1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/nfs/dir.c 4 * 5 * Copyright (C) 1992 Rick Sladkey 6 * 7 * nfs directory handling functions 8 * 9 * 10 Apr 1996 Added silly rename for unlink --okir 10 * 28 Sep 1996 Improved directory cache --okir 11 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de 12 * Re-implemented silly rename for unlink, newly implemented 13 * silly rename for nfs_rename() following the suggestions 14 * of Olaf Kirch (okir) found in this file. 15 * Following Linus comments on my original hack, this version 16 * depends only on the dcache stuff and doesn't touch the inode 17 * layer (iput() and friends). 18 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM 19 */ 20 21 #include <linux/compat.h> 22 #include <linux/module.h> 23 #include <linux/time.h> 24 #include <linux/errno.h> 25 #include <linux/stat.h> 26 #include <linux/fcntl.h> 27 #include <linux/string.h> 28 #include <linux/kernel.h> 29 #include <linux/slab.h> 30 #include <linux/mm.h> 31 #include <linux/sunrpc/clnt.h> 32 #include <linux/nfs_fs.h> 33 #include <linux/nfs_mount.h> 34 #include <linux/pagemap.h> 35 #include <linux/pagevec.h> 36 #include <linux/namei.h> 37 #include <linux/mount.h> 38 #include <linux/swap.h> 39 #include <linux/sched.h> 40 #include <linux/kmemleak.h> 41 #include <linux/xattr.h> 42 #include <linux/hash.h> 43 44 #include "delegation.h" 45 #include "iostat.h" 46 #include "internal.h" 47 #include "fscache.h" 48 49 #include "nfstrace.h" 50 51 /* #define NFS_DEBUG_VERBOSE 1 */ 52 53 static int nfs_opendir(struct inode *, struct file *); 54 static int nfs_closedir(struct inode *, struct file *); 55 static int nfs_readdir(struct file *, struct dir_context *); 56 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int); 57 static loff_t nfs_llseek_dir(struct file *, loff_t, int); 58 static void nfs_readdir_clear_array(struct page*); 59 60 const struct file_operations nfs_dir_operations = { 61 .llseek = nfs_llseek_dir, 62 .read = generic_read_dir, 63 .iterate_shared = nfs_readdir, 64 .open = nfs_opendir, 65 .release = nfs_closedir, 66 .fsync = nfs_fsync_dir, 67 }; 68 69 const struct address_space_operations nfs_dir_aops = { 70 .freepage = nfs_readdir_clear_array, 71 }; 72 73 #define NFS_INIT_DTSIZE PAGE_SIZE 74 75 static struct nfs_open_dir_context * 76 alloc_nfs_open_dir_context(struct inode *dir) 77 { 78 struct nfs_inode *nfsi = NFS_I(dir); 79 struct nfs_open_dir_context *ctx; 80 81 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL_ACCOUNT); 82 if (ctx != NULL) { 83 ctx->attr_gencount = nfsi->attr_gencount; 84 ctx->dtsize = NFS_INIT_DTSIZE; 85 spin_lock(&dir->i_lock); 86 if (list_empty(&nfsi->open_files) && 87 (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER)) 88 nfs_set_cache_invalid(dir, 89 NFS_INO_INVALID_DATA | 90 NFS_INO_REVAL_FORCED); 91 list_add_tail_rcu(&ctx->list, &nfsi->open_files); 92 memcpy(ctx->verf, nfsi->cookieverf, sizeof(ctx->verf)); 93 spin_unlock(&dir->i_lock); 94 return ctx; 95 } 96 return ERR_PTR(-ENOMEM); 97 } 98 99 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx) 100 { 101 spin_lock(&dir->i_lock); 102 list_del_rcu(&ctx->list); 103 spin_unlock(&dir->i_lock); 104 kfree_rcu(ctx, rcu_head); 105 } 106 107 /* 108 * Open file 109 */ 110 static int 111 nfs_opendir(struct inode *inode, struct file *filp) 112 { 113 int res = 0; 114 struct nfs_open_dir_context *ctx; 115 116 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp); 117 118 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 119 120 ctx = alloc_nfs_open_dir_context(inode); 121 if (IS_ERR(ctx)) { 122 res = PTR_ERR(ctx); 123 goto out; 124 } 125 filp->private_data = ctx; 126 out: 127 return res; 128 } 129 130 static int 131 nfs_closedir(struct inode *inode, struct file *filp) 132 { 133 put_nfs_open_dir_context(file_inode(filp), filp->private_data); 134 return 0; 135 } 136 137 struct nfs_cache_array_entry { 138 u64 cookie; 139 u64 ino; 140 const char *name; 141 unsigned int name_len; 142 unsigned char d_type; 143 }; 144 145 struct nfs_cache_array { 146 u64 change_attr; 147 u64 last_cookie; 148 unsigned int size; 149 unsigned char page_full : 1, 150 page_is_eof : 1, 151 cookies_are_ordered : 1; 152 struct nfs_cache_array_entry array[]; 153 }; 154 155 struct nfs_readdir_descriptor { 156 struct file *file; 157 struct page *page; 158 struct dir_context *ctx; 159 pgoff_t page_index; 160 pgoff_t page_index_max; 161 u64 dir_cookie; 162 u64 last_cookie; 163 loff_t current_index; 164 165 __be32 verf[NFS_DIR_VERIFIER_SIZE]; 166 unsigned long dir_verifier; 167 unsigned long timestamp; 168 unsigned long gencount; 169 unsigned long attr_gencount; 170 unsigned int cache_entry_index; 171 unsigned int buffer_fills; 172 unsigned int dtsize; 173 bool clear_cache; 174 bool plus; 175 bool eob; 176 bool eof; 177 }; 178 179 static void nfs_set_dtsize(struct nfs_readdir_descriptor *desc, unsigned int sz) 180 { 181 struct nfs_server *server = NFS_SERVER(file_inode(desc->file)); 182 unsigned int maxsize = server->dtsize; 183 184 if (sz > maxsize) 185 sz = maxsize; 186 if (sz < NFS_MIN_FILE_IO_SIZE) 187 sz = NFS_MIN_FILE_IO_SIZE; 188 desc->dtsize = sz; 189 } 190 191 static void nfs_shrink_dtsize(struct nfs_readdir_descriptor *desc) 192 { 193 nfs_set_dtsize(desc, desc->dtsize >> 1); 194 } 195 196 static void nfs_grow_dtsize(struct nfs_readdir_descriptor *desc) 197 { 198 nfs_set_dtsize(desc, desc->dtsize << 1); 199 } 200 201 static void nfs_readdir_page_init_array(struct page *page, u64 last_cookie, 202 u64 change_attr) 203 { 204 struct nfs_cache_array *array; 205 206 array = kmap_atomic(page); 207 array->change_attr = change_attr; 208 array->last_cookie = last_cookie; 209 array->size = 0; 210 array->page_full = 0; 211 array->page_is_eof = 0; 212 array->cookies_are_ordered = 1; 213 kunmap_atomic(array); 214 } 215 216 /* 217 * we are freeing strings created by nfs_add_to_readdir_array() 218 */ 219 static void nfs_readdir_clear_array(struct page *page) 220 { 221 struct nfs_cache_array *array; 222 unsigned int i; 223 224 array = kmap_atomic(page); 225 for (i = 0; i < array->size; i++) 226 kfree(array->array[i].name); 227 array->size = 0; 228 kunmap_atomic(array); 229 } 230 231 static void nfs_readdir_page_reinit_array(struct page *page, u64 last_cookie, 232 u64 change_attr) 233 { 234 nfs_readdir_clear_array(page); 235 nfs_readdir_page_init_array(page, last_cookie, change_attr); 236 } 237 238 static struct page * 239 nfs_readdir_page_array_alloc(u64 last_cookie, gfp_t gfp_flags) 240 { 241 struct page *page = alloc_page(gfp_flags); 242 if (page) 243 nfs_readdir_page_init_array(page, last_cookie, 0); 244 return page; 245 } 246 247 static void nfs_readdir_page_array_free(struct page *page) 248 { 249 if (page) { 250 nfs_readdir_clear_array(page); 251 put_page(page); 252 } 253 } 254 255 static u64 nfs_readdir_array_index_cookie(struct nfs_cache_array *array) 256 { 257 return array->size == 0 ? array->last_cookie : array->array[0].cookie; 258 } 259 260 static void nfs_readdir_array_set_eof(struct nfs_cache_array *array) 261 { 262 array->page_is_eof = 1; 263 array->page_full = 1; 264 } 265 266 static bool nfs_readdir_array_is_full(struct nfs_cache_array *array) 267 { 268 return array->page_full; 269 } 270 271 /* 272 * the caller is responsible for freeing qstr.name 273 * when called by nfs_readdir_add_to_array, the strings will be freed in 274 * nfs_clear_readdir_array() 275 */ 276 static const char *nfs_readdir_copy_name(const char *name, unsigned int len) 277 { 278 const char *ret = kmemdup_nul(name, len, GFP_KERNEL); 279 280 /* 281 * Avoid a kmemleak false positive. The pointer to the name is stored 282 * in a page cache page which kmemleak does not scan. 283 */ 284 if (ret != NULL) 285 kmemleak_not_leak(ret); 286 return ret; 287 } 288 289 static size_t nfs_readdir_array_maxentries(void) 290 { 291 return (PAGE_SIZE - sizeof(struct nfs_cache_array)) / 292 sizeof(struct nfs_cache_array_entry); 293 } 294 295 /* 296 * Check that the next array entry lies entirely within the page bounds 297 */ 298 static int nfs_readdir_array_can_expand(struct nfs_cache_array *array) 299 { 300 if (array->page_full) 301 return -ENOSPC; 302 if (array->size == nfs_readdir_array_maxentries()) { 303 array->page_full = 1; 304 return -ENOSPC; 305 } 306 return 0; 307 } 308 309 static int nfs_readdir_page_array_append(struct page *page, 310 const struct nfs_entry *entry, 311 u64 *cookie) 312 { 313 struct nfs_cache_array *array; 314 struct nfs_cache_array_entry *cache_entry; 315 const char *name; 316 int ret = -ENOMEM; 317 318 name = nfs_readdir_copy_name(entry->name, entry->len); 319 320 array = kmap_atomic(page); 321 if (!name) 322 goto out; 323 ret = nfs_readdir_array_can_expand(array); 324 if (ret) { 325 kfree(name); 326 goto out; 327 } 328 329 cache_entry = &array->array[array->size]; 330 cache_entry->cookie = array->last_cookie; 331 cache_entry->ino = entry->ino; 332 cache_entry->d_type = entry->d_type; 333 cache_entry->name_len = entry->len; 334 cache_entry->name = name; 335 array->last_cookie = entry->cookie; 336 if (array->last_cookie <= cache_entry->cookie) 337 array->cookies_are_ordered = 0; 338 array->size++; 339 if (entry->eof != 0) 340 nfs_readdir_array_set_eof(array); 341 out: 342 *cookie = array->last_cookie; 343 kunmap_atomic(array); 344 return ret; 345 } 346 347 #define NFS_READDIR_COOKIE_MASK (U32_MAX >> 14) 348 /* 349 * Hash algorithm allowing content addressible access to sequences 350 * of directory cookies. Content is addressed by the value of the 351 * cookie index of the first readdir entry in a page. 352 * 353 * We select only the first 18 bits to avoid issues with excessive 354 * memory use for the page cache XArray. 18 bits should allow the caching 355 * of 262144 pages of sequences of readdir entries. Since each page holds 356 * 127 readdir entries for a typical 64-bit system, that works out to a 357 * cache of ~ 33 million entries per directory. 358 */ 359 static pgoff_t nfs_readdir_page_cookie_hash(u64 cookie) 360 { 361 if (cookie == 0) 362 return 0; 363 return hash_64(cookie, 18); 364 } 365 366 static bool nfs_readdir_page_validate(struct page *page, u64 last_cookie, 367 u64 change_attr) 368 { 369 struct nfs_cache_array *array = kmap_atomic(page); 370 int ret = true; 371 372 if (array->change_attr != change_attr) 373 ret = false; 374 if (nfs_readdir_array_index_cookie(array) != last_cookie) 375 ret = false; 376 kunmap_atomic(array); 377 return ret; 378 } 379 380 static void nfs_readdir_page_unlock_and_put(struct page *page) 381 { 382 unlock_page(page); 383 put_page(page); 384 } 385 386 static void nfs_readdir_page_init_and_validate(struct page *page, u64 cookie, 387 u64 change_attr) 388 { 389 if (PageUptodate(page)) { 390 if (nfs_readdir_page_validate(page, cookie, change_attr)) 391 return; 392 nfs_readdir_clear_array(page); 393 } 394 nfs_readdir_page_init_array(page, cookie, change_attr); 395 SetPageUptodate(page); 396 } 397 398 static struct page *nfs_readdir_page_get_locked(struct address_space *mapping, 399 u64 cookie, u64 change_attr) 400 { 401 pgoff_t index = nfs_readdir_page_cookie_hash(cookie); 402 struct page *page; 403 404 page = grab_cache_page(mapping, index); 405 if (!page) 406 return NULL; 407 nfs_readdir_page_init_and_validate(page, cookie, change_attr); 408 return page; 409 } 410 411 static u64 nfs_readdir_page_last_cookie(struct page *page) 412 { 413 struct nfs_cache_array *array; 414 u64 ret; 415 416 array = kmap_atomic(page); 417 ret = array->last_cookie; 418 kunmap_atomic(array); 419 return ret; 420 } 421 422 static bool nfs_readdir_page_needs_filling(struct page *page) 423 { 424 struct nfs_cache_array *array; 425 bool ret; 426 427 array = kmap_atomic(page); 428 ret = !nfs_readdir_array_is_full(array); 429 kunmap_atomic(array); 430 return ret; 431 } 432 433 static void nfs_readdir_page_set_eof(struct page *page) 434 { 435 struct nfs_cache_array *array; 436 437 array = kmap_atomic(page); 438 nfs_readdir_array_set_eof(array); 439 kunmap_atomic(array); 440 } 441 442 static struct page *nfs_readdir_page_get_next(struct address_space *mapping, 443 u64 cookie, u64 change_attr) 444 { 445 pgoff_t index = nfs_readdir_page_cookie_hash(cookie); 446 struct page *page; 447 448 page = grab_cache_page_nowait(mapping, index); 449 if (!page) 450 return NULL; 451 nfs_readdir_page_init_and_validate(page, cookie, change_attr); 452 if (nfs_readdir_page_last_cookie(page) != cookie) 453 nfs_readdir_page_reinit_array(page, cookie, change_attr); 454 return page; 455 } 456 457 static inline 458 int is_32bit_api(void) 459 { 460 #ifdef CONFIG_COMPAT 461 return in_compat_syscall(); 462 #else 463 return (BITS_PER_LONG == 32); 464 #endif 465 } 466 467 static 468 bool nfs_readdir_use_cookie(const struct file *filp) 469 { 470 if ((filp->f_mode & FMODE_32BITHASH) || 471 (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api())) 472 return false; 473 return true; 474 } 475 476 static void nfs_readdir_seek_next_array(struct nfs_cache_array *array, 477 struct nfs_readdir_descriptor *desc) 478 { 479 if (array->page_full) { 480 desc->last_cookie = array->last_cookie; 481 desc->current_index += array->size; 482 desc->cache_entry_index = 0; 483 desc->page_index++; 484 } else 485 desc->last_cookie = nfs_readdir_array_index_cookie(array); 486 } 487 488 static void nfs_readdir_rewind_search(struct nfs_readdir_descriptor *desc) 489 { 490 desc->current_index = 0; 491 desc->last_cookie = 0; 492 desc->page_index = 0; 493 } 494 495 static int nfs_readdir_search_for_pos(struct nfs_cache_array *array, 496 struct nfs_readdir_descriptor *desc) 497 { 498 loff_t diff = desc->ctx->pos - desc->current_index; 499 unsigned int index; 500 501 if (diff < 0) 502 goto out_eof; 503 if (diff >= array->size) { 504 if (array->page_is_eof) 505 goto out_eof; 506 nfs_readdir_seek_next_array(array, desc); 507 return -EAGAIN; 508 } 509 510 index = (unsigned int)diff; 511 desc->dir_cookie = array->array[index].cookie; 512 desc->cache_entry_index = index; 513 return 0; 514 out_eof: 515 desc->eof = true; 516 return -EBADCOOKIE; 517 } 518 519 static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array, 520 u64 cookie) 521 { 522 if (!array->cookies_are_ordered) 523 return true; 524 /* Optimisation for monotonically increasing cookies */ 525 if (cookie >= array->last_cookie) 526 return false; 527 if (array->size && cookie < array->array[0].cookie) 528 return false; 529 return true; 530 } 531 532 static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, 533 struct nfs_readdir_descriptor *desc) 534 { 535 unsigned int i; 536 int status = -EAGAIN; 537 538 if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie)) 539 goto check_eof; 540 541 for (i = 0; i < array->size; i++) { 542 if (array->array[i].cookie == desc->dir_cookie) { 543 if (nfs_readdir_use_cookie(desc->file)) 544 desc->ctx->pos = desc->dir_cookie; 545 else 546 desc->ctx->pos = desc->current_index + i; 547 desc->cache_entry_index = i; 548 return 0; 549 } 550 } 551 check_eof: 552 if (array->page_is_eof) { 553 status = -EBADCOOKIE; 554 if (desc->dir_cookie == array->last_cookie) 555 desc->eof = true; 556 } else 557 nfs_readdir_seek_next_array(array, desc); 558 return status; 559 } 560 561 static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc) 562 { 563 struct nfs_cache_array *array; 564 int status; 565 566 array = kmap_atomic(desc->page); 567 568 if (desc->dir_cookie == 0) 569 status = nfs_readdir_search_for_pos(array, desc); 570 else 571 status = nfs_readdir_search_for_cookie(array, desc); 572 573 kunmap_atomic(array); 574 return status; 575 } 576 577 /* Fill a page with xdr information before transferring to the cache page */ 578 static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc, 579 __be32 *verf, u64 cookie, 580 struct page **pages, size_t bufsize, 581 __be32 *verf_res) 582 { 583 struct inode *inode = file_inode(desc->file); 584 struct nfs_readdir_arg arg = { 585 .dentry = file_dentry(desc->file), 586 .cred = desc->file->f_cred, 587 .verf = verf, 588 .cookie = cookie, 589 .pages = pages, 590 .page_len = bufsize, 591 .plus = desc->plus, 592 }; 593 struct nfs_readdir_res res = { 594 .verf = verf_res, 595 }; 596 unsigned long timestamp, gencount; 597 int error; 598 599 again: 600 timestamp = jiffies; 601 gencount = nfs_inc_attr_generation_counter(); 602 desc->dir_verifier = nfs_save_change_attribute(inode); 603 error = NFS_PROTO(inode)->readdir(&arg, &res); 604 if (error < 0) { 605 /* We requested READDIRPLUS, but the server doesn't grok it */ 606 if (error == -ENOTSUPP && desc->plus) { 607 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS; 608 desc->plus = arg.plus = false; 609 goto again; 610 } 611 goto error; 612 } 613 desc->timestamp = timestamp; 614 desc->gencount = gencount; 615 error: 616 return error; 617 } 618 619 static int xdr_decode(struct nfs_readdir_descriptor *desc, 620 struct nfs_entry *entry, struct xdr_stream *xdr) 621 { 622 struct inode *inode = file_inode(desc->file); 623 int error; 624 625 error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus); 626 if (error) 627 return error; 628 entry->fattr->time_start = desc->timestamp; 629 entry->fattr->gencount = desc->gencount; 630 return 0; 631 } 632 633 /* Match file and dirent using either filehandle or fileid 634 * Note: caller is responsible for checking the fsid 635 */ 636 static 637 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry) 638 { 639 struct inode *inode; 640 struct nfs_inode *nfsi; 641 642 if (d_really_is_negative(dentry)) 643 return 0; 644 645 inode = d_inode(dentry); 646 if (is_bad_inode(inode) || NFS_STALE(inode)) 647 return 0; 648 649 nfsi = NFS_I(inode); 650 if (entry->fattr->fileid != nfsi->fileid) 651 return 0; 652 if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0) 653 return 0; 654 return 1; 655 } 656 657 #define NFS_READDIR_CACHE_USAGE_THRESHOLD (8UL) 658 659 static bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx, 660 unsigned int cache_hits, 661 unsigned int cache_misses) 662 { 663 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS)) 664 return false; 665 if (ctx->pos == 0 || 666 cache_hits + cache_misses > NFS_READDIR_CACHE_USAGE_THRESHOLD) 667 return true; 668 return false; 669 } 670 671 /* 672 * This function is called by the getattr code to request the 673 * use of readdirplus to accelerate any future lookups in the same 674 * directory. 675 */ 676 void nfs_readdir_record_entry_cache_hit(struct inode *dir) 677 { 678 struct nfs_inode *nfsi = NFS_I(dir); 679 struct nfs_open_dir_context *ctx; 680 681 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) && 682 S_ISDIR(dir->i_mode)) { 683 rcu_read_lock(); 684 list_for_each_entry_rcu (ctx, &nfsi->open_files, list) 685 atomic_inc(&ctx->cache_hits); 686 rcu_read_unlock(); 687 } 688 } 689 690 /* 691 * This function is mainly for use by nfs_getattr(). 692 * 693 * If this is an 'ls -l', we want to force use of readdirplus. 694 */ 695 void nfs_readdir_record_entry_cache_miss(struct inode *dir) 696 { 697 struct nfs_inode *nfsi = NFS_I(dir); 698 struct nfs_open_dir_context *ctx; 699 700 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) && 701 S_ISDIR(dir->i_mode)) { 702 rcu_read_lock(); 703 list_for_each_entry_rcu (ctx, &nfsi->open_files, list) 704 atomic_inc(&ctx->cache_misses); 705 rcu_read_unlock(); 706 } 707 } 708 709 static void nfs_lookup_advise_force_readdirplus(struct inode *dir, 710 unsigned int flags) 711 { 712 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE)) 713 return; 714 if (flags & (LOOKUP_EXCL | LOOKUP_PARENT | LOOKUP_REVAL)) 715 return; 716 nfs_readdir_record_entry_cache_miss(dir); 717 } 718 719 static 720 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry, 721 unsigned long dir_verifier) 722 { 723 struct qstr filename = QSTR_INIT(entry->name, entry->len); 724 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 725 struct dentry *dentry; 726 struct dentry *alias; 727 struct inode *inode; 728 int status; 729 730 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID)) 731 return; 732 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID)) 733 return; 734 if (filename.len == 0) 735 return; 736 /* Validate that the name doesn't contain any illegal '\0' */ 737 if (strnlen(filename.name, filename.len) != filename.len) 738 return; 739 /* ...or '/' */ 740 if (strnchr(filename.name, filename.len, '/')) 741 return; 742 if (filename.name[0] == '.') { 743 if (filename.len == 1) 744 return; 745 if (filename.len == 2 && filename.name[1] == '.') 746 return; 747 } 748 filename.hash = full_name_hash(parent, filename.name, filename.len); 749 750 dentry = d_lookup(parent, &filename); 751 again: 752 if (!dentry) { 753 dentry = d_alloc_parallel(parent, &filename, &wq); 754 if (IS_ERR(dentry)) 755 return; 756 } 757 if (!d_in_lookup(dentry)) { 758 /* Is there a mountpoint here? If so, just exit */ 759 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid, 760 &entry->fattr->fsid)) 761 goto out; 762 if (nfs_same_file(dentry, entry)) { 763 if (!entry->fh->size) 764 goto out; 765 nfs_set_verifier(dentry, dir_verifier); 766 status = nfs_refresh_inode(d_inode(dentry), entry->fattr); 767 if (!status) 768 nfs_setsecurity(d_inode(dentry), entry->fattr); 769 trace_nfs_readdir_lookup_revalidate(d_inode(parent), 770 dentry, 0, status); 771 goto out; 772 } else { 773 trace_nfs_readdir_lookup_revalidate_failed( 774 d_inode(parent), dentry, 0); 775 d_invalidate(dentry); 776 dput(dentry); 777 dentry = NULL; 778 goto again; 779 } 780 } 781 if (!entry->fh->size) { 782 d_lookup_done(dentry); 783 goto out; 784 } 785 786 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr); 787 alias = d_splice_alias(inode, dentry); 788 d_lookup_done(dentry); 789 if (alias) { 790 if (IS_ERR(alias)) 791 goto out; 792 dput(dentry); 793 dentry = alias; 794 } 795 nfs_set_verifier(dentry, dir_verifier); 796 trace_nfs_readdir_lookup(d_inode(parent), dentry, 0); 797 out: 798 dput(dentry); 799 } 800 801 static int nfs_readdir_entry_decode(struct nfs_readdir_descriptor *desc, 802 struct nfs_entry *entry, 803 struct xdr_stream *stream) 804 { 805 int ret; 806 807 if (entry->fattr->label) 808 entry->fattr->label->len = NFS4_MAXLABELLEN; 809 ret = xdr_decode(desc, entry, stream); 810 if (ret || !desc->plus) 811 return ret; 812 nfs_prime_dcache(file_dentry(desc->file), entry, desc->dir_verifier); 813 return 0; 814 } 815 816 /* Perform conversion from xdr to cache array */ 817 static int nfs_readdir_page_filler(struct nfs_readdir_descriptor *desc, 818 struct nfs_entry *entry, 819 struct page **xdr_pages, unsigned int buflen, 820 struct page **arrays, size_t narrays, 821 u64 change_attr) 822 { 823 struct address_space *mapping = desc->file->f_mapping; 824 struct xdr_stream stream; 825 struct xdr_buf buf; 826 struct page *scratch, *new, *page = *arrays; 827 u64 cookie; 828 int status; 829 830 scratch = alloc_page(GFP_KERNEL); 831 if (scratch == NULL) 832 return -ENOMEM; 833 834 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen); 835 xdr_set_scratch_page(&stream, scratch); 836 837 do { 838 status = nfs_readdir_entry_decode(desc, entry, &stream); 839 if (status != 0) 840 break; 841 842 status = nfs_readdir_page_array_append(page, entry, &cookie); 843 if (status != -ENOSPC) 844 continue; 845 846 if (page->mapping != mapping) { 847 if (!--narrays) 848 break; 849 new = nfs_readdir_page_array_alloc(cookie, GFP_KERNEL); 850 if (!new) 851 break; 852 arrays++; 853 *arrays = page = new; 854 } else { 855 new = nfs_readdir_page_get_next(mapping, cookie, 856 change_attr); 857 if (!new) 858 break; 859 if (page != *arrays) 860 nfs_readdir_page_unlock_and_put(page); 861 page = new; 862 } 863 desc->page_index_max++; 864 status = nfs_readdir_page_array_append(page, entry, &cookie); 865 } while (!status && !entry->eof); 866 867 switch (status) { 868 case -EBADCOOKIE: 869 if (!entry->eof) 870 break; 871 nfs_readdir_page_set_eof(page); 872 fallthrough; 873 case -EAGAIN: 874 status = 0; 875 break; 876 case -ENOSPC: 877 status = 0; 878 if (!desc->plus) 879 break; 880 while (!nfs_readdir_entry_decode(desc, entry, &stream)) 881 ; 882 } 883 884 if (page != *arrays) 885 nfs_readdir_page_unlock_and_put(page); 886 887 put_page(scratch); 888 return status; 889 } 890 891 static void nfs_readdir_free_pages(struct page **pages, size_t npages) 892 { 893 while (npages--) 894 put_page(pages[npages]); 895 kfree(pages); 896 } 897 898 /* 899 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call 900 * to nfs_readdir_free_pages() 901 */ 902 static struct page **nfs_readdir_alloc_pages(size_t npages) 903 { 904 struct page **pages; 905 size_t i; 906 907 pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL); 908 if (!pages) 909 return NULL; 910 for (i = 0; i < npages; i++) { 911 struct page *page = alloc_page(GFP_KERNEL); 912 if (page == NULL) 913 goto out_freepages; 914 pages[i] = page; 915 } 916 return pages; 917 918 out_freepages: 919 nfs_readdir_free_pages(pages, i); 920 return NULL; 921 } 922 923 static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc, 924 __be32 *verf_arg, __be32 *verf_res, 925 struct page **arrays, size_t narrays) 926 { 927 u64 change_attr; 928 struct page **pages; 929 struct page *page = *arrays; 930 struct nfs_entry *entry; 931 size_t array_size; 932 struct inode *inode = file_inode(desc->file); 933 unsigned int dtsize = desc->dtsize; 934 unsigned int pglen; 935 int status = -ENOMEM; 936 937 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 938 if (!entry) 939 return -ENOMEM; 940 entry->cookie = nfs_readdir_page_last_cookie(page); 941 entry->fh = nfs_alloc_fhandle(); 942 entry->fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode)); 943 entry->server = NFS_SERVER(inode); 944 if (entry->fh == NULL || entry->fattr == NULL) 945 goto out; 946 947 array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT; 948 pages = nfs_readdir_alloc_pages(array_size); 949 if (!pages) 950 goto out; 951 952 change_attr = inode_peek_iversion_raw(inode); 953 status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie, pages, 954 dtsize, verf_res); 955 if (status < 0) 956 goto free_pages; 957 958 pglen = status; 959 if (pglen != 0) 960 status = nfs_readdir_page_filler(desc, entry, pages, pglen, 961 arrays, narrays, change_attr); 962 else 963 nfs_readdir_page_set_eof(page); 964 desc->buffer_fills++; 965 966 free_pages: 967 nfs_readdir_free_pages(pages, array_size); 968 out: 969 nfs_free_fattr(entry->fattr); 970 nfs_free_fhandle(entry->fh); 971 kfree(entry); 972 return status; 973 } 974 975 static void nfs_readdir_page_put(struct nfs_readdir_descriptor *desc) 976 { 977 put_page(desc->page); 978 desc->page = NULL; 979 } 980 981 static void 982 nfs_readdir_page_unlock_and_put_cached(struct nfs_readdir_descriptor *desc) 983 { 984 unlock_page(desc->page); 985 nfs_readdir_page_put(desc); 986 } 987 988 static struct page * 989 nfs_readdir_page_get_cached(struct nfs_readdir_descriptor *desc) 990 { 991 struct address_space *mapping = desc->file->f_mapping; 992 u64 change_attr = inode_peek_iversion_raw(mapping->host); 993 u64 cookie = desc->last_cookie; 994 struct page *page; 995 996 page = nfs_readdir_page_get_locked(mapping, cookie, change_attr); 997 if (!page) 998 return NULL; 999 if (desc->clear_cache && !nfs_readdir_page_needs_filling(page)) 1000 nfs_readdir_page_reinit_array(page, cookie, change_attr); 1001 return page; 1002 } 1003 1004 /* 1005 * Returns 0 if desc->dir_cookie was found on page desc->page_index 1006 * and locks the page to prevent removal from the page cache. 1007 */ 1008 static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc) 1009 { 1010 struct inode *inode = file_inode(desc->file); 1011 struct nfs_inode *nfsi = NFS_I(inode); 1012 __be32 verf[NFS_DIR_VERIFIER_SIZE]; 1013 int res; 1014 1015 desc->page = nfs_readdir_page_get_cached(desc); 1016 if (!desc->page) 1017 return -ENOMEM; 1018 if (nfs_readdir_page_needs_filling(desc->page)) { 1019 /* Grow the dtsize if we had to go back for more pages */ 1020 if (desc->page_index == desc->page_index_max) 1021 nfs_grow_dtsize(desc); 1022 desc->page_index_max = desc->page_index; 1023 trace_nfs_readdir_cache_fill(desc->file, nfsi->cookieverf, 1024 desc->last_cookie, 1025 desc->page->index, desc->dtsize); 1026 res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf, 1027 &desc->page, 1); 1028 if (res < 0) { 1029 nfs_readdir_page_unlock_and_put_cached(desc); 1030 trace_nfs_readdir_cache_fill_done(inode, res); 1031 if (res == -EBADCOOKIE || res == -ENOTSYNC) { 1032 invalidate_inode_pages2(desc->file->f_mapping); 1033 nfs_readdir_rewind_search(desc); 1034 trace_nfs_readdir_invalidate_cache_range( 1035 inode, 0, MAX_LFS_FILESIZE); 1036 return -EAGAIN; 1037 } 1038 return res; 1039 } 1040 /* 1041 * Set the cookie verifier if the page cache was empty 1042 */ 1043 if (desc->last_cookie == 0 && 1044 memcmp(nfsi->cookieverf, verf, sizeof(nfsi->cookieverf))) { 1045 memcpy(nfsi->cookieverf, verf, 1046 sizeof(nfsi->cookieverf)); 1047 invalidate_inode_pages2_range(desc->file->f_mapping, 1, 1048 -1); 1049 trace_nfs_readdir_invalidate_cache_range( 1050 inode, 1, MAX_LFS_FILESIZE); 1051 } 1052 desc->clear_cache = false; 1053 } 1054 res = nfs_readdir_search_array(desc); 1055 if (res == 0) 1056 return 0; 1057 nfs_readdir_page_unlock_and_put_cached(desc); 1058 return res; 1059 } 1060 1061 /* Search for desc->dir_cookie from the beginning of the page cache */ 1062 static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc) 1063 { 1064 int res; 1065 1066 do { 1067 res = find_and_lock_cache_page(desc); 1068 } while (res == -EAGAIN); 1069 return res; 1070 } 1071 1072 /* 1073 * Once we've found the start of the dirent within a page: fill 'er up... 1074 */ 1075 static void nfs_do_filldir(struct nfs_readdir_descriptor *desc, 1076 const __be32 *verf) 1077 { 1078 struct file *file = desc->file; 1079 struct nfs_cache_array *array; 1080 unsigned int i; 1081 1082 array = kmap(desc->page); 1083 for (i = desc->cache_entry_index; i < array->size; i++) { 1084 struct nfs_cache_array_entry *ent; 1085 1086 ent = &array->array[i]; 1087 if (!dir_emit(desc->ctx, ent->name, ent->name_len, 1088 nfs_compat_user_ino64(ent->ino), ent->d_type)) { 1089 desc->eob = true; 1090 break; 1091 } 1092 memcpy(desc->verf, verf, sizeof(desc->verf)); 1093 if (i == array->size - 1) { 1094 desc->dir_cookie = array->last_cookie; 1095 nfs_readdir_seek_next_array(array, desc); 1096 } else { 1097 desc->dir_cookie = array->array[i + 1].cookie; 1098 desc->last_cookie = array->array[0].cookie; 1099 } 1100 if (nfs_readdir_use_cookie(file)) 1101 desc->ctx->pos = desc->dir_cookie; 1102 else 1103 desc->ctx->pos++; 1104 } 1105 if (array->page_is_eof) 1106 desc->eof = !desc->eob; 1107 1108 kunmap(desc->page); 1109 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n", 1110 (unsigned long long)desc->dir_cookie); 1111 } 1112 1113 /* 1114 * If we cannot find a cookie in our cache, we suspect that this is 1115 * because it points to a deleted file, so we ask the server to return 1116 * whatever it thinks is the next entry. We then feed this to filldir. 1117 * If all goes well, we should then be able to find our way round the 1118 * cache on the next call to readdir_search_pagecache(); 1119 * 1120 * NOTE: we cannot add the anonymous page to the pagecache because 1121 * the data it contains might not be page aligned. Besides, 1122 * we should already have a complete representation of the 1123 * directory in the page cache by the time we get here. 1124 */ 1125 static int uncached_readdir(struct nfs_readdir_descriptor *desc) 1126 { 1127 struct page **arrays; 1128 size_t i, sz = 512; 1129 __be32 verf[NFS_DIR_VERIFIER_SIZE]; 1130 int status = -ENOMEM; 1131 1132 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n", 1133 (unsigned long long)desc->dir_cookie); 1134 1135 arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL); 1136 if (!arrays) 1137 goto out; 1138 arrays[0] = nfs_readdir_page_array_alloc(desc->dir_cookie, GFP_KERNEL); 1139 if (!arrays[0]) 1140 goto out; 1141 1142 desc->page_index = 0; 1143 desc->cache_entry_index = 0; 1144 desc->last_cookie = desc->dir_cookie; 1145 desc->page_index_max = 0; 1146 1147 trace_nfs_readdir_uncached(desc->file, desc->verf, desc->last_cookie, 1148 -1, desc->dtsize); 1149 1150 status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz); 1151 if (status < 0) { 1152 trace_nfs_readdir_uncached_done(file_inode(desc->file), status); 1153 goto out_free; 1154 } 1155 1156 for (i = 0; !desc->eob && i < sz && arrays[i]; i++) { 1157 desc->page = arrays[i]; 1158 nfs_do_filldir(desc, verf); 1159 } 1160 desc->page = NULL; 1161 1162 /* 1163 * Grow the dtsize if we have to go back for more pages, 1164 * or shrink it if we're reading too many. 1165 */ 1166 if (!desc->eof) { 1167 if (!desc->eob) 1168 nfs_grow_dtsize(desc); 1169 else if (desc->buffer_fills == 1 && 1170 i < (desc->page_index_max >> 1)) 1171 nfs_shrink_dtsize(desc); 1172 } 1173 out_free: 1174 for (i = 0; i < sz && arrays[i]; i++) 1175 nfs_readdir_page_array_free(arrays[i]); 1176 out: 1177 if (!nfs_readdir_use_cookie(desc->file)) 1178 nfs_readdir_rewind_search(desc); 1179 desc->page_index_max = -1; 1180 kfree(arrays); 1181 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status); 1182 return status; 1183 } 1184 1185 #define NFS_READDIR_CACHE_MISS_THRESHOLD (16UL) 1186 1187 static bool nfs_readdir_handle_cache_misses(struct inode *inode, 1188 struct nfs_readdir_descriptor *desc, 1189 unsigned int cache_misses, 1190 bool force_clear) 1191 { 1192 if (desc->ctx->pos == 0 || !desc->plus) 1193 return false; 1194 if (cache_misses <= NFS_READDIR_CACHE_MISS_THRESHOLD && !force_clear) 1195 return false; 1196 trace_nfs_readdir_force_readdirplus(inode); 1197 return true; 1198 } 1199 1200 /* The file offset position represents the dirent entry number. A 1201 last cookie cache takes care of the common case of reading the 1202 whole directory. 1203 */ 1204 static int nfs_readdir(struct file *file, struct dir_context *ctx) 1205 { 1206 struct dentry *dentry = file_dentry(file); 1207 struct inode *inode = d_inode(dentry); 1208 struct nfs_inode *nfsi = NFS_I(inode); 1209 struct nfs_open_dir_context *dir_ctx = file->private_data; 1210 struct nfs_readdir_descriptor *desc; 1211 unsigned int cache_hits, cache_misses; 1212 bool force_clear; 1213 int res; 1214 1215 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n", 1216 file, (long long)ctx->pos); 1217 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS); 1218 1219 /* 1220 * ctx->pos points to the dirent entry number. 1221 * *desc->dir_cookie has the cookie for the next entry. We have 1222 * to either find the entry with the appropriate number or 1223 * revalidate the cookie. 1224 */ 1225 nfs_revalidate_mapping(inode, file->f_mapping); 1226 1227 res = -ENOMEM; 1228 desc = kzalloc(sizeof(*desc), GFP_KERNEL); 1229 if (!desc) 1230 goto out; 1231 desc->file = file; 1232 desc->ctx = ctx; 1233 desc->page_index_max = -1; 1234 1235 spin_lock(&file->f_lock); 1236 desc->dir_cookie = dir_ctx->dir_cookie; 1237 desc->page_index = dir_ctx->page_index; 1238 desc->last_cookie = dir_ctx->last_cookie; 1239 desc->attr_gencount = dir_ctx->attr_gencount; 1240 desc->eof = dir_ctx->eof; 1241 nfs_set_dtsize(desc, dir_ctx->dtsize); 1242 memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf)); 1243 cache_hits = atomic_xchg(&dir_ctx->cache_hits, 0); 1244 cache_misses = atomic_xchg(&dir_ctx->cache_misses, 0); 1245 force_clear = dir_ctx->force_clear; 1246 spin_unlock(&file->f_lock); 1247 1248 if (desc->eof) { 1249 res = 0; 1250 goto out_free; 1251 } 1252 1253 desc->plus = nfs_use_readdirplus(inode, ctx, cache_hits, cache_misses); 1254 force_clear = nfs_readdir_handle_cache_misses(inode, desc, cache_misses, 1255 force_clear); 1256 desc->clear_cache = force_clear; 1257 1258 do { 1259 res = readdir_search_pagecache(desc); 1260 1261 if (res == -EBADCOOKIE) { 1262 res = 0; 1263 /* This means either end of directory */ 1264 if (desc->dir_cookie && !desc->eof) { 1265 /* Or that the server has 'lost' a cookie */ 1266 res = uncached_readdir(desc); 1267 if (res == 0) 1268 continue; 1269 if (res == -EBADCOOKIE || res == -ENOTSYNC) 1270 res = 0; 1271 } 1272 break; 1273 } 1274 if (res == -ETOOSMALL && desc->plus) { 1275 nfs_zap_caches(inode); 1276 desc->plus = false; 1277 desc->eof = false; 1278 continue; 1279 } 1280 if (res < 0) 1281 break; 1282 1283 nfs_do_filldir(desc, nfsi->cookieverf); 1284 nfs_readdir_page_unlock_and_put_cached(desc); 1285 if (desc->page_index == desc->page_index_max) 1286 desc->clear_cache = force_clear; 1287 } while (!desc->eob && !desc->eof); 1288 1289 spin_lock(&file->f_lock); 1290 dir_ctx->dir_cookie = desc->dir_cookie; 1291 dir_ctx->last_cookie = desc->last_cookie; 1292 dir_ctx->attr_gencount = desc->attr_gencount; 1293 dir_ctx->page_index = desc->page_index; 1294 dir_ctx->force_clear = force_clear; 1295 dir_ctx->eof = desc->eof; 1296 dir_ctx->dtsize = desc->dtsize; 1297 memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf)); 1298 spin_unlock(&file->f_lock); 1299 out_free: 1300 kfree(desc); 1301 1302 out: 1303 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res); 1304 return res; 1305 } 1306 1307 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence) 1308 { 1309 struct nfs_open_dir_context *dir_ctx = filp->private_data; 1310 1311 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n", 1312 filp, offset, whence); 1313 1314 switch (whence) { 1315 default: 1316 return -EINVAL; 1317 case SEEK_SET: 1318 if (offset < 0) 1319 return -EINVAL; 1320 spin_lock(&filp->f_lock); 1321 break; 1322 case SEEK_CUR: 1323 if (offset == 0) 1324 return filp->f_pos; 1325 spin_lock(&filp->f_lock); 1326 offset += filp->f_pos; 1327 if (offset < 0) { 1328 spin_unlock(&filp->f_lock); 1329 return -EINVAL; 1330 } 1331 } 1332 if (offset != filp->f_pos) { 1333 filp->f_pos = offset; 1334 dir_ctx->page_index = 0; 1335 if (!nfs_readdir_use_cookie(filp)) { 1336 dir_ctx->dir_cookie = 0; 1337 dir_ctx->last_cookie = 0; 1338 } else { 1339 dir_ctx->dir_cookie = offset; 1340 dir_ctx->last_cookie = offset; 1341 } 1342 dir_ctx->eof = false; 1343 } 1344 spin_unlock(&filp->f_lock); 1345 return offset; 1346 } 1347 1348 /* 1349 * All directory operations under NFS are synchronous, so fsync() 1350 * is a dummy operation. 1351 */ 1352 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end, 1353 int datasync) 1354 { 1355 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync); 1356 1357 nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC); 1358 return 0; 1359 } 1360 1361 /** 1362 * nfs_force_lookup_revalidate - Mark the directory as having changed 1363 * @dir: pointer to directory inode 1364 * 1365 * This forces the revalidation code in nfs_lookup_revalidate() to do a 1366 * full lookup on all child dentries of 'dir' whenever a change occurs 1367 * on the server that might have invalidated our dcache. 1368 * 1369 * Note that we reserve bit '0' as a tag to let us know when a dentry 1370 * was revalidated while holding a delegation on its inode. 1371 * 1372 * The caller should be holding dir->i_lock 1373 */ 1374 void nfs_force_lookup_revalidate(struct inode *dir) 1375 { 1376 NFS_I(dir)->cache_change_attribute += 2; 1377 } 1378 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate); 1379 1380 /** 1381 * nfs_verify_change_attribute - Detects NFS remote directory changes 1382 * @dir: pointer to parent directory inode 1383 * @verf: previously saved change attribute 1384 * 1385 * Return "false" if the verifiers doesn't match the change attribute. 1386 * This would usually indicate that the directory contents have changed on 1387 * the server, and that any dentries need revalidating. 1388 */ 1389 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf) 1390 { 1391 return (verf & ~1UL) == nfs_save_change_attribute(dir); 1392 } 1393 1394 static void nfs_set_verifier_delegated(unsigned long *verf) 1395 { 1396 *verf |= 1UL; 1397 } 1398 1399 #if IS_ENABLED(CONFIG_NFS_V4) 1400 static void nfs_unset_verifier_delegated(unsigned long *verf) 1401 { 1402 *verf &= ~1UL; 1403 } 1404 #endif /* IS_ENABLED(CONFIG_NFS_V4) */ 1405 1406 static bool nfs_test_verifier_delegated(unsigned long verf) 1407 { 1408 return verf & 1; 1409 } 1410 1411 static bool nfs_verifier_is_delegated(struct dentry *dentry) 1412 { 1413 return nfs_test_verifier_delegated(dentry->d_time); 1414 } 1415 1416 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf) 1417 { 1418 struct inode *inode = d_inode(dentry); 1419 struct inode *dir = d_inode(dentry->d_parent); 1420 1421 if (!nfs_verify_change_attribute(dir, verf)) 1422 return; 1423 if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) 1424 nfs_set_verifier_delegated(&verf); 1425 dentry->d_time = verf; 1426 } 1427 1428 /** 1429 * nfs_set_verifier - save a parent directory verifier in the dentry 1430 * @dentry: pointer to dentry 1431 * @verf: verifier to save 1432 * 1433 * Saves the parent directory verifier in @dentry. If the inode has 1434 * a delegation, we also tag the dentry as having been revalidated 1435 * while holding a delegation so that we know we don't have to 1436 * look it up again after a directory change. 1437 */ 1438 void nfs_set_verifier(struct dentry *dentry, unsigned long verf) 1439 { 1440 1441 spin_lock(&dentry->d_lock); 1442 nfs_set_verifier_locked(dentry, verf); 1443 spin_unlock(&dentry->d_lock); 1444 } 1445 EXPORT_SYMBOL_GPL(nfs_set_verifier); 1446 1447 #if IS_ENABLED(CONFIG_NFS_V4) 1448 /** 1449 * nfs_clear_verifier_delegated - clear the dir verifier delegation tag 1450 * @inode: pointer to inode 1451 * 1452 * Iterates through the dentries in the inode alias list and clears 1453 * the tag used to indicate that the dentry has been revalidated 1454 * while holding a delegation. 1455 * This function is intended for use when the delegation is being 1456 * returned or revoked. 1457 */ 1458 void nfs_clear_verifier_delegated(struct inode *inode) 1459 { 1460 struct dentry *alias; 1461 1462 if (!inode) 1463 return; 1464 spin_lock(&inode->i_lock); 1465 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 1466 spin_lock(&alias->d_lock); 1467 nfs_unset_verifier_delegated(&alias->d_time); 1468 spin_unlock(&alias->d_lock); 1469 } 1470 spin_unlock(&inode->i_lock); 1471 } 1472 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated); 1473 #endif /* IS_ENABLED(CONFIG_NFS_V4) */ 1474 1475 static int nfs_dentry_verify_change(struct inode *dir, struct dentry *dentry) 1476 { 1477 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE) && 1478 d_really_is_negative(dentry)) 1479 return dentry->d_time == inode_peek_iversion_raw(dir); 1480 return nfs_verify_change_attribute(dir, dentry->d_time); 1481 } 1482 1483 /* 1484 * A check for whether or not the parent directory has changed. 1485 * In the case it has, we assume that the dentries are untrustworthy 1486 * and may need to be looked up again. 1487 * If rcu_walk prevents us from performing a full check, return 0. 1488 */ 1489 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry, 1490 int rcu_walk) 1491 { 1492 if (IS_ROOT(dentry)) 1493 return 1; 1494 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE) 1495 return 0; 1496 if (!nfs_dentry_verify_change(dir, dentry)) 1497 return 0; 1498 /* Revalidate nfsi->cache_change_attribute before we declare a match */ 1499 if (nfs_mapping_need_revalidate_inode(dir)) { 1500 if (rcu_walk) 1501 return 0; 1502 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0) 1503 return 0; 1504 } 1505 if (!nfs_dentry_verify_change(dir, dentry)) 1506 return 0; 1507 return 1; 1508 } 1509 1510 /* 1511 * Use intent information to check whether or not we're going to do 1512 * an O_EXCL create using this path component. 1513 */ 1514 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags) 1515 { 1516 if (NFS_PROTO(dir)->version == 2) 1517 return 0; 1518 return flags & LOOKUP_EXCL; 1519 } 1520 1521 /* 1522 * Inode and filehandle revalidation for lookups. 1523 * 1524 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL, 1525 * or if the intent information indicates that we're about to open this 1526 * particular file and the "nocto" mount flag is not set. 1527 * 1528 */ 1529 static 1530 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags) 1531 { 1532 struct nfs_server *server = NFS_SERVER(inode); 1533 int ret; 1534 1535 if (IS_AUTOMOUNT(inode)) 1536 return 0; 1537 1538 if (flags & LOOKUP_OPEN) { 1539 switch (inode->i_mode & S_IFMT) { 1540 case S_IFREG: 1541 /* A NFSv4 OPEN will revalidate later */ 1542 if (server->caps & NFS_CAP_ATOMIC_OPEN) 1543 goto out; 1544 fallthrough; 1545 case S_IFDIR: 1546 if (server->flags & NFS_MOUNT_NOCTO) 1547 break; 1548 /* NFS close-to-open cache consistency validation */ 1549 goto out_force; 1550 } 1551 } 1552 1553 /* VFS wants an on-the-wire revalidation */ 1554 if (flags & LOOKUP_REVAL) 1555 goto out_force; 1556 out: 1557 if (inode->i_nlink > 0 || 1558 (inode->i_nlink == 0 && 1559 test_bit(NFS_INO_PRESERVE_UNLINKED, &NFS_I(inode)->flags))) 1560 return 0; 1561 else 1562 return -ESTALE; 1563 out_force: 1564 if (flags & LOOKUP_RCU) 1565 return -ECHILD; 1566 ret = __nfs_revalidate_inode(server, inode); 1567 if (ret != 0) 1568 return ret; 1569 goto out; 1570 } 1571 1572 static void nfs_mark_dir_for_revalidate(struct inode *inode) 1573 { 1574 spin_lock(&inode->i_lock); 1575 nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE); 1576 spin_unlock(&inode->i_lock); 1577 } 1578 1579 /* 1580 * We judge how long we want to trust negative 1581 * dentries by looking at the parent inode mtime. 1582 * 1583 * If parent mtime has changed, we revalidate, else we wait for a 1584 * period corresponding to the parent's attribute cache timeout value. 1585 * 1586 * If LOOKUP_RCU prevents us from performing a full check, return 1 1587 * suggesting a reval is needed. 1588 * 1589 * Note that when creating a new file, or looking up a rename target, 1590 * then it shouldn't be necessary to revalidate a negative dentry. 1591 */ 1592 static inline 1593 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry, 1594 unsigned int flags) 1595 { 1596 if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET)) 1597 return 0; 1598 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG) 1599 return 1; 1600 /* Case insensitive server? Revalidate negative dentries */ 1601 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE)) 1602 return 1; 1603 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU); 1604 } 1605 1606 static int 1607 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry, 1608 struct inode *inode, int error) 1609 { 1610 switch (error) { 1611 case 1: 1612 break; 1613 case 0: 1614 /* 1615 * We can't d_drop the root of a disconnected tree: 1616 * its d_hash is on the s_anon list and d_drop() would hide 1617 * it from shrink_dcache_for_unmount(), leading to busy 1618 * inodes on unmount and further oopses. 1619 */ 1620 if (inode && IS_ROOT(dentry)) 1621 error = 1; 1622 break; 1623 } 1624 trace_nfs_lookup_revalidate_exit(dir, dentry, 0, error); 1625 return error; 1626 } 1627 1628 static int 1629 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry, 1630 unsigned int flags) 1631 { 1632 int ret = 1; 1633 if (nfs_neg_need_reval(dir, dentry, flags)) { 1634 if (flags & LOOKUP_RCU) 1635 return -ECHILD; 1636 ret = 0; 1637 } 1638 return nfs_lookup_revalidate_done(dir, dentry, NULL, ret); 1639 } 1640 1641 static int 1642 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry, 1643 struct inode *inode) 1644 { 1645 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1646 return nfs_lookup_revalidate_done(dir, dentry, inode, 1); 1647 } 1648 1649 static int nfs_lookup_revalidate_dentry(struct inode *dir, 1650 struct dentry *dentry, 1651 struct inode *inode, unsigned int flags) 1652 { 1653 struct nfs_fh *fhandle; 1654 struct nfs_fattr *fattr; 1655 unsigned long dir_verifier; 1656 int ret; 1657 1658 trace_nfs_lookup_revalidate_enter(dir, dentry, flags); 1659 1660 ret = -ENOMEM; 1661 fhandle = nfs_alloc_fhandle(); 1662 fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode)); 1663 if (fhandle == NULL || fattr == NULL) 1664 goto out; 1665 1666 dir_verifier = nfs_save_change_attribute(dir); 1667 ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr); 1668 if (ret < 0) { 1669 switch (ret) { 1670 case -ESTALE: 1671 case -ENOENT: 1672 ret = 0; 1673 break; 1674 case -ETIMEDOUT: 1675 if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL) 1676 ret = 1; 1677 } 1678 goto out; 1679 } 1680 1681 /* Request help from readdirplus */ 1682 nfs_lookup_advise_force_readdirplus(dir, flags); 1683 1684 ret = 0; 1685 if (nfs_compare_fh(NFS_FH(inode), fhandle)) 1686 goto out; 1687 if (nfs_refresh_inode(inode, fattr) < 0) 1688 goto out; 1689 1690 nfs_setsecurity(inode, fattr); 1691 nfs_set_verifier(dentry, dir_verifier); 1692 1693 ret = 1; 1694 out: 1695 nfs_free_fattr(fattr); 1696 nfs_free_fhandle(fhandle); 1697 1698 /* 1699 * If the lookup failed despite the dentry change attribute being 1700 * a match, then we should revalidate the directory cache. 1701 */ 1702 if (!ret && nfs_dentry_verify_change(dir, dentry)) 1703 nfs_mark_dir_for_revalidate(dir); 1704 return nfs_lookup_revalidate_done(dir, dentry, inode, ret); 1705 } 1706 1707 /* 1708 * This is called every time the dcache has a lookup hit, 1709 * and we should check whether we can really trust that 1710 * lookup. 1711 * 1712 * NOTE! The hit can be a negative hit too, don't assume 1713 * we have an inode! 1714 * 1715 * If the parent directory is seen to have changed, we throw out the 1716 * cached dentry and do a new lookup. 1717 */ 1718 static int 1719 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry, 1720 unsigned int flags) 1721 { 1722 struct inode *inode; 1723 int error; 1724 1725 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE); 1726 inode = d_inode(dentry); 1727 1728 if (!inode) 1729 return nfs_lookup_revalidate_negative(dir, dentry, flags); 1730 1731 if (is_bad_inode(inode)) { 1732 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1733 __func__, dentry); 1734 goto out_bad; 1735 } 1736 1737 if (nfs_verifier_is_delegated(dentry)) 1738 return nfs_lookup_revalidate_delegated(dir, dentry, inode); 1739 1740 /* Force a full look up iff the parent directory has changed */ 1741 if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) && 1742 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) { 1743 error = nfs_lookup_verify_inode(inode, flags); 1744 if (error) { 1745 if (error == -ESTALE) 1746 nfs_mark_dir_for_revalidate(dir); 1747 goto out_bad; 1748 } 1749 goto out_valid; 1750 } 1751 1752 if (flags & LOOKUP_RCU) 1753 return -ECHILD; 1754 1755 if (NFS_STALE(inode)) 1756 goto out_bad; 1757 1758 return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags); 1759 out_valid: 1760 return nfs_lookup_revalidate_done(dir, dentry, inode, 1); 1761 out_bad: 1762 if (flags & LOOKUP_RCU) 1763 return -ECHILD; 1764 return nfs_lookup_revalidate_done(dir, dentry, inode, 0); 1765 } 1766 1767 static int 1768 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags, 1769 int (*reval)(struct inode *, struct dentry *, unsigned int)) 1770 { 1771 struct dentry *parent; 1772 struct inode *dir; 1773 int ret; 1774 1775 if (flags & LOOKUP_RCU) { 1776 parent = READ_ONCE(dentry->d_parent); 1777 dir = d_inode_rcu(parent); 1778 if (!dir) 1779 return -ECHILD; 1780 ret = reval(dir, dentry, flags); 1781 if (parent != READ_ONCE(dentry->d_parent)) 1782 return -ECHILD; 1783 } else { 1784 parent = dget_parent(dentry); 1785 ret = reval(d_inode(parent), dentry, flags); 1786 dput(parent); 1787 } 1788 return ret; 1789 } 1790 1791 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1792 { 1793 return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate); 1794 } 1795 1796 /* 1797 * A weaker form of d_revalidate for revalidating just the d_inode(dentry) 1798 * when we don't really care about the dentry name. This is called when a 1799 * pathwalk ends on a dentry that was not found via a normal lookup in the 1800 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals). 1801 * 1802 * In this situation, we just want to verify that the inode itself is OK 1803 * since the dentry might have changed on the server. 1804 */ 1805 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags) 1806 { 1807 struct inode *inode = d_inode(dentry); 1808 int error = 0; 1809 1810 /* 1811 * I believe we can only get a negative dentry here in the case of a 1812 * procfs-style symlink. Just assume it's correct for now, but we may 1813 * eventually need to do something more here. 1814 */ 1815 if (!inode) { 1816 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n", 1817 __func__, dentry); 1818 return 1; 1819 } 1820 1821 if (is_bad_inode(inode)) { 1822 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1823 __func__, dentry); 1824 return 0; 1825 } 1826 1827 error = nfs_lookup_verify_inode(inode, flags); 1828 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n", 1829 __func__, inode->i_ino, error ? "invalid" : "valid"); 1830 return !error; 1831 } 1832 1833 /* 1834 * This is called from dput() when d_count is going to 0. 1835 */ 1836 static int nfs_dentry_delete(const struct dentry *dentry) 1837 { 1838 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n", 1839 dentry, dentry->d_flags); 1840 1841 /* Unhash any dentry with a stale inode */ 1842 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry))) 1843 return 1; 1844 1845 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1846 /* Unhash it, so that ->d_iput() would be called */ 1847 return 1; 1848 } 1849 if (!(dentry->d_sb->s_flags & SB_ACTIVE)) { 1850 /* Unhash it, so that ancestors of killed async unlink 1851 * files will be cleaned up during umount */ 1852 return 1; 1853 } 1854 return 0; 1855 1856 } 1857 1858 /* Ensure that we revalidate inode->i_nlink */ 1859 static void nfs_drop_nlink(struct inode *inode) 1860 { 1861 spin_lock(&inode->i_lock); 1862 /* drop the inode if we're reasonably sure this is the last link */ 1863 if (inode->i_nlink > 0) 1864 drop_nlink(inode); 1865 NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter(); 1866 nfs_set_cache_invalid( 1867 inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME | 1868 NFS_INO_INVALID_NLINK); 1869 spin_unlock(&inode->i_lock); 1870 } 1871 1872 /* 1873 * Called when the dentry loses inode. 1874 * We use it to clean up silly-renamed files. 1875 */ 1876 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode) 1877 { 1878 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1879 nfs_complete_unlink(dentry, inode); 1880 nfs_drop_nlink(inode); 1881 } 1882 iput(inode); 1883 } 1884 1885 static void nfs_d_release(struct dentry *dentry) 1886 { 1887 /* free cached devname value, if it survived that far */ 1888 if (unlikely(dentry->d_fsdata)) { 1889 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) 1890 WARN_ON(1); 1891 else 1892 kfree(dentry->d_fsdata); 1893 } 1894 } 1895 1896 const struct dentry_operations nfs_dentry_operations = { 1897 .d_revalidate = nfs_lookup_revalidate, 1898 .d_weak_revalidate = nfs_weak_revalidate, 1899 .d_delete = nfs_dentry_delete, 1900 .d_iput = nfs_dentry_iput, 1901 .d_automount = nfs_d_automount, 1902 .d_release = nfs_d_release, 1903 }; 1904 EXPORT_SYMBOL_GPL(nfs_dentry_operations); 1905 1906 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 1907 { 1908 struct dentry *res; 1909 struct inode *inode = NULL; 1910 struct nfs_fh *fhandle = NULL; 1911 struct nfs_fattr *fattr = NULL; 1912 unsigned long dir_verifier; 1913 int error; 1914 1915 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry); 1916 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP); 1917 1918 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen)) 1919 return ERR_PTR(-ENAMETOOLONG); 1920 1921 /* 1922 * If we're doing an exclusive create, optimize away the lookup 1923 * but don't hash the dentry. 1924 */ 1925 if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET) 1926 return NULL; 1927 1928 res = ERR_PTR(-ENOMEM); 1929 fhandle = nfs_alloc_fhandle(); 1930 fattr = nfs_alloc_fattr_with_label(NFS_SERVER(dir)); 1931 if (fhandle == NULL || fattr == NULL) 1932 goto out; 1933 1934 dir_verifier = nfs_save_change_attribute(dir); 1935 trace_nfs_lookup_enter(dir, dentry, flags); 1936 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr); 1937 if (error == -ENOENT) { 1938 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE)) 1939 dir_verifier = inode_peek_iversion_raw(dir); 1940 goto no_entry; 1941 } 1942 if (error < 0) { 1943 res = ERR_PTR(error); 1944 goto out; 1945 } 1946 inode = nfs_fhget(dentry->d_sb, fhandle, fattr); 1947 res = ERR_CAST(inode); 1948 if (IS_ERR(res)) 1949 goto out; 1950 1951 /* Notify readdir to use READDIRPLUS */ 1952 nfs_lookup_advise_force_readdirplus(dir, flags); 1953 1954 no_entry: 1955 res = d_splice_alias(inode, dentry); 1956 if (res != NULL) { 1957 if (IS_ERR(res)) 1958 goto out; 1959 dentry = res; 1960 } 1961 nfs_set_verifier(dentry, dir_verifier); 1962 out: 1963 trace_nfs_lookup_exit(dir, dentry, flags, PTR_ERR_OR_ZERO(res)); 1964 nfs_free_fattr(fattr); 1965 nfs_free_fhandle(fhandle); 1966 return res; 1967 } 1968 EXPORT_SYMBOL_GPL(nfs_lookup); 1969 1970 void nfs_d_prune_case_insensitive_aliases(struct inode *inode) 1971 { 1972 /* Case insensitive server? Revalidate dentries */ 1973 if (inode && nfs_server_capable(inode, NFS_CAP_CASE_INSENSITIVE)) 1974 d_prune_aliases(inode); 1975 } 1976 EXPORT_SYMBOL_GPL(nfs_d_prune_case_insensitive_aliases); 1977 1978 #if IS_ENABLED(CONFIG_NFS_V4) 1979 static int nfs4_lookup_revalidate(struct dentry *, unsigned int); 1980 1981 const struct dentry_operations nfs4_dentry_operations = { 1982 .d_revalidate = nfs4_lookup_revalidate, 1983 .d_weak_revalidate = nfs_weak_revalidate, 1984 .d_delete = nfs_dentry_delete, 1985 .d_iput = nfs_dentry_iput, 1986 .d_automount = nfs_d_automount, 1987 .d_release = nfs_d_release, 1988 }; 1989 EXPORT_SYMBOL_GPL(nfs4_dentry_operations); 1990 1991 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp) 1992 { 1993 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp); 1994 } 1995 1996 static int do_open(struct inode *inode, struct file *filp) 1997 { 1998 nfs_fscache_open_file(inode, filp); 1999 return 0; 2000 } 2001 2002 static int nfs_finish_open(struct nfs_open_context *ctx, 2003 struct dentry *dentry, 2004 struct file *file, unsigned open_flags) 2005 { 2006 int err; 2007 2008 err = finish_open(file, dentry, do_open); 2009 if (err) 2010 goto out; 2011 if (S_ISREG(file->f_path.dentry->d_inode->i_mode)) 2012 nfs_file_set_open_context(file, ctx); 2013 else 2014 err = -EOPENSTALE; 2015 out: 2016 return err; 2017 } 2018 2019 int nfs_atomic_open(struct inode *dir, struct dentry *dentry, 2020 struct file *file, unsigned open_flags, 2021 umode_t mode) 2022 { 2023 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 2024 struct nfs_open_context *ctx; 2025 struct dentry *res; 2026 struct iattr attr = { .ia_valid = ATTR_OPEN }; 2027 struct inode *inode; 2028 unsigned int lookup_flags = 0; 2029 unsigned long dir_verifier; 2030 bool switched = false; 2031 int created = 0; 2032 int err; 2033 2034 /* Expect a negative dentry */ 2035 BUG_ON(d_inode(dentry)); 2036 2037 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n", 2038 dir->i_sb->s_id, dir->i_ino, dentry); 2039 2040 err = nfs_check_flags(open_flags); 2041 if (err) 2042 return err; 2043 2044 /* NFS only supports OPEN on regular files */ 2045 if ((open_flags & O_DIRECTORY)) { 2046 if (!d_in_lookup(dentry)) { 2047 /* 2048 * Hashed negative dentry with O_DIRECTORY: dentry was 2049 * revalidated and is fine, no need to perform lookup 2050 * again 2051 */ 2052 return -ENOENT; 2053 } 2054 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY; 2055 goto no_open; 2056 } 2057 2058 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 2059 return -ENAMETOOLONG; 2060 2061 if (open_flags & O_CREAT) { 2062 struct nfs_server *server = NFS_SERVER(dir); 2063 2064 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK)) 2065 mode &= ~current_umask(); 2066 2067 attr.ia_valid |= ATTR_MODE; 2068 attr.ia_mode = mode; 2069 } 2070 if (open_flags & O_TRUNC) { 2071 attr.ia_valid |= ATTR_SIZE; 2072 attr.ia_size = 0; 2073 } 2074 2075 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) { 2076 d_drop(dentry); 2077 switched = true; 2078 dentry = d_alloc_parallel(dentry->d_parent, 2079 &dentry->d_name, &wq); 2080 if (IS_ERR(dentry)) 2081 return PTR_ERR(dentry); 2082 if (unlikely(!d_in_lookup(dentry))) 2083 return finish_no_open(file, dentry); 2084 } 2085 2086 ctx = create_nfs_open_context(dentry, open_flags, file); 2087 err = PTR_ERR(ctx); 2088 if (IS_ERR(ctx)) 2089 goto out; 2090 2091 trace_nfs_atomic_open_enter(dir, ctx, open_flags); 2092 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created); 2093 if (created) 2094 file->f_mode |= FMODE_CREATED; 2095 if (IS_ERR(inode)) { 2096 err = PTR_ERR(inode); 2097 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 2098 put_nfs_open_context(ctx); 2099 d_drop(dentry); 2100 switch (err) { 2101 case -ENOENT: 2102 d_splice_alias(NULL, dentry); 2103 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE)) 2104 dir_verifier = inode_peek_iversion_raw(dir); 2105 else 2106 dir_verifier = nfs_save_change_attribute(dir); 2107 nfs_set_verifier(dentry, dir_verifier); 2108 break; 2109 case -EISDIR: 2110 case -ENOTDIR: 2111 goto no_open; 2112 case -ELOOP: 2113 if (!(open_flags & O_NOFOLLOW)) 2114 goto no_open; 2115 break; 2116 /* case -EINVAL: */ 2117 default: 2118 break; 2119 } 2120 goto out; 2121 } 2122 2123 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags); 2124 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 2125 put_nfs_open_context(ctx); 2126 out: 2127 if (unlikely(switched)) { 2128 d_lookup_done(dentry); 2129 dput(dentry); 2130 } 2131 return err; 2132 2133 no_open: 2134 res = nfs_lookup(dir, dentry, lookup_flags); 2135 if (!res) { 2136 inode = d_inode(dentry); 2137 if ((lookup_flags & LOOKUP_DIRECTORY) && inode && 2138 !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) 2139 res = ERR_PTR(-ENOTDIR); 2140 else if (inode && S_ISREG(inode->i_mode)) 2141 res = ERR_PTR(-EOPENSTALE); 2142 } else if (!IS_ERR(res)) { 2143 inode = d_inode(res); 2144 if ((lookup_flags & LOOKUP_DIRECTORY) && inode && 2145 !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) { 2146 dput(res); 2147 res = ERR_PTR(-ENOTDIR); 2148 } else if (inode && S_ISREG(inode->i_mode)) { 2149 dput(res); 2150 res = ERR_PTR(-EOPENSTALE); 2151 } 2152 } 2153 if (switched) { 2154 d_lookup_done(dentry); 2155 if (!res) 2156 res = dentry; 2157 else 2158 dput(dentry); 2159 } 2160 if (IS_ERR(res)) 2161 return PTR_ERR(res); 2162 return finish_no_open(file, res); 2163 } 2164 EXPORT_SYMBOL_GPL(nfs_atomic_open); 2165 2166 static int 2167 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry, 2168 unsigned int flags) 2169 { 2170 struct inode *inode; 2171 2172 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY)) 2173 goto full_reval; 2174 if (d_mountpoint(dentry)) 2175 goto full_reval; 2176 2177 inode = d_inode(dentry); 2178 2179 /* We can't create new files in nfs_open_revalidate(), so we 2180 * optimize away revalidation of negative dentries. 2181 */ 2182 if (inode == NULL) 2183 goto full_reval; 2184 2185 if (nfs_verifier_is_delegated(dentry)) 2186 return nfs_lookup_revalidate_delegated(dir, dentry, inode); 2187 2188 /* NFS only supports OPEN on regular files */ 2189 if (!S_ISREG(inode->i_mode)) 2190 goto full_reval; 2191 2192 /* We cannot do exclusive creation on a positive dentry */ 2193 if (flags & (LOOKUP_EXCL | LOOKUP_REVAL)) 2194 goto reval_dentry; 2195 2196 /* Check if the directory changed */ 2197 if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) 2198 goto reval_dentry; 2199 2200 /* Let f_op->open() actually open (and revalidate) the file */ 2201 return 1; 2202 reval_dentry: 2203 if (flags & LOOKUP_RCU) 2204 return -ECHILD; 2205 return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags); 2206 2207 full_reval: 2208 return nfs_do_lookup_revalidate(dir, dentry, flags); 2209 } 2210 2211 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags) 2212 { 2213 return __nfs_lookup_revalidate(dentry, flags, 2214 nfs4_do_lookup_revalidate); 2215 } 2216 2217 #endif /* CONFIG_NFSV4 */ 2218 2219 struct dentry * 2220 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle, 2221 struct nfs_fattr *fattr) 2222 { 2223 struct dentry *parent = dget_parent(dentry); 2224 struct inode *dir = d_inode(parent); 2225 struct inode *inode; 2226 struct dentry *d; 2227 int error; 2228 2229 d_drop(dentry); 2230 2231 if (fhandle->size == 0) { 2232 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr); 2233 if (error) 2234 goto out_error; 2235 } 2236 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2237 if (!(fattr->valid & NFS_ATTR_FATTR)) { 2238 struct nfs_server *server = NFS_SB(dentry->d_sb); 2239 error = server->nfs_client->rpc_ops->getattr(server, fhandle, 2240 fattr, NULL); 2241 if (error < 0) 2242 goto out_error; 2243 } 2244 inode = nfs_fhget(dentry->d_sb, fhandle, fattr); 2245 d = d_splice_alias(inode, dentry); 2246 out: 2247 dput(parent); 2248 return d; 2249 out_error: 2250 d = ERR_PTR(error); 2251 goto out; 2252 } 2253 EXPORT_SYMBOL_GPL(nfs_add_or_obtain); 2254 2255 /* 2256 * Code common to create, mkdir, and mknod. 2257 */ 2258 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle, 2259 struct nfs_fattr *fattr) 2260 { 2261 struct dentry *d; 2262 2263 d = nfs_add_or_obtain(dentry, fhandle, fattr); 2264 if (IS_ERR(d)) 2265 return PTR_ERR(d); 2266 2267 /* Callers don't care */ 2268 dput(d); 2269 return 0; 2270 } 2271 EXPORT_SYMBOL_GPL(nfs_instantiate); 2272 2273 /* 2274 * Following a failed create operation, we drop the dentry rather 2275 * than retain a negative dentry. This avoids a problem in the event 2276 * that the operation succeeded on the server, but an error in the 2277 * reply path made it appear to have failed. 2278 */ 2279 int nfs_create(struct user_namespace *mnt_userns, struct inode *dir, 2280 struct dentry *dentry, umode_t mode, bool excl) 2281 { 2282 struct iattr attr; 2283 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT; 2284 int error; 2285 2286 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n", 2287 dir->i_sb->s_id, dir->i_ino, dentry); 2288 2289 attr.ia_mode = mode; 2290 attr.ia_valid = ATTR_MODE; 2291 2292 trace_nfs_create_enter(dir, dentry, open_flags); 2293 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags); 2294 trace_nfs_create_exit(dir, dentry, open_flags, error); 2295 if (error != 0) 2296 goto out_err; 2297 return 0; 2298 out_err: 2299 d_drop(dentry); 2300 return error; 2301 } 2302 EXPORT_SYMBOL_GPL(nfs_create); 2303 2304 /* 2305 * See comments for nfs_proc_create regarding failed operations. 2306 */ 2307 int 2308 nfs_mknod(struct user_namespace *mnt_userns, struct inode *dir, 2309 struct dentry *dentry, umode_t mode, dev_t rdev) 2310 { 2311 struct iattr attr; 2312 int status; 2313 2314 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n", 2315 dir->i_sb->s_id, dir->i_ino, dentry); 2316 2317 attr.ia_mode = mode; 2318 attr.ia_valid = ATTR_MODE; 2319 2320 trace_nfs_mknod_enter(dir, dentry); 2321 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev); 2322 trace_nfs_mknod_exit(dir, dentry, status); 2323 if (status != 0) 2324 goto out_err; 2325 return 0; 2326 out_err: 2327 d_drop(dentry); 2328 return status; 2329 } 2330 EXPORT_SYMBOL_GPL(nfs_mknod); 2331 2332 /* 2333 * See comments for nfs_proc_create regarding failed operations. 2334 */ 2335 int nfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir, 2336 struct dentry *dentry, umode_t mode) 2337 { 2338 struct iattr attr; 2339 int error; 2340 2341 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n", 2342 dir->i_sb->s_id, dir->i_ino, dentry); 2343 2344 attr.ia_valid = ATTR_MODE; 2345 attr.ia_mode = mode | S_IFDIR; 2346 2347 trace_nfs_mkdir_enter(dir, dentry); 2348 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr); 2349 trace_nfs_mkdir_exit(dir, dentry, error); 2350 if (error != 0) 2351 goto out_err; 2352 return 0; 2353 out_err: 2354 d_drop(dentry); 2355 return error; 2356 } 2357 EXPORT_SYMBOL_GPL(nfs_mkdir); 2358 2359 static void nfs_dentry_handle_enoent(struct dentry *dentry) 2360 { 2361 if (simple_positive(dentry)) 2362 d_delete(dentry); 2363 } 2364 2365 static void nfs_dentry_remove_handle_error(struct inode *dir, 2366 struct dentry *dentry, int error) 2367 { 2368 switch (error) { 2369 case -ENOENT: 2370 d_delete(dentry); 2371 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2372 break; 2373 case 0: 2374 nfs_d_prune_case_insensitive_aliases(d_inode(dentry)); 2375 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2376 } 2377 } 2378 2379 int nfs_rmdir(struct inode *dir, struct dentry *dentry) 2380 { 2381 int error; 2382 2383 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n", 2384 dir->i_sb->s_id, dir->i_ino, dentry); 2385 2386 trace_nfs_rmdir_enter(dir, dentry); 2387 if (d_really_is_positive(dentry)) { 2388 down_write(&NFS_I(d_inode(dentry))->rmdir_sem); 2389 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 2390 /* Ensure the VFS deletes this inode */ 2391 switch (error) { 2392 case 0: 2393 clear_nlink(d_inode(dentry)); 2394 break; 2395 case -ENOENT: 2396 nfs_dentry_handle_enoent(dentry); 2397 } 2398 up_write(&NFS_I(d_inode(dentry))->rmdir_sem); 2399 } else 2400 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 2401 nfs_dentry_remove_handle_error(dir, dentry, error); 2402 trace_nfs_rmdir_exit(dir, dentry, error); 2403 2404 return error; 2405 } 2406 EXPORT_SYMBOL_GPL(nfs_rmdir); 2407 2408 /* 2409 * Remove a file after making sure there are no pending writes, 2410 * and after checking that the file has only one user. 2411 * 2412 * We invalidate the attribute cache and free the inode prior to the operation 2413 * to avoid possible races if the server reuses the inode. 2414 */ 2415 static int nfs_safe_remove(struct dentry *dentry) 2416 { 2417 struct inode *dir = d_inode(dentry->d_parent); 2418 struct inode *inode = d_inode(dentry); 2419 int error = -EBUSY; 2420 2421 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry); 2422 2423 /* If the dentry was sillyrenamed, we simply call d_delete() */ 2424 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 2425 error = 0; 2426 goto out; 2427 } 2428 2429 trace_nfs_remove_enter(dir, dentry); 2430 if (inode != NULL) { 2431 error = NFS_PROTO(dir)->remove(dir, dentry); 2432 if (error == 0) 2433 nfs_drop_nlink(inode); 2434 } else 2435 error = NFS_PROTO(dir)->remove(dir, dentry); 2436 if (error == -ENOENT) 2437 nfs_dentry_handle_enoent(dentry); 2438 trace_nfs_remove_exit(dir, dentry, error); 2439 out: 2440 return error; 2441 } 2442 2443 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode 2444 * belongs to an active ".nfs..." file and we return -EBUSY. 2445 * 2446 * If sillyrename() returns 0, we do nothing, otherwise we unlink. 2447 */ 2448 int nfs_unlink(struct inode *dir, struct dentry *dentry) 2449 { 2450 int error; 2451 int need_rehash = 0; 2452 2453 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id, 2454 dir->i_ino, dentry); 2455 2456 trace_nfs_unlink_enter(dir, dentry); 2457 spin_lock(&dentry->d_lock); 2458 if (d_count(dentry) > 1 && !test_bit(NFS_INO_PRESERVE_UNLINKED, 2459 &NFS_I(d_inode(dentry))->flags)) { 2460 spin_unlock(&dentry->d_lock); 2461 /* Start asynchronous writeout of the inode */ 2462 write_inode_now(d_inode(dentry), 0); 2463 error = nfs_sillyrename(dir, dentry); 2464 goto out; 2465 } 2466 if (!d_unhashed(dentry)) { 2467 __d_drop(dentry); 2468 need_rehash = 1; 2469 } 2470 spin_unlock(&dentry->d_lock); 2471 error = nfs_safe_remove(dentry); 2472 nfs_dentry_remove_handle_error(dir, dentry, error); 2473 if (need_rehash) 2474 d_rehash(dentry); 2475 out: 2476 trace_nfs_unlink_exit(dir, dentry, error); 2477 return error; 2478 } 2479 EXPORT_SYMBOL_GPL(nfs_unlink); 2480 2481 /* 2482 * To create a symbolic link, most file systems instantiate a new inode, 2483 * add a page to it containing the path, then write it out to the disk 2484 * using prepare_write/commit_write. 2485 * 2486 * Unfortunately the NFS client can't create the in-core inode first 2487 * because it needs a file handle to create an in-core inode (see 2488 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the 2489 * symlink request has completed on the server. 2490 * 2491 * So instead we allocate a raw page, copy the symname into it, then do 2492 * the SYMLINK request with the page as the buffer. If it succeeds, we 2493 * now have a new file handle and can instantiate an in-core NFS inode 2494 * and move the raw page into its mapping. 2495 */ 2496 int nfs_symlink(struct user_namespace *mnt_userns, struct inode *dir, 2497 struct dentry *dentry, const char *symname) 2498 { 2499 struct page *page; 2500 char *kaddr; 2501 struct iattr attr; 2502 unsigned int pathlen = strlen(symname); 2503 int error; 2504 2505 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id, 2506 dir->i_ino, dentry, symname); 2507 2508 if (pathlen > PAGE_SIZE) 2509 return -ENAMETOOLONG; 2510 2511 attr.ia_mode = S_IFLNK | S_IRWXUGO; 2512 attr.ia_valid = ATTR_MODE; 2513 2514 page = alloc_page(GFP_USER); 2515 if (!page) 2516 return -ENOMEM; 2517 2518 kaddr = page_address(page); 2519 memcpy(kaddr, symname, pathlen); 2520 if (pathlen < PAGE_SIZE) 2521 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen); 2522 2523 trace_nfs_symlink_enter(dir, dentry); 2524 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr); 2525 trace_nfs_symlink_exit(dir, dentry, error); 2526 if (error != 0) { 2527 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n", 2528 dir->i_sb->s_id, dir->i_ino, 2529 dentry, symname, error); 2530 d_drop(dentry); 2531 __free_page(page); 2532 return error; 2533 } 2534 2535 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2536 2537 /* 2538 * No big deal if we can't add this page to the page cache here. 2539 * READLINK will get the missing page from the server if needed. 2540 */ 2541 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0, 2542 GFP_KERNEL)) { 2543 SetPageUptodate(page); 2544 unlock_page(page); 2545 /* 2546 * add_to_page_cache_lru() grabs an extra page refcount. 2547 * Drop it here to avoid leaking this page later. 2548 */ 2549 put_page(page); 2550 } else 2551 __free_page(page); 2552 2553 return 0; 2554 } 2555 EXPORT_SYMBOL_GPL(nfs_symlink); 2556 2557 int 2558 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2559 { 2560 struct inode *inode = d_inode(old_dentry); 2561 int error; 2562 2563 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n", 2564 old_dentry, dentry); 2565 2566 trace_nfs_link_enter(inode, dir, dentry); 2567 d_drop(dentry); 2568 if (S_ISREG(inode->i_mode)) 2569 nfs_sync_inode(inode); 2570 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name); 2571 if (error == 0) { 2572 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2573 ihold(inode); 2574 d_add(dentry, inode); 2575 } 2576 trace_nfs_link_exit(inode, dir, dentry, error); 2577 return error; 2578 } 2579 EXPORT_SYMBOL_GPL(nfs_link); 2580 2581 /* 2582 * RENAME 2583 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a 2584 * different file handle for the same inode after a rename (e.g. when 2585 * moving to a different directory). A fail-safe method to do so would 2586 * be to look up old_dir/old_name, create a link to new_dir/new_name and 2587 * rename the old file using the sillyrename stuff. This way, the original 2588 * file in old_dir will go away when the last process iput()s the inode. 2589 * 2590 * FIXED. 2591 * 2592 * It actually works quite well. One needs to have the possibility for 2593 * at least one ".nfs..." file in each directory the file ever gets 2594 * moved or linked to which happens automagically with the new 2595 * implementation that only depends on the dcache stuff instead of 2596 * using the inode layer 2597 * 2598 * Unfortunately, things are a little more complicated than indicated 2599 * above. For a cross-directory move, we want to make sure we can get 2600 * rid of the old inode after the operation. This means there must be 2601 * no pending writes (if it's a file), and the use count must be 1. 2602 * If these conditions are met, we can drop the dentries before doing 2603 * the rename. 2604 */ 2605 int nfs_rename(struct user_namespace *mnt_userns, struct inode *old_dir, 2606 struct dentry *old_dentry, struct inode *new_dir, 2607 struct dentry *new_dentry, unsigned int flags) 2608 { 2609 struct inode *old_inode = d_inode(old_dentry); 2610 struct inode *new_inode = d_inode(new_dentry); 2611 struct dentry *dentry = NULL, *rehash = NULL; 2612 struct rpc_task *task; 2613 int error = -EBUSY; 2614 2615 if (flags) 2616 return -EINVAL; 2617 2618 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n", 2619 old_dentry, new_dentry, 2620 d_count(new_dentry)); 2621 2622 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry); 2623 /* 2624 * For non-directories, check whether the target is busy and if so, 2625 * make a copy of the dentry and then do a silly-rename. If the 2626 * silly-rename succeeds, the copied dentry is hashed and becomes 2627 * the new target. 2628 */ 2629 if (new_inode && !S_ISDIR(new_inode->i_mode)) { 2630 /* 2631 * To prevent any new references to the target during the 2632 * rename, we unhash the dentry in advance. 2633 */ 2634 if (!d_unhashed(new_dentry)) { 2635 d_drop(new_dentry); 2636 rehash = new_dentry; 2637 } 2638 2639 if (d_count(new_dentry) > 2) { 2640 int err; 2641 2642 /* copy the target dentry's name */ 2643 dentry = d_alloc(new_dentry->d_parent, 2644 &new_dentry->d_name); 2645 if (!dentry) 2646 goto out; 2647 2648 /* silly-rename the existing target ... */ 2649 err = nfs_sillyrename(new_dir, new_dentry); 2650 if (err) 2651 goto out; 2652 2653 new_dentry = dentry; 2654 rehash = NULL; 2655 new_inode = NULL; 2656 } 2657 } 2658 2659 if (S_ISREG(old_inode->i_mode)) 2660 nfs_sync_inode(old_inode); 2661 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL); 2662 if (IS_ERR(task)) { 2663 error = PTR_ERR(task); 2664 goto out; 2665 } 2666 2667 error = rpc_wait_for_completion_task(task); 2668 if (error != 0) { 2669 ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1; 2670 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */ 2671 smp_wmb(); 2672 } else 2673 error = task->tk_status; 2674 rpc_put_task(task); 2675 /* Ensure the inode attributes are revalidated */ 2676 if (error == 0) { 2677 spin_lock(&old_inode->i_lock); 2678 NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter(); 2679 nfs_set_cache_invalid(old_inode, NFS_INO_INVALID_CHANGE | 2680 NFS_INO_INVALID_CTIME | 2681 NFS_INO_REVAL_FORCED); 2682 spin_unlock(&old_inode->i_lock); 2683 } 2684 out: 2685 if (rehash) 2686 d_rehash(rehash); 2687 trace_nfs_rename_exit(old_dir, old_dentry, 2688 new_dir, new_dentry, error); 2689 if (!error) { 2690 if (new_inode != NULL) 2691 nfs_drop_nlink(new_inode); 2692 /* 2693 * The d_move() should be here instead of in an async RPC completion 2694 * handler because we need the proper locks to move the dentry. If 2695 * we're interrupted by a signal, the async RPC completion handler 2696 * should mark the directories for revalidation. 2697 */ 2698 d_move(old_dentry, new_dentry); 2699 nfs_set_verifier(old_dentry, 2700 nfs_save_change_attribute(new_dir)); 2701 } else if (error == -ENOENT) 2702 nfs_dentry_handle_enoent(old_dentry); 2703 2704 /* new dentry created? */ 2705 if (dentry) 2706 dput(dentry); 2707 return error; 2708 } 2709 EXPORT_SYMBOL_GPL(nfs_rename); 2710 2711 static DEFINE_SPINLOCK(nfs_access_lru_lock); 2712 static LIST_HEAD(nfs_access_lru_list); 2713 static atomic_long_t nfs_access_nr_entries; 2714 2715 static unsigned long nfs_access_max_cachesize = 4*1024*1024; 2716 module_param(nfs_access_max_cachesize, ulong, 0644); 2717 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length"); 2718 2719 static void nfs_access_free_entry(struct nfs_access_entry *entry) 2720 { 2721 put_group_info(entry->group_info); 2722 kfree_rcu(entry, rcu_head); 2723 smp_mb__before_atomic(); 2724 atomic_long_dec(&nfs_access_nr_entries); 2725 smp_mb__after_atomic(); 2726 } 2727 2728 static void nfs_access_free_list(struct list_head *head) 2729 { 2730 struct nfs_access_entry *cache; 2731 2732 while (!list_empty(head)) { 2733 cache = list_entry(head->next, struct nfs_access_entry, lru); 2734 list_del(&cache->lru); 2735 nfs_access_free_entry(cache); 2736 } 2737 } 2738 2739 static unsigned long 2740 nfs_do_access_cache_scan(unsigned int nr_to_scan) 2741 { 2742 LIST_HEAD(head); 2743 struct nfs_inode *nfsi, *next; 2744 struct nfs_access_entry *cache; 2745 long freed = 0; 2746 2747 spin_lock(&nfs_access_lru_lock); 2748 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) { 2749 struct inode *inode; 2750 2751 if (nr_to_scan-- == 0) 2752 break; 2753 inode = &nfsi->vfs_inode; 2754 spin_lock(&inode->i_lock); 2755 if (list_empty(&nfsi->access_cache_entry_lru)) 2756 goto remove_lru_entry; 2757 cache = list_entry(nfsi->access_cache_entry_lru.next, 2758 struct nfs_access_entry, lru); 2759 list_move(&cache->lru, &head); 2760 rb_erase(&cache->rb_node, &nfsi->access_cache); 2761 freed++; 2762 if (!list_empty(&nfsi->access_cache_entry_lru)) 2763 list_move_tail(&nfsi->access_cache_inode_lru, 2764 &nfs_access_lru_list); 2765 else { 2766 remove_lru_entry: 2767 list_del_init(&nfsi->access_cache_inode_lru); 2768 smp_mb__before_atomic(); 2769 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags); 2770 smp_mb__after_atomic(); 2771 } 2772 spin_unlock(&inode->i_lock); 2773 } 2774 spin_unlock(&nfs_access_lru_lock); 2775 nfs_access_free_list(&head); 2776 return freed; 2777 } 2778 2779 unsigned long 2780 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc) 2781 { 2782 int nr_to_scan = sc->nr_to_scan; 2783 gfp_t gfp_mask = sc->gfp_mask; 2784 2785 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL) 2786 return SHRINK_STOP; 2787 return nfs_do_access_cache_scan(nr_to_scan); 2788 } 2789 2790 2791 unsigned long 2792 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc) 2793 { 2794 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries)); 2795 } 2796 2797 static void 2798 nfs_access_cache_enforce_limit(void) 2799 { 2800 long nr_entries = atomic_long_read(&nfs_access_nr_entries); 2801 unsigned long diff; 2802 unsigned int nr_to_scan; 2803 2804 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize) 2805 return; 2806 nr_to_scan = 100; 2807 diff = nr_entries - nfs_access_max_cachesize; 2808 if (diff < nr_to_scan) 2809 nr_to_scan = diff; 2810 nfs_do_access_cache_scan(nr_to_scan); 2811 } 2812 2813 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head) 2814 { 2815 struct rb_root *root_node = &nfsi->access_cache; 2816 struct rb_node *n; 2817 struct nfs_access_entry *entry; 2818 2819 /* Unhook entries from the cache */ 2820 while ((n = rb_first(root_node)) != NULL) { 2821 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2822 rb_erase(n, root_node); 2823 list_move(&entry->lru, head); 2824 } 2825 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS; 2826 } 2827 2828 void nfs_access_zap_cache(struct inode *inode) 2829 { 2830 LIST_HEAD(head); 2831 2832 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0) 2833 return; 2834 /* Remove from global LRU init */ 2835 spin_lock(&nfs_access_lru_lock); 2836 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2837 list_del_init(&NFS_I(inode)->access_cache_inode_lru); 2838 2839 spin_lock(&inode->i_lock); 2840 __nfs_access_zap_cache(NFS_I(inode), &head); 2841 spin_unlock(&inode->i_lock); 2842 spin_unlock(&nfs_access_lru_lock); 2843 nfs_access_free_list(&head); 2844 } 2845 EXPORT_SYMBOL_GPL(nfs_access_zap_cache); 2846 2847 static int access_cmp(const struct cred *a, const struct nfs_access_entry *b) 2848 { 2849 struct group_info *ga, *gb; 2850 int g; 2851 2852 if (uid_lt(a->fsuid, b->fsuid)) 2853 return -1; 2854 if (uid_gt(a->fsuid, b->fsuid)) 2855 return 1; 2856 2857 if (gid_lt(a->fsgid, b->fsgid)) 2858 return -1; 2859 if (gid_gt(a->fsgid, b->fsgid)) 2860 return 1; 2861 2862 ga = a->group_info; 2863 gb = b->group_info; 2864 if (ga == gb) 2865 return 0; 2866 if (ga == NULL) 2867 return -1; 2868 if (gb == NULL) 2869 return 1; 2870 if (ga->ngroups < gb->ngroups) 2871 return -1; 2872 if (ga->ngroups > gb->ngroups) 2873 return 1; 2874 2875 for (g = 0; g < ga->ngroups; g++) { 2876 if (gid_lt(ga->gid[g], gb->gid[g])) 2877 return -1; 2878 if (gid_gt(ga->gid[g], gb->gid[g])) 2879 return 1; 2880 } 2881 return 0; 2882 } 2883 2884 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred) 2885 { 2886 struct rb_node *n = NFS_I(inode)->access_cache.rb_node; 2887 2888 while (n != NULL) { 2889 struct nfs_access_entry *entry = 2890 rb_entry(n, struct nfs_access_entry, rb_node); 2891 int cmp = access_cmp(cred, entry); 2892 2893 if (cmp < 0) 2894 n = n->rb_left; 2895 else if (cmp > 0) 2896 n = n->rb_right; 2897 else 2898 return entry; 2899 } 2900 return NULL; 2901 } 2902 2903 static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, u32 *mask, bool may_block) 2904 { 2905 struct nfs_inode *nfsi = NFS_I(inode); 2906 struct nfs_access_entry *cache; 2907 bool retry = true; 2908 int err; 2909 2910 spin_lock(&inode->i_lock); 2911 for(;;) { 2912 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2913 goto out_zap; 2914 cache = nfs_access_search_rbtree(inode, cred); 2915 err = -ENOENT; 2916 if (cache == NULL) 2917 goto out; 2918 /* Found an entry, is our attribute cache valid? */ 2919 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) 2920 break; 2921 if (!retry) 2922 break; 2923 err = -ECHILD; 2924 if (!may_block) 2925 goto out; 2926 spin_unlock(&inode->i_lock); 2927 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode); 2928 if (err) 2929 return err; 2930 spin_lock(&inode->i_lock); 2931 retry = false; 2932 } 2933 *mask = cache->mask; 2934 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru); 2935 err = 0; 2936 out: 2937 spin_unlock(&inode->i_lock); 2938 return err; 2939 out_zap: 2940 spin_unlock(&inode->i_lock); 2941 nfs_access_zap_cache(inode); 2942 return -ENOENT; 2943 } 2944 2945 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, u32 *mask) 2946 { 2947 /* Only check the most recently returned cache entry, 2948 * but do it without locking. 2949 */ 2950 struct nfs_inode *nfsi = NFS_I(inode); 2951 struct nfs_access_entry *cache; 2952 int err = -ECHILD; 2953 struct list_head *lh; 2954 2955 rcu_read_lock(); 2956 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2957 goto out; 2958 lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru)); 2959 cache = list_entry(lh, struct nfs_access_entry, lru); 2960 if (lh == &nfsi->access_cache_entry_lru || 2961 access_cmp(cred, cache) != 0) 2962 cache = NULL; 2963 if (cache == NULL) 2964 goto out; 2965 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) 2966 goto out; 2967 *mask = cache->mask; 2968 err = 0; 2969 out: 2970 rcu_read_unlock(); 2971 return err; 2972 } 2973 2974 int nfs_access_get_cached(struct inode *inode, const struct cred *cred, 2975 u32 *mask, bool may_block) 2976 { 2977 int status; 2978 2979 status = nfs_access_get_cached_rcu(inode, cred, mask); 2980 if (status != 0) 2981 status = nfs_access_get_cached_locked(inode, cred, mask, 2982 may_block); 2983 2984 return status; 2985 } 2986 EXPORT_SYMBOL_GPL(nfs_access_get_cached); 2987 2988 static void nfs_access_add_rbtree(struct inode *inode, 2989 struct nfs_access_entry *set, 2990 const struct cred *cred) 2991 { 2992 struct nfs_inode *nfsi = NFS_I(inode); 2993 struct rb_root *root_node = &nfsi->access_cache; 2994 struct rb_node **p = &root_node->rb_node; 2995 struct rb_node *parent = NULL; 2996 struct nfs_access_entry *entry; 2997 int cmp; 2998 2999 spin_lock(&inode->i_lock); 3000 while (*p != NULL) { 3001 parent = *p; 3002 entry = rb_entry(parent, struct nfs_access_entry, rb_node); 3003 cmp = access_cmp(cred, entry); 3004 3005 if (cmp < 0) 3006 p = &parent->rb_left; 3007 else if (cmp > 0) 3008 p = &parent->rb_right; 3009 else 3010 goto found; 3011 } 3012 rb_link_node(&set->rb_node, parent, p); 3013 rb_insert_color(&set->rb_node, root_node); 3014 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 3015 spin_unlock(&inode->i_lock); 3016 return; 3017 found: 3018 rb_replace_node(parent, &set->rb_node, root_node); 3019 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 3020 list_del(&entry->lru); 3021 spin_unlock(&inode->i_lock); 3022 nfs_access_free_entry(entry); 3023 } 3024 3025 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set, 3026 const struct cred *cred) 3027 { 3028 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL); 3029 if (cache == NULL) 3030 return; 3031 RB_CLEAR_NODE(&cache->rb_node); 3032 cache->fsuid = cred->fsuid; 3033 cache->fsgid = cred->fsgid; 3034 cache->group_info = get_group_info(cred->group_info); 3035 cache->mask = set->mask; 3036 3037 /* The above field assignments must be visible 3038 * before this item appears on the lru. We cannot easily 3039 * use rcu_assign_pointer, so just force the memory barrier. 3040 */ 3041 smp_wmb(); 3042 nfs_access_add_rbtree(inode, cache, cred); 3043 3044 /* Update accounting */ 3045 smp_mb__before_atomic(); 3046 atomic_long_inc(&nfs_access_nr_entries); 3047 smp_mb__after_atomic(); 3048 3049 /* Add inode to global LRU list */ 3050 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) { 3051 spin_lock(&nfs_access_lru_lock); 3052 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 3053 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, 3054 &nfs_access_lru_list); 3055 spin_unlock(&nfs_access_lru_lock); 3056 } 3057 nfs_access_cache_enforce_limit(); 3058 } 3059 EXPORT_SYMBOL_GPL(nfs_access_add_cache); 3060 3061 #define NFS_MAY_READ (NFS_ACCESS_READ) 3062 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \ 3063 NFS_ACCESS_EXTEND | \ 3064 NFS_ACCESS_DELETE) 3065 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \ 3066 NFS_ACCESS_EXTEND) 3067 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE 3068 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP) 3069 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE) 3070 static int 3071 nfs_access_calc_mask(u32 access_result, umode_t umode) 3072 { 3073 int mask = 0; 3074 3075 if (access_result & NFS_MAY_READ) 3076 mask |= MAY_READ; 3077 if (S_ISDIR(umode)) { 3078 if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE) 3079 mask |= MAY_WRITE; 3080 if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP) 3081 mask |= MAY_EXEC; 3082 } else if (S_ISREG(umode)) { 3083 if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE) 3084 mask |= MAY_WRITE; 3085 if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE) 3086 mask |= MAY_EXEC; 3087 } else if (access_result & NFS_MAY_WRITE) 3088 mask |= MAY_WRITE; 3089 return mask; 3090 } 3091 3092 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result) 3093 { 3094 entry->mask = access_result; 3095 } 3096 EXPORT_SYMBOL_GPL(nfs_access_set_mask); 3097 3098 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask) 3099 { 3100 struct nfs_access_entry cache; 3101 bool may_block = (mask & MAY_NOT_BLOCK) == 0; 3102 int cache_mask = -1; 3103 int status; 3104 3105 trace_nfs_access_enter(inode); 3106 3107 status = nfs_access_get_cached(inode, cred, &cache.mask, may_block); 3108 if (status == 0) 3109 goto out_cached; 3110 3111 status = -ECHILD; 3112 if (!may_block) 3113 goto out; 3114 3115 /* 3116 * Determine which access bits we want to ask for... 3117 */ 3118 cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND | 3119 nfs_access_xattr_mask(NFS_SERVER(inode)); 3120 if (S_ISDIR(inode->i_mode)) 3121 cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP; 3122 else 3123 cache.mask |= NFS_ACCESS_EXECUTE; 3124 status = NFS_PROTO(inode)->access(inode, &cache, cred); 3125 if (status != 0) { 3126 if (status == -ESTALE) { 3127 if (!S_ISDIR(inode->i_mode)) 3128 nfs_set_inode_stale(inode); 3129 else 3130 nfs_zap_caches(inode); 3131 } 3132 goto out; 3133 } 3134 nfs_access_add_cache(inode, &cache, cred); 3135 out_cached: 3136 cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode); 3137 if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0) 3138 status = -EACCES; 3139 out: 3140 trace_nfs_access_exit(inode, mask, cache_mask, status); 3141 return status; 3142 } 3143 3144 static int nfs_open_permission_mask(int openflags) 3145 { 3146 int mask = 0; 3147 3148 if (openflags & __FMODE_EXEC) { 3149 /* ONLY check exec rights */ 3150 mask = MAY_EXEC; 3151 } else { 3152 if ((openflags & O_ACCMODE) != O_WRONLY) 3153 mask |= MAY_READ; 3154 if ((openflags & O_ACCMODE) != O_RDONLY) 3155 mask |= MAY_WRITE; 3156 } 3157 3158 return mask; 3159 } 3160 3161 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags) 3162 { 3163 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags)); 3164 } 3165 EXPORT_SYMBOL_GPL(nfs_may_open); 3166 3167 static int nfs_execute_ok(struct inode *inode, int mask) 3168 { 3169 struct nfs_server *server = NFS_SERVER(inode); 3170 int ret = 0; 3171 3172 if (S_ISDIR(inode->i_mode)) 3173 return 0; 3174 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_MODE)) { 3175 if (mask & MAY_NOT_BLOCK) 3176 return -ECHILD; 3177 ret = __nfs_revalidate_inode(server, inode); 3178 } 3179 if (ret == 0 && !execute_ok(inode)) 3180 ret = -EACCES; 3181 return ret; 3182 } 3183 3184 int nfs_permission(struct user_namespace *mnt_userns, 3185 struct inode *inode, 3186 int mask) 3187 { 3188 const struct cred *cred = current_cred(); 3189 int res = 0; 3190 3191 nfs_inc_stats(inode, NFSIOS_VFSACCESS); 3192 3193 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 3194 goto out; 3195 /* Is this sys_access() ? */ 3196 if (mask & (MAY_ACCESS | MAY_CHDIR)) 3197 goto force_lookup; 3198 3199 switch (inode->i_mode & S_IFMT) { 3200 case S_IFLNK: 3201 goto out; 3202 case S_IFREG: 3203 if ((mask & MAY_OPEN) && 3204 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)) 3205 return 0; 3206 break; 3207 case S_IFDIR: 3208 /* 3209 * Optimize away all write operations, since the server 3210 * will check permissions when we perform the op. 3211 */ 3212 if ((mask & MAY_WRITE) && !(mask & MAY_READ)) 3213 goto out; 3214 } 3215 3216 force_lookup: 3217 if (!NFS_PROTO(inode)->access) 3218 goto out_notsup; 3219 3220 res = nfs_do_access(inode, cred, mask); 3221 out: 3222 if (!res && (mask & MAY_EXEC)) 3223 res = nfs_execute_ok(inode, mask); 3224 3225 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n", 3226 inode->i_sb->s_id, inode->i_ino, mask, res); 3227 return res; 3228 out_notsup: 3229 if (mask & MAY_NOT_BLOCK) 3230 return -ECHILD; 3231 3232 res = nfs_revalidate_inode(inode, NFS_INO_INVALID_MODE | 3233 NFS_INO_INVALID_OTHER); 3234 if (res == 0) 3235 res = generic_permission(&init_user_ns, inode, mask); 3236 goto out; 3237 } 3238 EXPORT_SYMBOL_GPL(nfs_permission); 3239