xref: /openbmc/linux/fs/nfs/dir.c (revision f80d2f08)
1 /*
2  *  linux/fs/nfs/dir.c
3  *
4  *  Copyright (C) 1992  Rick Sladkey
5  *
6  *  nfs directory handling functions
7  *
8  * 10 Apr 1996	Added silly rename for unlink	--okir
9  * 28 Sep 1996	Improved directory cache --okir
10  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
11  *              Re-implemented silly rename for unlink, newly implemented
12  *              silly rename for nfs_rename() following the suggestions
13  *              of Olaf Kirch (okir) found in this file.
14  *              Following Linus comments on my original hack, this version
15  *              depends only on the dcache stuff and doesn't touch the inode
16  *              layer (iput() and friends).
17  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
18  */
19 
20 #include <linux/module.h>
21 #include <linux/time.h>
22 #include <linux/errno.h>
23 #include <linux/stat.h>
24 #include <linux/fcntl.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/mm.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/nfs_fs.h>
31 #include <linux/nfs_mount.h>
32 #include <linux/pagemap.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/swap.h>
37 #include <linux/sched.h>
38 #include <linux/kmemleak.h>
39 #include <linux/xattr.h>
40 
41 #include "delegation.h"
42 #include "iostat.h"
43 #include "internal.h"
44 #include "fscache.h"
45 
46 #include "nfstrace.h"
47 
48 /* #define NFS_DEBUG_VERBOSE 1 */
49 
50 static int nfs_opendir(struct inode *, struct file *);
51 static int nfs_closedir(struct inode *, struct file *);
52 static int nfs_readdir(struct file *, struct dir_context *);
53 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
54 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
55 static void nfs_readdir_clear_array(struct page*);
56 
57 const struct file_operations nfs_dir_operations = {
58 	.llseek		= nfs_llseek_dir,
59 	.read		= generic_read_dir,
60 	.iterate	= nfs_readdir,
61 	.open		= nfs_opendir,
62 	.release	= nfs_closedir,
63 	.fsync		= nfs_fsync_dir,
64 };
65 
66 const struct address_space_operations nfs_dir_aops = {
67 	.freepage = nfs_readdir_clear_array,
68 };
69 
70 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, const struct cred *cred)
71 {
72 	struct nfs_inode *nfsi = NFS_I(dir);
73 	struct nfs_open_dir_context *ctx;
74 	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
75 	if (ctx != NULL) {
76 		ctx->duped = 0;
77 		ctx->attr_gencount = nfsi->attr_gencount;
78 		ctx->dir_cookie = 0;
79 		ctx->dup_cookie = 0;
80 		ctx->cred = get_cred(cred);
81 		spin_lock(&dir->i_lock);
82 		list_add(&ctx->list, &nfsi->open_files);
83 		spin_unlock(&dir->i_lock);
84 		return ctx;
85 	}
86 	return  ERR_PTR(-ENOMEM);
87 }
88 
89 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
90 {
91 	spin_lock(&dir->i_lock);
92 	list_del(&ctx->list);
93 	spin_unlock(&dir->i_lock);
94 	put_cred(ctx->cred);
95 	kfree(ctx);
96 }
97 
98 /*
99  * Open file
100  */
101 static int
102 nfs_opendir(struct inode *inode, struct file *filp)
103 {
104 	int res = 0;
105 	struct nfs_open_dir_context *ctx;
106 
107 	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
108 
109 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
110 
111 	ctx = alloc_nfs_open_dir_context(inode, current_cred());
112 	if (IS_ERR(ctx)) {
113 		res = PTR_ERR(ctx);
114 		goto out;
115 	}
116 	filp->private_data = ctx;
117 out:
118 	return res;
119 }
120 
121 static int
122 nfs_closedir(struct inode *inode, struct file *filp)
123 {
124 	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
125 	return 0;
126 }
127 
128 struct nfs_cache_array_entry {
129 	u64 cookie;
130 	u64 ino;
131 	struct qstr string;
132 	unsigned char d_type;
133 };
134 
135 struct nfs_cache_array {
136 	int size;
137 	int eof_index;
138 	u64 last_cookie;
139 	struct nfs_cache_array_entry array[0];
140 };
141 
142 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, bool);
143 typedef struct {
144 	struct file	*file;
145 	struct page	*page;
146 	struct dir_context *ctx;
147 	unsigned long	page_index;
148 	u64		*dir_cookie;
149 	u64		last_cookie;
150 	loff_t		current_index;
151 	decode_dirent_t	decode;
152 
153 	unsigned long	timestamp;
154 	unsigned long	gencount;
155 	unsigned int	cache_entry_index;
156 	bool plus;
157 	bool eof;
158 } nfs_readdir_descriptor_t;
159 
160 /*
161  * we are freeing strings created by nfs_add_to_readdir_array()
162  */
163 static
164 void nfs_readdir_clear_array(struct page *page)
165 {
166 	struct nfs_cache_array *array;
167 	int i;
168 
169 	array = kmap_atomic(page);
170 	for (i = 0; i < array->size; i++)
171 		kfree(array->array[i].string.name);
172 	kunmap_atomic(array);
173 }
174 
175 /*
176  * the caller is responsible for freeing qstr.name
177  * when called by nfs_readdir_add_to_array, the strings will be freed in
178  * nfs_clear_readdir_array()
179  */
180 static
181 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
182 {
183 	string->len = len;
184 	string->name = kmemdup(name, len, GFP_KERNEL);
185 	if (string->name == NULL)
186 		return -ENOMEM;
187 	/*
188 	 * Avoid a kmemleak false positive. The pointer to the name is stored
189 	 * in a page cache page which kmemleak does not scan.
190 	 */
191 	kmemleak_not_leak(string->name);
192 	string->hash = full_name_hash(NULL, name, len);
193 	return 0;
194 }
195 
196 static
197 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
198 {
199 	struct nfs_cache_array *array = kmap(page);
200 	struct nfs_cache_array_entry *cache_entry;
201 	int ret;
202 
203 	cache_entry = &array->array[array->size];
204 
205 	/* Check that this entry lies within the page bounds */
206 	ret = -ENOSPC;
207 	if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
208 		goto out;
209 
210 	cache_entry->cookie = entry->prev_cookie;
211 	cache_entry->ino = entry->ino;
212 	cache_entry->d_type = entry->d_type;
213 	ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
214 	if (ret)
215 		goto out;
216 	array->last_cookie = entry->cookie;
217 	array->size++;
218 	if (entry->eof != 0)
219 		array->eof_index = array->size;
220 out:
221 	kunmap(page);
222 	return ret;
223 }
224 
225 static
226 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
227 {
228 	loff_t diff = desc->ctx->pos - desc->current_index;
229 	unsigned int index;
230 
231 	if (diff < 0)
232 		goto out_eof;
233 	if (diff >= array->size) {
234 		if (array->eof_index >= 0)
235 			goto out_eof;
236 		return -EAGAIN;
237 	}
238 
239 	index = (unsigned int)diff;
240 	*desc->dir_cookie = array->array[index].cookie;
241 	desc->cache_entry_index = index;
242 	return 0;
243 out_eof:
244 	desc->eof = true;
245 	return -EBADCOOKIE;
246 }
247 
248 static bool
249 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
250 {
251 	if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
252 		return false;
253 	smp_rmb();
254 	return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
255 }
256 
257 static
258 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
259 {
260 	int i;
261 	loff_t new_pos;
262 	int status = -EAGAIN;
263 
264 	for (i = 0; i < array->size; i++) {
265 		if (array->array[i].cookie == *desc->dir_cookie) {
266 			struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
267 			struct nfs_open_dir_context *ctx = desc->file->private_data;
268 
269 			new_pos = desc->current_index + i;
270 			if (ctx->attr_gencount != nfsi->attr_gencount ||
271 			    !nfs_readdir_inode_mapping_valid(nfsi)) {
272 				ctx->duped = 0;
273 				ctx->attr_gencount = nfsi->attr_gencount;
274 			} else if (new_pos < desc->ctx->pos) {
275 				if (ctx->duped > 0
276 				    && ctx->dup_cookie == *desc->dir_cookie) {
277 					if (printk_ratelimit()) {
278 						pr_notice("NFS: directory %pD2 contains a readdir loop."
279 								"Please contact your server vendor.  "
280 								"The file: %.*s has duplicate cookie %llu\n",
281 								desc->file, array->array[i].string.len,
282 								array->array[i].string.name, *desc->dir_cookie);
283 					}
284 					status = -ELOOP;
285 					goto out;
286 				}
287 				ctx->dup_cookie = *desc->dir_cookie;
288 				ctx->duped = -1;
289 			}
290 			desc->ctx->pos = new_pos;
291 			desc->cache_entry_index = i;
292 			return 0;
293 		}
294 	}
295 	if (array->eof_index >= 0) {
296 		status = -EBADCOOKIE;
297 		if (*desc->dir_cookie == array->last_cookie)
298 			desc->eof = true;
299 	}
300 out:
301 	return status;
302 }
303 
304 static
305 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
306 {
307 	struct nfs_cache_array *array;
308 	int status;
309 
310 	array = kmap(desc->page);
311 
312 	if (*desc->dir_cookie == 0)
313 		status = nfs_readdir_search_for_pos(array, desc);
314 	else
315 		status = nfs_readdir_search_for_cookie(array, desc);
316 
317 	if (status == -EAGAIN) {
318 		desc->last_cookie = array->last_cookie;
319 		desc->current_index += array->size;
320 		desc->page_index++;
321 	}
322 	kunmap(desc->page);
323 	return status;
324 }
325 
326 /* Fill a page with xdr information before transferring to the cache page */
327 static
328 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
329 			struct nfs_entry *entry, struct file *file, struct inode *inode)
330 {
331 	struct nfs_open_dir_context *ctx = file->private_data;
332 	const struct cred *cred = ctx->cred;
333 	unsigned long	timestamp, gencount;
334 	int		error;
335 
336  again:
337 	timestamp = jiffies;
338 	gencount = nfs_inc_attr_generation_counter();
339 	error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages,
340 					  NFS_SERVER(inode)->dtsize, desc->plus);
341 	if (error < 0) {
342 		/* We requested READDIRPLUS, but the server doesn't grok it */
343 		if (error == -ENOTSUPP && desc->plus) {
344 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
345 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
346 			desc->plus = false;
347 			goto again;
348 		}
349 		goto error;
350 	}
351 	desc->timestamp = timestamp;
352 	desc->gencount = gencount;
353 error:
354 	return error;
355 }
356 
357 static int xdr_decode(nfs_readdir_descriptor_t *desc,
358 		      struct nfs_entry *entry, struct xdr_stream *xdr)
359 {
360 	int error;
361 
362 	error = desc->decode(xdr, entry, desc->plus);
363 	if (error)
364 		return error;
365 	entry->fattr->time_start = desc->timestamp;
366 	entry->fattr->gencount = desc->gencount;
367 	return 0;
368 }
369 
370 /* Match file and dirent using either filehandle or fileid
371  * Note: caller is responsible for checking the fsid
372  */
373 static
374 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
375 {
376 	struct inode *inode;
377 	struct nfs_inode *nfsi;
378 
379 	if (d_really_is_negative(dentry))
380 		return 0;
381 
382 	inode = d_inode(dentry);
383 	if (is_bad_inode(inode) || NFS_STALE(inode))
384 		return 0;
385 
386 	nfsi = NFS_I(inode);
387 	if (entry->fattr->fileid != nfsi->fileid)
388 		return 0;
389 	if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
390 		return 0;
391 	return 1;
392 }
393 
394 static
395 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
396 {
397 	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
398 		return false;
399 	if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
400 		return true;
401 	if (ctx->pos == 0)
402 		return true;
403 	return false;
404 }
405 
406 /*
407  * This function is called by the lookup and getattr code to request the
408  * use of readdirplus to accelerate any future lookups in the same
409  * directory.
410  */
411 void nfs_advise_use_readdirplus(struct inode *dir)
412 {
413 	struct nfs_inode *nfsi = NFS_I(dir);
414 
415 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
416 	    !list_empty(&nfsi->open_files))
417 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
418 }
419 
420 /*
421  * This function is mainly for use by nfs_getattr().
422  *
423  * If this is an 'ls -l', we want to force use of readdirplus.
424  * Do this by checking if there is an active file descriptor
425  * and calling nfs_advise_use_readdirplus, then forcing a
426  * cache flush.
427  */
428 void nfs_force_use_readdirplus(struct inode *dir)
429 {
430 	struct nfs_inode *nfsi = NFS_I(dir);
431 
432 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
433 	    !list_empty(&nfsi->open_files)) {
434 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
435 		invalidate_mapping_pages(dir->i_mapping, 0, -1);
436 	}
437 }
438 
439 static
440 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
441 {
442 	struct qstr filename = QSTR_INIT(entry->name, entry->len);
443 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
444 	struct dentry *dentry;
445 	struct dentry *alias;
446 	struct inode *dir = d_inode(parent);
447 	struct inode *inode;
448 	int status;
449 
450 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
451 		return;
452 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
453 		return;
454 	if (filename.len == 0)
455 		return;
456 	/* Validate that the name doesn't contain any illegal '\0' */
457 	if (strnlen(filename.name, filename.len) != filename.len)
458 		return;
459 	/* ...or '/' */
460 	if (strnchr(filename.name, filename.len, '/'))
461 		return;
462 	if (filename.name[0] == '.') {
463 		if (filename.len == 1)
464 			return;
465 		if (filename.len == 2 && filename.name[1] == '.')
466 			return;
467 	}
468 	filename.hash = full_name_hash(parent, filename.name, filename.len);
469 
470 	dentry = d_lookup(parent, &filename);
471 again:
472 	if (!dentry) {
473 		dentry = d_alloc_parallel(parent, &filename, &wq);
474 		if (IS_ERR(dentry))
475 			return;
476 	}
477 	if (!d_in_lookup(dentry)) {
478 		/* Is there a mountpoint here? If so, just exit */
479 		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
480 					&entry->fattr->fsid))
481 			goto out;
482 		if (nfs_same_file(dentry, entry)) {
483 			if (!entry->fh->size)
484 				goto out;
485 			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
486 			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
487 			if (!status)
488 				nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
489 			goto out;
490 		} else {
491 			d_invalidate(dentry);
492 			dput(dentry);
493 			dentry = NULL;
494 			goto again;
495 		}
496 	}
497 	if (!entry->fh->size) {
498 		d_lookup_done(dentry);
499 		goto out;
500 	}
501 
502 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
503 	alias = d_splice_alias(inode, dentry);
504 	d_lookup_done(dentry);
505 	if (alias) {
506 		if (IS_ERR(alias))
507 			goto out;
508 		dput(dentry);
509 		dentry = alias;
510 	}
511 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
512 out:
513 	dput(dentry);
514 }
515 
516 /* Perform conversion from xdr to cache array */
517 static
518 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
519 				struct page **xdr_pages, struct page *page, unsigned int buflen)
520 {
521 	struct xdr_stream stream;
522 	struct xdr_buf buf;
523 	struct page *scratch;
524 	struct nfs_cache_array *array;
525 	unsigned int count = 0;
526 	int status;
527 
528 	scratch = alloc_page(GFP_KERNEL);
529 	if (scratch == NULL)
530 		return -ENOMEM;
531 
532 	if (buflen == 0)
533 		goto out_nopages;
534 
535 	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
536 	xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
537 
538 	do {
539 		status = xdr_decode(desc, entry, &stream);
540 		if (status != 0) {
541 			if (status == -EAGAIN)
542 				status = 0;
543 			break;
544 		}
545 
546 		count++;
547 
548 		if (desc->plus)
549 			nfs_prime_dcache(file_dentry(desc->file), entry);
550 
551 		status = nfs_readdir_add_to_array(entry, page);
552 		if (status != 0)
553 			break;
554 	} while (!entry->eof);
555 
556 out_nopages:
557 	if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
558 		array = kmap(page);
559 		array->eof_index = array->size;
560 		status = 0;
561 		kunmap(page);
562 	}
563 
564 	put_page(scratch);
565 	return status;
566 }
567 
568 static
569 void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
570 {
571 	unsigned int i;
572 	for (i = 0; i < npages; i++)
573 		put_page(pages[i]);
574 }
575 
576 /*
577  * nfs_readdir_large_page will allocate pages that must be freed with a call
578  * to nfs_readdir_free_pagearray
579  */
580 static
581 int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
582 {
583 	unsigned int i;
584 
585 	for (i = 0; i < npages; i++) {
586 		struct page *page = alloc_page(GFP_KERNEL);
587 		if (page == NULL)
588 			goto out_freepages;
589 		pages[i] = page;
590 	}
591 	return 0;
592 
593 out_freepages:
594 	nfs_readdir_free_pages(pages, i);
595 	return -ENOMEM;
596 }
597 
598 static
599 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
600 {
601 	struct page *pages[NFS_MAX_READDIR_PAGES];
602 	struct nfs_entry entry;
603 	struct file	*file = desc->file;
604 	struct nfs_cache_array *array;
605 	int status = -ENOMEM;
606 	unsigned int array_size = ARRAY_SIZE(pages);
607 
608 	entry.prev_cookie = 0;
609 	entry.cookie = desc->last_cookie;
610 	entry.eof = 0;
611 	entry.fh = nfs_alloc_fhandle();
612 	entry.fattr = nfs_alloc_fattr();
613 	entry.server = NFS_SERVER(inode);
614 	if (entry.fh == NULL || entry.fattr == NULL)
615 		goto out;
616 
617 	entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
618 	if (IS_ERR(entry.label)) {
619 		status = PTR_ERR(entry.label);
620 		goto out;
621 	}
622 
623 	array = kmap(page);
624 	memset(array, 0, sizeof(struct nfs_cache_array));
625 	array->eof_index = -1;
626 
627 	status = nfs_readdir_alloc_pages(pages, array_size);
628 	if (status < 0)
629 		goto out_release_array;
630 	do {
631 		unsigned int pglen;
632 		status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
633 
634 		if (status < 0)
635 			break;
636 		pglen = status;
637 		status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
638 		if (status < 0) {
639 			if (status == -ENOSPC)
640 				status = 0;
641 			break;
642 		}
643 	} while (array->eof_index < 0);
644 
645 	nfs_readdir_free_pages(pages, array_size);
646 out_release_array:
647 	kunmap(page);
648 	nfs4_label_free(entry.label);
649 out:
650 	nfs_free_fattr(entry.fattr);
651 	nfs_free_fhandle(entry.fh);
652 	return status;
653 }
654 
655 /*
656  * Now we cache directories properly, by converting xdr information
657  * to an array that can be used for lookups later.  This results in
658  * fewer cache pages, since we can store more information on each page.
659  * We only need to convert from xdr once so future lookups are much simpler
660  */
661 static
662 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
663 {
664 	struct inode	*inode = file_inode(desc->file);
665 	int ret;
666 
667 	ret = nfs_readdir_xdr_to_array(desc, page, inode);
668 	if (ret < 0)
669 		goto error;
670 	SetPageUptodate(page);
671 
672 	if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
673 		/* Should never happen */
674 		nfs_zap_mapping(inode, inode->i_mapping);
675 	}
676 	unlock_page(page);
677 	return 0;
678  error:
679 	unlock_page(page);
680 	return ret;
681 }
682 
683 static
684 void cache_page_release(nfs_readdir_descriptor_t *desc)
685 {
686 	if (!desc->page->mapping)
687 		nfs_readdir_clear_array(desc->page);
688 	put_page(desc->page);
689 	desc->page = NULL;
690 }
691 
692 static
693 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
694 {
695 	return read_cache_page(desc->file->f_mapping,
696 			desc->page_index, (filler_t *)nfs_readdir_filler, desc);
697 }
698 
699 /*
700  * Returns 0 if desc->dir_cookie was found on page desc->page_index
701  */
702 static
703 int find_cache_page(nfs_readdir_descriptor_t *desc)
704 {
705 	int res;
706 
707 	desc->page = get_cache_page(desc);
708 	if (IS_ERR(desc->page))
709 		return PTR_ERR(desc->page);
710 
711 	res = nfs_readdir_search_array(desc);
712 	if (res != 0)
713 		cache_page_release(desc);
714 	return res;
715 }
716 
717 /* Search for desc->dir_cookie from the beginning of the page cache */
718 static inline
719 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
720 {
721 	int res;
722 
723 	if (desc->page_index == 0) {
724 		desc->current_index = 0;
725 		desc->last_cookie = 0;
726 	}
727 	do {
728 		res = find_cache_page(desc);
729 	} while (res == -EAGAIN);
730 	return res;
731 }
732 
733 /*
734  * Once we've found the start of the dirent within a page: fill 'er up...
735  */
736 static
737 int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
738 {
739 	struct file	*file = desc->file;
740 	int i = 0;
741 	int res = 0;
742 	struct nfs_cache_array *array = NULL;
743 	struct nfs_open_dir_context *ctx = file->private_data;
744 
745 	array = kmap(desc->page);
746 	for (i = desc->cache_entry_index; i < array->size; i++) {
747 		struct nfs_cache_array_entry *ent;
748 
749 		ent = &array->array[i];
750 		if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
751 		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
752 			desc->eof = true;
753 			break;
754 		}
755 		desc->ctx->pos++;
756 		if (i < (array->size-1))
757 			*desc->dir_cookie = array->array[i+1].cookie;
758 		else
759 			*desc->dir_cookie = array->last_cookie;
760 		if (ctx->duped != 0)
761 			ctx->duped = 1;
762 	}
763 	if (array->eof_index >= 0)
764 		desc->eof = true;
765 
766 	kunmap(desc->page);
767 	cache_page_release(desc);
768 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
769 			(unsigned long long)*desc->dir_cookie, res);
770 	return res;
771 }
772 
773 /*
774  * If we cannot find a cookie in our cache, we suspect that this is
775  * because it points to a deleted file, so we ask the server to return
776  * whatever it thinks is the next entry. We then feed this to filldir.
777  * If all goes well, we should then be able to find our way round the
778  * cache on the next call to readdir_search_pagecache();
779  *
780  * NOTE: we cannot add the anonymous page to the pagecache because
781  *	 the data it contains might not be page aligned. Besides,
782  *	 we should already have a complete representation of the
783  *	 directory in the page cache by the time we get here.
784  */
785 static inline
786 int uncached_readdir(nfs_readdir_descriptor_t *desc)
787 {
788 	struct page	*page = NULL;
789 	int		status;
790 	struct inode *inode = file_inode(desc->file);
791 	struct nfs_open_dir_context *ctx = desc->file->private_data;
792 
793 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
794 			(unsigned long long)*desc->dir_cookie);
795 
796 	page = alloc_page(GFP_HIGHUSER);
797 	if (!page) {
798 		status = -ENOMEM;
799 		goto out;
800 	}
801 
802 	desc->page_index = 0;
803 	desc->last_cookie = *desc->dir_cookie;
804 	desc->page = page;
805 	ctx->duped = 0;
806 
807 	status = nfs_readdir_xdr_to_array(desc, page, inode);
808 	if (status < 0)
809 		goto out_release;
810 
811 	status = nfs_do_filldir(desc);
812 
813  out:
814 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
815 			__func__, status);
816 	return status;
817  out_release:
818 	cache_page_release(desc);
819 	goto out;
820 }
821 
822 /* The file offset position represents the dirent entry number.  A
823    last cookie cache takes care of the common case of reading the
824    whole directory.
825  */
826 static int nfs_readdir(struct file *file, struct dir_context *ctx)
827 {
828 	struct dentry	*dentry = file_dentry(file);
829 	struct inode	*inode = d_inode(dentry);
830 	nfs_readdir_descriptor_t my_desc,
831 			*desc = &my_desc;
832 	struct nfs_open_dir_context *dir_ctx = file->private_data;
833 	int res = 0;
834 
835 	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
836 			file, (long long)ctx->pos);
837 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
838 
839 	/*
840 	 * ctx->pos points to the dirent entry number.
841 	 * *desc->dir_cookie has the cookie for the next entry. We have
842 	 * to either find the entry with the appropriate number or
843 	 * revalidate the cookie.
844 	 */
845 	memset(desc, 0, sizeof(*desc));
846 
847 	desc->file = file;
848 	desc->ctx = ctx;
849 	desc->dir_cookie = &dir_ctx->dir_cookie;
850 	desc->decode = NFS_PROTO(inode)->decode_dirent;
851 	desc->plus = nfs_use_readdirplus(inode, ctx);
852 
853 	if (ctx->pos == 0 || nfs_attribute_cache_expired(inode))
854 		res = nfs_revalidate_mapping(inode, file->f_mapping);
855 	if (res < 0)
856 		goto out;
857 
858 	do {
859 		res = readdir_search_pagecache(desc);
860 
861 		if (res == -EBADCOOKIE) {
862 			res = 0;
863 			/* This means either end of directory */
864 			if (*desc->dir_cookie && !desc->eof) {
865 				/* Or that the server has 'lost' a cookie */
866 				res = uncached_readdir(desc);
867 				if (res == 0)
868 					continue;
869 			}
870 			break;
871 		}
872 		if (res == -ETOOSMALL && desc->plus) {
873 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
874 			nfs_zap_caches(inode);
875 			desc->page_index = 0;
876 			desc->plus = false;
877 			desc->eof = false;
878 			continue;
879 		}
880 		if (res < 0)
881 			break;
882 
883 		res = nfs_do_filldir(desc);
884 		if (res < 0)
885 			break;
886 	} while (!desc->eof);
887 out:
888 	if (res > 0)
889 		res = 0;
890 	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
891 	return res;
892 }
893 
894 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
895 {
896 	struct inode *inode = file_inode(filp);
897 	struct nfs_open_dir_context *dir_ctx = filp->private_data;
898 
899 	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
900 			filp, offset, whence);
901 
902 	switch (whence) {
903 	default:
904 		return -EINVAL;
905 	case SEEK_SET:
906 		if (offset < 0)
907 			return -EINVAL;
908 		inode_lock(inode);
909 		break;
910 	case SEEK_CUR:
911 		if (offset == 0)
912 			return filp->f_pos;
913 		inode_lock(inode);
914 		offset += filp->f_pos;
915 		if (offset < 0) {
916 			inode_unlock(inode);
917 			return -EINVAL;
918 		}
919 	}
920 	if (offset != filp->f_pos) {
921 		filp->f_pos = offset;
922 		dir_ctx->dir_cookie = 0;
923 		dir_ctx->duped = 0;
924 	}
925 	inode_unlock(inode);
926 	return offset;
927 }
928 
929 /*
930  * All directory operations under NFS are synchronous, so fsync()
931  * is a dummy operation.
932  */
933 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
934 			 int datasync)
935 {
936 	struct inode *inode = file_inode(filp);
937 
938 	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
939 
940 	inode_lock(inode);
941 	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
942 	inode_unlock(inode);
943 	return 0;
944 }
945 
946 /**
947  * nfs_force_lookup_revalidate - Mark the directory as having changed
948  * @dir - pointer to directory inode
949  *
950  * This forces the revalidation code in nfs_lookup_revalidate() to do a
951  * full lookup on all child dentries of 'dir' whenever a change occurs
952  * on the server that might have invalidated our dcache.
953  *
954  * The caller should be holding dir->i_lock
955  */
956 void nfs_force_lookup_revalidate(struct inode *dir)
957 {
958 	NFS_I(dir)->cache_change_attribute++;
959 }
960 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
961 
962 /*
963  * A check for whether or not the parent directory has changed.
964  * In the case it has, we assume that the dentries are untrustworthy
965  * and may need to be looked up again.
966  * If rcu_walk prevents us from performing a full check, return 0.
967  */
968 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
969 			      int rcu_walk)
970 {
971 	if (IS_ROOT(dentry))
972 		return 1;
973 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
974 		return 0;
975 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
976 		return 0;
977 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
978 	if (nfs_mapping_need_revalidate_inode(dir)) {
979 		if (rcu_walk)
980 			return 0;
981 		if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
982 			return 0;
983 	}
984 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
985 		return 0;
986 	return 1;
987 }
988 
989 /*
990  * Use intent information to check whether or not we're going to do
991  * an O_EXCL create using this path component.
992  */
993 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
994 {
995 	if (NFS_PROTO(dir)->version == 2)
996 		return 0;
997 	return flags & LOOKUP_EXCL;
998 }
999 
1000 /*
1001  * Inode and filehandle revalidation for lookups.
1002  *
1003  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1004  * or if the intent information indicates that we're about to open this
1005  * particular file and the "nocto" mount flag is not set.
1006  *
1007  */
1008 static
1009 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1010 {
1011 	struct nfs_server *server = NFS_SERVER(inode);
1012 	int ret;
1013 
1014 	if (IS_AUTOMOUNT(inode))
1015 		return 0;
1016 
1017 	if (flags & LOOKUP_OPEN) {
1018 		switch (inode->i_mode & S_IFMT) {
1019 		case S_IFREG:
1020 			/* A NFSv4 OPEN will revalidate later */
1021 			if (server->caps & NFS_CAP_ATOMIC_OPEN)
1022 				goto out;
1023 			/* Fallthrough */
1024 		case S_IFDIR:
1025 			if (server->flags & NFS_MOUNT_NOCTO)
1026 				break;
1027 			/* NFS close-to-open cache consistency validation */
1028 			goto out_force;
1029 		}
1030 	}
1031 
1032 	/* VFS wants an on-the-wire revalidation */
1033 	if (flags & LOOKUP_REVAL)
1034 		goto out_force;
1035 out:
1036 	return (inode->i_nlink == 0) ? -ESTALE : 0;
1037 out_force:
1038 	if (flags & LOOKUP_RCU)
1039 		return -ECHILD;
1040 	ret = __nfs_revalidate_inode(server, inode);
1041 	if (ret != 0)
1042 		return ret;
1043 	goto out;
1044 }
1045 
1046 /*
1047  * We judge how long we want to trust negative
1048  * dentries by looking at the parent inode mtime.
1049  *
1050  * If parent mtime has changed, we revalidate, else we wait for a
1051  * period corresponding to the parent's attribute cache timeout value.
1052  *
1053  * If LOOKUP_RCU prevents us from performing a full check, return 1
1054  * suggesting a reval is needed.
1055  *
1056  * Note that when creating a new file, or looking up a rename target,
1057  * then it shouldn't be necessary to revalidate a negative dentry.
1058  */
1059 static inline
1060 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1061 		       unsigned int flags)
1062 {
1063 	if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1064 		return 0;
1065 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1066 		return 1;
1067 	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1068 }
1069 
1070 static int
1071 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1072 			   struct inode *inode, int error)
1073 {
1074 	switch (error) {
1075 	case 1:
1076 		dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1077 			__func__, dentry);
1078 		return 1;
1079 	case 0:
1080 		nfs_mark_for_revalidate(dir);
1081 		if (inode && S_ISDIR(inode->i_mode)) {
1082 			/* Purge readdir caches. */
1083 			nfs_zap_caches(inode);
1084 			/*
1085 			 * We can't d_drop the root of a disconnected tree:
1086 			 * its d_hash is on the s_anon list and d_drop() would hide
1087 			 * it from shrink_dcache_for_unmount(), leading to busy
1088 			 * inodes on unmount and further oopses.
1089 			 */
1090 			if (IS_ROOT(dentry))
1091 				return 1;
1092 		}
1093 		dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1094 				__func__, dentry);
1095 		return 0;
1096 	}
1097 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1098 				__func__, dentry, error);
1099 	return error;
1100 }
1101 
1102 static int
1103 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1104 			       unsigned int flags)
1105 {
1106 	int ret = 1;
1107 	if (nfs_neg_need_reval(dir, dentry, flags)) {
1108 		if (flags & LOOKUP_RCU)
1109 			return -ECHILD;
1110 		ret = 0;
1111 	}
1112 	return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1113 }
1114 
1115 static int
1116 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1117 				struct inode *inode)
1118 {
1119 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1120 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1121 }
1122 
1123 static int
1124 nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry,
1125 			     struct inode *inode)
1126 {
1127 	struct nfs_fh *fhandle;
1128 	struct nfs_fattr *fattr;
1129 	struct nfs4_label *label;
1130 	int ret;
1131 
1132 	ret = -ENOMEM;
1133 	fhandle = nfs_alloc_fhandle();
1134 	fattr = nfs_alloc_fattr();
1135 	label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL);
1136 	if (fhandle == NULL || fattr == NULL || IS_ERR(label))
1137 		goto out;
1138 
1139 	ret = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1140 	if (ret < 0) {
1141 		if (ret == -ESTALE || ret == -ENOENT)
1142 			ret = 0;
1143 		goto out;
1144 	}
1145 	ret = 0;
1146 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1147 		goto out;
1148 	if (nfs_refresh_inode(inode, fattr) < 0)
1149 		goto out;
1150 
1151 	nfs_setsecurity(inode, fattr, label);
1152 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1153 
1154 	/* set a readdirplus hint that we had a cache miss */
1155 	nfs_force_use_readdirplus(dir);
1156 	ret = 1;
1157 out:
1158 	nfs_free_fattr(fattr);
1159 	nfs_free_fhandle(fhandle);
1160 	nfs4_label_free(label);
1161 	return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1162 }
1163 
1164 /*
1165  * This is called every time the dcache has a lookup hit,
1166  * and we should check whether we can really trust that
1167  * lookup.
1168  *
1169  * NOTE! The hit can be a negative hit too, don't assume
1170  * we have an inode!
1171  *
1172  * If the parent directory is seen to have changed, we throw out the
1173  * cached dentry and do a new lookup.
1174  */
1175 static int
1176 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1177 			 unsigned int flags)
1178 {
1179 	struct inode *inode;
1180 	int error;
1181 
1182 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1183 	inode = d_inode(dentry);
1184 
1185 	if (!inode)
1186 		return nfs_lookup_revalidate_negative(dir, dentry, flags);
1187 
1188 	if (is_bad_inode(inode)) {
1189 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1190 				__func__, dentry);
1191 		goto out_bad;
1192 	}
1193 
1194 	if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1195 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1196 
1197 	/* Force a full look up iff the parent directory has changed */
1198 	if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1199 	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1200 		error = nfs_lookup_verify_inode(inode, flags);
1201 		if (error) {
1202 			if (error == -ESTALE)
1203 				nfs_zap_caches(dir);
1204 			goto out_bad;
1205 		}
1206 		nfs_advise_use_readdirplus(dir);
1207 		goto out_valid;
1208 	}
1209 
1210 	if (flags & LOOKUP_RCU)
1211 		return -ECHILD;
1212 
1213 	if (NFS_STALE(inode))
1214 		goto out_bad;
1215 
1216 	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1217 	error = nfs_lookup_revalidate_dentry(dir, dentry, inode);
1218 	trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1219 	return error;
1220 out_valid:
1221 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1222 out_bad:
1223 	if (flags & LOOKUP_RCU)
1224 		return -ECHILD;
1225 	return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1226 }
1227 
1228 static int
1229 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1230 			int (*reval)(struct inode *, struct dentry *, unsigned int))
1231 {
1232 	struct dentry *parent;
1233 	struct inode *dir;
1234 	int ret;
1235 
1236 	if (flags & LOOKUP_RCU) {
1237 		parent = READ_ONCE(dentry->d_parent);
1238 		dir = d_inode_rcu(parent);
1239 		if (!dir)
1240 			return -ECHILD;
1241 		ret = reval(dir, dentry, flags);
1242 		if (parent != READ_ONCE(dentry->d_parent))
1243 			return -ECHILD;
1244 	} else {
1245 		parent = dget_parent(dentry);
1246 		ret = reval(d_inode(parent), dentry, flags);
1247 		dput(parent);
1248 	}
1249 	return ret;
1250 }
1251 
1252 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1253 {
1254 	return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1255 }
1256 
1257 /*
1258  * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1259  * when we don't really care about the dentry name. This is called when a
1260  * pathwalk ends on a dentry that was not found via a normal lookup in the
1261  * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1262  *
1263  * In this situation, we just want to verify that the inode itself is OK
1264  * since the dentry might have changed on the server.
1265  */
1266 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1267 {
1268 	struct inode *inode = d_inode(dentry);
1269 	int error = 0;
1270 
1271 	/*
1272 	 * I believe we can only get a negative dentry here in the case of a
1273 	 * procfs-style symlink. Just assume it's correct for now, but we may
1274 	 * eventually need to do something more here.
1275 	 */
1276 	if (!inode) {
1277 		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1278 				__func__, dentry);
1279 		return 1;
1280 	}
1281 
1282 	if (is_bad_inode(inode)) {
1283 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1284 				__func__, dentry);
1285 		return 0;
1286 	}
1287 
1288 	error = nfs_lookup_verify_inode(inode, flags);
1289 	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1290 			__func__, inode->i_ino, error ? "invalid" : "valid");
1291 	return !error;
1292 }
1293 
1294 /*
1295  * This is called from dput() when d_count is going to 0.
1296  */
1297 static int nfs_dentry_delete(const struct dentry *dentry)
1298 {
1299 	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1300 		dentry, dentry->d_flags);
1301 
1302 	/* Unhash any dentry with a stale inode */
1303 	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1304 		return 1;
1305 
1306 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1307 		/* Unhash it, so that ->d_iput() would be called */
1308 		return 1;
1309 	}
1310 	if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1311 		/* Unhash it, so that ancestors of killed async unlink
1312 		 * files will be cleaned up during umount */
1313 		return 1;
1314 	}
1315 	return 0;
1316 
1317 }
1318 
1319 /* Ensure that we revalidate inode->i_nlink */
1320 static void nfs_drop_nlink(struct inode *inode)
1321 {
1322 	spin_lock(&inode->i_lock);
1323 	/* drop the inode if we're reasonably sure this is the last link */
1324 	if (inode->i_nlink > 0)
1325 		drop_nlink(inode);
1326 	NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1327 	NFS_I(inode)->cache_validity |= NFS_INO_INVALID_CHANGE
1328 		| NFS_INO_INVALID_CTIME
1329 		| NFS_INO_INVALID_OTHER
1330 		| NFS_INO_REVAL_FORCED;
1331 	spin_unlock(&inode->i_lock);
1332 }
1333 
1334 /*
1335  * Called when the dentry loses inode.
1336  * We use it to clean up silly-renamed files.
1337  */
1338 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1339 {
1340 	if (S_ISDIR(inode->i_mode))
1341 		/* drop any readdir cache as it could easily be old */
1342 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1343 
1344 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1345 		nfs_complete_unlink(dentry, inode);
1346 		nfs_drop_nlink(inode);
1347 	}
1348 	iput(inode);
1349 }
1350 
1351 static void nfs_d_release(struct dentry *dentry)
1352 {
1353 	/* free cached devname value, if it survived that far */
1354 	if (unlikely(dentry->d_fsdata)) {
1355 		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1356 			WARN_ON(1);
1357 		else
1358 			kfree(dentry->d_fsdata);
1359 	}
1360 }
1361 
1362 const struct dentry_operations nfs_dentry_operations = {
1363 	.d_revalidate	= nfs_lookup_revalidate,
1364 	.d_weak_revalidate	= nfs_weak_revalidate,
1365 	.d_delete	= nfs_dentry_delete,
1366 	.d_iput		= nfs_dentry_iput,
1367 	.d_automount	= nfs_d_automount,
1368 	.d_release	= nfs_d_release,
1369 };
1370 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1371 
1372 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1373 {
1374 	struct dentry *res;
1375 	struct inode *inode = NULL;
1376 	struct nfs_fh *fhandle = NULL;
1377 	struct nfs_fattr *fattr = NULL;
1378 	struct nfs4_label *label = NULL;
1379 	int error;
1380 
1381 	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1382 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1383 
1384 	if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1385 		return ERR_PTR(-ENAMETOOLONG);
1386 
1387 	/*
1388 	 * If we're doing an exclusive create, optimize away the lookup
1389 	 * but don't hash the dentry.
1390 	 */
1391 	if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1392 		return NULL;
1393 
1394 	res = ERR_PTR(-ENOMEM);
1395 	fhandle = nfs_alloc_fhandle();
1396 	fattr = nfs_alloc_fattr();
1397 	if (fhandle == NULL || fattr == NULL)
1398 		goto out;
1399 
1400 	label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1401 	if (IS_ERR(label))
1402 		goto out;
1403 
1404 	trace_nfs_lookup_enter(dir, dentry, flags);
1405 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1406 	if (error == -ENOENT)
1407 		goto no_entry;
1408 	if (error < 0) {
1409 		res = ERR_PTR(error);
1410 		goto out_label;
1411 	}
1412 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1413 	res = ERR_CAST(inode);
1414 	if (IS_ERR(res))
1415 		goto out_label;
1416 
1417 	/* Notify readdir to use READDIRPLUS */
1418 	nfs_force_use_readdirplus(dir);
1419 
1420 no_entry:
1421 	res = d_splice_alias(inode, dentry);
1422 	if (res != NULL) {
1423 		if (IS_ERR(res))
1424 			goto out_label;
1425 		dentry = res;
1426 	}
1427 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1428 out_label:
1429 	trace_nfs_lookup_exit(dir, dentry, flags, error);
1430 	nfs4_label_free(label);
1431 out:
1432 	nfs_free_fattr(fattr);
1433 	nfs_free_fhandle(fhandle);
1434 	return res;
1435 }
1436 EXPORT_SYMBOL_GPL(nfs_lookup);
1437 
1438 #if IS_ENABLED(CONFIG_NFS_V4)
1439 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1440 
1441 const struct dentry_operations nfs4_dentry_operations = {
1442 	.d_revalidate	= nfs4_lookup_revalidate,
1443 	.d_weak_revalidate	= nfs_weak_revalidate,
1444 	.d_delete	= nfs_dentry_delete,
1445 	.d_iput		= nfs_dentry_iput,
1446 	.d_automount	= nfs_d_automount,
1447 	.d_release	= nfs_d_release,
1448 };
1449 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1450 
1451 static fmode_t flags_to_mode(int flags)
1452 {
1453 	fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1454 	if ((flags & O_ACCMODE) != O_WRONLY)
1455 		res |= FMODE_READ;
1456 	if ((flags & O_ACCMODE) != O_RDONLY)
1457 		res |= FMODE_WRITE;
1458 	return res;
1459 }
1460 
1461 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1462 {
1463 	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1464 }
1465 
1466 static int do_open(struct inode *inode, struct file *filp)
1467 {
1468 	nfs_fscache_open_file(inode, filp);
1469 	return 0;
1470 }
1471 
1472 static int nfs_finish_open(struct nfs_open_context *ctx,
1473 			   struct dentry *dentry,
1474 			   struct file *file, unsigned open_flags)
1475 {
1476 	int err;
1477 
1478 	err = finish_open(file, dentry, do_open);
1479 	if (err)
1480 		goto out;
1481 	if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
1482 		nfs_file_set_open_context(file, ctx);
1483 	else
1484 		err = -ESTALE;
1485 out:
1486 	return err;
1487 }
1488 
1489 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1490 		    struct file *file, unsigned open_flags,
1491 		    umode_t mode)
1492 {
1493 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1494 	struct nfs_open_context *ctx;
1495 	struct dentry *res;
1496 	struct iattr attr = { .ia_valid = ATTR_OPEN };
1497 	struct inode *inode;
1498 	unsigned int lookup_flags = 0;
1499 	bool switched = false;
1500 	int created = 0;
1501 	int err;
1502 
1503 	/* Expect a negative dentry */
1504 	BUG_ON(d_inode(dentry));
1505 
1506 	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1507 			dir->i_sb->s_id, dir->i_ino, dentry);
1508 
1509 	err = nfs_check_flags(open_flags);
1510 	if (err)
1511 		return err;
1512 
1513 	/* NFS only supports OPEN on regular files */
1514 	if ((open_flags & O_DIRECTORY)) {
1515 		if (!d_in_lookup(dentry)) {
1516 			/*
1517 			 * Hashed negative dentry with O_DIRECTORY: dentry was
1518 			 * revalidated and is fine, no need to perform lookup
1519 			 * again
1520 			 */
1521 			return -ENOENT;
1522 		}
1523 		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1524 		goto no_open;
1525 	}
1526 
1527 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1528 		return -ENAMETOOLONG;
1529 
1530 	if (open_flags & O_CREAT) {
1531 		struct nfs_server *server = NFS_SERVER(dir);
1532 
1533 		if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1534 			mode &= ~current_umask();
1535 
1536 		attr.ia_valid |= ATTR_MODE;
1537 		attr.ia_mode = mode;
1538 	}
1539 	if (open_flags & O_TRUNC) {
1540 		attr.ia_valid |= ATTR_SIZE;
1541 		attr.ia_size = 0;
1542 	}
1543 
1544 	if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1545 		d_drop(dentry);
1546 		switched = true;
1547 		dentry = d_alloc_parallel(dentry->d_parent,
1548 					  &dentry->d_name, &wq);
1549 		if (IS_ERR(dentry))
1550 			return PTR_ERR(dentry);
1551 		if (unlikely(!d_in_lookup(dentry)))
1552 			return finish_no_open(file, dentry);
1553 	}
1554 
1555 	ctx = create_nfs_open_context(dentry, open_flags, file);
1556 	err = PTR_ERR(ctx);
1557 	if (IS_ERR(ctx))
1558 		goto out;
1559 
1560 	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1561 	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
1562 	if (created)
1563 		file->f_mode |= FMODE_CREATED;
1564 	if (IS_ERR(inode)) {
1565 		err = PTR_ERR(inode);
1566 		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1567 		put_nfs_open_context(ctx);
1568 		d_drop(dentry);
1569 		switch (err) {
1570 		case -ENOENT:
1571 			d_splice_alias(NULL, dentry);
1572 			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1573 			break;
1574 		case -EISDIR:
1575 		case -ENOTDIR:
1576 			goto no_open;
1577 		case -ELOOP:
1578 			if (!(open_flags & O_NOFOLLOW))
1579 				goto no_open;
1580 			break;
1581 			/* case -EINVAL: */
1582 		default:
1583 			break;
1584 		}
1585 		goto out;
1586 	}
1587 
1588 	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
1589 	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1590 	put_nfs_open_context(ctx);
1591 out:
1592 	if (unlikely(switched)) {
1593 		d_lookup_done(dentry);
1594 		dput(dentry);
1595 	}
1596 	return err;
1597 
1598 no_open:
1599 	res = nfs_lookup(dir, dentry, lookup_flags);
1600 	if (switched) {
1601 		d_lookup_done(dentry);
1602 		if (!res)
1603 			res = dentry;
1604 		else
1605 			dput(dentry);
1606 	}
1607 	if (IS_ERR(res))
1608 		return PTR_ERR(res);
1609 	return finish_no_open(file, res);
1610 }
1611 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1612 
1613 static int
1614 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1615 			  unsigned int flags)
1616 {
1617 	struct inode *inode;
1618 
1619 	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1620 		goto full_reval;
1621 	if (d_mountpoint(dentry))
1622 		goto full_reval;
1623 
1624 	inode = d_inode(dentry);
1625 
1626 	/* We can't create new files in nfs_open_revalidate(), so we
1627 	 * optimize away revalidation of negative dentries.
1628 	 */
1629 	if (inode == NULL)
1630 		goto full_reval;
1631 
1632 	if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1633 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1634 
1635 	/* NFS only supports OPEN on regular files */
1636 	if (!S_ISREG(inode->i_mode))
1637 		goto full_reval;
1638 
1639 	/* We cannot do exclusive creation on a positive dentry */
1640 	if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
1641 		goto reval_dentry;
1642 
1643 	/* Check if the directory changed */
1644 	if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
1645 		goto reval_dentry;
1646 
1647 	/* Let f_op->open() actually open (and revalidate) the file */
1648 	return 1;
1649 reval_dentry:
1650 	if (flags & LOOKUP_RCU)
1651 		return -ECHILD;
1652 	return nfs_lookup_revalidate_dentry(dir, dentry, inode);;
1653 
1654 full_reval:
1655 	return nfs_do_lookup_revalidate(dir, dentry, flags);
1656 }
1657 
1658 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1659 {
1660 	return __nfs_lookup_revalidate(dentry, flags,
1661 			nfs4_do_lookup_revalidate);
1662 }
1663 
1664 #endif /* CONFIG_NFSV4 */
1665 
1666 /*
1667  * Code common to create, mkdir, and mknod.
1668  */
1669 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1670 				struct nfs_fattr *fattr,
1671 				struct nfs4_label *label)
1672 {
1673 	struct dentry *parent = dget_parent(dentry);
1674 	struct inode *dir = d_inode(parent);
1675 	struct inode *inode;
1676 	struct dentry *d;
1677 	int error = -EACCES;
1678 
1679 	d_drop(dentry);
1680 
1681 	/* We may have been initialized further down */
1682 	if (d_really_is_positive(dentry))
1683 		goto out;
1684 	if (fhandle->size == 0) {
1685 		error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
1686 		if (error)
1687 			goto out_error;
1688 	}
1689 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1690 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1691 		struct nfs_server *server = NFS_SB(dentry->d_sb);
1692 		error = server->nfs_client->rpc_ops->getattr(server, fhandle,
1693 				fattr, NULL, NULL);
1694 		if (error < 0)
1695 			goto out_error;
1696 	}
1697 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1698 	d = d_splice_alias(inode, dentry);
1699 	if (IS_ERR(d)) {
1700 		error = PTR_ERR(d);
1701 		goto out_error;
1702 	}
1703 	dput(d);
1704 out:
1705 	dput(parent);
1706 	return 0;
1707 out_error:
1708 	nfs_mark_for_revalidate(dir);
1709 	dput(parent);
1710 	return error;
1711 }
1712 EXPORT_SYMBOL_GPL(nfs_instantiate);
1713 
1714 /*
1715  * Following a failed create operation, we drop the dentry rather
1716  * than retain a negative dentry. This avoids a problem in the event
1717  * that the operation succeeded on the server, but an error in the
1718  * reply path made it appear to have failed.
1719  */
1720 int nfs_create(struct inode *dir, struct dentry *dentry,
1721 		umode_t mode, bool excl)
1722 {
1723 	struct iattr attr;
1724 	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1725 	int error;
1726 
1727 	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1728 			dir->i_sb->s_id, dir->i_ino, dentry);
1729 
1730 	attr.ia_mode = mode;
1731 	attr.ia_valid = ATTR_MODE;
1732 
1733 	trace_nfs_create_enter(dir, dentry, open_flags);
1734 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1735 	trace_nfs_create_exit(dir, dentry, open_flags, error);
1736 	if (error != 0)
1737 		goto out_err;
1738 	return 0;
1739 out_err:
1740 	d_drop(dentry);
1741 	return error;
1742 }
1743 EXPORT_SYMBOL_GPL(nfs_create);
1744 
1745 /*
1746  * See comments for nfs_proc_create regarding failed operations.
1747  */
1748 int
1749 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1750 {
1751 	struct iattr attr;
1752 	int status;
1753 
1754 	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1755 			dir->i_sb->s_id, dir->i_ino, dentry);
1756 
1757 	attr.ia_mode = mode;
1758 	attr.ia_valid = ATTR_MODE;
1759 
1760 	trace_nfs_mknod_enter(dir, dentry);
1761 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1762 	trace_nfs_mknod_exit(dir, dentry, status);
1763 	if (status != 0)
1764 		goto out_err;
1765 	return 0;
1766 out_err:
1767 	d_drop(dentry);
1768 	return status;
1769 }
1770 EXPORT_SYMBOL_GPL(nfs_mknod);
1771 
1772 /*
1773  * See comments for nfs_proc_create regarding failed operations.
1774  */
1775 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1776 {
1777 	struct iattr attr;
1778 	int error;
1779 
1780 	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1781 			dir->i_sb->s_id, dir->i_ino, dentry);
1782 
1783 	attr.ia_valid = ATTR_MODE;
1784 	attr.ia_mode = mode | S_IFDIR;
1785 
1786 	trace_nfs_mkdir_enter(dir, dentry);
1787 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1788 	trace_nfs_mkdir_exit(dir, dentry, error);
1789 	if (error != 0)
1790 		goto out_err;
1791 	return 0;
1792 out_err:
1793 	d_drop(dentry);
1794 	return error;
1795 }
1796 EXPORT_SYMBOL_GPL(nfs_mkdir);
1797 
1798 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1799 {
1800 	if (simple_positive(dentry))
1801 		d_delete(dentry);
1802 }
1803 
1804 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1805 {
1806 	int error;
1807 
1808 	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1809 			dir->i_sb->s_id, dir->i_ino, dentry);
1810 
1811 	trace_nfs_rmdir_enter(dir, dentry);
1812 	if (d_really_is_positive(dentry)) {
1813 		down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1814 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1815 		/* Ensure the VFS deletes this inode */
1816 		switch (error) {
1817 		case 0:
1818 			clear_nlink(d_inode(dentry));
1819 			break;
1820 		case -ENOENT:
1821 			nfs_dentry_handle_enoent(dentry);
1822 		}
1823 		up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1824 	} else
1825 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1826 	trace_nfs_rmdir_exit(dir, dentry, error);
1827 
1828 	return error;
1829 }
1830 EXPORT_SYMBOL_GPL(nfs_rmdir);
1831 
1832 /*
1833  * Remove a file after making sure there are no pending writes,
1834  * and after checking that the file has only one user.
1835  *
1836  * We invalidate the attribute cache and free the inode prior to the operation
1837  * to avoid possible races if the server reuses the inode.
1838  */
1839 static int nfs_safe_remove(struct dentry *dentry)
1840 {
1841 	struct inode *dir = d_inode(dentry->d_parent);
1842 	struct inode *inode = d_inode(dentry);
1843 	int error = -EBUSY;
1844 
1845 	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
1846 
1847 	/* If the dentry was sillyrenamed, we simply call d_delete() */
1848 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1849 		error = 0;
1850 		goto out;
1851 	}
1852 
1853 	trace_nfs_remove_enter(dir, dentry);
1854 	if (inode != NULL) {
1855 		error = NFS_PROTO(dir)->remove(dir, dentry);
1856 		if (error == 0)
1857 			nfs_drop_nlink(inode);
1858 	} else
1859 		error = NFS_PROTO(dir)->remove(dir, dentry);
1860 	if (error == -ENOENT)
1861 		nfs_dentry_handle_enoent(dentry);
1862 	trace_nfs_remove_exit(dir, dentry, error);
1863 out:
1864 	return error;
1865 }
1866 
1867 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1868  *  belongs to an active ".nfs..." file and we return -EBUSY.
1869  *
1870  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1871  */
1872 int nfs_unlink(struct inode *dir, struct dentry *dentry)
1873 {
1874 	int error;
1875 	int need_rehash = 0;
1876 
1877 	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
1878 		dir->i_ino, dentry);
1879 
1880 	trace_nfs_unlink_enter(dir, dentry);
1881 	spin_lock(&dentry->d_lock);
1882 	if (d_count(dentry) > 1) {
1883 		spin_unlock(&dentry->d_lock);
1884 		/* Start asynchronous writeout of the inode */
1885 		write_inode_now(d_inode(dentry), 0);
1886 		error = nfs_sillyrename(dir, dentry);
1887 		goto out;
1888 	}
1889 	if (!d_unhashed(dentry)) {
1890 		__d_drop(dentry);
1891 		need_rehash = 1;
1892 	}
1893 	spin_unlock(&dentry->d_lock);
1894 	error = nfs_safe_remove(dentry);
1895 	if (!error || error == -ENOENT) {
1896 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1897 	} else if (need_rehash)
1898 		d_rehash(dentry);
1899 out:
1900 	trace_nfs_unlink_exit(dir, dentry, error);
1901 	return error;
1902 }
1903 EXPORT_SYMBOL_GPL(nfs_unlink);
1904 
1905 /*
1906  * To create a symbolic link, most file systems instantiate a new inode,
1907  * add a page to it containing the path, then write it out to the disk
1908  * using prepare_write/commit_write.
1909  *
1910  * Unfortunately the NFS client can't create the in-core inode first
1911  * because it needs a file handle to create an in-core inode (see
1912  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1913  * symlink request has completed on the server.
1914  *
1915  * So instead we allocate a raw page, copy the symname into it, then do
1916  * the SYMLINK request with the page as the buffer.  If it succeeds, we
1917  * now have a new file handle and can instantiate an in-core NFS inode
1918  * and move the raw page into its mapping.
1919  */
1920 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1921 {
1922 	struct page *page;
1923 	char *kaddr;
1924 	struct iattr attr;
1925 	unsigned int pathlen = strlen(symname);
1926 	int error;
1927 
1928 	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
1929 		dir->i_ino, dentry, symname);
1930 
1931 	if (pathlen > PAGE_SIZE)
1932 		return -ENAMETOOLONG;
1933 
1934 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
1935 	attr.ia_valid = ATTR_MODE;
1936 
1937 	page = alloc_page(GFP_USER);
1938 	if (!page)
1939 		return -ENOMEM;
1940 
1941 	kaddr = page_address(page);
1942 	memcpy(kaddr, symname, pathlen);
1943 	if (pathlen < PAGE_SIZE)
1944 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1945 
1946 	trace_nfs_symlink_enter(dir, dentry);
1947 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1948 	trace_nfs_symlink_exit(dir, dentry, error);
1949 	if (error != 0) {
1950 		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
1951 			dir->i_sb->s_id, dir->i_ino,
1952 			dentry, symname, error);
1953 		d_drop(dentry);
1954 		__free_page(page);
1955 		return error;
1956 	}
1957 
1958 	/*
1959 	 * No big deal if we can't add this page to the page cache here.
1960 	 * READLINK will get the missing page from the server if needed.
1961 	 */
1962 	if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
1963 							GFP_KERNEL)) {
1964 		SetPageUptodate(page);
1965 		unlock_page(page);
1966 		/*
1967 		 * add_to_page_cache_lru() grabs an extra page refcount.
1968 		 * Drop it here to avoid leaking this page later.
1969 		 */
1970 		put_page(page);
1971 	} else
1972 		__free_page(page);
1973 
1974 	return 0;
1975 }
1976 EXPORT_SYMBOL_GPL(nfs_symlink);
1977 
1978 int
1979 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1980 {
1981 	struct inode *inode = d_inode(old_dentry);
1982 	int error;
1983 
1984 	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
1985 		old_dentry, dentry);
1986 
1987 	trace_nfs_link_enter(inode, dir, dentry);
1988 	d_drop(dentry);
1989 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1990 	if (error == 0) {
1991 		ihold(inode);
1992 		d_add(dentry, inode);
1993 	}
1994 	trace_nfs_link_exit(inode, dir, dentry, error);
1995 	return error;
1996 }
1997 EXPORT_SYMBOL_GPL(nfs_link);
1998 
1999 /*
2000  * RENAME
2001  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2002  * different file handle for the same inode after a rename (e.g. when
2003  * moving to a different directory). A fail-safe method to do so would
2004  * be to look up old_dir/old_name, create a link to new_dir/new_name and
2005  * rename the old file using the sillyrename stuff. This way, the original
2006  * file in old_dir will go away when the last process iput()s the inode.
2007  *
2008  * FIXED.
2009  *
2010  * It actually works quite well. One needs to have the possibility for
2011  * at least one ".nfs..." file in each directory the file ever gets
2012  * moved or linked to which happens automagically with the new
2013  * implementation that only depends on the dcache stuff instead of
2014  * using the inode layer
2015  *
2016  * Unfortunately, things are a little more complicated than indicated
2017  * above. For a cross-directory move, we want to make sure we can get
2018  * rid of the old inode after the operation.  This means there must be
2019  * no pending writes (if it's a file), and the use count must be 1.
2020  * If these conditions are met, we can drop the dentries before doing
2021  * the rename.
2022  */
2023 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2024 	       struct inode *new_dir, struct dentry *new_dentry,
2025 	       unsigned int flags)
2026 {
2027 	struct inode *old_inode = d_inode(old_dentry);
2028 	struct inode *new_inode = d_inode(new_dentry);
2029 	struct dentry *dentry = NULL, *rehash = NULL;
2030 	struct rpc_task *task;
2031 	int error = -EBUSY;
2032 
2033 	if (flags)
2034 		return -EINVAL;
2035 
2036 	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2037 		 old_dentry, new_dentry,
2038 		 d_count(new_dentry));
2039 
2040 	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2041 	/*
2042 	 * For non-directories, check whether the target is busy and if so,
2043 	 * make a copy of the dentry and then do a silly-rename. If the
2044 	 * silly-rename succeeds, the copied dentry is hashed and becomes
2045 	 * the new target.
2046 	 */
2047 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2048 		/*
2049 		 * To prevent any new references to the target during the
2050 		 * rename, we unhash the dentry in advance.
2051 		 */
2052 		if (!d_unhashed(new_dentry)) {
2053 			d_drop(new_dentry);
2054 			rehash = new_dentry;
2055 		}
2056 
2057 		if (d_count(new_dentry) > 2) {
2058 			int err;
2059 
2060 			/* copy the target dentry's name */
2061 			dentry = d_alloc(new_dentry->d_parent,
2062 					 &new_dentry->d_name);
2063 			if (!dentry)
2064 				goto out;
2065 
2066 			/* silly-rename the existing target ... */
2067 			err = nfs_sillyrename(new_dir, new_dentry);
2068 			if (err)
2069 				goto out;
2070 
2071 			new_dentry = dentry;
2072 			rehash = NULL;
2073 			new_inode = NULL;
2074 		}
2075 	}
2076 
2077 	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2078 	if (IS_ERR(task)) {
2079 		error = PTR_ERR(task);
2080 		goto out;
2081 	}
2082 
2083 	error = rpc_wait_for_completion_task(task);
2084 	if (error != 0) {
2085 		((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2086 		/* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2087 		smp_wmb();
2088 	} else
2089 		error = task->tk_status;
2090 	rpc_put_task(task);
2091 	/* Ensure the inode attributes are revalidated */
2092 	if (error == 0) {
2093 		spin_lock(&old_inode->i_lock);
2094 		NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2095 		NFS_I(old_inode)->cache_validity |= NFS_INO_INVALID_CHANGE
2096 			| NFS_INO_INVALID_CTIME
2097 			| NFS_INO_REVAL_FORCED;
2098 		spin_unlock(&old_inode->i_lock);
2099 	}
2100 out:
2101 	if (rehash)
2102 		d_rehash(rehash);
2103 	trace_nfs_rename_exit(old_dir, old_dentry,
2104 			new_dir, new_dentry, error);
2105 	if (!error) {
2106 		if (new_inode != NULL)
2107 			nfs_drop_nlink(new_inode);
2108 		/*
2109 		 * The d_move() should be here instead of in an async RPC completion
2110 		 * handler because we need the proper locks to move the dentry.  If
2111 		 * we're interrupted by a signal, the async RPC completion handler
2112 		 * should mark the directories for revalidation.
2113 		 */
2114 		d_move(old_dentry, new_dentry);
2115 		nfs_set_verifier(old_dentry,
2116 					nfs_save_change_attribute(new_dir));
2117 	} else if (error == -ENOENT)
2118 		nfs_dentry_handle_enoent(old_dentry);
2119 
2120 	/* new dentry created? */
2121 	if (dentry)
2122 		dput(dentry);
2123 	return error;
2124 }
2125 EXPORT_SYMBOL_GPL(nfs_rename);
2126 
2127 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2128 static LIST_HEAD(nfs_access_lru_list);
2129 static atomic_long_t nfs_access_nr_entries;
2130 
2131 static unsigned long nfs_access_max_cachesize = ULONG_MAX;
2132 module_param(nfs_access_max_cachesize, ulong, 0644);
2133 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2134 
2135 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2136 {
2137 	put_cred(entry->cred);
2138 	kfree_rcu(entry, rcu_head);
2139 	smp_mb__before_atomic();
2140 	atomic_long_dec(&nfs_access_nr_entries);
2141 	smp_mb__after_atomic();
2142 }
2143 
2144 static void nfs_access_free_list(struct list_head *head)
2145 {
2146 	struct nfs_access_entry *cache;
2147 
2148 	while (!list_empty(head)) {
2149 		cache = list_entry(head->next, struct nfs_access_entry, lru);
2150 		list_del(&cache->lru);
2151 		nfs_access_free_entry(cache);
2152 	}
2153 }
2154 
2155 static unsigned long
2156 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2157 {
2158 	LIST_HEAD(head);
2159 	struct nfs_inode *nfsi, *next;
2160 	struct nfs_access_entry *cache;
2161 	long freed = 0;
2162 
2163 	spin_lock(&nfs_access_lru_lock);
2164 	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2165 		struct inode *inode;
2166 
2167 		if (nr_to_scan-- == 0)
2168 			break;
2169 		inode = &nfsi->vfs_inode;
2170 		spin_lock(&inode->i_lock);
2171 		if (list_empty(&nfsi->access_cache_entry_lru))
2172 			goto remove_lru_entry;
2173 		cache = list_entry(nfsi->access_cache_entry_lru.next,
2174 				struct nfs_access_entry, lru);
2175 		list_move(&cache->lru, &head);
2176 		rb_erase(&cache->rb_node, &nfsi->access_cache);
2177 		freed++;
2178 		if (!list_empty(&nfsi->access_cache_entry_lru))
2179 			list_move_tail(&nfsi->access_cache_inode_lru,
2180 					&nfs_access_lru_list);
2181 		else {
2182 remove_lru_entry:
2183 			list_del_init(&nfsi->access_cache_inode_lru);
2184 			smp_mb__before_atomic();
2185 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2186 			smp_mb__after_atomic();
2187 		}
2188 		spin_unlock(&inode->i_lock);
2189 	}
2190 	spin_unlock(&nfs_access_lru_lock);
2191 	nfs_access_free_list(&head);
2192 	return freed;
2193 }
2194 
2195 unsigned long
2196 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2197 {
2198 	int nr_to_scan = sc->nr_to_scan;
2199 	gfp_t gfp_mask = sc->gfp_mask;
2200 
2201 	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2202 		return SHRINK_STOP;
2203 	return nfs_do_access_cache_scan(nr_to_scan);
2204 }
2205 
2206 
2207 unsigned long
2208 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2209 {
2210 	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2211 }
2212 
2213 static void
2214 nfs_access_cache_enforce_limit(void)
2215 {
2216 	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2217 	unsigned long diff;
2218 	unsigned int nr_to_scan;
2219 
2220 	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2221 		return;
2222 	nr_to_scan = 100;
2223 	diff = nr_entries - nfs_access_max_cachesize;
2224 	if (diff < nr_to_scan)
2225 		nr_to_scan = diff;
2226 	nfs_do_access_cache_scan(nr_to_scan);
2227 }
2228 
2229 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2230 {
2231 	struct rb_root *root_node = &nfsi->access_cache;
2232 	struct rb_node *n;
2233 	struct nfs_access_entry *entry;
2234 
2235 	/* Unhook entries from the cache */
2236 	while ((n = rb_first(root_node)) != NULL) {
2237 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2238 		rb_erase(n, root_node);
2239 		list_move(&entry->lru, head);
2240 	}
2241 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2242 }
2243 
2244 void nfs_access_zap_cache(struct inode *inode)
2245 {
2246 	LIST_HEAD(head);
2247 
2248 	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2249 		return;
2250 	/* Remove from global LRU init */
2251 	spin_lock(&nfs_access_lru_lock);
2252 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2253 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2254 
2255 	spin_lock(&inode->i_lock);
2256 	__nfs_access_zap_cache(NFS_I(inode), &head);
2257 	spin_unlock(&inode->i_lock);
2258 	spin_unlock(&nfs_access_lru_lock);
2259 	nfs_access_free_list(&head);
2260 }
2261 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2262 
2263 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2264 {
2265 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2266 
2267 	while (n != NULL) {
2268 		struct nfs_access_entry *entry =
2269 			rb_entry(n, struct nfs_access_entry, rb_node);
2270 		int cmp = cred_fscmp(cred, entry->cred);
2271 
2272 		if (cmp < 0)
2273 			n = n->rb_left;
2274 		else if (cmp > 0)
2275 			n = n->rb_right;
2276 		else
2277 			return entry;
2278 	}
2279 	return NULL;
2280 }
2281 
2282 static int nfs_access_get_cached(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res, bool may_block)
2283 {
2284 	struct nfs_inode *nfsi = NFS_I(inode);
2285 	struct nfs_access_entry *cache;
2286 	bool retry = true;
2287 	int err;
2288 
2289 	spin_lock(&inode->i_lock);
2290 	for(;;) {
2291 		if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2292 			goto out_zap;
2293 		cache = nfs_access_search_rbtree(inode, cred);
2294 		err = -ENOENT;
2295 		if (cache == NULL)
2296 			goto out;
2297 		/* Found an entry, is our attribute cache valid? */
2298 		if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2299 			break;
2300 		err = -ECHILD;
2301 		if (!may_block)
2302 			goto out;
2303 		if (!retry)
2304 			goto out_zap;
2305 		spin_unlock(&inode->i_lock);
2306 		err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2307 		if (err)
2308 			return err;
2309 		spin_lock(&inode->i_lock);
2310 		retry = false;
2311 	}
2312 	res->cred = cache->cred;
2313 	res->mask = cache->mask;
2314 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2315 	err = 0;
2316 out:
2317 	spin_unlock(&inode->i_lock);
2318 	return err;
2319 out_zap:
2320 	spin_unlock(&inode->i_lock);
2321 	nfs_access_zap_cache(inode);
2322 	return -ENOENT;
2323 }
2324 
2325 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res)
2326 {
2327 	/* Only check the most recently returned cache entry,
2328 	 * but do it without locking.
2329 	 */
2330 	struct nfs_inode *nfsi = NFS_I(inode);
2331 	struct nfs_access_entry *cache;
2332 	int err = -ECHILD;
2333 	struct list_head *lh;
2334 
2335 	rcu_read_lock();
2336 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2337 		goto out;
2338 	lh = rcu_dereference(nfsi->access_cache_entry_lru.prev);
2339 	cache = list_entry(lh, struct nfs_access_entry, lru);
2340 	if (lh == &nfsi->access_cache_entry_lru ||
2341 	    cred != cache->cred)
2342 		cache = NULL;
2343 	if (cache == NULL)
2344 		goto out;
2345 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2346 		goto out;
2347 	res->cred = cache->cred;
2348 	res->mask = cache->mask;
2349 	err = 0;
2350 out:
2351 	rcu_read_unlock();
2352 	return err;
2353 }
2354 
2355 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2356 {
2357 	struct nfs_inode *nfsi = NFS_I(inode);
2358 	struct rb_root *root_node = &nfsi->access_cache;
2359 	struct rb_node **p = &root_node->rb_node;
2360 	struct rb_node *parent = NULL;
2361 	struct nfs_access_entry *entry;
2362 	int cmp;
2363 
2364 	spin_lock(&inode->i_lock);
2365 	while (*p != NULL) {
2366 		parent = *p;
2367 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2368 		cmp = cred_fscmp(set->cred, entry->cred);
2369 
2370 		if (cmp < 0)
2371 			p = &parent->rb_left;
2372 		else if (cmp > 0)
2373 			p = &parent->rb_right;
2374 		else
2375 			goto found;
2376 	}
2377 	rb_link_node(&set->rb_node, parent, p);
2378 	rb_insert_color(&set->rb_node, root_node);
2379 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2380 	spin_unlock(&inode->i_lock);
2381 	return;
2382 found:
2383 	rb_replace_node(parent, &set->rb_node, root_node);
2384 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2385 	list_del(&entry->lru);
2386 	spin_unlock(&inode->i_lock);
2387 	nfs_access_free_entry(entry);
2388 }
2389 
2390 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2391 {
2392 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2393 	if (cache == NULL)
2394 		return;
2395 	RB_CLEAR_NODE(&cache->rb_node);
2396 	cache->cred = get_cred(set->cred);
2397 	cache->mask = set->mask;
2398 
2399 	/* The above field assignments must be visible
2400 	 * before this item appears on the lru.  We cannot easily
2401 	 * use rcu_assign_pointer, so just force the memory barrier.
2402 	 */
2403 	smp_wmb();
2404 	nfs_access_add_rbtree(inode, cache);
2405 
2406 	/* Update accounting */
2407 	smp_mb__before_atomic();
2408 	atomic_long_inc(&nfs_access_nr_entries);
2409 	smp_mb__after_atomic();
2410 
2411 	/* Add inode to global LRU list */
2412 	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2413 		spin_lock(&nfs_access_lru_lock);
2414 		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2415 			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2416 					&nfs_access_lru_list);
2417 		spin_unlock(&nfs_access_lru_lock);
2418 	}
2419 	nfs_access_cache_enforce_limit();
2420 }
2421 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2422 
2423 #define NFS_MAY_READ (NFS_ACCESS_READ)
2424 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2425 		NFS_ACCESS_EXTEND | \
2426 		NFS_ACCESS_DELETE)
2427 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2428 		NFS_ACCESS_EXTEND)
2429 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2430 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2431 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2432 static int
2433 nfs_access_calc_mask(u32 access_result, umode_t umode)
2434 {
2435 	int mask = 0;
2436 
2437 	if (access_result & NFS_MAY_READ)
2438 		mask |= MAY_READ;
2439 	if (S_ISDIR(umode)) {
2440 		if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
2441 			mask |= MAY_WRITE;
2442 		if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
2443 			mask |= MAY_EXEC;
2444 	} else if (S_ISREG(umode)) {
2445 		if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
2446 			mask |= MAY_WRITE;
2447 		if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
2448 			mask |= MAY_EXEC;
2449 	} else if (access_result & NFS_MAY_WRITE)
2450 			mask |= MAY_WRITE;
2451 	return mask;
2452 }
2453 
2454 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2455 {
2456 	entry->mask = access_result;
2457 }
2458 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2459 
2460 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
2461 {
2462 	struct nfs_access_entry cache;
2463 	bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2464 	int cache_mask;
2465 	int status;
2466 
2467 	trace_nfs_access_enter(inode);
2468 
2469 	status = nfs_access_get_cached_rcu(inode, cred, &cache);
2470 	if (status != 0)
2471 		status = nfs_access_get_cached(inode, cred, &cache, may_block);
2472 	if (status == 0)
2473 		goto out_cached;
2474 
2475 	status = -ECHILD;
2476 	if (!may_block)
2477 		goto out;
2478 
2479 	/*
2480 	 * Determine which access bits we want to ask for...
2481 	 */
2482 	cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND;
2483 	if (S_ISDIR(inode->i_mode))
2484 		cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
2485 	else
2486 		cache.mask |= NFS_ACCESS_EXECUTE;
2487 	cache.cred = cred;
2488 	status = NFS_PROTO(inode)->access(inode, &cache);
2489 	if (status != 0) {
2490 		if (status == -ESTALE) {
2491 			nfs_zap_caches(inode);
2492 			if (!S_ISDIR(inode->i_mode))
2493 				set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2494 		}
2495 		goto out;
2496 	}
2497 	nfs_access_add_cache(inode, &cache);
2498 out_cached:
2499 	cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
2500 	if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2501 		status = -EACCES;
2502 out:
2503 	trace_nfs_access_exit(inode, status);
2504 	return status;
2505 }
2506 
2507 static int nfs_open_permission_mask(int openflags)
2508 {
2509 	int mask = 0;
2510 
2511 	if (openflags & __FMODE_EXEC) {
2512 		/* ONLY check exec rights */
2513 		mask = MAY_EXEC;
2514 	} else {
2515 		if ((openflags & O_ACCMODE) != O_WRONLY)
2516 			mask |= MAY_READ;
2517 		if ((openflags & O_ACCMODE) != O_RDONLY)
2518 			mask |= MAY_WRITE;
2519 	}
2520 
2521 	return mask;
2522 }
2523 
2524 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
2525 {
2526 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2527 }
2528 EXPORT_SYMBOL_GPL(nfs_may_open);
2529 
2530 static int nfs_execute_ok(struct inode *inode, int mask)
2531 {
2532 	struct nfs_server *server = NFS_SERVER(inode);
2533 	int ret = 0;
2534 
2535 	if (S_ISDIR(inode->i_mode))
2536 		return 0;
2537 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_OTHER)) {
2538 		if (mask & MAY_NOT_BLOCK)
2539 			return -ECHILD;
2540 		ret = __nfs_revalidate_inode(server, inode);
2541 	}
2542 	if (ret == 0 && !execute_ok(inode))
2543 		ret = -EACCES;
2544 	return ret;
2545 }
2546 
2547 int nfs_permission(struct inode *inode, int mask)
2548 {
2549 	const struct cred *cred = current_cred();
2550 	int res = 0;
2551 
2552 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2553 
2554 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2555 		goto out;
2556 	/* Is this sys_access() ? */
2557 	if (mask & (MAY_ACCESS | MAY_CHDIR))
2558 		goto force_lookup;
2559 
2560 	switch (inode->i_mode & S_IFMT) {
2561 		case S_IFLNK:
2562 			goto out;
2563 		case S_IFREG:
2564 			if ((mask & MAY_OPEN) &&
2565 			   nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2566 				return 0;
2567 			break;
2568 		case S_IFDIR:
2569 			/*
2570 			 * Optimize away all write operations, since the server
2571 			 * will check permissions when we perform the op.
2572 			 */
2573 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2574 				goto out;
2575 	}
2576 
2577 force_lookup:
2578 	if (!NFS_PROTO(inode)->access)
2579 		goto out_notsup;
2580 
2581 	/* Always try fast lookups first */
2582 	rcu_read_lock();
2583 	res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK);
2584 	rcu_read_unlock();
2585 	if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) {
2586 		/* Fast lookup failed, try the slow way */
2587 		res = nfs_do_access(inode, cred, mask);
2588 	}
2589 out:
2590 	if (!res && (mask & MAY_EXEC))
2591 		res = nfs_execute_ok(inode, mask);
2592 
2593 	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2594 		inode->i_sb->s_id, inode->i_ino, mask, res);
2595 	return res;
2596 out_notsup:
2597 	if (mask & MAY_NOT_BLOCK)
2598 		return -ECHILD;
2599 
2600 	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2601 	if (res == 0)
2602 		res = generic_permission(inode, mask);
2603 	goto out;
2604 }
2605 EXPORT_SYMBOL_GPL(nfs_permission);
2606 
2607 /*
2608  * Local variables:
2609  *  version-control: t
2610  *  kept-new-versions: 5
2611  * End:
2612  */
2613