_pos); 454 455 result = 0; 456 if (!count) 457 goto out; 458 459 task_io_account_read(count); 460 461 result = -ENOMEM; 462 dreq = nfs_direct_req_alloc(); 463 if (dreq == NULL) 464 goto out; 465 466 dreq->inode = inode; 467 dreq->bytes_left = dreq->max_count = count; 468 dreq->io_start = iocb->ki_pos; 469 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp)); 470 l_ctx = nfs_get_lock_context(dreq->ctx); 471 if (IS_ERR(l_ctx)) { 472 result = PTR_ERR(l_ctx); 473 nfs_direct_req_release(dreq); 474 goto out_release; 475 } 476 dreq->l_ctx = l_ctx; 477 if (!is_sync_kiocb(iocb)) 478 dreq->iocb = iocb; 479 480 if (user_backed_iter(iter)) 481 dreq->flags = NFS_ODIRECT_SHOULD_DIRTY; 482 483 if (!swap) 484 nfs_start_io_direct(inode); 485 486 NFS_I(inode)->read_io += count; 487 requested = nfs_direct_read_schedule_iovec(dreq, iter, iocb->ki_pos); 488 489 if (!swap) 490 nfs_end_io_direct(inode); 491 492 if (requested > 0) { 493 result = nfs_direct_wait(dreq); 494 if (result > 0) { 495 requested -= result; 496 iocb->ki_pos += result; 497 } 498 iov_iter_revert(iter, requested); 499 } else { 500 result = requested; 501 } 502 503 out_release: 504 nfs_direct_req_release(dreq); 505 out: 506 return result; 507 } 508 509 static void 510 nfs_direct_join_group(struct list_head *list, struct inode *inode) 511 { 512 struct nfs_page *req, *next; 513 514 list_for_each_entry(req, list, wb_list) { 515 if (req->wb_head != req || req->wb_this_page == req) 516 continue; 517 for (next = req->wb_this_page; 518 next != req->wb_head; 519 next = next->wb_this_page) { 520 nfs_list_remove_request(next); 521 nfs_release_request(next); 522 } 523 nfs_join_page_group(req, inode); 524 } 525 } 526 527 static void 528 nfs_direct_write_scan_commit_list(struct inode *inode, 529 struct list_head *list, 530 struct nfs_commit_info *cinfo) 531 { 532 mutex_lock(&NFS_I(cinfo->inode)->commit_mutex); 533 pnfs_recover_commit_reqs(list, cinfo); 534 nfs_scan_commit_list(&cinfo->mds->list, list, cinfo, 0); 535 mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex); 536 } 537 538 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq) 539 { 540 struct nfs_pageio_descriptor desc; 541 struct nfs_page *req, *tmp; 542 LIST_HEAD(reqs); 543 struct nfs_commit_info cinfo; 544 LIST_HEAD(failed); 545 546 nfs_init_cinfo_from_dreq(&cinfo, dreq); 547 nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo); 548 549 nfs_direct_join_group(&reqs, dreq->inode); 550 551 dreq->count = 0; 552 dreq->max_count = 0; 553 list_for_each_entry(req, &reqs, wb_list) 554 dreq->max_count += req->wb_bytes; 555 nfs_clear_pnfs_ds_commit_verifiers(&dreq->ds_cinfo); 556 get_dreq(dreq); 557 558 nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false, 559 &nfs_direct_write_completion_ops); 560 desc.pg_dreq = dreq; 561 562 list_for_each_entry_safe(req, tmp, &reqs, wb_list) { 563 /* Bump the transmission count */ 564 req->wb_nio++; 565 if (!nfs_pageio_add_request(&desc, req)) { 566 nfs_list_move_request(req, &failed); 567 spin_lock(&cinfo.inode->i_lock); 568 dreq->flags = 0; 569 if (desc.pg_error < 0) 570 dreq->error = desc.pg_error; 571 else 572 dreq->error = -EIO; 573 spin_unlock(&cinfo.inode->i_lock); 574 } 575 nfs_release_request(req); 576 } 577 nfs_pageio_complete(&desc); 578 579 while (!list_empty(&failed)) { 580 req = nfs_list_entry(failed.next); 581 nfs_list_remove_request(req); 582 nfs_unlock_and_release_request(req); 583 } 584 585 if (put_dreq(dreq)) 586 nfs_direct_write_complete(dreq); 587 } 588 589 static void nfs_direct_commit_complete(struct nfs_commit_data *data) 590 { 591 const struct nfs_writeverf *verf = data->res.verf; 592 struct nfs_direct_req *dreq = data->dreq; 593 struct nfs_commit_info cinfo; 594 struct nfs_page *req; 595 int status = data->task.tk_status; 596 597 if (status < 0) { 598 /* Errors in commit are fatal */ 599 dreq->error = status; 600 dreq->max_count = 0; 601 dreq->count = 0; 602 dreq->flags = NFS_ODIRECT_DONE; 603 } else if (dreq->flags == NFS_ODIRECT_DONE) 604 status = dreq->error; 605 606 nfs_init_cinfo_from_dreq(&cinfo, dreq); 607 608 while (!list_empty(&data->pages)) { 609 req = nfs_list_entry(data->pages.next); 610 nfs_list_remove_request(req); 611 if (status >= 0 && !nfs_write_match_verf(verf, req)) { 612 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 613 /* 614 * Despite the reboot, the write was successful, 615 * so reset wb_nio. 616 */ 617 req->wb_nio = 0; 618 nfs_mark_request_commit(req, NULL, &cinfo, 0); 619 } else /* Error or match */ 620 nfs_release_request(req); 621 nfs_unlock_and_release_request(req); 622 } 623 624 if (nfs_commit_end(cinfo.mds)) 625 nfs_direct_write_complete(dreq); 626 } 627 628 static void nfs_direct_resched_write(struct nfs_commit_info *cinfo, 629 struct nfs_page *req) 630 { 631 struct nfs_direct_req *dreq = cinfo->dreq; 632 633 spin_lock(&dreq->lock); 634 if (dreq->flags != NFS_ODIRECT_DONE) 635 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 636 spin_unlock(&dreq->lock); 637 nfs_mark_request_commit(req, NULL, cinfo, 0); 638 } 639 640 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = { 641 .completion = nfs_direct_commit_complete, 642 .resched_write = nfs_direct_resched_write, 643 }; 644 645 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq) 646 { 647 int res; 648 struct nfs_commit_info cinfo; 649 LIST_HEAD(mds_list); 650 651 nfs_init_cinfo_from_dreq(&cinfo, dreq); 652 nfs_scan_commit(dreq->inode, &mds_list, &cinfo); 653 res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo); 654 if (res < 0) /* res == -ENOMEM */ 655 nfs_direct_write_reschedule(dreq); 656 } 657 658 static void nfs_direct_write_clear_reqs(struct nfs_direct_req *dreq) 659 { 660 struct nfs_commit_info cinfo; 661 struct nfs_page *req; 662 LIST_HEAD(reqs); 663 664 nfs_init_cinfo_from_dreq(&cinfo, dreq); 665 nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo); 666 667 while (!list_empty(&reqs)) { 668 req = nfs_list_entry(reqs.next); 669 nfs_list_remove_request(req); 670 nfs_release_request(req); 671 nfs_unlock_and_release_request(req); 672 } 673 } 674 675 static void nfs_direct_write_schedule_work(struct work_struct *work) 676 { 677 struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work); 678 int flags = dreq->flags; 679 680 dreq->flags = 0; 681 switch (flags) { 682 case NFS_ODIRECT_DO_COMMIT: 683 nfs_direct_commit_schedule(dreq); 684 break; 685 case NFS_ODIRECT_RESCHED_WRITES: 686 nfs_direct_write_reschedule(dreq); 687 break; 688 default: 689 nfs_direct_write_clear_reqs(dreq); 690 nfs_zap_mapping(dreq->inode, dreq->inode->i_mapping); 691 nfs_direct_complete(dreq); 692 } 693 } 694 695 static void nfs_direct_write_complete(struct nfs_direct_req *dreq) 696 { 697 queue_work(nfsiod_workqueue, &dreq->work); /* Calls nfs_direct_write_schedule_work */ 698 } 699 700 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr) 701 { 702 struct nfs_direct_req *dreq = hdr->dreq; 703 struct nfs_commit_info cinfo; 704 struct nfs_page *req = nfs_list_entry(hdr->pages.next); 705 int flags = NFS_ODIRECT_DONE; 706 707 nfs_init_cinfo_from_dreq(&cinfo, dreq); 708 709 spin_lock(&dreq->lock); 710 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) { 711 spin_unlock(&dreq->lock); 712 goto out_put; 713 } 714 715 nfs_direct_count_bytes(dreq, hdr); 716 if (hdr->good_bytes != 0 && nfs_write_need_commit(hdr)) { 717 if (!dreq->flags) 718 dreq->flags = NFS_ODIRECT_DO_COMMIT; 719 flags = dreq->flags; 720 } 721 spin_unlock(&dreq->lock); 722 723 while (!list_empty(&hdr->pages)) { 724 725 req = nfs_list_entry(hdr->pages.next); 726 nfs_list_remove_request(req); 727 if (flags == NFS_ODIRECT_DO_COMMIT) { 728 kref_get(&req->wb_kref); 729 memcpy(&req->wb_verf, &hdr->verf.verifier, 730 sizeof(req->wb_verf)); 731 nfs_mark_request_commit(req, hdr->lseg, &cinfo, 732 hdr->ds_commit_idx); 733 } else if (flags == NFS_ODIRECT_RESCHED_WRITES) { 734 kref_get(&req->wb_kref); 735 nfs_mark_request_commit(req, NULL, &cinfo, 0); 736 } 737 nfs_unlock_and_release_request(req); 738 } 739 740 out_put: 741 if (put_dreq(dreq)) 742 nfs_direct_write_complete(dreq); 743 hdr->release(hdr); 744 } 745 746 static void nfs_write_sync_pgio_error(struct list_head *head, int error) 747 { 748 struct nfs_page *req; 749 750 while (!list_empty(head)) { 751 req = nfs_list_entry(head->next); 752 nfs_list_remove_request(req); 753 nfs_unlock_and_release_request(req); 754 } 755 } 756 757 static void nfs_direct_write_reschedule_io(struct nfs_pgio_header *hdr) 758 { 759 struct nfs_direct_req *dreq = hdr->dreq; 760 761 spin_lock(&dreq->lock); 762 if (dreq->error == 0) { 763 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 764 /* fake unstable write to let common nfs resend pages */ 765 hdr->verf.committed = NFS_UNSTABLE; 766 hdr->good_bytes = hdr->args.offset + hdr->args.count - 767 hdr->io_start; 768 } 769 spin_unlock(&dreq->lock); 770 } 771 772 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = { 773 .error_cleanup = nfs_write_sync_pgio_error, 774 .init_hdr = nfs_direct_pgio_init, 775 .completion = nfs_direct_write_completion, 776 .reschedule_io = nfs_direct_write_reschedule_io, 777 }; 778 779 780 /* 781 * NB: Return the value of the first error return code. Subsequent 782 * errors after the first one are ignored. 783 */ 784 /* 785 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE 786 * operation. If nfs_writedata_alloc() or get_user_pages() fails, 787 * bail and stop sending more writes. Write length accounting is 788 * handled automatically by nfs_direct_write_result(). Otherwise, if 789 * no requests have been sent, just return an error. 790 */ 791 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq, 792 struct iov_iter *iter, 793 loff_t pos, int ioflags) 794 { 795 struct nfs_pageio_descriptor desc; 796 struct inode *inode = dreq->inode; 797 ssize_t result = 0; 798 size_t requested_bytes = 0; 799 size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE); 800 801 nfs_pageio_init_write(&desc, inode, ioflags, false, 802 &nfs_direct_write_completion_ops); 803 desc.pg_dreq = dreq; 804 get_dreq(dreq); 805 inode_dio_begin(inode); 806 807 NFS_I(inode)->write_io += iov_iter_count(iter); 808 while (iov_iter_count(iter)) { 809 struct page **pagevec; 810 size_t bytes; 811 size_t pgbase; 812 unsigned npages, i; 813 814 result = iov_iter_get_pages_alloc2(iter, &pagevec, 815 wsize, &pgbase); 816 if (result < 0) 817 break; 818 819 bytes = result; 820 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE; 821 for (i = 0; i < npages; i++) { 822 struct nfs_page *req; 823 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase); 824 825 req = nfs_create_request(dreq->ctx, pagevec[i], 826 pgbase, req_len); 827 if (IS_ERR(req)) { 828 result = PTR_ERR(req); 829 break; 830 } 831 832 if (desc.pg_error < 0) { 833 nfs_free_request(req); 834 result = desc.pg_error; 835 break; 836 } 837 838 nfs_lock_request(req); 839 req->wb_index = pos >> PAGE_SHIFT; 840 req->wb_offset = pos & ~PAGE_MASK; 841 if (!nfs_pageio_add_request(&desc, req)) { 842 result = desc.pg_error; 843 nfs_unlock_and_release_request(req); 844 break; 845 } 846 pgbase = 0; 847 bytes -= req_len; 848 requested_bytes += req_len; 849 pos += req_len; 850 dreq->bytes_left -= req_len; 851 } 852 nfs_direct_release_pages(pagevec, npages); 853 kvfree(pagevec); 854 if (result < 0) 855 break; 856 } 857 nfs_pageio_complete(&desc); 858 859 /* 860 * If no bytes were started, return the error, and let the 861 * generic layer handle the completion. 862 */ 863 if (requested_bytes == 0) { 864 inode_dio_end(inode); 865 nfs_direct_req_release(dreq); 866 return result < 0 ? result : -EIO; 867 } 868 869 if (put_dreq(dreq)) 870 nfs_direct_write_complete(dreq); 871 return requested_bytes; 872 } 873 874 /** 875 * nfs_file_direct_write - file direct write operation for NFS files 876 * @iocb: target I/O control block 877 * @iter: vector of user buffers from which to write data 878 * @swap: flag indicating this is swap IO, not O_DIRECT IO 879 * 880 * We use this function for direct writes instead of calling 881 * generic_file_aio_write() in order to avoid taking the inode 882 * semaphore and updating the i_size. The NFS server will set 883 * the new i_size and this client must read the updated size 884 * back into its cache. We let the server do generic write 885 * parameter checking and report problems. 886 * 887 * We eliminate local atime updates, see direct read above. 888 * 889 * We avoid unnecessary page cache invalidations for normal cached 890 * readers of this file. 891 * 892 * Note that O_APPEND is not supported for NFS direct writes, as there 893 * is no atomic O_APPEND write facility in the NFS protocol. 894 */ 895 ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter, 896 bool swap) 897 { 898 ssize_t result, requested; 899 size_t count; 900 struct file *file = iocb->ki_filp; 901 struct address_space *mapping = file->f_mapping; 902 struct inode *inode = mapping->host; 903 struct nfs_direct_req *dreq; 904 struct nfs_lock_context *l_ctx; 905 loff_t pos, end; 906 907 dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n", 908 file, iov_iter_count(iter), (long long) iocb->ki_pos); 909 910 if (swap) 911 /* bypass generic checks */ 912 result = iov_iter_count(iter); 913 else 914 result = generic_write_checks(iocb, iter); 915 if (result <= 0) 916 return result; 917 count = result; 918 nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count); 919 920 pos = iocb->ki_pos; 921 end = (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT; 922 923 task_io_account_write(count); 924 925 result = -ENOMEM; 926 dreq = nfs_direct_req_alloc(); 927 if (!dreq) 928 goto out; 929 930 dreq->inode = inode; 931 dreq->bytes_left = dreq->max_count = count; 932 dreq->io_start = pos; 933 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp)); 934 l_ctx = nfs_get_lock_context(dreq->ctx); 935 if (IS_ERR(l_ctx)) { 936 result = PTR_ERR(l_ctx); 937 nfs_direct_req_release(dreq); 938 goto out_release; 939 } 940 dreq->l_ctx = l_ctx; 941 if (!is_sync_kiocb(iocb)) 942 dreq->iocb = iocb; 943 pnfs_init_ds_commit_info_ops(&dreq->ds_cinfo, inode); 944 945 if (swap) { 946 requested = nfs_direct_write_schedule_iovec(dreq, iter, pos, 947 FLUSH_STABLE); 948 } else { 949 nfs_start_io_direct(inode); 950 951 requested = nfs_direct_write_schedule_iovec(dreq, iter, pos, 952 FLUSH_COND_STABLE); 953 954 if (mapping->nrpages) { 955 invalidate_inode_pages2_range(mapping, 956 pos >> PAGE_SHIFT, end); 957 } 958 959 nfs_end_io_direct(inode); 960 } 961 962 if (requested > 0) { 963 result = nfs_direct_wait(dreq); 964 if (result > 0) { 965 requested -= result; 966 iocb->ki_pos = pos + result; 967 /* XXX: should check the generic_write_sync retval */ 968 generic_write_sync(iocb, result); 969 } 970 iov_iter_revert(iter, requested); 971 } else { 972 result = requested; 973 } 974 nfs_fscache_invalidate(inode, FSCACHE_INVAL_DIO_WRITE); 975 out_release: 976 nfs_direct_req_release(dreq); 977 out: 978 return result; 979 } 980 981 /** 982 * nfs_init_directcache - create a slab cache for nfs_direct_req structures 983 * 984 */ 985 int __init nfs_init_directcache(void) 986 { 987 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache", 988 sizeof(struct nfs_direct_req), 989 0, (SLAB_RECLAIM_ACCOUNT| 990 SLAB_MEM_SPREAD), 991 NULL); 992 if (nfs_direct_cachep == NULL) 993 return -ENOMEM; 994 995 return 0; 996 } 997 998 /** 999 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures 1000 * 1001 */ 1002 void nfs_destroy_directcache(void) 1003 { 1004 kmem_cache_destroy(nfs_direct_cachep); 1005 } 1006