1 /* 2 * linux/fs/nfs/direct.c 3 * 4 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com> 5 * 6 * High-performance uncached I/O for the Linux NFS client 7 * 8 * There are important applications whose performance or correctness 9 * depends on uncached access to file data. Database clusters 10 * (multiple copies of the same instance running on separate hosts) 11 * implement their own cache coherency protocol that subsumes file 12 * system cache protocols. Applications that process datasets 13 * considerably larger than the client's memory do not always benefit 14 * from a local cache. A streaming video server, for instance, has no 15 * need to cache the contents of a file. 16 * 17 * When an application requests uncached I/O, all read and write requests 18 * are made directly to the server; data stored or fetched via these 19 * requests is not cached in the Linux page cache. The client does not 20 * correct unaligned requests from applications. All requested bytes are 21 * held on permanent storage before a direct write system call returns to 22 * an application. 23 * 24 * Solaris implements an uncached I/O facility called directio() that 25 * is used for backups and sequential I/O to very large files. Solaris 26 * also supports uncaching whole NFS partitions with "-o forcedirectio," 27 * an undocumented mount option. 28 * 29 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with 30 * help from Andrew Morton. 31 * 32 * 18 Dec 2001 Initial implementation for 2.4 --cel 33 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy 34 * 08 Jun 2003 Port to 2.5 APIs --cel 35 * 31 Mar 2004 Handle direct I/O without VFS support --cel 36 * 15 Sep 2004 Parallel async reads --cel 37 * 04 May 2005 support O_DIRECT with aio --cel 38 * 39 */ 40 41 #include <linux/errno.h> 42 #include <linux/sched.h> 43 #include <linux/kernel.h> 44 #include <linux/file.h> 45 #include <linux/pagemap.h> 46 #include <linux/kref.h> 47 #include <linux/slab.h> 48 #include <linux/task_io_accounting_ops.h> 49 #include <linux/module.h> 50 51 #include <linux/nfs_fs.h> 52 #include <linux/nfs_page.h> 53 #include <linux/sunrpc/clnt.h> 54 55 #include <asm/uaccess.h> 56 #include <linux/atomic.h> 57 58 #include "internal.h" 59 #include "iostat.h" 60 #include "pnfs.h" 61 62 #define NFSDBG_FACILITY NFSDBG_VFS 63 64 static struct kmem_cache *nfs_direct_cachep; 65 66 /* 67 * This represents a set of asynchronous requests that we're waiting on 68 */ 69 struct nfs_direct_req { 70 struct kref kref; /* release manager */ 71 72 /* I/O parameters */ 73 struct nfs_open_context *ctx; /* file open context info */ 74 struct nfs_lock_context *l_ctx; /* Lock context info */ 75 struct kiocb * iocb; /* controlling i/o request */ 76 struct inode * inode; /* target file of i/o */ 77 78 /* completion state */ 79 atomic_t io_count; /* i/os we're waiting for */ 80 spinlock_t lock; /* protect completion state */ 81 ssize_t count, /* bytes actually processed */ 82 bytes_left, /* bytes left to be sent */ 83 error; /* any reported error */ 84 struct completion completion; /* wait for i/o completion */ 85 86 /* commit state */ 87 struct nfs_mds_commit_info mds_cinfo; /* Storage for cinfo */ 88 struct pnfs_ds_commit_info ds_cinfo; /* Storage for cinfo */ 89 struct work_struct work; 90 int flags; 91 #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */ 92 #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */ 93 struct nfs_writeverf verf; /* unstable write verifier */ 94 }; 95 96 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops; 97 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops; 98 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode); 99 static void nfs_direct_write_schedule_work(struct work_struct *work); 100 101 static inline void get_dreq(struct nfs_direct_req *dreq) 102 { 103 atomic_inc(&dreq->io_count); 104 } 105 106 static inline int put_dreq(struct nfs_direct_req *dreq) 107 { 108 return atomic_dec_and_test(&dreq->io_count); 109 } 110 111 /** 112 * nfs_direct_IO - NFS address space operation for direct I/O 113 * @rw: direction (read or write) 114 * @iocb: target I/O control block 115 * @iov: array of vectors that define I/O buffer 116 * @pos: offset in file to begin the operation 117 * @nr_segs: size of iovec array 118 * 119 * The presence of this routine in the address space ops vector means 120 * the NFS client supports direct I/O. However, for most direct IO, we 121 * shunt off direct read and write requests before the VFS gets them, 122 * so this method is only ever called for swap. 123 */ 124 ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs) 125 { 126 #ifndef CONFIG_NFS_SWAP 127 dprintk("NFS: nfs_direct_IO (%s) off/no(%Ld/%lu) EINVAL\n", 128 iocb->ki_filp->f_path.dentry->d_name.name, 129 (long long) pos, nr_segs); 130 131 return -EINVAL; 132 #else 133 VM_BUG_ON(iocb->ki_nbytes != PAGE_SIZE); 134 135 if (rw == READ || rw == KERNEL_READ) 136 return nfs_file_direct_read(iocb, iov, nr_segs, pos, 137 rw == READ ? true : false); 138 return nfs_file_direct_write(iocb, iov, nr_segs, pos, 139 rw == WRITE ? true : false); 140 #endif /* CONFIG_NFS_SWAP */ 141 } 142 143 static void nfs_direct_release_pages(struct page **pages, unsigned int npages) 144 { 145 unsigned int i; 146 for (i = 0; i < npages; i++) 147 page_cache_release(pages[i]); 148 } 149 150 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo, 151 struct nfs_direct_req *dreq) 152 { 153 cinfo->lock = &dreq->lock; 154 cinfo->mds = &dreq->mds_cinfo; 155 cinfo->ds = &dreq->ds_cinfo; 156 cinfo->dreq = dreq; 157 cinfo->completion_ops = &nfs_direct_commit_completion_ops; 158 } 159 160 static inline struct nfs_direct_req *nfs_direct_req_alloc(void) 161 { 162 struct nfs_direct_req *dreq; 163 164 dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL); 165 if (!dreq) 166 return NULL; 167 168 kref_init(&dreq->kref); 169 kref_get(&dreq->kref); 170 init_completion(&dreq->completion); 171 INIT_LIST_HEAD(&dreq->mds_cinfo.list); 172 INIT_WORK(&dreq->work, nfs_direct_write_schedule_work); 173 spin_lock_init(&dreq->lock); 174 175 return dreq; 176 } 177 178 static void nfs_direct_req_free(struct kref *kref) 179 { 180 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref); 181 182 if (dreq->l_ctx != NULL) 183 nfs_put_lock_context(dreq->l_ctx); 184 if (dreq->ctx != NULL) 185 put_nfs_open_context(dreq->ctx); 186 kmem_cache_free(nfs_direct_cachep, dreq); 187 } 188 189 static void nfs_direct_req_release(struct nfs_direct_req *dreq) 190 { 191 kref_put(&dreq->kref, nfs_direct_req_free); 192 } 193 194 ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq) 195 { 196 return dreq->bytes_left; 197 } 198 EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left); 199 200 /* 201 * Collects and returns the final error value/byte-count. 202 */ 203 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq) 204 { 205 ssize_t result = -EIOCBQUEUED; 206 207 /* Async requests don't wait here */ 208 if (dreq->iocb) 209 goto out; 210 211 result = wait_for_completion_killable(&dreq->completion); 212 213 if (!result) 214 result = dreq->error; 215 if (!result) 216 result = dreq->count; 217 218 out: 219 return (ssize_t) result; 220 } 221 222 /* 223 * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust 224 * the iocb is still valid here if this is a synchronous request. 225 */ 226 static void nfs_direct_complete(struct nfs_direct_req *dreq) 227 { 228 if (dreq->iocb) { 229 long res = (long) dreq->error; 230 if (!res) 231 res = (long) dreq->count; 232 aio_complete(dreq->iocb, res, 0); 233 } 234 complete_all(&dreq->completion); 235 236 nfs_direct_req_release(dreq); 237 } 238 239 static void nfs_direct_readpage_release(struct nfs_page *req) 240 { 241 dprintk("NFS: direct read done (%s/%lld %d@%lld)\n", 242 req->wb_context->dentry->d_inode->i_sb->s_id, 243 (long long)NFS_FILEID(req->wb_context->dentry->d_inode), 244 req->wb_bytes, 245 (long long)req_offset(req)); 246 nfs_release_request(req); 247 } 248 249 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr) 250 { 251 unsigned long bytes = 0; 252 struct nfs_direct_req *dreq = hdr->dreq; 253 254 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) 255 goto out_put; 256 257 spin_lock(&dreq->lock); 258 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0)) 259 dreq->error = hdr->error; 260 else 261 dreq->count += hdr->good_bytes; 262 spin_unlock(&dreq->lock); 263 264 while (!list_empty(&hdr->pages)) { 265 struct nfs_page *req = nfs_list_entry(hdr->pages.next); 266 struct page *page = req->wb_page; 267 268 if (!PageCompound(page) && bytes < hdr->good_bytes) 269 set_page_dirty(page); 270 bytes += req->wb_bytes; 271 nfs_list_remove_request(req); 272 nfs_direct_readpage_release(req); 273 } 274 out_put: 275 if (put_dreq(dreq)) 276 nfs_direct_complete(dreq); 277 hdr->release(hdr); 278 } 279 280 static void nfs_read_sync_pgio_error(struct list_head *head) 281 { 282 struct nfs_page *req; 283 284 while (!list_empty(head)) { 285 req = nfs_list_entry(head->next); 286 nfs_list_remove_request(req); 287 nfs_release_request(req); 288 } 289 } 290 291 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr) 292 { 293 get_dreq(hdr->dreq); 294 } 295 296 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = { 297 .error_cleanup = nfs_read_sync_pgio_error, 298 .init_hdr = nfs_direct_pgio_init, 299 .completion = nfs_direct_read_completion, 300 }; 301 302 /* 303 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ 304 * operation. If nfs_readdata_alloc() or get_user_pages() fails, 305 * bail and stop sending more reads. Read length accounting is 306 * handled automatically by nfs_direct_read_result(). Otherwise, if 307 * no requests have been sent, just return an error. 308 */ 309 static ssize_t nfs_direct_read_schedule_segment(struct nfs_pageio_descriptor *desc, 310 const struct iovec *iov, 311 loff_t pos, bool uio) 312 { 313 struct nfs_direct_req *dreq = desc->pg_dreq; 314 struct nfs_open_context *ctx = dreq->ctx; 315 struct inode *inode = ctx->dentry->d_inode; 316 unsigned long user_addr = (unsigned long)iov->iov_base; 317 size_t count = iov->iov_len; 318 size_t rsize = NFS_SERVER(inode)->rsize; 319 unsigned int pgbase; 320 int result; 321 ssize_t started = 0; 322 struct page **pagevec = NULL; 323 unsigned int npages; 324 325 do { 326 size_t bytes; 327 int i; 328 329 pgbase = user_addr & ~PAGE_MASK; 330 bytes = min(max_t(size_t, rsize, PAGE_SIZE), count); 331 332 result = -ENOMEM; 333 npages = nfs_page_array_len(pgbase, bytes); 334 if (!pagevec) 335 pagevec = kmalloc(npages * sizeof(struct page *), 336 GFP_KERNEL); 337 if (!pagevec) 338 break; 339 if (uio) { 340 down_read(¤t->mm->mmap_sem); 341 result = get_user_pages(current, current->mm, user_addr, 342 npages, 1, 0, pagevec, NULL); 343 up_read(¤t->mm->mmap_sem); 344 if (result < 0) 345 break; 346 } else { 347 WARN_ON(npages != 1); 348 result = get_kernel_page(user_addr, 1, pagevec); 349 if (WARN_ON(result != 1)) 350 break; 351 } 352 353 if ((unsigned)result < npages) { 354 bytes = result * PAGE_SIZE; 355 if (bytes <= pgbase) { 356 nfs_direct_release_pages(pagevec, result); 357 break; 358 } 359 bytes -= pgbase; 360 npages = result; 361 } 362 363 for (i = 0; i < npages; i++) { 364 struct nfs_page *req; 365 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase); 366 /* XXX do we need to do the eof zeroing found in async_filler? */ 367 req = nfs_create_request(dreq->ctx, dreq->inode, 368 pagevec[i], 369 pgbase, req_len); 370 if (IS_ERR(req)) { 371 result = PTR_ERR(req); 372 break; 373 } 374 req->wb_index = pos >> PAGE_SHIFT; 375 req->wb_offset = pos & ~PAGE_MASK; 376 if (!nfs_pageio_add_request(desc, req)) { 377 result = desc->pg_error; 378 nfs_release_request(req); 379 break; 380 } 381 pgbase = 0; 382 bytes -= req_len; 383 started += req_len; 384 user_addr += req_len; 385 pos += req_len; 386 count -= req_len; 387 dreq->bytes_left -= req_len; 388 } 389 /* The nfs_page now hold references to these pages */ 390 nfs_direct_release_pages(pagevec, npages); 391 } while (count != 0 && result >= 0); 392 393 kfree(pagevec); 394 395 if (started) 396 return started; 397 return result < 0 ? (ssize_t) result : -EFAULT; 398 } 399 400 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq, 401 const struct iovec *iov, 402 unsigned long nr_segs, 403 loff_t pos, bool uio) 404 { 405 struct nfs_pageio_descriptor desc; 406 ssize_t result = -EINVAL; 407 size_t requested_bytes = 0; 408 unsigned long seg; 409 410 NFS_PROTO(dreq->inode)->read_pageio_init(&desc, dreq->inode, 411 &nfs_direct_read_completion_ops); 412 get_dreq(dreq); 413 desc.pg_dreq = dreq; 414 415 for (seg = 0; seg < nr_segs; seg++) { 416 const struct iovec *vec = &iov[seg]; 417 result = nfs_direct_read_schedule_segment(&desc, vec, pos, uio); 418 if (result < 0) 419 break; 420 requested_bytes += result; 421 if ((size_t)result < vec->iov_len) 422 break; 423 pos += vec->iov_len; 424 } 425 426 nfs_pageio_complete(&desc); 427 428 /* 429 * If no bytes were started, return the error, and let the 430 * generic layer handle the completion. 431 */ 432 if (requested_bytes == 0) { 433 nfs_direct_req_release(dreq); 434 return result < 0 ? result : -EIO; 435 } 436 437 if (put_dreq(dreq)) 438 nfs_direct_complete(dreq); 439 return 0; 440 } 441 442 static ssize_t nfs_direct_read(struct kiocb *iocb, const struct iovec *iov, 443 unsigned long nr_segs, loff_t pos, bool uio) 444 { 445 ssize_t result = -ENOMEM; 446 struct inode *inode = iocb->ki_filp->f_mapping->host; 447 struct nfs_direct_req *dreq; 448 struct nfs_lock_context *l_ctx; 449 450 dreq = nfs_direct_req_alloc(); 451 if (dreq == NULL) 452 goto out; 453 454 dreq->inode = inode; 455 dreq->bytes_left = iov_length(iov, nr_segs); 456 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp)); 457 l_ctx = nfs_get_lock_context(dreq->ctx); 458 if (IS_ERR(l_ctx)) { 459 result = PTR_ERR(l_ctx); 460 goto out_release; 461 } 462 dreq->l_ctx = l_ctx; 463 if (!is_sync_kiocb(iocb)) 464 dreq->iocb = iocb; 465 466 NFS_I(inode)->read_io += iov_length(iov, nr_segs); 467 result = nfs_direct_read_schedule_iovec(dreq, iov, nr_segs, pos, uio); 468 if (!result) 469 result = nfs_direct_wait(dreq); 470 out_release: 471 nfs_direct_req_release(dreq); 472 out: 473 return result; 474 } 475 476 static void nfs_inode_dio_write_done(struct inode *inode) 477 { 478 nfs_zap_mapping(inode, inode->i_mapping); 479 inode_dio_done(inode); 480 } 481 482 #if IS_ENABLED(CONFIG_NFS_V3) || IS_ENABLED(CONFIG_NFS_V4) 483 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq) 484 { 485 struct nfs_pageio_descriptor desc; 486 struct nfs_page *req, *tmp; 487 LIST_HEAD(reqs); 488 struct nfs_commit_info cinfo; 489 LIST_HEAD(failed); 490 491 nfs_init_cinfo_from_dreq(&cinfo, dreq); 492 pnfs_recover_commit_reqs(dreq->inode, &reqs, &cinfo); 493 spin_lock(cinfo.lock); 494 nfs_scan_commit_list(&cinfo.mds->list, &reqs, &cinfo, 0); 495 spin_unlock(cinfo.lock); 496 497 dreq->count = 0; 498 get_dreq(dreq); 499 500 NFS_PROTO(dreq->inode)->write_pageio_init(&desc, dreq->inode, FLUSH_STABLE, 501 &nfs_direct_write_completion_ops); 502 desc.pg_dreq = dreq; 503 504 list_for_each_entry_safe(req, tmp, &reqs, wb_list) { 505 if (!nfs_pageio_add_request(&desc, req)) { 506 nfs_list_remove_request(req); 507 nfs_list_add_request(req, &failed); 508 spin_lock(cinfo.lock); 509 dreq->flags = 0; 510 dreq->error = -EIO; 511 spin_unlock(cinfo.lock); 512 } 513 nfs_release_request(req); 514 } 515 nfs_pageio_complete(&desc); 516 517 while (!list_empty(&failed)) { 518 req = nfs_list_entry(failed.next); 519 nfs_list_remove_request(req); 520 nfs_unlock_and_release_request(req); 521 } 522 523 if (put_dreq(dreq)) 524 nfs_direct_write_complete(dreq, dreq->inode); 525 } 526 527 static void nfs_direct_commit_complete(struct nfs_commit_data *data) 528 { 529 struct nfs_direct_req *dreq = data->dreq; 530 struct nfs_commit_info cinfo; 531 struct nfs_page *req; 532 int status = data->task.tk_status; 533 534 nfs_init_cinfo_from_dreq(&cinfo, dreq); 535 if (status < 0) { 536 dprintk("NFS: %5u commit failed with error %d.\n", 537 data->task.tk_pid, status); 538 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 539 } else if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) { 540 dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid); 541 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 542 } 543 544 dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status); 545 while (!list_empty(&data->pages)) { 546 req = nfs_list_entry(data->pages.next); 547 nfs_list_remove_request(req); 548 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) { 549 /* Note the rewrite will go through mds */ 550 nfs_mark_request_commit(req, NULL, &cinfo); 551 } else 552 nfs_release_request(req); 553 nfs_unlock_and_release_request(req); 554 } 555 556 if (atomic_dec_and_test(&cinfo.mds->rpcs_out)) 557 nfs_direct_write_complete(dreq, data->inode); 558 } 559 560 static void nfs_direct_error_cleanup(struct nfs_inode *nfsi) 561 { 562 /* There is no lock to clear */ 563 } 564 565 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = { 566 .completion = nfs_direct_commit_complete, 567 .error_cleanup = nfs_direct_error_cleanup, 568 }; 569 570 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq) 571 { 572 int res; 573 struct nfs_commit_info cinfo; 574 LIST_HEAD(mds_list); 575 576 nfs_init_cinfo_from_dreq(&cinfo, dreq); 577 nfs_scan_commit(dreq->inode, &mds_list, &cinfo); 578 res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo); 579 if (res < 0) /* res == -ENOMEM */ 580 nfs_direct_write_reschedule(dreq); 581 } 582 583 static void nfs_direct_write_schedule_work(struct work_struct *work) 584 { 585 struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work); 586 int flags = dreq->flags; 587 588 dreq->flags = 0; 589 switch (flags) { 590 case NFS_ODIRECT_DO_COMMIT: 591 nfs_direct_commit_schedule(dreq); 592 break; 593 case NFS_ODIRECT_RESCHED_WRITES: 594 nfs_direct_write_reschedule(dreq); 595 break; 596 default: 597 nfs_inode_dio_write_done(dreq->inode); 598 nfs_direct_complete(dreq); 599 } 600 } 601 602 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode) 603 { 604 schedule_work(&dreq->work); /* Calls nfs_direct_write_schedule_work */ 605 } 606 607 #else 608 static void nfs_direct_write_schedule_work(struct work_struct *work) 609 { 610 } 611 612 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode) 613 { 614 nfs_inode_dio_write_done(inode); 615 nfs_direct_complete(dreq); 616 } 617 #endif 618 619 /* 620 * NB: Return the value of the first error return code. Subsequent 621 * errors after the first one are ignored. 622 */ 623 /* 624 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE 625 * operation. If nfs_writedata_alloc() or get_user_pages() fails, 626 * bail and stop sending more writes. Write length accounting is 627 * handled automatically by nfs_direct_write_result(). Otherwise, if 628 * no requests have been sent, just return an error. 629 */ 630 static ssize_t nfs_direct_write_schedule_segment(struct nfs_pageio_descriptor *desc, 631 const struct iovec *iov, 632 loff_t pos, bool uio) 633 { 634 struct nfs_direct_req *dreq = desc->pg_dreq; 635 struct nfs_open_context *ctx = dreq->ctx; 636 struct inode *inode = ctx->dentry->d_inode; 637 unsigned long user_addr = (unsigned long)iov->iov_base; 638 size_t count = iov->iov_len; 639 size_t wsize = NFS_SERVER(inode)->wsize; 640 unsigned int pgbase; 641 int result; 642 ssize_t started = 0; 643 struct page **pagevec = NULL; 644 unsigned int npages; 645 646 do { 647 size_t bytes; 648 int i; 649 650 pgbase = user_addr & ~PAGE_MASK; 651 bytes = min(max_t(size_t, wsize, PAGE_SIZE), count); 652 653 result = -ENOMEM; 654 npages = nfs_page_array_len(pgbase, bytes); 655 if (!pagevec) 656 pagevec = kmalloc(npages * sizeof(struct page *), GFP_KERNEL); 657 if (!pagevec) 658 break; 659 660 if (uio) { 661 down_read(¤t->mm->mmap_sem); 662 result = get_user_pages(current, current->mm, user_addr, 663 npages, 0, 0, pagevec, NULL); 664 up_read(¤t->mm->mmap_sem); 665 if (result < 0) 666 break; 667 } else { 668 WARN_ON(npages != 1); 669 result = get_kernel_page(user_addr, 0, pagevec); 670 if (WARN_ON(result != 1)) 671 break; 672 } 673 674 if ((unsigned)result < npages) { 675 bytes = result * PAGE_SIZE; 676 if (bytes <= pgbase) { 677 nfs_direct_release_pages(pagevec, result); 678 break; 679 } 680 bytes -= pgbase; 681 npages = result; 682 } 683 684 for (i = 0; i < npages; i++) { 685 struct nfs_page *req; 686 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase); 687 688 req = nfs_create_request(dreq->ctx, dreq->inode, 689 pagevec[i], 690 pgbase, req_len); 691 if (IS_ERR(req)) { 692 result = PTR_ERR(req); 693 break; 694 } 695 nfs_lock_request(req); 696 req->wb_index = pos >> PAGE_SHIFT; 697 req->wb_offset = pos & ~PAGE_MASK; 698 if (!nfs_pageio_add_request(desc, req)) { 699 result = desc->pg_error; 700 nfs_unlock_and_release_request(req); 701 break; 702 } 703 pgbase = 0; 704 bytes -= req_len; 705 started += req_len; 706 user_addr += req_len; 707 pos += req_len; 708 count -= req_len; 709 dreq->bytes_left -= req_len; 710 } 711 /* The nfs_page now hold references to these pages */ 712 nfs_direct_release_pages(pagevec, npages); 713 } while (count != 0 && result >= 0); 714 715 kfree(pagevec); 716 717 if (started) 718 return started; 719 return result < 0 ? (ssize_t) result : -EFAULT; 720 } 721 722 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr) 723 { 724 struct nfs_direct_req *dreq = hdr->dreq; 725 struct nfs_commit_info cinfo; 726 int bit = -1; 727 struct nfs_page *req = nfs_list_entry(hdr->pages.next); 728 729 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) 730 goto out_put; 731 732 nfs_init_cinfo_from_dreq(&cinfo, dreq); 733 734 spin_lock(&dreq->lock); 735 736 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) { 737 dreq->flags = 0; 738 dreq->error = hdr->error; 739 } 740 if (dreq->error != 0) 741 bit = NFS_IOHDR_ERROR; 742 else { 743 dreq->count += hdr->good_bytes; 744 if (test_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags)) { 745 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 746 bit = NFS_IOHDR_NEED_RESCHED; 747 } else if (test_bit(NFS_IOHDR_NEED_COMMIT, &hdr->flags)) { 748 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) 749 bit = NFS_IOHDR_NEED_RESCHED; 750 else if (dreq->flags == 0) { 751 memcpy(&dreq->verf, hdr->verf, 752 sizeof(dreq->verf)); 753 bit = NFS_IOHDR_NEED_COMMIT; 754 dreq->flags = NFS_ODIRECT_DO_COMMIT; 755 } else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) { 756 if (memcmp(&dreq->verf, hdr->verf, sizeof(dreq->verf))) { 757 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 758 bit = NFS_IOHDR_NEED_RESCHED; 759 } else 760 bit = NFS_IOHDR_NEED_COMMIT; 761 } 762 } 763 } 764 spin_unlock(&dreq->lock); 765 766 while (!list_empty(&hdr->pages)) { 767 req = nfs_list_entry(hdr->pages.next); 768 nfs_list_remove_request(req); 769 switch (bit) { 770 case NFS_IOHDR_NEED_RESCHED: 771 case NFS_IOHDR_NEED_COMMIT: 772 kref_get(&req->wb_kref); 773 nfs_mark_request_commit(req, hdr->lseg, &cinfo); 774 } 775 nfs_unlock_and_release_request(req); 776 } 777 778 out_put: 779 if (put_dreq(dreq)) 780 nfs_direct_write_complete(dreq, hdr->inode); 781 hdr->release(hdr); 782 } 783 784 static void nfs_write_sync_pgio_error(struct list_head *head) 785 { 786 struct nfs_page *req; 787 788 while (!list_empty(head)) { 789 req = nfs_list_entry(head->next); 790 nfs_list_remove_request(req); 791 nfs_unlock_and_release_request(req); 792 } 793 } 794 795 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = { 796 .error_cleanup = nfs_write_sync_pgio_error, 797 .init_hdr = nfs_direct_pgio_init, 798 .completion = nfs_direct_write_completion, 799 }; 800 801 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq, 802 const struct iovec *iov, 803 unsigned long nr_segs, 804 loff_t pos, bool uio) 805 { 806 struct nfs_pageio_descriptor desc; 807 struct inode *inode = dreq->inode; 808 ssize_t result = 0; 809 size_t requested_bytes = 0; 810 unsigned long seg; 811 812 NFS_PROTO(inode)->write_pageio_init(&desc, inode, FLUSH_COND_STABLE, 813 &nfs_direct_write_completion_ops); 814 desc.pg_dreq = dreq; 815 get_dreq(dreq); 816 atomic_inc(&inode->i_dio_count); 817 818 NFS_I(dreq->inode)->write_io += iov_length(iov, nr_segs); 819 for (seg = 0; seg < nr_segs; seg++) { 820 const struct iovec *vec = &iov[seg]; 821 result = nfs_direct_write_schedule_segment(&desc, vec, pos, uio); 822 if (result < 0) 823 break; 824 requested_bytes += result; 825 if ((size_t)result < vec->iov_len) 826 break; 827 pos += vec->iov_len; 828 } 829 nfs_pageio_complete(&desc); 830 831 /* 832 * If no bytes were started, return the error, and let the 833 * generic layer handle the completion. 834 */ 835 if (requested_bytes == 0) { 836 inode_dio_done(inode); 837 nfs_direct_req_release(dreq); 838 return result < 0 ? result : -EIO; 839 } 840 841 if (put_dreq(dreq)) 842 nfs_direct_write_complete(dreq, dreq->inode); 843 return 0; 844 } 845 846 static ssize_t nfs_direct_write(struct kiocb *iocb, const struct iovec *iov, 847 unsigned long nr_segs, loff_t pos, 848 size_t count, bool uio) 849 { 850 ssize_t result = -ENOMEM; 851 struct inode *inode = iocb->ki_filp->f_mapping->host; 852 struct nfs_direct_req *dreq; 853 struct nfs_lock_context *l_ctx; 854 855 dreq = nfs_direct_req_alloc(); 856 if (!dreq) 857 goto out; 858 859 dreq->inode = inode; 860 dreq->bytes_left = count; 861 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp)); 862 l_ctx = nfs_get_lock_context(dreq->ctx); 863 if (IS_ERR(l_ctx)) { 864 result = PTR_ERR(l_ctx); 865 goto out_release; 866 } 867 dreq->l_ctx = l_ctx; 868 if (!is_sync_kiocb(iocb)) 869 dreq->iocb = iocb; 870 871 result = nfs_direct_write_schedule_iovec(dreq, iov, nr_segs, pos, uio); 872 if (!result) 873 result = nfs_direct_wait(dreq); 874 out_release: 875 nfs_direct_req_release(dreq); 876 out: 877 return result; 878 } 879 880 /** 881 * nfs_file_direct_read - file direct read operation for NFS files 882 * @iocb: target I/O control block 883 * @iov: vector of user buffers into which to read data 884 * @nr_segs: size of iov vector 885 * @pos: byte offset in file where reading starts 886 * 887 * We use this function for direct reads instead of calling 888 * generic_file_aio_read() in order to avoid gfar's check to see if 889 * the request starts before the end of the file. For that check 890 * to work, we must generate a GETATTR before each direct read, and 891 * even then there is a window between the GETATTR and the subsequent 892 * READ where the file size could change. Our preference is simply 893 * to do all reads the application wants, and the server will take 894 * care of managing the end of file boundary. 895 * 896 * This function also eliminates unnecessarily updating the file's 897 * atime locally, as the NFS server sets the file's atime, and this 898 * client must read the updated atime from the server back into its 899 * cache. 900 */ 901 ssize_t nfs_file_direct_read(struct kiocb *iocb, const struct iovec *iov, 902 unsigned long nr_segs, loff_t pos, bool uio) 903 { 904 ssize_t retval = -EINVAL; 905 struct file *file = iocb->ki_filp; 906 struct address_space *mapping = file->f_mapping; 907 size_t count; 908 909 count = iov_length(iov, nr_segs); 910 nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count); 911 912 dfprintk(FILE, "NFS: direct read(%s/%s, %zd@%Ld)\n", 913 file->f_path.dentry->d_parent->d_name.name, 914 file->f_path.dentry->d_name.name, 915 count, (long long) pos); 916 917 retval = 0; 918 if (!count) 919 goto out; 920 921 retval = nfs_sync_mapping(mapping); 922 if (retval) 923 goto out; 924 925 task_io_account_read(count); 926 927 retval = nfs_direct_read(iocb, iov, nr_segs, pos, uio); 928 if (retval > 0) 929 iocb->ki_pos = pos + retval; 930 931 out: 932 return retval; 933 } 934 935 /** 936 * nfs_file_direct_write - file direct write operation for NFS files 937 * @iocb: target I/O control block 938 * @iov: vector of user buffers from which to write data 939 * @nr_segs: size of iov vector 940 * @pos: byte offset in file where writing starts 941 * 942 * We use this function for direct writes instead of calling 943 * generic_file_aio_write() in order to avoid taking the inode 944 * semaphore and updating the i_size. The NFS server will set 945 * the new i_size and this client must read the updated size 946 * back into its cache. We let the server do generic write 947 * parameter checking and report problems. 948 * 949 * We eliminate local atime updates, see direct read above. 950 * 951 * We avoid unnecessary page cache invalidations for normal cached 952 * readers of this file. 953 * 954 * Note that O_APPEND is not supported for NFS direct writes, as there 955 * is no atomic O_APPEND write facility in the NFS protocol. 956 */ 957 ssize_t nfs_file_direct_write(struct kiocb *iocb, const struct iovec *iov, 958 unsigned long nr_segs, loff_t pos, bool uio) 959 { 960 ssize_t retval = -EINVAL; 961 struct file *file = iocb->ki_filp; 962 struct address_space *mapping = file->f_mapping; 963 size_t count; 964 965 count = iov_length(iov, nr_segs); 966 nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count); 967 968 dfprintk(FILE, "NFS: direct write(%s/%s, %zd@%Ld)\n", 969 file->f_path.dentry->d_parent->d_name.name, 970 file->f_path.dentry->d_name.name, 971 count, (long long) pos); 972 973 retval = generic_write_checks(file, &pos, &count, 0); 974 if (retval) 975 goto out; 976 977 retval = -EINVAL; 978 if ((ssize_t) count < 0) 979 goto out; 980 retval = 0; 981 if (!count) 982 goto out; 983 984 retval = nfs_sync_mapping(mapping); 985 if (retval) 986 goto out; 987 988 task_io_account_write(count); 989 990 retval = nfs_direct_write(iocb, iov, nr_segs, pos, count, uio); 991 if (retval > 0) { 992 struct inode *inode = mapping->host; 993 994 iocb->ki_pos = pos + retval; 995 spin_lock(&inode->i_lock); 996 if (i_size_read(inode) < iocb->ki_pos) 997 i_size_write(inode, iocb->ki_pos); 998 spin_unlock(&inode->i_lock); 999 } 1000 out: 1001 return retval; 1002 } 1003 1004 /** 1005 * nfs_init_directcache - create a slab cache for nfs_direct_req structures 1006 * 1007 */ 1008 int __init nfs_init_directcache(void) 1009 { 1010 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache", 1011 sizeof(struct nfs_direct_req), 1012 0, (SLAB_RECLAIM_ACCOUNT| 1013 SLAB_MEM_SPREAD), 1014 NULL); 1015 if (nfs_direct_cachep == NULL) 1016 return -ENOMEM; 1017 1018 return 0; 1019 } 1020 1021 /** 1022 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures 1023 * 1024 */ 1025 void nfs_destroy_directcache(void) 1026 { 1027 kmem_cache_destroy(nfs_direct_cachep); 1028 } 1029