xref: /openbmc/linux/fs/nfs/dir.c (revision ff81dfb5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/nfs/dir.c
4  *
5  *  Copyright (C) 1992  Rick Sladkey
6  *
7  *  nfs directory handling functions
8  *
9  * 10 Apr 1996	Added silly rename for unlink	--okir
10  * 28 Sep 1996	Improved directory cache --okir
11  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
12  *              Re-implemented silly rename for unlink, newly implemented
13  *              silly rename for nfs_rename() following the suggestions
14  *              of Olaf Kirch (okir) found in this file.
15  *              Following Linus comments on my original hack, this version
16  *              depends only on the dcache stuff and doesn't touch the inode
17  *              layer (iput() and friends).
18  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
19  */
20 
21 #include <linux/module.h>
22 #include <linux/time.h>
23 #include <linux/errno.h>
24 #include <linux/stat.h>
25 #include <linux/fcntl.h>
26 #include <linux/string.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/mm.h>
30 #include <linux/sunrpc/clnt.h>
31 #include <linux/nfs_fs.h>
32 #include <linux/nfs_mount.h>
33 #include <linux/pagemap.h>
34 #include <linux/pagevec.h>
35 #include <linux/namei.h>
36 #include <linux/mount.h>
37 #include <linux/swap.h>
38 #include <linux/sched.h>
39 #include <linux/kmemleak.h>
40 #include <linux/xattr.h>
41 
42 #include "delegation.h"
43 #include "iostat.h"
44 #include "internal.h"
45 #include "fscache.h"
46 
47 #include "nfstrace.h"
48 
49 /* #define NFS_DEBUG_VERBOSE 1 */
50 
51 static int nfs_opendir(struct inode *, struct file *);
52 static int nfs_closedir(struct inode *, struct file *);
53 static int nfs_readdir(struct file *, struct dir_context *);
54 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
55 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
56 static void nfs_readdir_clear_array(struct page*);
57 
58 const struct file_operations nfs_dir_operations = {
59 	.llseek		= nfs_llseek_dir,
60 	.read		= generic_read_dir,
61 	.iterate_shared	= nfs_readdir,
62 	.open		= nfs_opendir,
63 	.release	= nfs_closedir,
64 	.fsync		= nfs_fsync_dir,
65 };
66 
67 const struct address_space_operations nfs_dir_aops = {
68 	.freepage = nfs_readdir_clear_array,
69 };
70 
71 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir)
72 {
73 	struct nfs_inode *nfsi = NFS_I(dir);
74 	struct nfs_open_dir_context *ctx;
75 	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
76 	if (ctx != NULL) {
77 		ctx->duped = 0;
78 		ctx->attr_gencount = nfsi->attr_gencount;
79 		ctx->dir_cookie = 0;
80 		ctx->dup_cookie = 0;
81 		ctx->page_index = 0;
82 		spin_lock(&dir->i_lock);
83 		if (list_empty(&nfsi->open_files) &&
84 		    (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
85 			nfs_set_cache_invalid(dir,
86 					      NFS_INO_INVALID_DATA |
87 						      NFS_INO_REVAL_FORCED);
88 		list_add(&ctx->list, &nfsi->open_files);
89 		clear_bit(NFS_INO_FORCE_READDIR, &nfsi->flags);
90 		spin_unlock(&dir->i_lock);
91 		return ctx;
92 	}
93 	return  ERR_PTR(-ENOMEM);
94 }
95 
96 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
97 {
98 	spin_lock(&dir->i_lock);
99 	list_del(&ctx->list);
100 	spin_unlock(&dir->i_lock);
101 	kfree(ctx);
102 }
103 
104 /*
105  * Open file
106  */
107 static int
108 nfs_opendir(struct inode *inode, struct file *filp)
109 {
110 	int res = 0;
111 	struct nfs_open_dir_context *ctx;
112 
113 	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
114 
115 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
116 
117 	ctx = alloc_nfs_open_dir_context(inode);
118 	if (IS_ERR(ctx)) {
119 		res = PTR_ERR(ctx);
120 		goto out;
121 	}
122 	filp->private_data = ctx;
123 out:
124 	return res;
125 }
126 
127 static int
128 nfs_closedir(struct inode *inode, struct file *filp)
129 {
130 	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
131 	return 0;
132 }
133 
134 struct nfs_cache_array_entry {
135 	u64 cookie;
136 	u64 ino;
137 	const char *name;
138 	unsigned int name_len;
139 	unsigned char d_type;
140 };
141 
142 struct nfs_cache_array {
143 	u64 last_cookie;
144 	unsigned int size;
145 	unsigned char page_full : 1,
146 		      page_is_eof : 1,
147 		      cookies_are_ordered : 1;
148 	struct nfs_cache_array_entry array[];
149 };
150 
151 struct nfs_readdir_descriptor {
152 	struct file	*file;
153 	struct page	*page;
154 	struct dir_context *ctx;
155 	pgoff_t		page_index;
156 	u64		dir_cookie;
157 	u64		last_cookie;
158 	u64		dup_cookie;
159 	loff_t		current_index;
160 	loff_t		prev_index;
161 
162 	__be32		verf[NFS_DIR_VERIFIER_SIZE];
163 	unsigned long	dir_verifier;
164 	unsigned long	timestamp;
165 	unsigned long	gencount;
166 	unsigned long	attr_gencount;
167 	unsigned int	cache_entry_index;
168 	signed char duped;
169 	bool plus;
170 	bool eof;
171 };
172 
173 static void nfs_readdir_array_init(struct nfs_cache_array *array)
174 {
175 	memset(array, 0, sizeof(struct nfs_cache_array));
176 }
177 
178 static void nfs_readdir_page_init_array(struct page *page, u64 last_cookie)
179 {
180 	struct nfs_cache_array *array;
181 
182 	array = kmap_atomic(page);
183 	nfs_readdir_array_init(array);
184 	array->last_cookie = last_cookie;
185 	array->cookies_are_ordered = 1;
186 	kunmap_atomic(array);
187 }
188 
189 /*
190  * we are freeing strings created by nfs_add_to_readdir_array()
191  */
192 static
193 void nfs_readdir_clear_array(struct page *page)
194 {
195 	struct nfs_cache_array *array;
196 	int i;
197 
198 	array = kmap_atomic(page);
199 	for (i = 0; i < array->size; i++)
200 		kfree(array->array[i].name);
201 	nfs_readdir_array_init(array);
202 	kunmap_atomic(array);
203 }
204 
205 static struct page *
206 nfs_readdir_page_array_alloc(u64 last_cookie, gfp_t gfp_flags)
207 {
208 	struct page *page = alloc_page(gfp_flags);
209 	if (page)
210 		nfs_readdir_page_init_array(page, last_cookie);
211 	return page;
212 }
213 
214 static void nfs_readdir_page_array_free(struct page *page)
215 {
216 	if (page) {
217 		nfs_readdir_clear_array(page);
218 		put_page(page);
219 	}
220 }
221 
222 static void nfs_readdir_array_set_eof(struct nfs_cache_array *array)
223 {
224 	array->page_is_eof = 1;
225 	array->page_full = 1;
226 }
227 
228 static bool nfs_readdir_array_is_full(struct nfs_cache_array *array)
229 {
230 	return array->page_full;
231 }
232 
233 /*
234  * the caller is responsible for freeing qstr.name
235  * when called by nfs_readdir_add_to_array, the strings will be freed in
236  * nfs_clear_readdir_array()
237  */
238 static const char *nfs_readdir_copy_name(const char *name, unsigned int len)
239 {
240 	const char *ret = kmemdup_nul(name, len, GFP_KERNEL);
241 
242 	/*
243 	 * Avoid a kmemleak false positive. The pointer to the name is stored
244 	 * in a page cache page which kmemleak does not scan.
245 	 */
246 	if (ret != NULL)
247 		kmemleak_not_leak(ret);
248 	return ret;
249 }
250 
251 /*
252  * Check that the next array entry lies entirely within the page bounds
253  */
254 static int nfs_readdir_array_can_expand(struct nfs_cache_array *array)
255 {
256 	struct nfs_cache_array_entry *cache_entry;
257 
258 	if (array->page_full)
259 		return -ENOSPC;
260 	cache_entry = &array->array[array->size + 1];
261 	if ((char *)cache_entry - (char *)array > PAGE_SIZE) {
262 		array->page_full = 1;
263 		return -ENOSPC;
264 	}
265 	return 0;
266 }
267 
268 static
269 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
270 {
271 	struct nfs_cache_array *array;
272 	struct nfs_cache_array_entry *cache_entry;
273 	const char *name;
274 	int ret;
275 
276 	name = nfs_readdir_copy_name(entry->name, entry->len);
277 	if (!name)
278 		return -ENOMEM;
279 
280 	array = kmap_atomic(page);
281 	ret = nfs_readdir_array_can_expand(array);
282 	if (ret) {
283 		kfree(name);
284 		goto out;
285 	}
286 
287 	cache_entry = &array->array[array->size];
288 	cache_entry->cookie = entry->prev_cookie;
289 	cache_entry->ino = entry->ino;
290 	cache_entry->d_type = entry->d_type;
291 	cache_entry->name_len = entry->len;
292 	cache_entry->name = name;
293 	array->last_cookie = entry->cookie;
294 	if (array->last_cookie <= cache_entry->cookie)
295 		array->cookies_are_ordered = 0;
296 	array->size++;
297 	if (entry->eof != 0)
298 		nfs_readdir_array_set_eof(array);
299 out:
300 	kunmap_atomic(array);
301 	return ret;
302 }
303 
304 static struct page *nfs_readdir_page_get_locked(struct address_space *mapping,
305 						pgoff_t index, u64 last_cookie)
306 {
307 	struct page *page;
308 
309 	page = grab_cache_page(mapping, index);
310 	if (page && !PageUptodate(page)) {
311 		nfs_readdir_page_init_array(page, last_cookie);
312 		if (invalidate_inode_pages2_range(mapping, index + 1, -1) < 0)
313 			nfs_zap_mapping(mapping->host, mapping);
314 		SetPageUptodate(page);
315 	}
316 
317 	return page;
318 }
319 
320 static u64 nfs_readdir_page_last_cookie(struct page *page)
321 {
322 	struct nfs_cache_array *array;
323 	u64 ret;
324 
325 	array = kmap_atomic(page);
326 	ret = array->last_cookie;
327 	kunmap_atomic(array);
328 	return ret;
329 }
330 
331 static bool nfs_readdir_page_needs_filling(struct page *page)
332 {
333 	struct nfs_cache_array *array;
334 	bool ret;
335 
336 	array = kmap_atomic(page);
337 	ret = !nfs_readdir_array_is_full(array);
338 	kunmap_atomic(array);
339 	return ret;
340 }
341 
342 static void nfs_readdir_page_set_eof(struct page *page)
343 {
344 	struct nfs_cache_array *array;
345 
346 	array = kmap_atomic(page);
347 	nfs_readdir_array_set_eof(array);
348 	kunmap_atomic(array);
349 }
350 
351 static void nfs_readdir_page_unlock_and_put(struct page *page)
352 {
353 	unlock_page(page);
354 	put_page(page);
355 }
356 
357 static struct page *nfs_readdir_page_get_next(struct address_space *mapping,
358 					      pgoff_t index, u64 cookie)
359 {
360 	struct page *page;
361 
362 	page = nfs_readdir_page_get_locked(mapping, index, cookie);
363 	if (page) {
364 		if (nfs_readdir_page_last_cookie(page) == cookie)
365 			return page;
366 		nfs_readdir_page_unlock_and_put(page);
367 	}
368 	return NULL;
369 }
370 
371 static inline
372 int is_32bit_api(void)
373 {
374 #ifdef CONFIG_COMPAT
375 	return in_compat_syscall();
376 #else
377 	return (BITS_PER_LONG == 32);
378 #endif
379 }
380 
381 static
382 bool nfs_readdir_use_cookie(const struct file *filp)
383 {
384 	if ((filp->f_mode & FMODE_32BITHASH) ||
385 	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
386 		return false;
387 	return true;
388 }
389 
390 static int nfs_readdir_search_for_pos(struct nfs_cache_array *array,
391 				      struct nfs_readdir_descriptor *desc)
392 {
393 	loff_t diff = desc->ctx->pos - desc->current_index;
394 	unsigned int index;
395 
396 	if (diff < 0)
397 		goto out_eof;
398 	if (diff >= array->size) {
399 		if (array->page_is_eof)
400 			goto out_eof;
401 		return -EAGAIN;
402 	}
403 
404 	index = (unsigned int)diff;
405 	desc->dir_cookie = array->array[index].cookie;
406 	desc->cache_entry_index = index;
407 	return 0;
408 out_eof:
409 	desc->eof = true;
410 	return -EBADCOOKIE;
411 }
412 
413 static bool
414 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
415 {
416 	if (nfsi->cache_validity & (NFS_INO_INVALID_CHANGE |
417 				    NFS_INO_INVALID_DATA))
418 		return false;
419 	smp_rmb();
420 	return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
421 }
422 
423 static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array,
424 					      u64 cookie)
425 {
426 	if (!array->cookies_are_ordered)
427 		return true;
428 	/* Optimisation for monotonically increasing cookies */
429 	if (cookie >= array->last_cookie)
430 		return false;
431 	if (array->size && cookie < array->array[0].cookie)
432 		return false;
433 	return true;
434 }
435 
436 static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array,
437 					 struct nfs_readdir_descriptor *desc)
438 {
439 	int i;
440 	loff_t new_pos;
441 	int status = -EAGAIN;
442 
443 	if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie))
444 		goto check_eof;
445 
446 	for (i = 0; i < array->size; i++) {
447 		if (array->array[i].cookie == desc->dir_cookie) {
448 			struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
449 
450 			new_pos = desc->current_index + i;
451 			if (desc->attr_gencount != nfsi->attr_gencount ||
452 			    !nfs_readdir_inode_mapping_valid(nfsi)) {
453 				desc->duped = 0;
454 				desc->attr_gencount = nfsi->attr_gencount;
455 			} else if (new_pos < desc->prev_index) {
456 				if (desc->duped > 0
457 				    && desc->dup_cookie == desc->dir_cookie) {
458 					if (printk_ratelimit()) {
459 						pr_notice("NFS: directory %pD2 contains a readdir loop."
460 								"Please contact your server vendor.  "
461 								"The file: %s has duplicate cookie %llu\n",
462 								desc->file, array->array[i].name, desc->dir_cookie);
463 					}
464 					status = -ELOOP;
465 					goto out;
466 				}
467 				desc->dup_cookie = desc->dir_cookie;
468 				desc->duped = -1;
469 			}
470 			if (nfs_readdir_use_cookie(desc->file))
471 				desc->ctx->pos = desc->dir_cookie;
472 			else
473 				desc->ctx->pos = new_pos;
474 			desc->prev_index = new_pos;
475 			desc->cache_entry_index = i;
476 			return 0;
477 		}
478 	}
479 check_eof:
480 	if (array->page_is_eof) {
481 		status = -EBADCOOKIE;
482 		if (desc->dir_cookie == array->last_cookie)
483 			desc->eof = true;
484 	}
485 out:
486 	return status;
487 }
488 
489 static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc)
490 {
491 	struct nfs_cache_array *array;
492 	int status;
493 
494 	array = kmap_atomic(desc->page);
495 
496 	if (desc->dir_cookie == 0)
497 		status = nfs_readdir_search_for_pos(array, desc);
498 	else
499 		status = nfs_readdir_search_for_cookie(array, desc);
500 
501 	if (status == -EAGAIN) {
502 		desc->last_cookie = array->last_cookie;
503 		desc->current_index += array->size;
504 		desc->page_index++;
505 	}
506 	kunmap_atomic(array);
507 	return status;
508 }
509 
510 /* Fill a page with xdr information before transferring to the cache page */
511 static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc,
512 				  __be32 *verf, u64 cookie,
513 				  struct page **pages, size_t bufsize,
514 				  __be32 *verf_res)
515 {
516 	struct inode *inode = file_inode(desc->file);
517 	struct nfs_readdir_arg arg = {
518 		.dentry = file_dentry(desc->file),
519 		.cred = desc->file->f_cred,
520 		.verf = verf,
521 		.cookie = cookie,
522 		.pages = pages,
523 		.page_len = bufsize,
524 		.plus = desc->plus,
525 	};
526 	struct nfs_readdir_res res = {
527 		.verf = verf_res,
528 	};
529 	unsigned long	timestamp, gencount;
530 	int		error;
531 
532  again:
533 	timestamp = jiffies;
534 	gencount = nfs_inc_attr_generation_counter();
535 	desc->dir_verifier = nfs_save_change_attribute(inode);
536 	error = NFS_PROTO(inode)->readdir(&arg, &res);
537 	if (error < 0) {
538 		/* We requested READDIRPLUS, but the server doesn't grok it */
539 		if (error == -ENOTSUPP && desc->plus) {
540 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
541 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
542 			desc->plus = arg.plus = false;
543 			goto again;
544 		}
545 		goto error;
546 	}
547 	desc->timestamp = timestamp;
548 	desc->gencount = gencount;
549 error:
550 	return error;
551 }
552 
553 static int xdr_decode(struct nfs_readdir_descriptor *desc,
554 		      struct nfs_entry *entry, struct xdr_stream *xdr)
555 {
556 	struct inode *inode = file_inode(desc->file);
557 	int error;
558 
559 	error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
560 	if (error)
561 		return error;
562 	entry->fattr->time_start = desc->timestamp;
563 	entry->fattr->gencount = desc->gencount;
564 	return 0;
565 }
566 
567 /* Match file and dirent using either filehandle or fileid
568  * Note: caller is responsible for checking the fsid
569  */
570 static
571 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
572 {
573 	struct inode *inode;
574 	struct nfs_inode *nfsi;
575 
576 	if (d_really_is_negative(dentry))
577 		return 0;
578 
579 	inode = d_inode(dentry);
580 	if (is_bad_inode(inode) || NFS_STALE(inode))
581 		return 0;
582 
583 	nfsi = NFS_I(inode);
584 	if (entry->fattr->fileid != nfsi->fileid)
585 		return 0;
586 	if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
587 		return 0;
588 	return 1;
589 }
590 
591 static
592 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
593 {
594 	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
595 		return false;
596 	if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
597 		return true;
598 	if (ctx->pos == 0)
599 		return true;
600 	return false;
601 }
602 
603 /*
604  * This function is called by the lookup and getattr code to request the
605  * use of readdirplus to accelerate any future lookups in the same
606  * directory.
607  */
608 void nfs_advise_use_readdirplus(struct inode *dir)
609 {
610 	struct nfs_inode *nfsi = NFS_I(dir);
611 
612 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
613 	    !list_empty(&nfsi->open_files))
614 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
615 }
616 
617 /*
618  * This function is mainly for use by nfs_getattr().
619  *
620  * If this is an 'ls -l', we want to force use of readdirplus.
621  * Do this by checking if there is an active file descriptor
622  * and calling nfs_advise_use_readdirplus, then forcing a
623  * cache flush.
624  */
625 void nfs_force_use_readdirplus(struct inode *dir)
626 {
627 	struct nfs_inode *nfsi = NFS_I(dir);
628 
629 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
630 	    !list_empty(&nfsi->open_files)) {
631 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
632 		set_bit(NFS_INO_FORCE_READDIR, &nfsi->flags);
633 	}
634 }
635 
636 static
637 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
638 		unsigned long dir_verifier)
639 {
640 	struct qstr filename = QSTR_INIT(entry->name, entry->len);
641 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
642 	struct dentry *dentry;
643 	struct dentry *alias;
644 	struct inode *inode;
645 	int status;
646 
647 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
648 		return;
649 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
650 		return;
651 	if (filename.len == 0)
652 		return;
653 	/* Validate that the name doesn't contain any illegal '\0' */
654 	if (strnlen(filename.name, filename.len) != filename.len)
655 		return;
656 	/* ...or '/' */
657 	if (strnchr(filename.name, filename.len, '/'))
658 		return;
659 	if (filename.name[0] == '.') {
660 		if (filename.len == 1)
661 			return;
662 		if (filename.len == 2 && filename.name[1] == '.')
663 			return;
664 	}
665 	filename.hash = full_name_hash(parent, filename.name, filename.len);
666 
667 	dentry = d_lookup(parent, &filename);
668 again:
669 	if (!dentry) {
670 		dentry = d_alloc_parallel(parent, &filename, &wq);
671 		if (IS_ERR(dentry))
672 			return;
673 	}
674 	if (!d_in_lookup(dentry)) {
675 		/* Is there a mountpoint here? If so, just exit */
676 		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
677 					&entry->fattr->fsid))
678 			goto out;
679 		if (nfs_same_file(dentry, entry)) {
680 			if (!entry->fh->size)
681 				goto out;
682 			nfs_set_verifier(dentry, dir_verifier);
683 			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
684 			if (!status)
685 				nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
686 			goto out;
687 		} else {
688 			d_invalidate(dentry);
689 			dput(dentry);
690 			dentry = NULL;
691 			goto again;
692 		}
693 	}
694 	if (!entry->fh->size) {
695 		d_lookup_done(dentry);
696 		goto out;
697 	}
698 
699 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
700 	alias = d_splice_alias(inode, dentry);
701 	d_lookup_done(dentry);
702 	if (alias) {
703 		if (IS_ERR(alias))
704 			goto out;
705 		dput(dentry);
706 		dentry = alias;
707 	}
708 	nfs_set_verifier(dentry, dir_verifier);
709 out:
710 	dput(dentry);
711 }
712 
713 /* Perform conversion from xdr to cache array */
714 static int nfs_readdir_page_filler(struct nfs_readdir_descriptor *desc,
715 				   struct nfs_entry *entry,
716 				   struct page **xdr_pages,
717 				   unsigned int buflen,
718 				   struct page **arrays,
719 				   size_t narrays)
720 {
721 	struct address_space *mapping = desc->file->f_mapping;
722 	struct xdr_stream stream;
723 	struct xdr_buf buf;
724 	struct page *scratch, *new, *page = *arrays;
725 	int status;
726 
727 	scratch = alloc_page(GFP_KERNEL);
728 	if (scratch == NULL)
729 		return -ENOMEM;
730 
731 	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
732 	xdr_set_scratch_page(&stream, scratch);
733 
734 	do {
735 		if (entry->label)
736 			entry->label->len = NFS4_MAXLABELLEN;
737 
738 		status = xdr_decode(desc, entry, &stream);
739 		if (status != 0)
740 			break;
741 
742 		if (desc->plus)
743 			nfs_prime_dcache(file_dentry(desc->file), entry,
744 					desc->dir_verifier);
745 
746 		status = nfs_readdir_add_to_array(entry, page);
747 		if (status != -ENOSPC)
748 			continue;
749 
750 		if (page->mapping != mapping) {
751 			if (!--narrays)
752 				break;
753 			new = nfs_readdir_page_array_alloc(entry->prev_cookie,
754 							   GFP_KERNEL);
755 			if (!new)
756 				break;
757 			arrays++;
758 			*arrays = page = new;
759 		} else {
760 			new = nfs_readdir_page_get_next(mapping,
761 							page->index + 1,
762 							entry->prev_cookie);
763 			if (!new)
764 				break;
765 			if (page != *arrays)
766 				nfs_readdir_page_unlock_and_put(page);
767 			page = new;
768 		}
769 		status = nfs_readdir_add_to_array(entry, page);
770 	} while (!status && !entry->eof);
771 
772 	switch (status) {
773 	case -EBADCOOKIE:
774 		if (entry->eof) {
775 			nfs_readdir_page_set_eof(page);
776 			status = 0;
777 		}
778 		break;
779 	case -ENOSPC:
780 	case -EAGAIN:
781 		status = 0;
782 		break;
783 	}
784 
785 	if (page != *arrays)
786 		nfs_readdir_page_unlock_and_put(page);
787 
788 	put_page(scratch);
789 	return status;
790 }
791 
792 static void nfs_readdir_free_pages(struct page **pages, size_t npages)
793 {
794 	while (npages--)
795 		put_page(pages[npages]);
796 	kfree(pages);
797 }
798 
799 /*
800  * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
801  * to nfs_readdir_free_pages()
802  */
803 static struct page **nfs_readdir_alloc_pages(size_t npages)
804 {
805 	struct page **pages;
806 	size_t i;
807 
808 	pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL);
809 	if (!pages)
810 		return NULL;
811 	for (i = 0; i < npages; i++) {
812 		struct page *page = alloc_page(GFP_KERNEL);
813 		if (page == NULL)
814 			goto out_freepages;
815 		pages[i] = page;
816 	}
817 	return pages;
818 
819 out_freepages:
820 	nfs_readdir_free_pages(pages, i);
821 	return NULL;
822 }
823 
824 static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc,
825 				    __be32 *verf_arg, __be32 *verf_res,
826 				    struct page **arrays, size_t narrays)
827 {
828 	struct page **pages;
829 	struct page *page = *arrays;
830 	struct nfs_entry *entry;
831 	size_t array_size;
832 	struct inode *inode = file_inode(desc->file);
833 	size_t dtsize = NFS_SERVER(inode)->dtsize;
834 	int status = -ENOMEM;
835 
836 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
837 	if (!entry)
838 		return -ENOMEM;
839 	entry->cookie = nfs_readdir_page_last_cookie(page);
840 	entry->fh = nfs_alloc_fhandle();
841 	entry->fattr = nfs_alloc_fattr();
842 	entry->server = NFS_SERVER(inode);
843 	if (entry->fh == NULL || entry->fattr == NULL)
844 		goto out;
845 
846 	entry->label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
847 	if (IS_ERR(entry->label)) {
848 		status = PTR_ERR(entry->label);
849 		goto out;
850 	}
851 
852 	array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT;
853 	pages = nfs_readdir_alloc_pages(array_size);
854 	if (!pages)
855 		goto out_release_label;
856 
857 	do {
858 		unsigned int pglen;
859 		status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie,
860 						pages, dtsize,
861 						verf_res);
862 		if (status < 0)
863 			break;
864 
865 		pglen = status;
866 		if (pglen == 0) {
867 			nfs_readdir_page_set_eof(page);
868 			break;
869 		}
870 
871 		verf_arg = verf_res;
872 
873 		status = nfs_readdir_page_filler(desc, entry, pages, pglen,
874 						 arrays, narrays);
875 	} while (!status && nfs_readdir_page_needs_filling(page));
876 
877 	nfs_readdir_free_pages(pages, array_size);
878 out_release_label:
879 	nfs4_label_free(entry->label);
880 out:
881 	nfs_free_fattr(entry->fattr);
882 	nfs_free_fhandle(entry->fh);
883 	kfree(entry);
884 	return status;
885 }
886 
887 static void nfs_readdir_page_put(struct nfs_readdir_descriptor *desc)
888 {
889 	put_page(desc->page);
890 	desc->page = NULL;
891 }
892 
893 static void
894 nfs_readdir_page_unlock_and_put_cached(struct nfs_readdir_descriptor *desc)
895 {
896 	unlock_page(desc->page);
897 	nfs_readdir_page_put(desc);
898 }
899 
900 static struct page *
901 nfs_readdir_page_get_cached(struct nfs_readdir_descriptor *desc)
902 {
903 	return nfs_readdir_page_get_locked(desc->file->f_mapping,
904 					   desc->page_index,
905 					   desc->last_cookie);
906 }
907 
908 /*
909  * Returns 0 if desc->dir_cookie was found on page desc->page_index
910  * and locks the page to prevent removal from the page cache.
911  */
912 static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc)
913 {
914 	struct inode *inode = file_inode(desc->file);
915 	struct nfs_inode *nfsi = NFS_I(inode);
916 	__be32 verf[NFS_DIR_VERIFIER_SIZE];
917 	int res;
918 
919 	desc->page = nfs_readdir_page_get_cached(desc);
920 	if (!desc->page)
921 		return -ENOMEM;
922 	if (nfs_readdir_page_needs_filling(desc->page)) {
923 		res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf,
924 					       &desc->page, 1);
925 		if (res < 0) {
926 			nfs_readdir_page_unlock_and_put_cached(desc);
927 			if (res == -EBADCOOKIE || res == -ENOTSYNC) {
928 				invalidate_inode_pages2(desc->file->f_mapping);
929 				desc->page_index = 0;
930 				return -EAGAIN;
931 			}
932 			return res;
933 		}
934 		/*
935 		 * Set the cookie verifier if the page cache was empty
936 		 */
937 		if (desc->page_index == 0)
938 			memcpy(nfsi->cookieverf, verf,
939 			       sizeof(nfsi->cookieverf));
940 	}
941 	res = nfs_readdir_search_array(desc);
942 	if (res == 0)
943 		return 0;
944 	nfs_readdir_page_unlock_and_put_cached(desc);
945 	return res;
946 }
947 
948 static bool nfs_readdir_dont_search_cache(struct nfs_readdir_descriptor *desc)
949 {
950 	struct address_space *mapping = desc->file->f_mapping;
951 	struct inode *dir = file_inode(desc->file);
952 	unsigned int dtsize = NFS_SERVER(dir)->dtsize;
953 	loff_t size = i_size_read(dir);
954 
955 	/*
956 	 * Default to uncached readdir if the page cache is empty, and
957 	 * we're looking for a non-zero cookie in a large directory.
958 	 */
959 	return desc->dir_cookie != 0 && mapping->nrpages == 0 && size > dtsize;
960 }
961 
962 /* Search for desc->dir_cookie from the beginning of the page cache */
963 static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc)
964 {
965 	int res;
966 
967 	if (nfs_readdir_dont_search_cache(desc))
968 		return -EBADCOOKIE;
969 
970 	do {
971 		if (desc->page_index == 0) {
972 			desc->current_index = 0;
973 			desc->prev_index = 0;
974 			desc->last_cookie = 0;
975 		}
976 		res = find_and_lock_cache_page(desc);
977 	} while (res == -EAGAIN);
978 	return res;
979 }
980 
981 /*
982  * Once we've found the start of the dirent within a page: fill 'er up...
983  */
984 static void nfs_do_filldir(struct nfs_readdir_descriptor *desc,
985 			   const __be32 *verf)
986 {
987 	struct file	*file = desc->file;
988 	struct nfs_cache_array *array;
989 	unsigned int i = 0;
990 
991 	array = kmap(desc->page);
992 	for (i = desc->cache_entry_index; i < array->size; i++) {
993 		struct nfs_cache_array_entry *ent;
994 
995 		ent = &array->array[i];
996 		if (!dir_emit(desc->ctx, ent->name, ent->name_len,
997 		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
998 			desc->eof = true;
999 			break;
1000 		}
1001 		memcpy(desc->verf, verf, sizeof(desc->verf));
1002 		if (i < (array->size-1))
1003 			desc->dir_cookie = array->array[i+1].cookie;
1004 		else
1005 			desc->dir_cookie = array->last_cookie;
1006 		if (nfs_readdir_use_cookie(file))
1007 			desc->ctx->pos = desc->dir_cookie;
1008 		else
1009 			desc->ctx->pos++;
1010 		if (desc->duped != 0)
1011 			desc->duped = 1;
1012 	}
1013 	if (array->page_is_eof)
1014 		desc->eof = true;
1015 
1016 	kunmap(desc->page);
1017 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n",
1018 			(unsigned long long)desc->dir_cookie);
1019 }
1020 
1021 /*
1022  * If we cannot find a cookie in our cache, we suspect that this is
1023  * because it points to a deleted file, so we ask the server to return
1024  * whatever it thinks is the next entry. We then feed this to filldir.
1025  * If all goes well, we should then be able to find our way round the
1026  * cache on the next call to readdir_search_pagecache();
1027  *
1028  * NOTE: we cannot add the anonymous page to the pagecache because
1029  *	 the data it contains might not be page aligned. Besides,
1030  *	 we should already have a complete representation of the
1031  *	 directory in the page cache by the time we get here.
1032  */
1033 static int uncached_readdir(struct nfs_readdir_descriptor *desc)
1034 {
1035 	struct page	**arrays;
1036 	size_t		i, sz = 512;
1037 	__be32		verf[NFS_DIR_VERIFIER_SIZE];
1038 	int		status = -ENOMEM;
1039 
1040 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n",
1041 			(unsigned long long)desc->dir_cookie);
1042 
1043 	arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL);
1044 	if (!arrays)
1045 		goto out;
1046 	arrays[0] = nfs_readdir_page_array_alloc(desc->dir_cookie, GFP_KERNEL);
1047 	if (!arrays[0])
1048 		goto out;
1049 
1050 	desc->page_index = 0;
1051 	desc->last_cookie = desc->dir_cookie;
1052 	desc->duped = 0;
1053 
1054 	status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz);
1055 
1056 	for (i = 0; !desc->eof && i < sz && arrays[i]; i++) {
1057 		desc->page = arrays[i];
1058 		nfs_do_filldir(desc, verf);
1059 	}
1060 	desc->page = NULL;
1061 
1062 
1063 	for (i = 0; i < sz && arrays[i]; i++)
1064 		nfs_readdir_page_array_free(arrays[i]);
1065 out:
1066 	kfree(arrays);
1067 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
1068 	return status;
1069 }
1070 
1071 /* The file offset position represents the dirent entry number.  A
1072    last cookie cache takes care of the common case of reading the
1073    whole directory.
1074  */
1075 static int nfs_readdir(struct file *file, struct dir_context *ctx)
1076 {
1077 	struct dentry	*dentry = file_dentry(file);
1078 	struct inode	*inode = d_inode(dentry);
1079 	struct nfs_inode *nfsi = NFS_I(inode);
1080 	struct nfs_open_dir_context *dir_ctx = file->private_data;
1081 	struct nfs_readdir_descriptor *desc;
1082 	pgoff_t page_index;
1083 	int res;
1084 
1085 	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
1086 			file, (long long)ctx->pos);
1087 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
1088 
1089 	/*
1090 	 * ctx->pos points to the dirent entry number.
1091 	 * *desc->dir_cookie has the cookie for the next entry. We have
1092 	 * to either find the entry with the appropriate number or
1093 	 * revalidate the cookie.
1094 	 */
1095 	if (ctx->pos == 0 || nfs_attribute_cache_expired(inode)) {
1096 		res = nfs_revalidate_mapping(inode, file->f_mapping);
1097 		if (res < 0)
1098 			goto out;
1099 	}
1100 
1101 	res = -ENOMEM;
1102 	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
1103 	if (!desc)
1104 		goto out;
1105 	desc->file = file;
1106 	desc->ctx = ctx;
1107 	desc->plus = nfs_use_readdirplus(inode, ctx);
1108 
1109 	spin_lock(&file->f_lock);
1110 	desc->dir_cookie = dir_ctx->dir_cookie;
1111 	desc->dup_cookie = dir_ctx->dup_cookie;
1112 	desc->duped = dir_ctx->duped;
1113 	page_index = dir_ctx->page_index;
1114 	desc->attr_gencount = dir_ctx->attr_gencount;
1115 	memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf));
1116 	spin_unlock(&file->f_lock);
1117 
1118 	if (test_and_clear_bit(NFS_INO_FORCE_READDIR, &nfsi->flags) &&
1119 	    list_is_singular(&nfsi->open_files))
1120 		invalidate_mapping_pages(inode->i_mapping, page_index + 1, -1);
1121 
1122 	do {
1123 		res = readdir_search_pagecache(desc);
1124 
1125 		if (res == -EBADCOOKIE) {
1126 			res = 0;
1127 			/* This means either end of directory */
1128 			if (desc->dir_cookie && !desc->eof) {
1129 				/* Or that the server has 'lost' a cookie */
1130 				res = uncached_readdir(desc);
1131 				if (res == 0)
1132 					continue;
1133 				if (res == -EBADCOOKIE || res == -ENOTSYNC)
1134 					res = 0;
1135 			}
1136 			break;
1137 		}
1138 		if (res == -ETOOSMALL && desc->plus) {
1139 			clear_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
1140 			nfs_zap_caches(inode);
1141 			desc->page_index = 0;
1142 			desc->plus = false;
1143 			desc->eof = false;
1144 			continue;
1145 		}
1146 		if (res < 0)
1147 			break;
1148 
1149 		nfs_do_filldir(desc, nfsi->cookieverf);
1150 		nfs_readdir_page_unlock_and_put_cached(desc);
1151 	} while (!desc->eof);
1152 
1153 	spin_lock(&file->f_lock);
1154 	dir_ctx->dir_cookie = desc->dir_cookie;
1155 	dir_ctx->dup_cookie = desc->dup_cookie;
1156 	dir_ctx->duped = desc->duped;
1157 	dir_ctx->attr_gencount = desc->attr_gencount;
1158 	dir_ctx->page_index = desc->page_index;
1159 	memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf));
1160 	spin_unlock(&file->f_lock);
1161 
1162 	kfree(desc);
1163 
1164 out:
1165 	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
1166 	return res;
1167 }
1168 
1169 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
1170 {
1171 	struct nfs_open_dir_context *dir_ctx = filp->private_data;
1172 
1173 	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
1174 			filp, offset, whence);
1175 
1176 	switch (whence) {
1177 	default:
1178 		return -EINVAL;
1179 	case SEEK_SET:
1180 		if (offset < 0)
1181 			return -EINVAL;
1182 		spin_lock(&filp->f_lock);
1183 		break;
1184 	case SEEK_CUR:
1185 		if (offset == 0)
1186 			return filp->f_pos;
1187 		spin_lock(&filp->f_lock);
1188 		offset += filp->f_pos;
1189 		if (offset < 0) {
1190 			spin_unlock(&filp->f_lock);
1191 			return -EINVAL;
1192 		}
1193 	}
1194 	if (offset != filp->f_pos) {
1195 		filp->f_pos = offset;
1196 		if (nfs_readdir_use_cookie(filp))
1197 			dir_ctx->dir_cookie = offset;
1198 		else
1199 			dir_ctx->dir_cookie = 0;
1200 		if (offset == 0)
1201 			memset(dir_ctx->verf, 0, sizeof(dir_ctx->verf));
1202 		dir_ctx->duped = 0;
1203 	}
1204 	spin_unlock(&filp->f_lock);
1205 	return offset;
1206 }
1207 
1208 /*
1209  * All directory operations under NFS are synchronous, so fsync()
1210  * is a dummy operation.
1211  */
1212 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
1213 			 int datasync)
1214 {
1215 	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1216 
1217 	nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC);
1218 	return 0;
1219 }
1220 
1221 /**
1222  * nfs_force_lookup_revalidate - Mark the directory as having changed
1223  * @dir: pointer to directory inode
1224  *
1225  * This forces the revalidation code in nfs_lookup_revalidate() to do a
1226  * full lookup on all child dentries of 'dir' whenever a change occurs
1227  * on the server that might have invalidated our dcache.
1228  *
1229  * Note that we reserve bit '0' as a tag to let us know when a dentry
1230  * was revalidated while holding a delegation on its inode.
1231  *
1232  * The caller should be holding dir->i_lock
1233  */
1234 void nfs_force_lookup_revalidate(struct inode *dir)
1235 {
1236 	NFS_I(dir)->cache_change_attribute += 2;
1237 }
1238 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1239 
1240 /**
1241  * nfs_verify_change_attribute - Detects NFS remote directory changes
1242  * @dir: pointer to parent directory inode
1243  * @verf: previously saved change attribute
1244  *
1245  * Return "false" if the verifiers doesn't match the change attribute.
1246  * This would usually indicate that the directory contents have changed on
1247  * the server, and that any dentries need revalidating.
1248  */
1249 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1250 {
1251 	return (verf & ~1UL) == nfs_save_change_attribute(dir);
1252 }
1253 
1254 static void nfs_set_verifier_delegated(unsigned long *verf)
1255 {
1256 	*verf |= 1UL;
1257 }
1258 
1259 #if IS_ENABLED(CONFIG_NFS_V4)
1260 static void nfs_unset_verifier_delegated(unsigned long *verf)
1261 {
1262 	*verf &= ~1UL;
1263 }
1264 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1265 
1266 static bool nfs_test_verifier_delegated(unsigned long verf)
1267 {
1268 	return verf & 1;
1269 }
1270 
1271 static bool nfs_verifier_is_delegated(struct dentry *dentry)
1272 {
1273 	return nfs_test_verifier_delegated(dentry->d_time);
1274 }
1275 
1276 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1277 {
1278 	struct inode *inode = d_inode(dentry);
1279 
1280 	if (!nfs_verifier_is_delegated(dentry) &&
1281 	    !nfs_verify_change_attribute(d_inode(dentry->d_parent), verf))
1282 		goto out;
1283 	if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
1284 		nfs_set_verifier_delegated(&verf);
1285 out:
1286 	dentry->d_time = verf;
1287 }
1288 
1289 /**
1290  * nfs_set_verifier - save a parent directory verifier in the dentry
1291  * @dentry: pointer to dentry
1292  * @verf: verifier to save
1293  *
1294  * Saves the parent directory verifier in @dentry. If the inode has
1295  * a delegation, we also tag the dentry as having been revalidated
1296  * while holding a delegation so that we know we don't have to
1297  * look it up again after a directory change.
1298  */
1299 void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1300 {
1301 
1302 	spin_lock(&dentry->d_lock);
1303 	nfs_set_verifier_locked(dentry, verf);
1304 	spin_unlock(&dentry->d_lock);
1305 }
1306 EXPORT_SYMBOL_GPL(nfs_set_verifier);
1307 
1308 #if IS_ENABLED(CONFIG_NFS_V4)
1309 /**
1310  * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1311  * @inode: pointer to inode
1312  *
1313  * Iterates through the dentries in the inode alias list and clears
1314  * the tag used to indicate that the dentry has been revalidated
1315  * while holding a delegation.
1316  * This function is intended for use when the delegation is being
1317  * returned or revoked.
1318  */
1319 void nfs_clear_verifier_delegated(struct inode *inode)
1320 {
1321 	struct dentry *alias;
1322 
1323 	if (!inode)
1324 		return;
1325 	spin_lock(&inode->i_lock);
1326 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1327 		spin_lock(&alias->d_lock);
1328 		nfs_unset_verifier_delegated(&alias->d_time);
1329 		spin_unlock(&alias->d_lock);
1330 	}
1331 	spin_unlock(&inode->i_lock);
1332 }
1333 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1334 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1335 
1336 /*
1337  * A check for whether or not the parent directory has changed.
1338  * In the case it has, we assume that the dentries are untrustworthy
1339  * and may need to be looked up again.
1340  * If rcu_walk prevents us from performing a full check, return 0.
1341  */
1342 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1343 			      int rcu_walk)
1344 {
1345 	if (IS_ROOT(dentry))
1346 		return 1;
1347 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1348 		return 0;
1349 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1350 		return 0;
1351 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
1352 	if (nfs_mapping_need_revalidate_inode(dir)) {
1353 		if (rcu_walk)
1354 			return 0;
1355 		if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1356 			return 0;
1357 	}
1358 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1359 		return 0;
1360 	return 1;
1361 }
1362 
1363 /*
1364  * Use intent information to check whether or not we're going to do
1365  * an O_EXCL create using this path component.
1366  */
1367 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1368 {
1369 	if (NFS_PROTO(dir)->version == 2)
1370 		return 0;
1371 	return flags & LOOKUP_EXCL;
1372 }
1373 
1374 /*
1375  * Inode and filehandle revalidation for lookups.
1376  *
1377  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1378  * or if the intent information indicates that we're about to open this
1379  * particular file and the "nocto" mount flag is not set.
1380  *
1381  */
1382 static
1383 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1384 {
1385 	struct nfs_server *server = NFS_SERVER(inode);
1386 	int ret;
1387 
1388 	if (IS_AUTOMOUNT(inode))
1389 		return 0;
1390 
1391 	if (flags & LOOKUP_OPEN) {
1392 		switch (inode->i_mode & S_IFMT) {
1393 		case S_IFREG:
1394 			/* A NFSv4 OPEN will revalidate later */
1395 			if (server->caps & NFS_CAP_ATOMIC_OPEN)
1396 				goto out;
1397 			fallthrough;
1398 		case S_IFDIR:
1399 			if (server->flags & NFS_MOUNT_NOCTO)
1400 				break;
1401 			/* NFS close-to-open cache consistency validation */
1402 			goto out_force;
1403 		}
1404 	}
1405 
1406 	/* VFS wants an on-the-wire revalidation */
1407 	if (flags & LOOKUP_REVAL)
1408 		goto out_force;
1409 out:
1410 	return (inode->i_nlink == 0) ? -ESTALE : 0;
1411 out_force:
1412 	if (flags & LOOKUP_RCU)
1413 		return -ECHILD;
1414 	ret = __nfs_revalidate_inode(server, inode);
1415 	if (ret != 0)
1416 		return ret;
1417 	goto out;
1418 }
1419 
1420 static void nfs_mark_dir_for_revalidate(struct inode *inode)
1421 {
1422 	spin_lock(&inode->i_lock);
1423 	nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE);
1424 	spin_unlock(&inode->i_lock);
1425 }
1426 
1427 /*
1428  * We judge how long we want to trust negative
1429  * dentries by looking at the parent inode mtime.
1430  *
1431  * If parent mtime has changed, we revalidate, else we wait for a
1432  * period corresponding to the parent's attribute cache timeout value.
1433  *
1434  * If LOOKUP_RCU prevents us from performing a full check, return 1
1435  * suggesting a reval is needed.
1436  *
1437  * Note that when creating a new file, or looking up a rename target,
1438  * then it shouldn't be necessary to revalidate a negative dentry.
1439  */
1440 static inline
1441 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1442 		       unsigned int flags)
1443 {
1444 	if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1445 		return 0;
1446 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1447 		return 1;
1448 	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1449 }
1450 
1451 static int
1452 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1453 			   struct inode *inode, int error)
1454 {
1455 	switch (error) {
1456 	case 1:
1457 		dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1458 			__func__, dentry);
1459 		return 1;
1460 	case 0:
1461 		/*
1462 		 * We can't d_drop the root of a disconnected tree:
1463 		 * its d_hash is on the s_anon list and d_drop() would hide
1464 		 * it from shrink_dcache_for_unmount(), leading to busy
1465 		 * inodes on unmount and further oopses.
1466 		 */
1467 		if (inode && IS_ROOT(dentry))
1468 			return 1;
1469 		dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1470 				__func__, dentry);
1471 		return 0;
1472 	}
1473 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1474 				__func__, dentry, error);
1475 	return error;
1476 }
1477 
1478 static int
1479 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1480 			       unsigned int flags)
1481 {
1482 	int ret = 1;
1483 	if (nfs_neg_need_reval(dir, dentry, flags)) {
1484 		if (flags & LOOKUP_RCU)
1485 			return -ECHILD;
1486 		ret = 0;
1487 	}
1488 	return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1489 }
1490 
1491 static int
1492 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1493 				struct inode *inode)
1494 {
1495 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1496 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1497 }
1498 
1499 static int
1500 nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry,
1501 			     struct inode *inode)
1502 {
1503 	struct nfs_fh *fhandle;
1504 	struct nfs_fattr *fattr;
1505 	struct nfs4_label *label;
1506 	unsigned long dir_verifier;
1507 	int ret;
1508 
1509 	ret = -ENOMEM;
1510 	fhandle = nfs_alloc_fhandle();
1511 	fattr = nfs_alloc_fattr();
1512 	label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL);
1513 	if (fhandle == NULL || fattr == NULL || IS_ERR(label))
1514 		goto out;
1515 
1516 	dir_verifier = nfs_save_change_attribute(dir);
1517 	ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1518 	if (ret < 0) {
1519 		switch (ret) {
1520 		case -ESTALE:
1521 		case -ENOENT:
1522 			ret = 0;
1523 			break;
1524 		case -ETIMEDOUT:
1525 			if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)
1526 				ret = 1;
1527 		}
1528 		goto out;
1529 	}
1530 	ret = 0;
1531 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1532 		goto out;
1533 	if (nfs_refresh_inode(inode, fattr) < 0)
1534 		goto out;
1535 
1536 	nfs_setsecurity(inode, fattr, label);
1537 	nfs_set_verifier(dentry, dir_verifier);
1538 
1539 	/* set a readdirplus hint that we had a cache miss */
1540 	nfs_force_use_readdirplus(dir);
1541 	ret = 1;
1542 out:
1543 	nfs_free_fattr(fattr);
1544 	nfs_free_fhandle(fhandle);
1545 	nfs4_label_free(label);
1546 
1547 	/*
1548 	 * If the lookup failed despite the dentry change attribute being
1549 	 * a match, then we should revalidate the directory cache.
1550 	 */
1551 	if (!ret && nfs_verify_change_attribute(dir, dentry->d_time))
1552 		nfs_mark_dir_for_revalidate(dir);
1553 	return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1554 }
1555 
1556 /*
1557  * This is called every time the dcache has a lookup hit,
1558  * and we should check whether we can really trust that
1559  * lookup.
1560  *
1561  * NOTE! The hit can be a negative hit too, don't assume
1562  * we have an inode!
1563  *
1564  * If the parent directory is seen to have changed, we throw out the
1565  * cached dentry and do a new lookup.
1566  */
1567 static int
1568 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1569 			 unsigned int flags)
1570 {
1571 	struct inode *inode;
1572 	int error;
1573 
1574 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1575 	inode = d_inode(dentry);
1576 
1577 	if (!inode)
1578 		return nfs_lookup_revalidate_negative(dir, dentry, flags);
1579 
1580 	if (is_bad_inode(inode)) {
1581 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1582 				__func__, dentry);
1583 		goto out_bad;
1584 	}
1585 
1586 	if (nfs_verifier_is_delegated(dentry))
1587 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1588 
1589 	/* Force a full look up iff the parent directory has changed */
1590 	if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1591 	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1592 		error = nfs_lookup_verify_inode(inode, flags);
1593 		if (error) {
1594 			if (error == -ESTALE)
1595 				nfs_mark_dir_for_revalidate(dir);
1596 			goto out_bad;
1597 		}
1598 		nfs_advise_use_readdirplus(dir);
1599 		goto out_valid;
1600 	}
1601 
1602 	if (flags & LOOKUP_RCU)
1603 		return -ECHILD;
1604 
1605 	if (NFS_STALE(inode))
1606 		goto out_bad;
1607 
1608 	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1609 	error = nfs_lookup_revalidate_dentry(dir, dentry, inode);
1610 	trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1611 	return error;
1612 out_valid:
1613 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1614 out_bad:
1615 	if (flags & LOOKUP_RCU)
1616 		return -ECHILD;
1617 	return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1618 }
1619 
1620 static int
1621 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1622 			int (*reval)(struct inode *, struct dentry *, unsigned int))
1623 {
1624 	struct dentry *parent;
1625 	struct inode *dir;
1626 	int ret;
1627 
1628 	if (flags & LOOKUP_RCU) {
1629 		parent = READ_ONCE(dentry->d_parent);
1630 		dir = d_inode_rcu(parent);
1631 		if (!dir)
1632 			return -ECHILD;
1633 		ret = reval(dir, dentry, flags);
1634 		if (parent != READ_ONCE(dentry->d_parent))
1635 			return -ECHILD;
1636 	} else {
1637 		parent = dget_parent(dentry);
1638 		ret = reval(d_inode(parent), dentry, flags);
1639 		dput(parent);
1640 	}
1641 	return ret;
1642 }
1643 
1644 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1645 {
1646 	return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1647 }
1648 
1649 /*
1650  * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1651  * when we don't really care about the dentry name. This is called when a
1652  * pathwalk ends on a dentry that was not found via a normal lookup in the
1653  * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1654  *
1655  * In this situation, we just want to verify that the inode itself is OK
1656  * since the dentry might have changed on the server.
1657  */
1658 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1659 {
1660 	struct inode *inode = d_inode(dentry);
1661 	int error = 0;
1662 
1663 	/*
1664 	 * I believe we can only get a negative dentry here in the case of a
1665 	 * procfs-style symlink. Just assume it's correct for now, but we may
1666 	 * eventually need to do something more here.
1667 	 */
1668 	if (!inode) {
1669 		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1670 				__func__, dentry);
1671 		return 1;
1672 	}
1673 
1674 	if (is_bad_inode(inode)) {
1675 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1676 				__func__, dentry);
1677 		return 0;
1678 	}
1679 
1680 	error = nfs_lookup_verify_inode(inode, flags);
1681 	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1682 			__func__, inode->i_ino, error ? "invalid" : "valid");
1683 	return !error;
1684 }
1685 
1686 /*
1687  * This is called from dput() when d_count is going to 0.
1688  */
1689 static int nfs_dentry_delete(const struct dentry *dentry)
1690 {
1691 	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1692 		dentry, dentry->d_flags);
1693 
1694 	/* Unhash any dentry with a stale inode */
1695 	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1696 		return 1;
1697 
1698 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1699 		/* Unhash it, so that ->d_iput() would be called */
1700 		return 1;
1701 	}
1702 	if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1703 		/* Unhash it, so that ancestors of killed async unlink
1704 		 * files will be cleaned up during umount */
1705 		return 1;
1706 	}
1707 	return 0;
1708 
1709 }
1710 
1711 /* Ensure that we revalidate inode->i_nlink */
1712 static void nfs_drop_nlink(struct inode *inode)
1713 {
1714 	spin_lock(&inode->i_lock);
1715 	/* drop the inode if we're reasonably sure this is the last link */
1716 	if (inode->i_nlink > 0)
1717 		drop_nlink(inode);
1718 	NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1719 	nfs_set_cache_invalid(
1720 		inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME |
1721 			       NFS_INO_INVALID_NLINK);
1722 	spin_unlock(&inode->i_lock);
1723 }
1724 
1725 /*
1726  * Called when the dentry loses inode.
1727  * We use it to clean up silly-renamed files.
1728  */
1729 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1730 {
1731 	if (S_ISDIR(inode->i_mode))
1732 		/* drop any readdir cache as it could easily be old */
1733 		nfs_set_cache_invalid(inode, NFS_INO_INVALID_DATA);
1734 
1735 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1736 		nfs_complete_unlink(dentry, inode);
1737 		nfs_drop_nlink(inode);
1738 	}
1739 	iput(inode);
1740 }
1741 
1742 static void nfs_d_release(struct dentry *dentry)
1743 {
1744 	/* free cached devname value, if it survived that far */
1745 	if (unlikely(dentry->d_fsdata)) {
1746 		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1747 			WARN_ON(1);
1748 		else
1749 			kfree(dentry->d_fsdata);
1750 	}
1751 }
1752 
1753 const struct dentry_operations nfs_dentry_operations = {
1754 	.d_revalidate	= nfs_lookup_revalidate,
1755 	.d_weak_revalidate	= nfs_weak_revalidate,
1756 	.d_delete	= nfs_dentry_delete,
1757 	.d_iput		= nfs_dentry_iput,
1758 	.d_automount	= nfs_d_automount,
1759 	.d_release	= nfs_d_release,
1760 };
1761 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1762 
1763 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1764 {
1765 	struct dentry *res;
1766 	struct inode *inode = NULL;
1767 	struct nfs_fh *fhandle = NULL;
1768 	struct nfs_fattr *fattr = NULL;
1769 	struct nfs4_label *label = NULL;
1770 	unsigned long dir_verifier;
1771 	int error;
1772 
1773 	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1774 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1775 
1776 	if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1777 		return ERR_PTR(-ENAMETOOLONG);
1778 
1779 	/*
1780 	 * If we're doing an exclusive create, optimize away the lookup
1781 	 * but don't hash the dentry.
1782 	 */
1783 	if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1784 		return NULL;
1785 
1786 	res = ERR_PTR(-ENOMEM);
1787 	fhandle = nfs_alloc_fhandle();
1788 	fattr = nfs_alloc_fattr();
1789 	if (fhandle == NULL || fattr == NULL)
1790 		goto out;
1791 
1792 	label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1793 	if (IS_ERR(label))
1794 		goto out;
1795 
1796 	dir_verifier = nfs_save_change_attribute(dir);
1797 	trace_nfs_lookup_enter(dir, dentry, flags);
1798 	error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1799 	if (error == -ENOENT)
1800 		goto no_entry;
1801 	if (error < 0) {
1802 		res = ERR_PTR(error);
1803 		goto out_label;
1804 	}
1805 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1806 	res = ERR_CAST(inode);
1807 	if (IS_ERR(res))
1808 		goto out_label;
1809 
1810 	/* Notify readdir to use READDIRPLUS */
1811 	nfs_force_use_readdirplus(dir);
1812 
1813 no_entry:
1814 	res = d_splice_alias(inode, dentry);
1815 	if (res != NULL) {
1816 		if (IS_ERR(res))
1817 			goto out_label;
1818 		dentry = res;
1819 	}
1820 	nfs_set_verifier(dentry, dir_verifier);
1821 out_label:
1822 	trace_nfs_lookup_exit(dir, dentry, flags, error);
1823 	nfs4_label_free(label);
1824 out:
1825 	nfs_free_fattr(fattr);
1826 	nfs_free_fhandle(fhandle);
1827 	return res;
1828 }
1829 EXPORT_SYMBOL_GPL(nfs_lookup);
1830 
1831 #if IS_ENABLED(CONFIG_NFS_V4)
1832 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1833 
1834 const struct dentry_operations nfs4_dentry_operations = {
1835 	.d_revalidate	= nfs4_lookup_revalidate,
1836 	.d_weak_revalidate	= nfs_weak_revalidate,
1837 	.d_delete	= nfs_dentry_delete,
1838 	.d_iput		= nfs_dentry_iput,
1839 	.d_automount	= nfs_d_automount,
1840 	.d_release	= nfs_d_release,
1841 };
1842 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1843 
1844 static fmode_t flags_to_mode(int flags)
1845 {
1846 	fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1847 	if ((flags & O_ACCMODE) != O_WRONLY)
1848 		res |= FMODE_READ;
1849 	if ((flags & O_ACCMODE) != O_RDONLY)
1850 		res |= FMODE_WRITE;
1851 	return res;
1852 }
1853 
1854 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1855 {
1856 	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1857 }
1858 
1859 static int do_open(struct inode *inode, struct file *filp)
1860 {
1861 	nfs_fscache_open_file(inode, filp);
1862 	return 0;
1863 }
1864 
1865 static int nfs_finish_open(struct nfs_open_context *ctx,
1866 			   struct dentry *dentry,
1867 			   struct file *file, unsigned open_flags)
1868 {
1869 	int err;
1870 
1871 	err = finish_open(file, dentry, do_open);
1872 	if (err)
1873 		goto out;
1874 	if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
1875 		nfs_file_set_open_context(file, ctx);
1876 	else
1877 		err = -EOPENSTALE;
1878 out:
1879 	return err;
1880 }
1881 
1882 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1883 		    struct file *file, unsigned open_flags,
1884 		    umode_t mode)
1885 {
1886 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1887 	struct nfs_open_context *ctx;
1888 	struct dentry *res;
1889 	struct iattr attr = { .ia_valid = ATTR_OPEN };
1890 	struct inode *inode;
1891 	unsigned int lookup_flags = 0;
1892 	bool switched = false;
1893 	int created = 0;
1894 	int err;
1895 
1896 	/* Expect a negative dentry */
1897 	BUG_ON(d_inode(dentry));
1898 
1899 	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1900 			dir->i_sb->s_id, dir->i_ino, dentry);
1901 
1902 	err = nfs_check_flags(open_flags);
1903 	if (err)
1904 		return err;
1905 
1906 	/* NFS only supports OPEN on regular files */
1907 	if ((open_flags & O_DIRECTORY)) {
1908 		if (!d_in_lookup(dentry)) {
1909 			/*
1910 			 * Hashed negative dentry with O_DIRECTORY: dentry was
1911 			 * revalidated and is fine, no need to perform lookup
1912 			 * again
1913 			 */
1914 			return -ENOENT;
1915 		}
1916 		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1917 		goto no_open;
1918 	}
1919 
1920 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1921 		return -ENAMETOOLONG;
1922 
1923 	if (open_flags & O_CREAT) {
1924 		struct nfs_server *server = NFS_SERVER(dir);
1925 
1926 		if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1927 			mode &= ~current_umask();
1928 
1929 		attr.ia_valid |= ATTR_MODE;
1930 		attr.ia_mode = mode;
1931 	}
1932 	if (open_flags & O_TRUNC) {
1933 		attr.ia_valid |= ATTR_SIZE;
1934 		attr.ia_size = 0;
1935 	}
1936 
1937 	if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1938 		d_drop(dentry);
1939 		switched = true;
1940 		dentry = d_alloc_parallel(dentry->d_parent,
1941 					  &dentry->d_name, &wq);
1942 		if (IS_ERR(dentry))
1943 			return PTR_ERR(dentry);
1944 		if (unlikely(!d_in_lookup(dentry)))
1945 			return finish_no_open(file, dentry);
1946 	}
1947 
1948 	ctx = create_nfs_open_context(dentry, open_flags, file);
1949 	err = PTR_ERR(ctx);
1950 	if (IS_ERR(ctx))
1951 		goto out;
1952 
1953 	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1954 	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
1955 	if (created)
1956 		file->f_mode |= FMODE_CREATED;
1957 	if (IS_ERR(inode)) {
1958 		err = PTR_ERR(inode);
1959 		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1960 		put_nfs_open_context(ctx);
1961 		d_drop(dentry);
1962 		switch (err) {
1963 		case -ENOENT:
1964 			d_splice_alias(NULL, dentry);
1965 			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1966 			break;
1967 		case -EISDIR:
1968 		case -ENOTDIR:
1969 			goto no_open;
1970 		case -ELOOP:
1971 			if (!(open_flags & O_NOFOLLOW))
1972 				goto no_open;
1973 			break;
1974 			/* case -EINVAL: */
1975 		default:
1976 			break;
1977 		}
1978 		goto out;
1979 	}
1980 
1981 	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
1982 	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1983 	put_nfs_open_context(ctx);
1984 out:
1985 	if (unlikely(switched)) {
1986 		d_lookup_done(dentry);
1987 		dput(dentry);
1988 	}
1989 	return err;
1990 
1991 no_open:
1992 	res = nfs_lookup(dir, dentry, lookup_flags);
1993 	if (switched) {
1994 		d_lookup_done(dentry);
1995 		if (!res)
1996 			res = dentry;
1997 		else
1998 			dput(dentry);
1999 	}
2000 	if (IS_ERR(res))
2001 		return PTR_ERR(res);
2002 	return finish_no_open(file, res);
2003 }
2004 EXPORT_SYMBOL_GPL(nfs_atomic_open);
2005 
2006 static int
2007 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
2008 			  unsigned int flags)
2009 {
2010 	struct inode *inode;
2011 
2012 	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
2013 		goto full_reval;
2014 	if (d_mountpoint(dentry))
2015 		goto full_reval;
2016 
2017 	inode = d_inode(dentry);
2018 
2019 	/* We can't create new files in nfs_open_revalidate(), so we
2020 	 * optimize away revalidation of negative dentries.
2021 	 */
2022 	if (inode == NULL)
2023 		goto full_reval;
2024 
2025 	if (nfs_verifier_is_delegated(dentry))
2026 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
2027 
2028 	/* NFS only supports OPEN on regular files */
2029 	if (!S_ISREG(inode->i_mode))
2030 		goto full_reval;
2031 
2032 	/* We cannot do exclusive creation on a positive dentry */
2033 	if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
2034 		goto reval_dentry;
2035 
2036 	/* Check if the directory changed */
2037 	if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
2038 		goto reval_dentry;
2039 
2040 	/* Let f_op->open() actually open (and revalidate) the file */
2041 	return 1;
2042 reval_dentry:
2043 	if (flags & LOOKUP_RCU)
2044 		return -ECHILD;
2045 	return nfs_lookup_revalidate_dentry(dir, dentry, inode);
2046 
2047 full_reval:
2048 	return nfs_do_lookup_revalidate(dir, dentry, flags);
2049 }
2050 
2051 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
2052 {
2053 	return __nfs_lookup_revalidate(dentry, flags,
2054 			nfs4_do_lookup_revalidate);
2055 }
2056 
2057 #endif /* CONFIG_NFSV4 */
2058 
2059 struct dentry *
2060 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
2061 				struct nfs_fattr *fattr,
2062 				struct nfs4_label *label)
2063 {
2064 	struct dentry *parent = dget_parent(dentry);
2065 	struct inode *dir = d_inode(parent);
2066 	struct inode *inode;
2067 	struct dentry *d;
2068 	int error;
2069 
2070 	d_drop(dentry);
2071 
2072 	if (fhandle->size == 0) {
2073 		error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, NULL);
2074 		if (error)
2075 			goto out_error;
2076 	}
2077 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2078 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
2079 		struct nfs_server *server = NFS_SB(dentry->d_sb);
2080 		error = server->nfs_client->rpc_ops->getattr(server, fhandle,
2081 				fattr, NULL, NULL);
2082 		if (error < 0)
2083 			goto out_error;
2084 	}
2085 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
2086 	d = d_splice_alias(inode, dentry);
2087 out:
2088 	dput(parent);
2089 	return d;
2090 out_error:
2091 	d = ERR_PTR(error);
2092 	goto out;
2093 }
2094 EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
2095 
2096 /*
2097  * Code common to create, mkdir, and mknod.
2098  */
2099 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
2100 				struct nfs_fattr *fattr,
2101 				struct nfs4_label *label)
2102 {
2103 	struct dentry *d;
2104 
2105 	d = nfs_add_or_obtain(dentry, fhandle, fattr, label);
2106 	if (IS_ERR(d))
2107 		return PTR_ERR(d);
2108 
2109 	/* Callers don't care */
2110 	dput(d);
2111 	return 0;
2112 }
2113 EXPORT_SYMBOL_GPL(nfs_instantiate);
2114 
2115 /*
2116  * Following a failed create operation, we drop the dentry rather
2117  * than retain a negative dentry. This avoids a problem in the event
2118  * that the operation succeeded on the server, but an error in the
2119  * reply path made it appear to have failed.
2120  */
2121 int nfs_create(struct user_namespace *mnt_userns, struct inode *dir,
2122 	       struct dentry *dentry, umode_t mode, bool excl)
2123 {
2124 	struct iattr attr;
2125 	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
2126 	int error;
2127 
2128 	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
2129 			dir->i_sb->s_id, dir->i_ino, dentry);
2130 
2131 	attr.ia_mode = mode;
2132 	attr.ia_valid = ATTR_MODE;
2133 
2134 	trace_nfs_create_enter(dir, dentry, open_flags);
2135 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
2136 	trace_nfs_create_exit(dir, dentry, open_flags, error);
2137 	if (error != 0)
2138 		goto out_err;
2139 	return 0;
2140 out_err:
2141 	d_drop(dentry);
2142 	return error;
2143 }
2144 EXPORT_SYMBOL_GPL(nfs_create);
2145 
2146 /*
2147  * See comments for nfs_proc_create regarding failed operations.
2148  */
2149 int
2150 nfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2151 	  struct dentry *dentry, umode_t mode, dev_t rdev)
2152 {
2153 	struct iattr attr;
2154 	int status;
2155 
2156 	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
2157 			dir->i_sb->s_id, dir->i_ino, dentry);
2158 
2159 	attr.ia_mode = mode;
2160 	attr.ia_valid = ATTR_MODE;
2161 
2162 	trace_nfs_mknod_enter(dir, dentry);
2163 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
2164 	trace_nfs_mknod_exit(dir, dentry, status);
2165 	if (status != 0)
2166 		goto out_err;
2167 	return 0;
2168 out_err:
2169 	d_drop(dentry);
2170 	return status;
2171 }
2172 EXPORT_SYMBOL_GPL(nfs_mknod);
2173 
2174 /*
2175  * See comments for nfs_proc_create regarding failed operations.
2176  */
2177 int nfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2178 	      struct dentry *dentry, umode_t mode)
2179 {
2180 	struct iattr attr;
2181 	int error;
2182 
2183 	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
2184 			dir->i_sb->s_id, dir->i_ino, dentry);
2185 
2186 	attr.ia_valid = ATTR_MODE;
2187 	attr.ia_mode = mode | S_IFDIR;
2188 
2189 	trace_nfs_mkdir_enter(dir, dentry);
2190 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
2191 	trace_nfs_mkdir_exit(dir, dentry, error);
2192 	if (error != 0)
2193 		goto out_err;
2194 	return 0;
2195 out_err:
2196 	d_drop(dentry);
2197 	return error;
2198 }
2199 EXPORT_SYMBOL_GPL(nfs_mkdir);
2200 
2201 static void nfs_dentry_handle_enoent(struct dentry *dentry)
2202 {
2203 	if (simple_positive(dentry))
2204 		d_delete(dentry);
2205 }
2206 
2207 static void nfs_dentry_remove_handle_error(struct inode *dir,
2208 					   struct dentry *dentry, int error)
2209 {
2210 	switch (error) {
2211 	case -ENOENT:
2212 		d_delete(dentry);
2213 		fallthrough;
2214 	case 0:
2215 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2216 	}
2217 }
2218 
2219 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
2220 {
2221 	int error;
2222 
2223 	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
2224 			dir->i_sb->s_id, dir->i_ino, dentry);
2225 
2226 	trace_nfs_rmdir_enter(dir, dentry);
2227 	if (d_really_is_positive(dentry)) {
2228 		down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2229 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2230 		/* Ensure the VFS deletes this inode */
2231 		switch (error) {
2232 		case 0:
2233 			clear_nlink(d_inode(dentry));
2234 			break;
2235 		case -ENOENT:
2236 			nfs_dentry_handle_enoent(dentry);
2237 		}
2238 		up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2239 	} else
2240 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2241 	nfs_dentry_remove_handle_error(dir, dentry, error);
2242 	trace_nfs_rmdir_exit(dir, dentry, error);
2243 
2244 	return error;
2245 }
2246 EXPORT_SYMBOL_GPL(nfs_rmdir);
2247 
2248 /*
2249  * Remove a file after making sure there are no pending writes,
2250  * and after checking that the file has only one user.
2251  *
2252  * We invalidate the attribute cache and free the inode prior to the operation
2253  * to avoid possible races if the server reuses the inode.
2254  */
2255 static int nfs_safe_remove(struct dentry *dentry)
2256 {
2257 	struct inode *dir = d_inode(dentry->d_parent);
2258 	struct inode *inode = d_inode(dentry);
2259 	int error = -EBUSY;
2260 
2261 	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2262 
2263 	/* If the dentry was sillyrenamed, we simply call d_delete() */
2264 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2265 		error = 0;
2266 		goto out;
2267 	}
2268 
2269 	trace_nfs_remove_enter(dir, dentry);
2270 	if (inode != NULL) {
2271 		error = NFS_PROTO(dir)->remove(dir, dentry);
2272 		if (error == 0)
2273 			nfs_drop_nlink(inode);
2274 	} else
2275 		error = NFS_PROTO(dir)->remove(dir, dentry);
2276 	if (error == -ENOENT)
2277 		nfs_dentry_handle_enoent(dentry);
2278 	trace_nfs_remove_exit(dir, dentry, error);
2279 out:
2280 	return error;
2281 }
2282 
2283 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
2284  *  belongs to an active ".nfs..." file and we return -EBUSY.
2285  *
2286  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
2287  */
2288 int nfs_unlink(struct inode *dir, struct dentry *dentry)
2289 {
2290 	int error;
2291 	int need_rehash = 0;
2292 
2293 	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2294 		dir->i_ino, dentry);
2295 
2296 	trace_nfs_unlink_enter(dir, dentry);
2297 	spin_lock(&dentry->d_lock);
2298 	if (d_count(dentry) > 1) {
2299 		spin_unlock(&dentry->d_lock);
2300 		/* Start asynchronous writeout of the inode */
2301 		write_inode_now(d_inode(dentry), 0);
2302 		error = nfs_sillyrename(dir, dentry);
2303 		goto out;
2304 	}
2305 	if (!d_unhashed(dentry)) {
2306 		__d_drop(dentry);
2307 		need_rehash = 1;
2308 	}
2309 	spin_unlock(&dentry->d_lock);
2310 	error = nfs_safe_remove(dentry);
2311 	nfs_dentry_remove_handle_error(dir, dentry, error);
2312 	if (need_rehash)
2313 		d_rehash(dentry);
2314 out:
2315 	trace_nfs_unlink_exit(dir, dentry, error);
2316 	return error;
2317 }
2318 EXPORT_SYMBOL_GPL(nfs_unlink);
2319 
2320 /*
2321  * To create a symbolic link, most file systems instantiate a new inode,
2322  * add a page to it containing the path, then write it out to the disk
2323  * using prepare_write/commit_write.
2324  *
2325  * Unfortunately the NFS client can't create the in-core inode first
2326  * because it needs a file handle to create an in-core inode (see
2327  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
2328  * symlink request has completed on the server.
2329  *
2330  * So instead we allocate a raw page, copy the symname into it, then do
2331  * the SYMLINK request with the page as the buffer.  If it succeeds, we
2332  * now have a new file handle and can instantiate an in-core NFS inode
2333  * and move the raw page into its mapping.
2334  */
2335 int nfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
2336 		struct dentry *dentry, const char *symname)
2337 {
2338 	struct page *page;
2339 	char *kaddr;
2340 	struct iattr attr;
2341 	unsigned int pathlen = strlen(symname);
2342 	int error;
2343 
2344 	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2345 		dir->i_ino, dentry, symname);
2346 
2347 	if (pathlen > PAGE_SIZE)
2348 		return -ENAMETOOLONG;
2349 
2350 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
2351 	attr.ia_valid = ATTR_MODE;
2352 
2353 	page = alloc_page(GFP_USER);
2354 	if (!page)
2355 		return -ENOMEM;
2356 
2357 	kaddr = page_address(page);
2358 	memcpy(kaddr, symname, pathlen);
2359 	if (pathlen < PAGE_SIZE)
2360 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2361 
2362 	trace_nfs_symlink_enter(dir, dentry);
2363 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
2364 	trace_nfs_symlink_exit(dir, dentry, error);
2365 	if (error != 0) {
2366 		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2367 			dir->i_sb->s_id, dir->i_ino,
2368 			dentry, symname, error);
2369 		d_drop(dentry);
2370 		__free_page(page);
2371 		return error;
2372 	}
2373 
2374 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2375 
2376 	/*
2377 	 * No big deal if we can't add this page to the page cache here.
2378 	 * READLINK will get the missing page from the server if needed.
2379 	 */
2380 	if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2381 							GFP_KERNEL)) {
2382 		SetPageUptodate(page);
2383 		unlock_page(page);
2384 		/*
2385 		 * add_to_page_cache_lru() grabs an extra page refcount.
2386 		 * Drop it here to avoid leaking this page later.
2387 		 */
2388 		put_page(page);
2389 	} else
2390 		__free_page(page);
2391 
2392 	return 0;
2393 }
2394 EXPORT_SYMBOL_GPL(nfs_symlink);
2395 
2396 int
2397 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2398 {
2399 	struct inode *inode = d_inode(old_dentry);
2400 	int error;
2401 
2402 	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2403 		old_dentry, dentry);
2404 
2405 	trace_nfs_link_enter(inode, dir, dentry);
2406 	d_drop(dentry);
2407 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2408 	if (error == 0) {
2409 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2410 		ihold(inode);
2411 		d_add(dentry, inode);
2412 	}
2413 	trace_nfs_link_exit(inode, dir, dentry, error);
2414 	return error;
2415 }
2416 EXPORT_SYMBOL_GPL(nfs_link);
2417 
2418 /*
2419  * RENAME
2420  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2421  * different file handle for the same inode after a rename (e.g. when
2422  * moving to a different directory). A fail-safe method to do so would
2423  * be to look up old_dir/old_name, create a link to new_dir/new_name and
2424  * rename the old file using the sillyrename stuff. This way, the original
2425  * file in old_dir will go away when the last process iput()s the inode.
2426  *
2427  * FIXED.
2428  *
2429  * It actually works quite well. One needs to have the possibility for
2430  * at least one ".nfs..." file in each directory the file ever gets
2431  * moved or linked to which happens automagically with the new
2432  * implementation that only depends on the dcache stuff instead of
2433  * using the inode layer
2434  *
2435  * Unfortunately, things are a little more complicated than indicated
2436  * above. For a cross-directory move, we want to make sure we can get
2437  * rid of the old inode after the operation.  This means there must be
2438  * no pending writes (if it's a file), and the use count must be 1.
2439  * If these conditions are met, we can drop the dentries before doing
2440  * the rename.
2441  */
2442 int nfs_rename(struct user_namespace *mnt_userns, struct inode *old_dir,
2443 	       struct dentry *old_dentry, struct inode *new_dir,
2444 	       struct dentry *new_dentry, unsigned int flags)
2445 {
2446 	struct inode *old_inode = d_inode(old_dentry);
2447 	struct inode *new_inode = d_inode(new_dentry);
2448 	struct dentry *dentry = NULL, *rehash = NULL;
2449 	struct rpc_task *task;
2450 	int error = -EBUSY;
2451 
2452 	if (flags)
2453 		return -EINVAL;
2454 
2455 	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2456 		 old_dentry, new_dentry,
2457 		 d_count(new_dentry));
2458 
2459 	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2460 	/*
2461 	 * For non-directories, check whether the target is busy and if so,
2462 	 * make a copy of the dentry and then do a silly-rename. If the
2463 	 * silly-rename succeeds, the copied dentry is hashed and becomes
2464 	 * the new target.
2465 	 */
2466 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2467 		/*
2468 		 * To prevent any new references to the target during the
2469 		 * rename, we unhash the dentry in advance.
2470 		 */
2471 		if (!d_unhashed(new_dentry)) {
2472 			d_drop(new_dentry);
2473 			rehash = new_dentry;
2474 		}
2475 
2476 		if (d_count(new_dentry) > 2) {
2477 			int err;
2478 
2479 			/* copy the target dentry's name */
2480 			dentry = d_alloc(new_dentry->d_parent,
2481 					 &new_dentry->d_name);
2482 			if (!dentry)
2483 				goto out;
2484 
2485 			/* silly-rename the existing target ... */
2486 			err = nfs_sillyrename(new_dir, new_dentry);
2487 			if (err)
2488 				goto out;
2489 
2490 			new_dentry = dentry;
2491 			rehash = NULL;
2492 			new_inode = NULL;
2493 		}
2494 	}
2495 
2496 	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2497 	if (IS_ERR(task)) {
2498 		error = PTR_ERR(task);
2499 		goto out;
2500 	}
2501 
2502 	error = rpc_wait_for_completion_task(task);
2503 	if (error != 0) {
2504 		((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2505 		/* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2506 		smp_wmb();
2507 	} else
2508 		error = task->tk_status;
2509 	rpc_put_task(task);
2510 	/* Ensure the inode attributes are revalidated */
2511 	if (error == 0) {
2512 		spin_lock(&old_inode->i_lock);
2513 		NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2514 		nfs_set_cache_invalid(old_inode, NFS_INO_INVALID_CHANGE |
2515 							 NFS_INO_INVALID_CTIME |
2516 							 NFS_INO_REVAL_FORCED);
2517 		spin_unlock(&old_inode->i_lock);
2518 	}
2519 out:
2520 	if (rehash)
2521 		d_rehash(rehash);
2522 	trace_nfs_rename_exit(old_dir, old_dentry,
2523 			new_dir, new_dentry, error);
2524 	if (!error) {
2525 		if (new_inode != NULL)
2526 			nfs_drop_nlink(new_inode);
2527 		/*
2528 		 * The d_move() should be here instead of in an async RPC completion
2529 		 * handler because we need the proper locks to move the dentry.  If
2530 		 * we're interrupted by a signal, the async RPC completion handler
2531 		 * should mark the directories for revalidation.
2532 		 */
2533 		d_move(old_dentry, new_dentry);
2534 		nfs_set_verifier(old_dentry,
2535 					nfs_save_change_attribute(new_dir));
2536 	} else if (error == -ENOENT)
2537 		nfs_dentry_handle_enoent(old_dentry);
2538 
2539 	/* new dentry created? */
2540 	if (dentry)
2541 		dput(dentry);
2542 	return error;
2543 }
2544 EXPORT_SYMBOL_GPL(nfs_rename);
2545 
2546 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2547 static LIST_HEAD(nfs_access_lru_list);
2548 static atomic_long_t nfs_access_nr_entries;
2549 
2550 static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2551 module_param(nfs_access_max_cachesize, ulong, 0644);
2552 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2553 
2554 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2555 {
2556 	put_cred(entry->cred);
2557 	kfree_rcu(entry, rcu_head);
2558 	smp_mb__before_atomic();
2559 	atomic_long_dec(&nfs_access_nr_entries);
2560 	smp_mb__after_atomic();
2561 }
2562 
2563 static void nfs_access_free_list(struct list_head *head)
2564 {
2565 	struct nfs_access_entry *cache;
2566 
2567 	while (!list_empty(head)) {
2568 		cache = list_entry(head->next, struct nfs_access_entry, lru);
2569 		list_del(&cache->lru);
2570 		nfs_access_free_entry(cache);
2571 	}
2572 }
2573 
2574 static unsigned long
2575 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2576 {
2577 	LIST_HEAD(head);
2578 	struct nfs_inode *nfsi, *next;
2579 	struct nfs_access_entry *cache;
2580 	long freed = 0;
2581 
2582 	spin_lock(&nfs_access_lru_lock);
2583 	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2584 		struct inode *inode;
2585 
2586 		if (nr_to_scan-- == 0)
2587 			break;
2588 		inode = &nfsi->vfs_inode;
2589 		spin_lock(&inode->i_lock);
2590 		if (list_empty(&nfsi->access_cache_entry_lru))
2591 			goto remove_lru_entry;
2592 		cache = list_entry(nfsi->access_cache_entry_lru.next,
2593 				struct nfs_access_entry, lru);
2594 		list_move(&cache->lru, &head);
2595 		rb_erase(&cache->rb_node, &nfsi->access_cache);
2596 		freed++;
2597 		if (!list_empty(&nfsi->access_cache_entry_lru))
2598 			list_move_tail(&nfsi->access_cache_inode_lru,
2599 					&nfs_access_lru_list);
2600 		else {
2601 remove_lru_entry:
2602 			list_del_init(&nfsi->access_cache_inode_lru);
2603 			smp_mb__before_atomic();
2604 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2605 			smp_mb__after_atomic();
2606 		}
2607 		spin_unlock(&inode->i_lock);
2608 	}
2609 	spin_unlock(&nfs_access_lru_lock);
2610 	nfs_access_free_list(&head);
2611 	return freed;
2612 }
2613 
2614 unsigned long
2615 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2616 {
2617 	int nr_to_scan = sc->nr_to_scan;
2618 	gfp_t gfp_mask = sc->gfp_mask;
2619 
2620 	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2621 		return SHRINK_STOP;
2622 	return nfs_do_access_cache_scan(nr_to_scan);
2623 }
2624 
2625 
2626 unsigned long
2627 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2628 {
2629 	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2630 }
2631 
2632 static void
2633 nfs_access_cache_enforce_limit(void)
2634 {
2635 	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2636 	unsigned long diff;
2637 	unsigned int nr_to_scan;
2638 
2639 	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2640 		return;
2641 	nr_to_scan = 100;
2642 	diff = nr_entries - nfs_access_max_cachesize;
2643 	if (diff < nr_to_scan)
2644 		nr_to_scan = diff;
2645 	nfs_do_access_cache_scan(nr_to_scan);
2646 }
2647 
2648 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2649 {
2650 	struct rb_root *root_node = &nfsi->access_cache;
2651 	struct rb_node *n;
2652 	struct nfs_access_entry *entry;
2653 
2654 	/* Unhook entries from the cache */
2655 	while ((n = rb_first(root_node)) != NULL) {
2656 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2657 		rb_erase(n, root_node);
2658 		list_move(&entry->lru, head);
2659 	}
2660 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2661 }
2662 
2663 void nfs_access_zap_cache(struct inode *inode)
2664 {
2665 	LIST_HEAD(head);
2666 
2667 	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2668 		return;
2669 	/* Remove from global LRU init */
2670 	spin_lock(&nfs_access_lru_lock);
2671 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2672 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2673 
2674 	spin_lock(&inode->i_lock);
2675 	__nfs_access_zap_cache(NFS_I(inode), &head);
2676 	spin_unlock(&inode->i_lock);
2677 	spin_unlock(&nfs_access_lru_lock);
2678 	nfs_access_free_list(&head);
2679 }
2680 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2681 
2682 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2683 {
2684 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2685 
2686 	while (n != NULL) {
2687 		struct nfs_access_entry *entry =
2688 			rb_entry(n, struct nfs_access_entry, rb_node);
2689 		int cmp = cred_fscmp(cred, entry->cred);
2690 
2691 		if (cmp < 0)
2692 			n = n->rb_left;
2693 		else if (cmp > 0)
2694 			n = n->rb_right;
2695 		else
2696 			return entry;
2697 	}
2698 	return NULL;
2699 }
2700 
2701 static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res, bool may_block)
2702 {
2703 	struct nfs_inode *nfsi = NFS_I(inode);
2704 	struct nfs_access_entry *cache;
2705 	bool retry = true;
2706 	int err;
2707 
2708 	spin_lock(&inode->i_lock);
2709 	for(;;) {
2710 		if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2711 			goto out_zap;
2712 		cache = nfs_access_search_rbtree(inode, cred);
2713 		err = -ENOENT;
2714 		if (cache == NULL)
2715 			goto out;
2716 		/* Found an entry, is our attribute cache valid? */
2717 		if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2718 			break;
2719 		if (!retry)
2720 			break;
2721 		err = -ECHILD;
2722 		if (!may_block)
2723 			goto out;
2724 		spin_unlock(&inode->i_lock);
2725 		err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2726 		if (err)
2727 			return err;
2728 		spin_lock(&inode->i_lock);
2729 		retry = false;
2730 	}
2731 	res->cred = cache->cred;
2732 	res->mask = cache->mask;
2733 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2734 	err = 0;
2735 out:
2736 	spin_unlock(&inode->i_lock);
2737 	return err;
2738 out_zap:
2739 	spin_unlock(&inode->i_lock);
2740 	nfs_access_zap_cache(inode);
2741 	return -ENOENT;
2742 }
2743 
2744 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res)
2745 {
2746 	/* Only check the most recently returned cache entry,
2747 	 * but do it without locking.
2748 	 */
2749 	struct nfs_inode *nfsi = NFS_I(inode);
2750 	struct nfs_access_entry *cache;
2751 	int err = -ECHILD;
2752 	struct list_head *lh;
2753 
2754 	rcu_read_lock();
2755 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2756 		goto out;
2757 	lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
2758 	cache = list_entry(lh, struct nfs_access_entry, lru);
2759 	if (lh == &nfsi->access_cache_entry_lru ||
2760 	    cred_fscmp(cred, cache->cred) != 0)
2761 		cache = NULL;
2762 	if (cache == NULL)
2763 		goto out;
2764 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2765 		goto out;
2766 	res->cred = cache->cred;
2767 	res->mask = cache->mask;
2768 	err = 0;
2769 out:
2770 	rcu_read_unlock();
2771 	return err;
2772 }
2773 
2774 int nfs_access_get_cached(struct inode *inode, const struct cred *cred, struct
2775 nfs_access_entry *res, bool may_block)
2776 {
2777 	int status;
2778 
2779 	status = nfs_access_get_cached_rcu(inode, cred, res);
2780 	if (status != 0)
2781 		status = nfs_access_get_cached_locked(inode, cred, res,
2782 		    may_block);
2783 
2784 	return status;
2785 }
2786 EXPORT_SYMBOL_GPL(nfs_access_get_cached);
2787 
2788 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2789 {
2790 	struct nfs_inode *nfsi = NFS_I(inode);
2791 	struct rb_root *root_node = &nfsi->access_cache;
2792 	struct rb_node **p = &root_node->rb_node;
2793 	struct rb_node *parent = NULL;
2794 	struct nfs_access_entry *entry;
2795 	int cmp;
2796 
2797 	spin_lock(&inode->i_lock);
2798 	while (*p != NULL) {
2799 		parent = *p;
2800 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2801 		cmp = cred_fscmp(set->cred, entry->cred);
2802 
2803 		if (cmp < 0)
2804 			p = &parent->rb_left;
2805 		else if (cmp > 0)
2806 			p = &parent->rb_right;
2807 		else
2808 			goto found;
2809 	}
2810 	rb_link_node(&set->rb_node, parent, p);
2811 	rb_insert_color(&set->rb_node, root_node);
2812 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2813 	spin_unlock(&inode->i_lock);
2814 	return;
2815 found:
2816 	rb_replace_node(parent, &set->rb_node, root_node);
2817 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2818 	list_del(&entry->lru);
2819 	spin_unlock(&inode->i_lock);
2820 	nfs_access_free_entry(entry);
2821 }
2822 
2823 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2824 {
2825 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2826 	if (cache == NULL)
2827 		return;
2828 	RB_CLEAR_NODE(&cache->rb_node);
2829 	cache->cred = get_cred(set->cred);
2830 	cache->mask = set->mask;
2831 
2832 	/* The above field assignments must be visible
2833 	 * before this item appears on the lru.  We cannot easily
2834 	 * use rcu_assign_pointer, so just force the memory barrier.
2835 	 */
2836 	smp_wmb();
2837 	nfs_access_add_rbtree(inode, cache);
2838 
2839 	/* Update accounting */
2840 	smp_mb__before_atomic();
2841 	atomic_long_inc(&nfs_access_nr_entries);
2842 	smp_mb__after_atomic();
2843 
2844 	/* Add inode to global LRU list */
2845 	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2846 		spin_lock(&nfs_access_lru_lock);
2847 		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2848 			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2849 					&nfs_access_lru_list);
2850 		spin_unlock(&nfs_access_lru_lock);
2851 	}
2852 	nfs_access_cache_enforce_limit();
2853 }
2854 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2855 
2856 #define NFS_MAY_READ (NFS_ACCESS_READ)
2857 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2858 		NFS_ACCESS_EXTEND | \
2859 		NFS_ACCESS_DELETE)
2860 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2861 		NFS_ACCESS_EXTEND)
2862 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2863 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2864 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2865 static int
2866 nfs_access_calc_mask(u32 access_result, umode_t umode)
2867 {
2868 	int mask = 0;
2869 
2870 	if (access_result & NFS_MAY_READ)
2871 		mask |= MAY_READ;
2872 	if (S_ISDIR(umode)) {
2873 		if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
2874 			mask |= MAY_WRITE;
2875 		if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
2876 			mask |= MAY_EXEC;
2877 	} else if (S_ISREG(umode)) {
2878 		if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
2879 			mask |= MAY_WRITE;
2880 		if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
2881 			mask |= MAY_EXEC;
2882 	} else if (access_result & NFS_MAY_WRITE)
2883 			mask |= MAY_WRITE;
2884 	return mask;
2885 }
2886 
2887 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2888 {
2889 	entry->mask = access_result;
2890 }
2891 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2892 
2893 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
2894 {
2895 	struct nfs_access_entry cache;
2896 	bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2897 	int cache_mask = -1;
2898 	int status;
2899 
2900 	trace_nfs_access_enter(inode);
2901 
2902 	status = nfs_access_get_cached(inode, cred, &cache, may_block);
2903 	if (status == 0)
2904 		goto out_cached;
2905 
2906 	status = -ECHILD;
2907 	if (!may_block)
2908 		goto out;
2909 
2910 	/*
2911 	 * Determine which access bits we want to ask for...
2912 	 */
2913 	cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND;
2914 	if (nfs_server_capable(inode, NFS_CAP_XATTR)) {
2915 		cache.mask |= NFS_ACCESS_XAREAD | NFS_ACCESS_XAWRITE |
2916 		    NFS_ACCESS_XALIST;
2917 	}
2918 	if (S_ISDIR(inode->i_mode))
2919 		cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
2920 	else
2921 		cache.mask |= NFS_ACCESS_EXECUTE;
2922 	cache.cred = cred;
2923 	status = NFS_PROTO(inode)->access(inode, &cache);
2924 	if (status != 0) {
2925 		if (status == -ESTALE) {
2926 			if (!S_ISDIR(inode->i_mode))
2927 				nfs_set_inode_stale(inode);
2928 			else
2929 				nfs_zap_caches(inode);
2930 		}
2931 		goto out;
2932 	}
2933 	nfs_access_add_cache(inode, &cache);
2934 out_cached:
2935 	cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
2936 	if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2937 		status = -EACCES;
2938 out:
2939 	trace_nfs_access_exit(inode, mask, cache_mask, status);
2940 	return status;
2941 }
2942 
2943 static int nfs_open_permission_mask(int openflags)
2944 {
2945 	int mask = 0;
2946 
2947 	if (openflags & __FMODE_EXEC) {
2948 		/* ONLY check exec rights */
2949 		mask = MAY_EXEC;
2950 	} else {
2951 		if ((openflags & O_ACCMODE) != O_WRONLY)
2952 			mask |= MAY_READ;
2953 		if ((openflags & O_ACCMODE) != O_RDONLY)
2954 			mask |= MAY_WRITE;
2955 	}
2956 
2957 	return mask;
2958 }
2959 
2960 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
2961 {
2962 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2963 }
2964 EXPORT_SYMBOL_GPL(nfs_may_open);
2965 
2966 static int nfs_execute_ok(struct inode *inode, int mask)
2967 {
2968 	struct nfs_server *server = NFS_SERVER(inode);
2969 	int ret = 0;
2970 
2971 	if (S_ISDIR(inode->i_mode))
2972 		return 0;
2973 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_MODE)) {
2974 		if (mask & MAY_NOT_BLOCK)
2975 			return -ECHILD;
2976 		ret = __nfs_revalidate_inode(server, inode);
2977 	}
2978 	if (ret == 0 && !execute_ok(inode))
2979 		ret = -EACCES;
2980 	return ret;
2981 }
2982 
2983 int nfs_permission(struct user_namespace *mnt_userns,
2984 		   struct inode *inode,
2985 		   int mask)
2986 {
2987 	const struct cred *cred = current_cred();
2988 	int res = 0;
2989 
2990 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2991 
2992 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2993 		goto out;
2994 	/* Is this sys_access() ? */
2995 	if (mask & (MAY_ACCESS | MAY_CHDIR))
2996 		goto force_lookup;
2997 
2998 	switch (inode->i_mode & S_IFMT) {
2999 		case S_IFLNK:
3000 			goto out;
3001 		case S_IFREG:
3002 			if ((mask & MAY_OPEN) &&
3003 			   nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
3004 				return 0;
3005 			break;
3006 		case S_IFDIR:
3007 			/*
3008 			 * Optimize away all write operations, since the server
3009 			 * will check permissions when we perform the op.
3010 			 */
3011 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
3012 				goto out;
3013 	}
3014 
3015 force_lookup:
3016 	if (!NFS_PROTO(inode)->access)
3017 		goto out_notsup;
3018 
3019 	res = nfs_do_access(inode, cred, mask);
3020 out:
3021 	if (!res && (mask & MAY_EXEC))
3022 		res = nfs_execute_ok(inode, mask);
3023 
3024 	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
3025 		inode->i_sb->s_id, inode->i_ino, mask, res);
3026 	return res;
3027 out_notsup:
3028 	if (mask & MAY_NOT_BLOCK)
3029 		return -ECHILD;
3030 
3031 	res = nfs_revalidate_inode(inode, NFS_INO_INVALID_MODE |
3032 						  NFS_INO_INVALID_OTHER);
3033 	if (res == 0)
3034 		res = generic_permission(&init_user_ns, inode, mask);
3035 	goto out;
3036 }
3037 EXPORT_SYMBOL_GPL(nfs_permission);
3038