xref: /openbmc/linux/fs/nfs/dir.c (revision ee062665)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/nfs/dir.c
4  *
5  *  Copyright (C) 1992  Rick Sladkey
6  *
7  *  nfs directory handling functions
8  *
9  * 10 Apr 1996	Added silly rename for unlink	--okir
10  * 28 Sep 1996	Improved directory cache --okir
11  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
12  *              Re-implemented silly rename for unlink, newly implemented
13  *              silly rename for nfs_rename() following the suggestions
14  *              of Olaf Kirch (okir) found in this file.
15  *              Following Linus comments on my original hack, this version
16  *              depends only on the dcache stuff and doesn't touch the inode
17  *              layer (iput() and friends).
18  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
19  */
20 
21 #include <linux/module.h>
22 #include <linux/time.h>
23 #include <linux/errno.h>
24 #include <linux/stat.h>
25 #include <linux/fcntl.h>
26 #include <linux/string.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/mm.h>
30 #include <linux/sunrpc/clnt.h>
31 #include <linux/nfs_fs.h>
32 #include <linux/nfs_mount.h>
33 #include <linux/pagemap.h>
34 #include <linux/pagevec.h>
35 #include <linux/namei.h>
36 #include <linux/mount.h>
37 #include <linux/swap.h>
38 #include <linux/sched.h>
39 #include <linux/kmemleak.h>
40 #include <linux/xattr.h>
41 
42 #include "delegation.h"
43 #include "iostat.h"
44 #include "internal.h"
45 #include "fscache.h"
46 
47 #include "nfstrace.h"
48 
49 /* #define NFS_DEBUG_VERBOSE 1 */
50 
51 static int nfs_opendir(struct inode *, struct file *);
52 static int nfs_closedir(struct inode *, struct file *);
53 static int nfs_readdir(struct file *, struct dir_context *);
54 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
55 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
56 static void nfs_readdir_clear_array(struct page*);
57 
58 const struct file_operations nfs_dir_operations = {
59 	.llseek		= nfs_llseek_dir,
60 	.read		= generic_read_dir,
61 	.iterate_shared	= nfs_readdir,
62 	.open		= nfs_opendir,
63 	.release	= nfs_closedir,
64 	.fsync		= nfs_fsync_dir,
65 };
66 
67 const struct address_space_operations nfs_dir_aops = {
68 	.freepage = nfs_readdir_clear_array,
69 };
70 
71 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir)
72 {
73 	struct nfs_inode *nfsi = NFS_I(dir);
74 	struct nfs_open_dir_context *ctx;
75 	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
76 	if (ctx != NULL) {
77 		ctx->duped = 0;
78 		ctx->attr_gencount = nfsi->attr_gencount;
79 		ctx->dir_cookie = 0;
80 		ctx->dup_cookie = 0;
81 		spin_lock(&dir->i_lock);
82 		if (list_empty(&nfsi->open_files) &&
83 		    (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
84 			nfs_set_cache_invalid(dir,
85 					      NFS_INO_INVALID_DATA |
86 						      NFS_INO_REVAL_FORCED);
87 		list_add(&ctx->list, &nfsi->open_files);
88 		spin_unlock(&dir->i_lock);
89 		return ctx;
90 	}
91 	return  ERR_PTR(-ENOMEM);
92 }
93 
94 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
95 {
96 	spin_lock(&dir->i_lock);
97 	list_del(&ctx->list);
98 	spin_unlock(&dir->i_lock);
99 	kfree(ctx);
100 }
101 
102 /*
103  * Open file
104  */
105 static int
106 nfs_opendir(struct inode *inode, struct file *filp)
107 {
108 	int res = 0;
109 	struct nfs_open_dir_context *ctx;
110 
111 	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
112 
113 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
114 
115 	ctx = alloc_nfs_open_dir_context(inode);
116 	if (IS_ERR(ctx)) {
117 		res = PTR_ERR(ctx);
118 		goto out;
119 	}
120 	filp->private_data = ctx;
121 out:
122 	return res;
123 }
124 
125 static int
126 nfs_closedir(struct inode *inode, struct file *filp)
127 {
128 	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
129 	return 0;
130 }
131 
132 struct nfs_cache_array_entry {
133 	u64 cookie;
134 	u64 ino;
135 	const char *name;
136 	unsigned int name_len;
137 	unsigned char d_type;
138 };
139 
140 struct nfs_cache_array {
141 	u64 last_cookie;
142 	unsigned int size;
143 	unsigned char page_full : 1,
144 		      page_is_eof : 1,
145 		      cookies_are_ordered : 1;
146 	struct nfs_cache_array_entry array[];
147 };
148 
149 struct nfs_readdir_descriptor {
150 	struct file	*file;
151 	struct page	*page;
152 	struct dir_context *ctx;
153 	pgoff_t		page_index;
154 	u64		dir_cookie;
155 	u64		last_cookie;
156 	u64		dup_cookie;
157 	loff_t		current_index;
158 	loff_t		prev_index;
159 
160 	__be32		verf[NFS_DIR_VERIFIER_SIZE];
161 	unsigned long	dir_verifier;
162 	unsigned long	timestamp;
163 	unsigned long	gencount;
164 	unsigned long	attr_gencount;
165 	unsigned int	cache_entry_index;
166 	signed char duped;
167 	bool plus;
168 	bool eof;
169 };
170 
171 static void nfs_readdir_array_init(struct nfs_cache_array *array)
172 {
173 	memset(array, 0, sizeof(struct nfs_cache_array));
174 }
175 
176 static void nfs_readdir_page_init_array(struct page *page, u64 last_cookie)
177 {
178 	struct nfs_cache_array *array;
179 
180 	array = kmap_atomic(page);
181 	nfs_readdir_array_init(array);
182 	array->last_cookie = last_cookie;
183 	array->cookies_are_ordered = 1;
184 	kunmap_atomic(array);
185 }
186 
187 /*
188  * we are freeing strings created by nfs_add_to_readdir_array()
189  */
190 static
191 void nfs_readdir_clear_array(struct page *page)
192 {
193 	struct nfs_cache_array *array;
194 	int i;
195 
196 	array = kmap_atomic(page);
197 	for (i = 0; i < array->size; i++)
198 		kfree(array->array[i].name);
199 	nfs_readdir_array_init(array);
200 	kunmap_atomic(array);
201 }
202 
203 static struct page *
204 nfs_readdir_page_array_alloc(u64 last_cookie, gfp_t gfp_flags)
205 {
206 	struct page *page = alloc_page(gfp_flags);
207 	if (page)
208 		nfs_readdir_page_init_array(page, last_cookie);
209 	return page;
210 }
211 
212 static void nfs_readdir_page_array_free(struct page *page)
213 {
214 	if (page) {
215 		nfs_readdir_clear_array(page);
216 		put_page(page);
217 	}
218 }
219 
220 static void nfs_readdir_array_set_eof(struct nfs_cache_array *array)
221 {
222 	array->page_is_eof = 1;
223 	array->page_full = 1;
224 }
225 
226 static bool nfs_readdir_array_is_full(struct nfs_cache_array *array)
227 {
228 	return array->page_full;
229 }
230 
231 /*
232  * the caller is responsible for freeing qstr.name
233  * when called by nfs_readdir_add_to_array, the strings will be freed in
234  * nfs_clear_readdir_array()
235  */
236 static const char *nfs_readdir_copy_name(const char *name, unsigned int len)
237 {
238 	const char *ret = kmemdup_nul(name, len, GFP_KERNEL);
239 
240 	/*
241 	 * Avoid a kmemleak false positive. The pointer to the name is stored
242 	 * in a page cache page which kmemleak does not scan.
243 	 */
244 	if (ret != NULL)
245 		kmemleak_not_leak(ret);
246 	return ret;
247 }
248 
249 /*
250  * Check that the next array entry lies entirely within the page bounds
251  */
252 static int nfs_readdir_array_can_expand(struct nfs_cache_array *array)
253 {
254 	struct nfs_cache_array_entry *cache_entry;
255 
256 	if (array->page_full)
257 		return -ENOSPC;
258 	cache_entry = &array->array[array->size + 1];
259 	if ((char *)cache_entry - (char *)array > PAGE_SIZE) {
260 		array->page_full = 1;
261 		return -ENOSPC;
262 	}
263 	return 0;
264 }
265 
266 static
267 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
268 {
269 	struct nfs_cache_array *array;
270 	struct nfs_cache_array_entry *cache_entry;
271 	const char *name;
272 	int ret;
273 
274 	name = nfs_readdir_copy_name(entry->name, entry->len);
275 	if (!name)
276 		return -ENOMEM;
277 
278 	array = kmap_atomic(page);
279 	ret = nfs_readdir_array_can_expand(array);
280 	if (ret) {
281 		kfree(name);
282 		goto out;
283 	}
284 
285 	cache_entry = &array->array[array->size];
286 	cache_entry->cookie = entry->prev_cookie;
287 	cache_entry->ino = entry->ino;
288 	cache_entry->d_type = entry->d_type;
289 	cache_entry->name_len = entry->len;
290 	cache_entry->name = name;
291 	array->last_cookie = entry->cookie;
292 	if (array->last_cookie <= cache_entry->cookie)
293 		array->cookies_are_ordered = 0;
294 	array->size++;
295 	if (entry->eof != 0)
296 		nfs_readdir_array_set_eof(array);
297 out:
298 	kunmap_atomic(array);
299 	return ret;
300 }
301 
302 static struct page *nfs_readdir_page_get_locked(struct address_space *mapping,
303 						pgoff_t index, u64 last_cookie)
304 {
305 	struct page *page;
306 
307 	page = grab_cache_page(mapping, index);
308 	if (page && !PageUptodate(page)) {
309 		nfs_readdir_page_init_array(page, last_cookie);
310 		if (invalidate_inode_pages2_range(mapping, index + 1, -1) < 0)
311 			nfs_zap_mapping(mapping->host, mapping);
312 		SetPageUptodate(page);
313 	}
314 
315 	return page;
316 }
317 
318 static u64 nfs_readdir_page_last_cookie(struct page *page)
319 {
320 	struct nfs_cache_array *array;
321 	u64 ret;
322 
323 	array = kmap_atomic(page);
324 	ret = array->last_cookie;
325 	kunmap_atomic(array);
326 	return ret;
327 }
328 
329 static bool nfs_readdir_page_needs_filling(struct page *page)
330 {
331 	struct nfs_cache_array *array;
332 	bool ret;
333 
334 	array = kmap_atomic(page);
335 	ret = !nfs_readdir_array_is_full(array);
336 	kunmap_atomic(array);
337 	return ret;
338 }
339 
340 static void nfs_readdir_page_set_eof(struct page *page)
341 {
342 	struct nfs_cache_array *array;
343 
344 	array = kmap_atomic(page);
345 	nfs_readdir_array_set_eof(array);
346 	kunmap_atomic(array);
347 }
348 
349 static void nfs_readdir_page_unlock_and_put(struct page *page)
350 {
351 	unlock_page(page);
352 	put_page(page);
353 }
354 
355 static struct page *nfs_readdir_page_get_next(struct address_space *mapping,
356 					      pgoff_t index, u64 cookie)
357 {
358 	struct page *page;
359 
360 	page = nfs_readdir_page_get_locked(mapping, index, cookie);
361 	if (page) {
362 		if (nfs_readdir_page_last_cookie(page) == cookie)
363 			return page;
364 		nfs_readdir_page_unlock_and_put(page);
365 	}
366 	return NULL;
367 }
368 
369 static inline
370 int is_32bit_api(void)
371 {
372 #ifdef CONFIG_COMPAT
373 	return in_compat_syscall();
374 #else
375 	return (BITS_PER_LONG == 32);
376 #endif
377 }
378 
379 static
380 bool nfs_readdir_use_cookie(const struct file *filp)
381 {
382 	if ((filp->f_mode & FMODE_32BITHASH) ||
383 	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
384 		return false;
385 	return true;
386 }
387 
388 static int nfs_readdir_search_for_pos(struct nfs_cache_array *array,
389 				      struct nfs_readdir_descriptor *desc)
390 {
391 	loff_t diff = desc->ctx->pos - desc->current_index;
392 	unsigned int index;
393 
394 	if (diff < 0)
395 		goto out_eof;
396 	if (diff >= array->size) {
397 		if (array->page_is_eof)
398 			goto out_eof;
399 		return -EAGAIN;
400 	}
401 
402 	index = (unsigned int)diff;
403 	desc->dir_cookie = array->array[index].cookie;
404 	desc->cache_entry_index = index;
405 	return 0;
406 out_eof:
407 	desc->eof = true;
408 	return -EBADCOOKIE;
409 }
410 
411 static bool
412 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
413 {
414 	if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
415 		return false;
416 	smp_rmb();
417 	return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
418 }
419 
420 static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array,
421 					      u64 cookie)
422 {
423 	if (!array->cookies_are_ordered)
424 		return true;
425 	/* Optimisation for monotonically increasing cookies */
426 	if (cookie >= array->last_cookie)
427 		return false;
428 	if (array->size && cookie < array->array[0].cookie)
429 		return false;
430 	return true;
431 }
432 
433 static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array,
434 					 struct nfs_readdir_descriptor *desc)
435 {
436 	int i;
437 	loff_t new_pos;
438 	int status = -EAGAIN;
439 
440 	if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie))
441 		goto check_eof;
442 
443 	for (i = 0; i < array->size; i++) {
444 		if (array->array[i].cookie == desc->dir_cookie) {
445 			struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
446 
447 			new_pos = desc->current_index + i;
448 			if (desc->attr_gencount != nfsi->attr_gencount ||
449 			    !nfs_readdir_inode_mapping_valid(nfsi)) {
450 				desc->duped = 0;
451 				desc->attr_gencount = nfsi->attr_gencount;
452 			} else if (new_pos < desc->prev_index) {
453 				if (desc->duped > 0
454 				    && desc->dup_cookie == desc->dir_cookie) {
455 					if (printk_ratelimit()) {
456 						pr_notice("NFS: directory %pD2 contains a readdir loop."
457 								"Please contact your server vendor.  "
458 								"The file: %s has duplicate cookie %llu\n",
459 								desc->file, array->array[i].name, desc->dir_cookie);
460 					}
461 					status = -ELOOP;
462 					goto out;
463 				}
464 				desc->dup_cookie = desc->dir_cookie;
465 				desc->duped = -1;
466 			}
467 			if (nfs_readdir_use_cookie(desc->file))
468 				desc->ctx->pos = desc->dir_cookie;
469 			else
470 				desc->ctx->pos = new_pos;
471 			desc->prev_index = new_pos;
472 			desc->cache_entry_index = i;
473 			return 0;
474 		}
475 	}
476 check_eof:
477 	if (array->page_is_eof) {
478 		status = -EBADCOOKIE;
479 		if (desc->dir_cookie == array->last_cookie)
480 			desc->eof = true;
481 	}
482 out:
483 	return status;
484 }
485 
486 static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc)
487 {
488 	struct nfs_cache_array *array;
489 	int status;
490 
491 	array = kmap_atomic(desc->page);
492 
493 	if (desc->dir_cookie == 0)
494 		status = nfs_readdir_search_for_pos(array, desc);
495 	else
496 		status = nfs_readdir_search_for_cookie(array, desc);
497 
498 	if (status == -EAGAIN) {
499 		desc->last_cookie = array->last_cookie;
500 		desc->current_index += array->size;
501 		desc->page_index++;
502 	}
503 	kunmap_atomic(array);
504 	return status;
505 }
506 
507 /* Fill a page with xdr information before transferring to the cache page */
508 static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc,
509 				  __be32 *verf, u64 cookie,
510 				  struct page **pages, size_t bufsize,
511 				  __be32 *verf_res)
512 {
513 	struct inode *inode = file_inode(desc->file);
514 	struct nfs_readdir_arg arg = {
515 		.dentry = file_dentry(desc->file),
516 		.cred = desc->file->f_cred,
517 		.verf = verf,
518 		.cookie = cookie,
519 		.pages = pages,
520 		.page_len = bufsize,
521 		.plus = desc->plus,
522 	};
523 	struct nfs_readdir_res res = {
524 		.verf = verf_res,
525 	};
526 	unsigned long	timestamp, gencount;
527 	int		error;
528 
529  again:
530 	timestamp = jiffies;
531 	gencount = nfs_inc_attr_generation_counter();
532 	desc->dir_verifier = nfs_save_change_attribute(inode);
533 	error = NFS_PROTO(inode)->readdir(&arg, &res);
534 	if (error < 0) {
535 		/* We requested READDIRPLUS, but the server doesn't grok it */
536 		if (error == -ENOTSUPP && desc->plus) {
537 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
538 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
539 			desc->plus = arg.plus = false;
540 			goto again;
541 		}
542 		goto error;
543 	}
544 	desc->timestamp = timestamp;
545 	desc->gencount = gencount;
546 error:
547 	return error;
548 }
549 
550 static int xdr_decode(struct nfs_readdir_descriptor *desc,
551 		      struct nfs_entry *entry, struct xdr_stream *xdr)
552 {
553 	struct inode *inode = file_inode(desc->file);
554 	int error;
555 
556 	error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
557 	if (error)
558 		return error;
559 	entry->fattr->time_start = desc->timestamp;
560 	entry->fattr->gencount = desc->gencount;
561 	return 0;
562 }
563 
564 /* Match file and dirent using either filehandle or fileid
565  * Note: caller is responsible for checking the fsid
566  */
567 static
568 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
569 {
570 	struct inode *inode;
571 	struct nfs_inode *nfsi;
572 
573 	if (d_really_is_negative(dentry))
574 		return 0;
575 
576 	inode = d_inode(dentry);
577 	if (is_bad_inode(inode) || NFS_STALE(inode))
578 		return 0;
579 
580 	nfsi = NFS_I(inode);
581 	if (entry->fattr->fileid != nfsi->fileid)
582 		return 0;
583 	if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
584 		return 0;
585 	return 1;
586 }
587 
588 static
589 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
590 {
591 	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
592 		return false;
593 	if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
594 		return true;
595 	if (ctx->pos == 0)
596 		return true;
597 	return false;
598 }
599 
600 /*
601  * This function is called by the lookup and getattr code to request the
602  * use of readdirplus to accelerate any future lookups in the same
603  * directory.
604  */
605 void nfs_advise_use_readdirplus(struct inode *dir)
606 {
607 	struct nfs_inode *nfsi = NFS_I(dir);
608 
609 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
610 	    !list_empty(&nfsi->open_files))
611 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
612 }
613 
614 /*
615  * This function is mainly for use by nfs_getattr().
616  *
617  * If this is an 'ls -l', we want to force use of readdirplus.
618  * Do this by checking if there is an active file descriptor
619  * and calling nfs_advise_use_readdirplus, then forcing a
620  * cache flush.
621  */
622 void nfs_force_use_readdirplus(struct inode *dir)
623 {
624 	struct nfs_inode *nfsi = NFS_I(dir);
625 
626 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
627 	    !list_empty(&nfsi->open_files)) {
628 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
629 		invalidate_mapping_pages(dir->i_mapping,
630 			nfsi->page_index + 1, -1);
631 	}
632 }
633 
634 static
635 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
636 		unsigned long dir_verifier)
637 {
638 	struct qstr filename = QSTR_INIT(entry->name, entry->len);
639 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
640 	struct dentry *dentry;
641 	struct dentry *alias;
642 	struct inode *inode;
643 	int status;
644 
645 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
646 		return;
647 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
648 		return;
649 	if (filename.len == 0)
650 		return;
651 	/* Validate that the name doesn't contain any illegal '\0' */
652 	if (strnlen(filename.name, filename.len) != filename.len)
653 		return;
654 	/* ...or '/' */
655 	if (strnchr(filename.name, filename.len, '/'))
656 		return;
657 	if (filename.name[0] == '.') {
658 		if (filename.len == 1)
659 			return;
660 		if (filename.len == 2 && filename.name[1] == '.')
661 			return;
662 	}
663 	filename.hash = full_name_hash(parent, filename.name, filename.len);
664 
665 	dentry = d_lookup(parent, &filename);
666 again:
667 	if (!dentry) {
668 		dentry = d_alloc_parallel(parent, &filename, &wq);
669 		if (IS_ERR(dentry))
670 			return;
671 	}
672 	if (!d_in_lookup(dentry)) {
673 		/* Is there a mountpoint here? If so, just exit */
674 		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
675 					&entry->fattr->fsid))
676 			goto out;
677 		if (nfs_same_file(dentry, entry)) {
678 			if (!entry->fh->size)
679 				goto out;
680 			nfs_set_verifier(dentry, dir_verifier);
681 			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
682 			if (!status)
683 				nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
684 			goto out;
685 		} else {
686 			d_invalidate(dentry);
687 			dput(dentry);
688 			dentry = NULL;
689 			goto again;
690 		}
691 	}
692 	if (!entry->fh->size) {
693 		d_lookup_done(dentry);
694 		goto out;
695 	}
696 
697 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
698 	alias = d_splice_alias(inode, dentry);
699 	d_lookup_done(dentry);
700 	if (alias) {
701 		if (IS_ERR(alias))
702 			goto out;
703 		dput(dentry);
704 		dentry = alias;
705 	}
706 	nfs_set_verifier(dentry, dir_verifier);
707 out:
708 	dput(dentry);
709 }
710 
711 /* Perform conversion from xdr to cache array */
712 static int nfs_readdir_page_filler(struct nfs_readdir_descriptor *desc,
713 				   struct nfs_entry *entry,
714 				   struct page **xdr_pages,
715 				   unsigned int buflen,
716 				   struct page **arrays,
717 				   size_t narrays)
718 {
719 	struct address_space *mapping = desc->file->f_mapping;
720 	struct xdr_stream stream;
721 	struct xdr_buf buf;
722 	struct page *scratch, *new, *page = *arrays;
723 	int status;
724 
725 	scratch = alloc_page(GFP_KERNEL);
726 	if (scratch == NULL)
727 		return -ENOMEM;
728 
729 	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
730 	xdr_set_scratch_page(&stream, scratch);
731 
732 	do {
733 		if (entry->label)
734 			entry->label->len = NFS4_MAXLABELLEN;
735 
736 		status = xdr_decode(desc, entry, &stream);
737 		if (status != 0)
738 			break;
739 
740 		if (desc->plus)
741 			nfs_prime_dcache(file_dentry(desc->file), entry,
742 					desc->dir_verifier);
743 
744 		status = nfs_readdir_add_to_array(entry, page);
745 		if (status != -ENOSPC)
746 			continue;
747 
748 		if (page->mapping != mapping) {
749 			if (!--narrays)
750 				break;
751 			new = nfs_readdir_page_array_alloc(entry->prev_cookie,
752 							   GFP_KERNEL);
753 			if (!new)
754 				break;
755 			arrays++;
756 			*arrays = page = new;
757 		} else {
758 			new = nfs_readdir_page_get_next(mapping,
759 							page->index + 1,
760 							entry->prev_cookie);
761 			if (!new)
762 				break;
763 			if (page != *arrays)
764 				nfs_readdir_page_unlock_and_put(page);
765 			page = new;
766 		}
767 		status = nfs_readdir_add_to_array(entry, page);
768 	} while (!status && !entry->eof);
769 
770 	switch (status) {
771 	case -EBADCOOKIE:
772 		if (entry->eof) {
773 			nfs_readdir_page_set_eof(page);
774 			status = 0;
775 		}
776 		break;
777 	case -ENOSPC:
778 	case -EAGAIN:
779 		status = 0;
780 		break;
781 	}
782 
783 	if (page != *arrays)
784 		nfs_readdir_page_unlock_and_put(page);
785 
786 	put_page(scratch);
787 	return status;
788 }
789 
790 static void nfs_readdir_free_pages(struct page **pages, size_t npages)
791 {
792 	while (npages--)
793 		put_page(pages[npages]);
794 	kfree(pages);
795 }
796 
797 /*
798  * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
799  * to nfs_readdir_free_pages()
800  */
801 static struct page **nfs_readdir_alloc_pages(size_t npages)
802 {
803 	struct page **pages;
804 	size_t i;
805 
806 	pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL);
807 	if (!pages)
808 		return NULL;
809 	for (i = 0; i < npages; i++) {
810 		struct page *page = alloc_page(GFP_KERNEL);
811 		if (page == NULL)
812 			goto out_freepages;
813 		pages[i] = page;
814 	}
815 	return pages;
816 
817 out_freepages:
818 	nfs_readdir_free_pages(pages, i);
819 	return NULL;
820 }
821 
822 static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc,
823 				    __be32 *verf_arg, __be32 *verf_res,
824 				    struct page **arrays, size_t narrays)
825 {
826 	struct page **pages;
827 	struct page *page = *arrays;
828 	struct nfs_entry *entry;
829 	size_t array_size;
830 	struct inode *inode = file_inode(desc->file);
831 	size_t dtsize = NFS_SERVER(inode)->dtsize;
832 	int status = -ENOMEM;
833 
834 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
835 	if (!entry)
836 		return -ENOMEM;
837 	entry->cookie = nfs_readdir_page_last_cookie(page);
838 	entry->fh = nfs_alloc_fhandle();
839 	entry->fattr = nfs_alloc_fattr();
840 	entry->server = NFS_SERVER(inode);
841 	if (entry->fh == NULL || entry->fattr == NULL)
842 		goto out;
843 
844 	entry->label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
845 	if (IS_ERR(entry->label)) {
846 		status = PTR_ERR(entry->label);
847 		goto out;
848 	}
849 
850 	array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT;
851 	pages = nfs_readdir_alloc_pages(array_size);
852 	if (!pages)
853 		goto out_release_label;
854 
855 	do {
856 		unsigned int pglen;
857 		status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie,
858 						pages, dtsize,
859 						verf_res);
860 		if (status < 0)
861 			break;
862 
863 		pglen = status;
864 		if (pglen == 0) {
865 			nfs_readdir_page_set_eof(page);
866 			break;
867 		}
868 
869 		verf_arg = verf_res;
870 
871 		status = nfs_readdir_page_filler(desc, entry, pages, pglen,
872 						 arrays, narrays);
873 	} while (!status && nfs_readdir_page_needs_filling(page));
874 
875 	nfs_readdir_free_pages(pages, array_size);
876 out_release_label:
877 	nfs4_label_free(entry->label);
878 out:
879 	nfs_free_fattr(entry->fattr);
880 	nfs_free_fhandle(entry->fh);
881 	kfree(entry);
882 	return status;
883 }
884 
885 static void nfs_readdir_page_put(struct nfs_readdir_descriptor *desc)
886 {
887 	put_page(desc->page);
888 	desc->page = NULL;
889 }
890 
891 static void
892 nfs_readdir_page_unlock_and_put_cached(struct nfs_readdir_descriptor *desc)
893 {
894 	unlock_page(desc->page);
895 	nfs_readdir_page_put(desc);
896 }
897 
898 static struct page *
899 nfs_readdir_page_get_cached(struct nfs_readdir_descriptor *desc)
900 {
901 	return nfs_readdir_page_get_locked(desc->file->f_mapping,
902 					   desc->page_index,
903 					   desc->last_cookie);
904 }
905 
906 /*
907  * Returns 0 if desc->dir_cookie was found on page desc->page_index
908  * and locks the page to prevent removal from the page cache.
909  */
910 static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc)
911 {
912 	struct inode *inode = file_inode(desc->file);
913 	struct nfs_inode *nfsi = NFS_I(inode);
914 	__be32 verf[NFS_DIR_VERIFIER_SIZE];
915 	int res;
916 
917 	desc->page = nfs_readdir_page_get_cached(desc);
918 	if (!desc->page)
919 		return -ENOMEM;
920 	if (nfs_readdir_page_needs_filling(desc->page)) {
921 		res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf,
922 					       &desc->page, 1);
923 		if (res < 0) {
924 			nfs_readdir_page_unlock_and_put_cached(desc);
925 			if (res == -EBADCOOKIE || res == -ENOTSYNC) {
926 				invalidate_inode_pages2(desc->file->f_mapping);
927 				desc->page_index = 0;
928 				return -EAGAIN;
929 			}
930 			return res;
931 		}
932 		/*
933 		 * Set the cookie verifier if the page cache was empty
934 		 */
935 		if (desc->page_index == 0)
936 			memcpy(nfsi->cookieverf, verf,
937 			       sizeof(nfsi->cookieverf));
938 	}
939 	res = nfs_readdir_search_array(desc);
940 	if (res == 0) {
941 		nfsi->page_index = desc->page_index;
942 		return 0;
943 	}
944 	nfs_readdir_page_unlock_and_put_cached(desc);
945 	return res;
946 }
947 
948 static bool nfs_readdir_dont_search_cache(struct nfs_readdir_descriptor *desc)
949 {
950 	struct address_space *mapping = desc->file->f_mapping;
951 	struct inode *dir = file_inode(desc->file);
952 	unsigned int dtsize = NFS_SERVER(dir)->dtsize;
953 	loff_t size = i_size_read(dir);
954 
955 	/*
956 	 * Default to uncached readdir if the page cache is empty, and
957 	 * we're looking for a non-zero cookie in a large directory.
958 	 */
959 	return desc->dir_cookie != 0 && mapping->nrpages == 0 && size > dtsize;
960 }
961 
962 /* Search for desc->dir_cookie from the beginning of the page cache */
963 static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc)
964 {
965 	int res;
966 
967 	if (nfs_readdir_dont_search_cache(desc))
968 		return -EBADCOOKIE;
969 
970 	do {
971 		if (desc->page_index == 0) {
972 			desc->current_index = 0;
973 			desc->prev_index = 0;
974 			desc->last_cookie = 0;
975 		}
976 		res = find_and_lock_cache_page(desc);
977 	} while (res == -EAGAIN);
978 	return res;
979 }
980 
981 /*
982  * Once we've found the start of the dirent within a page: fill 'er up...
983  */
984 static void nfs_do_filldir(struct nfs_readdir_descriptor *desc,
985 			   const __be32 *verf)
986 {
987 	struct file	*file = desc->file;
988 	struct nfs_cache_array *array;
989 	unsigned int i = 0;
990 
991 	array = kmap(desc->page);
992 	for (i = desc->cache_entry_index; i < array->size; i++) {
993 		struct nfs_cache_array_entry *ent;
994 
995 		ent = &array->array[i];
996 		if (!dir_emit(desc->ctx, ent->name, ent->name_len,
997 		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
998 			desc->eof = true;
999 			break;
1000 		}
1001 		memcpy(desc->verf, verf, sizeof(desc->verf));
1002 		if (i < (array->size-1))
1003 			desc->dir_cookie = array->array[i+1].cookie;
1004 		else
1005 			desc->dir_cookie = array->last_cookie;
1006 		if (nfs_readdir_use_cookie(file))
1007 			desc->ctx->pos = desc->dir_cookie;
1008 		else
1009 			desc->ctx->pos++;
1010 		if (desc->duped != 0)
1011 			desc->duped = 1;
1012 	}
1013 	if (array->page_is_eof)
1014 		desc->eof = true;
1015 
1016 	kunmap(desc->page);
1017 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n",
1018 			(unsigned long long)desc->dir_cookie);
1019 }
1020 
1021 /*
1022  * If we cannot find a cookie in our cache, we suspect that this is
1023  * because it points to a deleted file, so we ask the server to return
1024  * whatever it thinks is the next entry. We then feed this to filldir.
1025  * If all goes well, we should then be able to find our way round the
1026  * cache on the next call to readdir_search_pagecache();
1027  *
1028  * NOTE: we cannot add the anonymous page to the pagecache because
1029  *	 the data it contains might not be page aligned. Besides,
1030  *	 we should already have a complete representation of the
1031  *	 directory in the page cache by the time we get here.
1032  */
1033 static int uncached_readdir(struct nfs_readdir_descriptor *desc)
1034 {
1035 	struct page	**arrays;
1036 	size_t		i, sz = 512;
1037 	__be32		verf[NFS_DIR_VERIFIER_SIZE];
1038 	int		status = -ENOMEM;
1039 
1040 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n",
1041 			(unsigned long long)desc->dir_cookie);
1042 
1043 	arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL);
1044 	if (!arrays)
1045 		goto out;
1046 	arrays[0] = nfs_readdir_page_array_alloc(desc->dir_cookie, GFP_KERNEL);
1047 	if (!arrays[0])
1048 		goto out;
1049 
1050 	desc->page_index = 0;
1051 	desc->last_cookie = desc->dir_cookie;
1052 	desc->duped = 0;
1053 
1054 	status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz);
1055 
1056 	for (i = 0; !desc->eof && i < sz && arrays[i]; i++) {
1057 		desc->page = arrays[i];
1058 		nfs_do_filldir(desc, verf);
1059 	}
1060 	desc->page = NULL;
1061 
1062 
1063 	for (i = 0; i < sz && arrays[i]; i++)
1064 		nfs_readdir_page_array_free(arrays[i]);
1065 out:
1066 	kfree(arrays);
1067 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
1068 	return status;
1069 }
1070 
1071 /* The file offset position represents the dirent entry number.  A
1072    last cookie cache takes care of the common case of reading the
1073    whole directory.
1074  */
1075 static int nfs_readdir(struct file *file, struct dir_context *ctx)
1076 {
1077 	struct dentry	*dentry = file_dentry(file);
1078 	struct inode	*inode = d_inode(dentry);
1079 	struct nfs_inode *nfsi = NFS_I(inode);
1080 	struct nfs_open_dir_context *dir_ctx = file->private_data;
1081 	struct nfs_readdir_descriptor *desc;
1082 	int res;
1083 
1084 	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
1085 			file, (long long)ctx->pos);
1086 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
1087 
1088 	/*
1089 	 * ctx->pos points to the dirent entry number.
1090 	 * *desc->dir_cookie has the cookie for the next entry. We have
1091 	 * to either find the entry with the appropriate number or
1092 	 * revalidate the cookie.
1093 	 */
1094 	if (ctx->pos == 0 || nfs_attribute_cache_expired(inode)) {
1095 		res = nfs_revalidate_mapping(inode, file->f_mapping);
1096 		if (res < 0)
1097 			goto out;
1098 	}
1099 
1100 	res = -ENOMEM;
1101 	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
1102 	if (!desc)
1103 		goto out;
1104 	desc->file = file;
1105 	desc->ctx = ctx;
1106 	desc->plus = nfs_use_readdirplus(inode, ctx);
1107 
1108 	spin_lock(&file->f_lock);
1109 	desc->dir_cookie = dir_ctx->dir_cookie;
1110 	desc->dup_cookie = dir_ctx->dup_cookie;
1111 	desc->duped = dir_ctx->duped;
1112 	desc->attr_gencount = dir_ctx->attr_gencount;
1113 	memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf));
1114 	spin_unlock(&file->f_lock);
1115 
1116 	do {
1117 		res = readdir_search_pagecache(desc);
1118 
1119 		if (res == -EBADCOOKIE) {
1120 			res = 0;
1121 			/* This means either end of directory */
1122 			if (desc->dir_cookie && !desc->eof) {
1123 				/* Or that the server has 'lost' a cookie */
1124 				res = uncached_readdir(desc);
1125 				if (res == 0)
1126 					continue;
1127 				if (res == -EBADCOOKIE || res == -ENOTSYNC)
1128 					res = 0;
1129 			}
1130 			break;
1131 		}
1132 		if (res == -ETOOSMALL && desc->plus) {
1133 			clear_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
1134 			nfs_zap_caches(inode);
1135 			desc->page_index = 0;
1136 			desc->plus = false;
1137 			desc->eof = false;
1138 			continue;
1139 		}
1140 		if (res < 0)
1141 			break;
1142 
1143 		nfs_do_filldir(desc, nfsi->cookieverf);
1144 		nfs_readdir_page_unlock_and_put_cached(desc);
1145 	} while (!desc->eof);
1146 
1147 	spin_lock(&file->f_lock);
1148 	dir_ctx->dir_cookie = desc->dir_cookie;
1149 	dir_ctx->dup_cookie = desc->dup_cookie;
1150 	dir_ctx->duped = desc->duped;
1151 	dir_ctx->attr_gencount = desc->attr_gencount;
1152 	memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf));
1153 	spin_unlock(&file->f_lock);
1154 
1155 	kfree(desc);
1156 
1157 out:
1158 	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
1159 	return res;
1160 }
1161 
1162 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
1163 {
1164 	struct nfs_open_dir_context *dir_ctx = filp->private_data;
1165 
1166 	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
1167 			filp, offset, whence);
1168 
1169 	switch (whence) {
1170 	default:
1171 		return -EINVAL;
1172 	case SEEK_SET:
1173 		if (offset < 0)
1174 			return -EINVAL;
1175 		spin_lock(&filp->f_lock);
1176 		break;
1177 	case SEEK_CUR:
1178 		if (offset == 0)
1179 			return filp->f_pos;
1180 		spin_lock(&filp->f_lock);
1181 		offset += filp->f_pos;
1182 		if (offset < 0) {
1183 			spin_unlock(&filp->f_lock);
1184 			return -EINVAL;
1185 		}
1186 	}
1187 	if (offset != filp->f_pos) {
1188 		filp->f_pos = offset;
1189 		if (nfs_readdir_use_cookie(filp))
1190 			dir_ctx->dir_cookie = offset;
1191 		else
1192 			dir_ctx->dir_cookie = 0;
1193 		if (offset == 0)
1194 			memset(dir_ctx->verf, 0, sizeof(dir_ctx->verf));
1195 		dir_ctx->duped = 0;
1196 	}
1197 	spin_unlock(&filp->f_lock);
1198 	return offset;
1199 }
1200 
1201 /*
1202  * All directory operations under NFS are synchronous, so fsync()
1203  * is a dummy operation.
1204  */
1205 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
1206 			 int datasync)
1207 {
1208 	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1209 
1210 	nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC);
1211 	return 0;
1212 }
1213 
1214 /**
1215  * nfs_force_lookup_revalidate - Mark the directory as having changed
1216  * @dir: pointer to directory inode
1217  *
1218  * This forces the revalidation code in nfs_lookup_revalidate() to do a
1219  * full lookup on all child dentries of 'dir' whenever a change occurs
1220  * on the server that might have invalidated our dcache.
1221  *
1222  * Note that we reserve bit '0' as a tag to let us know when a dentry
1223  * was revalidated while holding a delegation on its inode.
1224  *
1225  * The caller should be holding dir->i_lock
1226  */
1227 void nfs_force_lookup_revalidate(struct inode *dir)
1228 {
1229 	NFS_I(dir)->cache_change_attribute += 2;
1230 }
1231 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1232 
1233 /**
1234  * nfs_verify_change_attribute - Detects NFS remote directory changes
1235  * @dir: pointer to parent directory inode
1236  * @verf: previously saved change attribute
1237  *
1238  * Return "false" if the verifiers doesn't match the change attribute.
1239  * This would usually indicate that the directory contents have changed on
1240  * the server, and that any dentries need revalidating.
1241  */
1242 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1243 {
1244 	return (verf & ~1UL) == nfs_save_change_attribute(dir);
1245 }
1246 
1247 static void nfs_set_verifier_delegated(unsigned long *verf)
1248 {
1249 	*verf |= 1UL;
1250 }
1251 
1252 #if IS_ENABLED(CONFIG_NFS_V4)
1253 static void nfs_unset_verifier_delegated(unsigned long *verf)
1254 {
1255 	*verf &= ~1UL;
1256 }
1257 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1258 
1259 static bool nfs_test_verifier_delegated(unsigned long verf)
1260 {
1261 	return verf & 1;
1262 }
1263 
1264 static bool nfs_verifier_is_delegated(struct dentry *dentry)
1265 {
1266 	return nfs_test_verifier_delegated(dentry->d_time);
1267 }
1268 
1269 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1270 {
1271 	struct inode *inode = d_inode(dentry);
1272 	struct inode *dir = d_inode(dentry->d_parent);
1273 
1274 	if (!nfs_verify_change_attribute(dir, verf))
1275 		return;
1276 	if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
1277 		nfs_set_verifier_delegated(&verf);
1278 	dentry->d_time = verf;
1279 }
1280 
1281 /**
1282  * nfs_set_verifier - save a parent directory verifier in the dentry
1283  * @dentry: pointer to dentry
1284  * @verf: verifier to save
1285  *
1286  * Saves the parent directory verifier in @dentry. If the inode has
1287  * a delegation, we also tag the dentry as having been revalidated
1288  * while holding a delegation so that we know we don't have to
1289  * look it up again after a directory change.
1290  */
1291 void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1292 {
1293 
1294 	spin_lock(&dentry->d_lock);
1295 	nfs_set_verifier_locked(dentry, verf);
1296 	spin_unlock(&dentry->d_lock);
1297 }
1298 EXPORT_SYMBOL_GPL(nfs_set_verifier);
1299 
1300 #if IS_ENABLED(CONFIG_NFS_V4)
1301 /**
1302  * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1303  * @inode: pointer to inode
1304  *
1305  * Iterates through the dentries in the inode alias list and clears
1306  * the tag used to indicate that the dentry has been revalidated
1307  * while holding a delegation.
1308  * This function is intended for use when the delegation is being
1309  * returned or revoked.
1310  */
1311 void nfs_clear_verifier_delegated(struct inode *inode)
1312 {
1313 	struct dentry *alias;
1314 
1315 	if (!inode)
1316 		return;
1317 	spin_lock(&inode->i_lock);
1318 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1319 		spin_lock(&alias->d_lock);
1320 		nfs_unset_verifier_delegated(&alias->d_time);
1321 		spin_unlock(&alias->d_lock);
1322 	}
1323 	spin_unlock(&inode->i_lock);
1324 }
1325 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1326 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1327 
1328 /*
1329  * A check for whether or not the parent directory has changed.
1330  * In the case it has, we assume that the dentries are untrustworthy
1331  * and may need to be looked up again.
1332  * If rcu_walk prevents us from performing a full check, return 0.
1333  */
1334 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1335 			      int rcu_walk)
1336 {
1337 	if (IS_ROOT(dentry))
1338 		return 1;
1339 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1340 		return 0;
1341 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1342 		return 0;
1343 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
1344 	if (nfs_mapping_need_revalidate_inode(dir)) {
1345 		if (rcu_walk)
1346 			return 0;
1347 		if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1348 			return 0;
1349 	}
1350 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1351 		return 0;
1352 	return 1;
1353 }
1354 
1355 /*
1356  * Use intent information to check whether or not we're going to do
1357  * an O_EXCL create using this path component.
1358  */
1359 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1360 {
1361 	if (NFS_PROTO(dir)->version == 2)
1362 		return 0;
1363 	return flags & LOOKUP_EXCL;
1364 }
1365 
1366 /*
1367  * Inode and filehandle revalidation for lookups.
1368  *
1369  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1370  * or if the intent information indicates that we're about to open this
1371  * particular file and the "nocto" mount flag is not set.
1372  *
1373  */
1374 static
1375 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1376 {
1377 	struct nfs_server *server = NFS_SERVER(inode);
1378 	int ret;
1379 
1380 	if (IS_AUTOMOUNT(inode))
1381 		return 0;
1382 
1383 	if (flags & LOOKUP_OPEN) {
1384 		switch (inode->i_mode & S_IFMT) {
1385 		case S_IFREG:
1386 			/* A NFSv4 OPEN will revalidate later */
1387 			if (server->caps & NFS_CAP_ATOMIC_OPEN)
1388 				goto out;
1389 			fallthrough;
1390 		case S_IFDIR:
1391 			if (server->flags & NFS_MOUNT_NOCTO)
1392 				break;
1393 			/* NFS close-to-open cache consistency validation */
1394 			goto out_force;
1395 		}
1396 	}
1397 
1398 	/* VFS wants an on-the-wire revalidation */
1399 	if (flags & LOOKUP_REVAL)
1400 		goto out_force;
1401 out:
1402 	return (inode->i_nlink == 0) ? -ESTALE : 0;
1403 out_force:
1404 	if (flags & LOOKUP_RCU)
1405 		return -ECHILD;
1406 	ret = __nfs_revalidate_inode(server, inode);
1407 	if (ret != 0)
1408 		return ret;
1409 	goto out;
1410 }
1411 
1412 static void nfs_mark_dir_for_revalidate(struct inode *inode)
1413 {
1414 	spin_lock(&inode->i_lock);
1415 	nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE);
1416 	spin_unlock(&inode->i_lock);
1417 }
1418 
1419 /*
1420  * We judge how long we want to trust negative
1421  * dentries by looking at the parent inode mtime.
1422  *
1423  * If parent mtime has changed, we revalidate, else we wait for a
1424  * period corresponding to the parent's attribute cache timeout value.
1425  *
1426  * If LOOKUP_RCU prevents us from performing a full check, return 1
1427  * suggesting a reval is needed.
1428  *
1429  * Note that when creating a new file, or looking up a rename target,
1430  * then it shouldn't be necessary to revalidate a negative dentry.
1431  */
1432 static inline
1433 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1434 		       unsigned int flags)
1435 {
1436 	if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1437 		return 0;
1438 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1439 		return 1;
1440 	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1441 }
1442 
1443 static int
1444 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1445 			   struct inode *inode, int error)
1446 {
1447 	switch (error) {
1448 	case 1:
1449 		dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1450 			__func__, dentry);
1451 		return 1;
1452 	case 0:
1453 		/*
1454 		 * We can't d_drop the root of a disconnected tree:
1455 		 * its d_hash is on the s_anon list and d_drop() would hide
1456 		 * it from shrink_dcache_for_unmount(), leading to busy
1457 		 * inodes on unmount and further oopses.
1458 		 */
1459 		if (inode && IS_ROOT(dentry))
1460 			return 1;
1461 		dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1462 				__func__, dentry);
1463 		return 0;
1464 	}
1465 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1466 				__func__, dentry, error);
1467 	return error;
1468 }
1469 
1470 static int
1471 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1472 			       unsigned int flags)
1473 {
1474 	int ret = 1;
1475 	if (nfs_neg_need_reval(dir, dentry, flags)) {
1476 		if (flags & LOOKUP_RCU)
1477 			return -ECHILD;
1478 		ret = 0;
1479 	}
1480 	return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1481 }
1482 
1483 static int
1484 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1485 				struct inode *inode)
1486 {
1487 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1488 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1489 }
1490 
1491 static int
1492 nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry,
1493 			     struct inode *inode)
1494 {
1495 	struct nfs_fh *fhandle;
1496 	struct nfs_fattr *fattr;
1497 	struct nfs4_label *label;
1498 	unsigned long dir_verifier;
1499 	int ret;
1500 
1501 	ret = -ENOMEM;
1502 	fhandle = nfs_alloc_fhandle();
1503 	fattr = nfs_alloc_fattr();
1504 	label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL);
1505 	if (fhandle == NULL || fattr == NULL || IS_ERR(label))
1506 		goto out;
1507 
1508 	dir_verifier = nfs_save_change_attribute(dir);
1509 	ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1510 	if (ret < 0) {
1511 		switch (ret) {
1512 		case -ESTALE:
1513 		case -ENOENT:
1514 			ret = 0;
1515 			break;
1516 		case -ETIMEDOUT:
1517 			if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)
1518 				ret = 1;
1519 		}
1520 		goto out;
1521 	}
1522 	ret = 0;
1523 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1524 		goto out;
1525 	if (nfs_refresh_inode(inode, fattr) < 0)
1526 		goto out;
1527 
1528 	nfs_setsecurity(inode, fattr, label);
1529 	nfs_set_verifier(dentry, dir_verifier);
1530 
1531 	/* set a readdirplus hint that we had a cache miss */
1532 	nfs_force_use_readdirplus(dir);
1533 	ret = 1;
1534 out:
1535 	nfs_free_fattr(fattr);
1536 	nfs_free_fhandle(fhandle);
1537 	nfs4_label_free(label);
1538 
1539 	/*
1540 	 * If the lookup failed despite the dentry change attribute being
1541 	 * a match, then we should revalidate the directory cache.
1542 	 */
1543 	if (!ret && nfs_verify_change_attribute(dir, dentry->d_time))
1544 		nfs_mark_dir_for_revalidate(dir);
1545 	return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1546 }
1547 
1548 /*
1549  * This is called every time the dcache has a lookup hit,
1550  * and we should check whether we can really trust that
1551  * lookup.
1552  *
1553  * NOTE! The hit can be a negative hit too, don't assume
1554  * we have an inode!
1555  *
1556  * If the parent directory is seen to have changed, we throw out the
1557  * cached dentry and do a new lookup.
1558  */
1559 static int
1560 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1561 			 unsigned int flags)
1562 {
1563 	struct inode *inode;
1564 	int error;
1565 
1566 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1567 	inode = d_inode(dentry);
1568 
1569 	if (!inode)
1570 		return nfs_lookup_revalidate_negative(dir, dentry, flags);
1571 
1572 	if (is_bad_inode(inode)) {
1573 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1574 				__func__, dentry);
1575 		goto out_bad;
1576 	}
1577 
1578 	if (nfs_verifier_is_delegated(dentry))
1579 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1580 
1581 	/* Force a full look up iff the parent directory has changed */
1582 	if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1583 	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1584 		error = nfs_lookup_verify_inode(inode, flags);
1585 		if (error) {
1586 			if (error == -ESTALE)
1587 				nfs_mark_dir_for_revalidate(dir);
1588 			goto out_bad;
1589 		}
1590 		nfs_advise_use_readdirplus(dir);
1591 		goto out_valid;
1592 	}
1593 
1594 	if (flags & LOOKUP_RCU)
1595 		return -ECHILD;
1596 
1597 	if (NFS_STALE(inode))
1598 		goto out_bad;
1599 
1600 	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1601 	error = nfs_lookup_revalidate_dentry(dir, dentry, inode);
1602 	trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1603 	return error;
1604 out_valid:
1605 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1606 out_bad:
1607 	if (flags & LOOKUP_RCU)
1608 		return -ECHILD;
1609 	return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1610 }
1611 
1612 static int
1613 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1614 			int (*reval)(struct inode *, struct dentry *, unsigned int))
1615 {
1616 	struct dentry *parent;
1617 	struct inode *dir;
1618 	int ret;
1619 
1620 	if (flags & LOOKUP_RCU) {
1621 		parent = READ_ONCE(dentry->d_parent);
1622 		dir = d_inode_rcu(parent);
1623 		if (!dir)
1624 			return -ECHILD;
1625 		ret = reval(dir, dentry, flags);
1626 		if (parent != READ_ONCE(dentry->d_parent))
1627 			return -ECHILD;
1628 	} else {
1629 		parent = dget_parent(dentry);
1630 		ret = reval(d_inode(parent), dentry, flags);
1631 		dput(parent);
1632 	}
1633 	return ret;
1634 }
1635 
1636 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1637 {
1638 	return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1639 }
1640 
1641 /*
1642  * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1643  * when we don't really care about the dentry name. This is called when a
1644  * pathwalk ends on a dentry that was not found via a normal lookup in the
1645  * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1646  *
1647  * In this situation, we just want to verify that the inode itself is OK
1648  * since the dentry might have changed on the server.
1649  */
1650 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1651 {
1652 	struct inode *inode = d_inode(dentry);
1653 	int error = 0;
1654 
1655 	/*
1656 	 * I believe we can only get a negative dentry here in the case of a
1657 	 * procfs-style symlink. Just assume it's correct for now, but we may
1658 	 * eventually need to do something more here.
1659 	 */
1660 	if (!inode) {
1661 		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1662 				__func__, dentry);
1663 		return 1;
1664 	}
1665 
1666 	if (is_bad_inode(inode)) {
1667 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1668 				__func__, dentry);
1669 		return 0;
1670 	}
1671 
1672 	error = nfs_lookup_verify_inode(inode, flags);
1673 	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1674 			__func__, inode->i_ino, error ? "invalid" : "valid");
1675 	return !error;
1676 }
1677 
1678 /*
1679  * This is called from dput() when d_count is going to 0.
1680  */
1681 static int nfs_dentry_delete(const struct dentry *dentry)
1682 {
1683 	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1684 		dentry, dentry->d_flags);
1685 
1686 	/* Unhash any dentry with a stale inode */
1687 	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1688 		return 1;
1689 
1690 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1691 		/* Unhash it, so that ->d_iput() would be called */
1692 		return 1;
1693 	}
1694 	if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1695 		/* Unhash it, so that ancestors of killed async unlink
1696 		 * files will be cleaned up during umount */
1697 		return 1;
1698 	}
1699 	return 0;
1700 
1701 }
1702 
1703 /* Ensure that we revalidate inode->i_nlink */
1704 static void nfs_drop_nlink(struct inode *inode)
1705 {
1706 	spin_lock(&inode->i_lock);
1707 	/* drop the inode if we're reasonably sure this is the last link */
1708 	if (inode->i_nlink > 0)
1709 		drop_nlink(inode);
1710 	NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1711 	nfs_set_cache_invalid(
1712 		inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME |
1713 			       NFS_INO_INVALID_NLINK);
1714 	spin_unlock(&inode->i_lock);
1715 }
1716 
1717 /*
1718  * Called when the dentry loses inode.
1719  * We use it to clean up silly-renamed files.
1720  */
1721 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1722 {
1723 	if (S_ISDIR(inode->i_mode))
1724 		/* drop any readdir cache as it could easily be old */
1725 		nfs_set_cache_invalid(inode, NFS_INO_INVALID_DATA);
1726 
1727 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1728 		nfs_complete_unlink(dentry, inode);
1729 		nfs_drop_nlink(inode);
1730 	}
1731 	iput(inode);
1732 }
1733 
1734 static void nfs_d_release(struct dentry *dentry)
1735 {
1736 	/* free cached devname value, if it survived that far */
1737 	if (unlikely(dentry->d_fsdata)) {
1738 		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1739 			WARN_ON(1);
1740 		else
1741 			kfree(dentry->d_fsdata);
1742 	}
1743 }
1744 
1745 const struct dentry_operations nfs_dentry_operations = {
1746 	.d_revalidate	= nfs_lookup_revalidate,
1747 	.d_weak_revalidate	= nfs_weak_revalidate,
1748 	.d_delete	= nfs_dentry_delete,
1749 	.d_iput		= nfs_dentry_iput,
1750 	.d_automount	= nfs_d_automount,
1751 	.d_release	= nfs_d_release,
1752 };
1753 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1754 
1755 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1756 {
1757 	struct dentry *res;
1758 	struct inode *inode = NULL;
1759 	struct nfs_fh *fhandle = NULL;
1760 	struct nfs_fattr *fattr = NULL;
1761 	struct nfs4_label *label = NULL;
1762 	unsigned long dir_verifier;
1763 	int error;
1764 
1765 	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1766 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1767 
1768 	if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1769 		return ERR_PTR(-ENAMETOOLONG);
1770 
1771 	/*
1772 	 * If we're doing an exclusive create, optimize away the lookup
1773 	 * but don't hash the dentry.
1774 	 */
1775 	if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1776 		return NULL;
1777 
1778 	res = ERR_PTR(-ENOMEM);
1779 	fhandle = nfs_alloc_fhandle();
1780 	fattr = nfs_alloc_fattr();
1781 	if (fhandle == NULL || fattr == NULL)
1782 		goto out;
1783 
1784 	label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1785 	if (IS_ERR(label))
1786 		goto out;
1787 
1788 	dir_verifier = nfs_save_change_attribute(dir);
1789 	trace_nfs_lookup_enter(dir, dentry, flags);
1790 	error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1791 	if (error == -ENOENT)
1792 		goto no_entry;
1793 	if (error < 0) {
1794 		res = ERR_PTR(error);
1795 		goto out_label;
1796 	}
1797 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1798 	res = ERR_CAST(inode);
1799 	if (IS_ERR(res))
1800 		goto out_label;
1801 
1802 	/* Notify readdir to use READDIRPLUS */
1803 	nfs_force_use_readdirplus(dir);
1804 
1805 no_entry:
1806 	res = d_splice_alias(inode, dentry);
1807 	if (res != NULL) {
1808 		if (IS_ERR(res))
1809 			goto out_label;
1810 		dentry = res;
1811 	}
1812 	nfs_set_verifier(dentry, dir_verifier);
1813 out_label:
1814 	trace_nfs_lookup_exit(dir, dentry, flags, error);
1815 	nfs4_label_free(label);
1816 out:
1817 	nfs_free_fattr(fattr);
1818 	nfs_free_fhandle(fhandle);
1819 	return res;
1820 }
1821 EXPORT_SYMBOL_GPL(nfs_lookup);
1822 
1823 #if IS_ENABLED(CONFIG_NFS_V4)
1824 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1825 
1826 const struct dentry_operations nfs4_dentry_operations = {
1827 	.d_revalidate	= nfs4_lookup_revalidate,
1828 	.d_weak_revalidate	= nfs_weak_revalidate,
1829 	.d_delete	= nfs_dentry_delete,
1830 	.d_iput		= nfs_dentry_iput,
1831 	.d_automount	= nfs_d_automount,
1832 	.d_release	= nfs_d_release,
1833 };
1834 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1835 
1836 static fmode_t flags_to_mode(int flags)
1837 {
1838 	fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1839 	if ((flags & O_ACCMODE) != O_WRONLY)
1840 		res |= FMODE_READ;
1841 	if ((flags & O_ACCMODE) != O_RDONLY)
1842 		res |= FMODE_WRITE;
1843 	return res;
1844 }
1845 
1846 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1847 {
1848 	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1849 }
1850 
1851 static int do_open(struct inode *inode, struct file *filp)
1852 {
1853 	nfs_fscache_open_file(inode, filp);
1854 	return 0;
1855 }
1856 
1857 static int nfs_finish_open(struct nfs_open_context *ctx,
1858 			   struct dentry *dentry,
1859 			   struct file *file, unsigned open_flags)
1860 {
1861 	int err;
1862 
1863 	err = finish_open(file, dentry, do_open);
1864 	if (err)
1865 		goto out;
1866 	if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
1867 		nfs_file_set_open_context(file, ctx);
1868 	else
1869 		err = -EOPENSTALE;
1870 out:
1871 	return err;
1872 }
1873 
1874 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1875 		    struct file *file, unsigned open_flags,
1876 		    umode_t mode)
1877 {
1878 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1879 	struct nfs_open_context *ctx;
1880 	struct dentry *res;
1881 	struct iattr attr = { .ia_valid = ATTR_OPEN };
1882 	struct inode *inode;
1883 	unsigned int lookup_flags = 0;
1884 	bool switched = false;
1885 	int created = 0;
1886 	int err;
1887 
1888 	/* Expect a negative dentry */
1889 	BUG_ON(d_inode(dentry));
1890 
1891 	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1892 			dir->i_sb->s_id, dir->i_ino, dentry);
1893 
1894 	err = nfs_check_flags(open_flags);
1895 	if (err)
1896 		return err;
1897 
1898 	/* NFS only supports OPEN on regular files */
1899 	if ((open_flags & O_DIRECTORY)) {
1900 		if (!d_in_lookup(dentry)) {
1901 			/*
1902 			 * Hashed negative dentry with O_DIRECTORY: dentry was
1903 			 * revalidated and is fine, no need to perform lookup
1904 			 * again
1905 			 */
1906 			return -ENOENT;
1907 		}
1908 		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1909 		goto no_open;
1910 	}
1911 
1912 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1913 		return -ENAMETOOLONG;
1914 
1915 	if (open_flags & O_CREAT) {
1916 		struct nfs_server *server = NFS_SERVER(dir);
1917 
1918 		if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1919 			mode &= ~current_umask();
1920 
1921 		attr.ia_valid |= ATTR_MODE;
1922 		attr.ia_mode = mode;
1923 	}
1924 	if (open_flags & O_TRUNC) {
1925 		attr.ia_valid |= ATTR_SIZE;
1926 		attr.ia_size = 0;
1927 	}
1928 
1929 	if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1930 		d_drop(dentry);
1931 		switched = true;
1932 		dentry = d_alloc_parallel(dentry->d_parent,
1933 					  &dentry->d_name, &wq);
1934 		if (IS_ERR(dentry))
1935 			return PTR_ERR(dentry);
1936 		if (unlikely(!d_in_lookup(dentry)))
1937 			return finish_no_open(file, dentry);
1938 	}
1939 
1940 	ctx = create_nfs_open_context(dentry, open_flags, file);
1941 	err = PTR_ERR(ctx);
1942 	if (IS_ERR(ctx))
1943 		goto out;
1944 
1945 	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1946 	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
1947 	if (created)
1948 		file->f_mode |= FMODE_CREATED;
1949 	if (IS_ERR(inode)) {
1950 		err = PTR_ERR(inode);
1951 		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1952 		put_nfs_open_context(ctx);
1953 		d_drop(dentry);
1954 		switch (err) {
1955 		case -ENOENT:
1956 			d_splice_alias(NULL, dentry);
1957 			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1958 			break;
1959 		case -EISDIR:
1960 		case -ENOTDIR:
1961 			goto no_open;
1962 		case -ELOOP:
1963 			if (!(open_flags & O_NOFOLLOW))
1964 				goto no_open;
1965 			break;
1966 			/* case -EINVAL: */
1967 		default:
1968 			break;
1969 		}
1970 		goto out;
1971 	}
1972 
1973 	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
1974 	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1975 	put_nfs_open_context(ctx);
1976 out:
1977 	if (unlikely(switched)) {
1978 		d_lookup_done(dentry);
1979 		dput(dentry);
1980 	}
1981 	return err;
1982 
1983 no_open:
1984 	res = nfs_lookup(dir, dentry, lookup_flags);
1985 	if (!res) {
1986 		inode = d_inode(dentry);
1987 		if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
1988 		    !S_ISDIR(inode->i_mode))
1989 			res = ERR_PTR(-ENOTDIR);
1990 		else if (inode && S_ISREG(inode->i_mode))
1991 			res = ERR_PTR(-EOPENSTALE);
1992 	} else if (!IS_ERR(res)) {
1993 		inode = d_inode(res);
1994 		if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
1995 		    !S_ISDIR(inode->i_mode)) {
1996 			dput(res);
1997 			res = ERR_PTR(-ENOTDIR);
1998 		} else if (inode && S_ISREG(inode->i_mode)) {
1999 			dput(res);
2000 			res = ERR_PTR(-EOPENSTALE);
2001 		}
2002 	}
2003 	if (switched) {
2004 		d_lookup_done(dentry);
2005 		if (!res)
2006 			res = dentry;
2007 		else
2008 			dput(dentry);
2009 	}
2010 	if (IS_ERR(res))
2011 		return PTR_ERR(res);
2012 	return finish_no_open(file, res);
2013 }
2014 EXPORT_SYMBOL_GPL(nfs_atomic_open);
2015 
2016 static int
2017 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
2018 			  unsigned int flags)
2019 {
2020 	struct inode *inode;
2021 
2022 	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
2023 		goto full_reval;
2024 	if (d_mountpoint(dentry))
2025 		goto full_reval;
2026 
2027 	inode = d_inode(dentry);
2028 
2029 	/* We can't create new files in nfs_open_revalidate(), so we
2030 	 * optimize away revalidation of negative dentries.
2031 	 */
2032 	if (inode == NULL)
2033 		goto full_reval;
2034 
2035 	if (nfs_verifier_is_delegated(dentry))
2036 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
2037 
2038 	/* NFS only supports OPEN on regular files */
2039 	if (!S_ISREG(inode->i_mode))
2040 		goto full_reval;
2041 
2042 	/* We cannot do exclusive creation on a positive dentry */
2043 	if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
2044 		goto reval_dentry;
2045 
2046 	/* Check if the directory changed */
2047 	if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
2048 		goto reval_dentry;
2049 
2050 	/* Let f_op->open() actually open (and revalidate) the file */
2051 	return 1;
2052 reval_dentry:
2053 	if (flags & LOOKUP_RCU)
2054 		return -ECHILD;
2055 	return nfs_lookup_revalidate_dentry(dir, dentry, inode);
2056 
2057 full_reval:
2058 	return nfs_do_lookup_revalidate(dir, dentry, flags);
2059 }
2060 
2061 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
2062 {
2063 	return __nfs_lookup_revalidate(dentry, flags,
2064 			nfs4_do_lookup_revalidate);
2065 }
2066 
2067 #endif /* CONFIG_NFSV4 */
2068 
2069 struct dentry *
2070 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
2071 				struct nfs_fattr *fattr,
2072 				struct nfs4_label *label)
2073 {
2074 	struct dentry *parent = dget_parent(dentry);
2075 	struct inode *dir = d_inode(parent);
2076 	struct inode *inode;
2077 	struct dentry *d;
2078 	int error;
2079 
2080 	d_drop(dentry);
2081 
2082 	if (fhandle->size == 0) {
2083 		error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, NULL);
2084 		if (error)
2085 			goto out_error;
2086 	}
2087 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2088 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
2089 		struct nfs_server *server = NFS_SB(dentry->d_sb);
2090 		error = server->nfs_client->rpc_ops->getattr(server, fhandle,
2091 				fattr, NULL, NULL);
2092 		if (error < 0)
2093 			goto out_error;
2094 	}
2095 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
2096 	d = d_splice_alias(inode, dentry);
2097 out:
2098 	dput(parent);
2099 	return d;
2100 out_error:
2101 	d = ERR_PTR(error);
2102 	goto out;
2103 }
2104 EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
2105 
2106 /*
2107  * Code common to create, mkdir, and mknod.
2108  */
2109 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
2110 				struct nfs_fattr *fattr,
2111 				struct nfs4_label *label)
2112 {
2113 	struct dentry *d;
2114 
2115 	d = nfs_add_or_obtain(dentry, fhandle, fattr, label);
2116 	if (IS_ERR(d))
2117 		return PTR_ERR(d);
2118 
2119 	/* Callers don't care */
2120 	dput(d);
2121 	return 0;
2122 }
2123 EXPORT_SYMBOL_GPL(nfs_instantiate);
2124 
2125 /*
2126  * Following a failed create operation, we drop the dentry rather
2127  * than retain a negative dentry. This avoids a problem in the event
2128  * that the operation succeeded on the server, but an error in the
2129  * reply path made it appear to have failed.
2130  */
2131 int nfs_create(struct user_namespace *mnt_userns, struct inode *dir,
2132 	       struct dentry *dentry, umode_t mode, bool excl)
2133 {
2134 	struct iattr attr;
2135 	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
2136 	int error;
2137 
2138 	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
2139 			dir->i_sb->s_id, dir->i_ino, dentry);
2140 
2141 	attr.ia_mode = mode;
2142 	attr.ia_valid = ATTR_MODE;
2143 
2144 	trace_nfs_create_enter(dir, dentry, open_flags);
2145 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
2146 	trace_nfs_create_exit(dir, dentry, open_flags, error);
2147 	if (error != 0)
2148 		goto out_err;
2149 	return 0;
2150 out_err:
2151 	d_drop(dentry);
2152 	return error;
2153 }
2154 EXPORT_SYMBOL_GPL(nfs_create);
2155 
2156 /*
2157  * See comments for nfs_proc_create regarding failed operations.
2158  */
2159 int
2160 nfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2161 	  struct dentry *dentry, umode_t mode, dev_t rdev)
2162 {
2163 	struct iattr attr;
2164 	int status;
2165 
2166 	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
2167 			dir->i_sb->s_id, dir->i_ino, dentry);
2168 
2169 	attr.ia_mode = mode;
2170 	attr.ia_valid = ATTR_MODE;
2171 
2172 	trace_nfs_mknod_enter(dir, dentry);
2173 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
2174 	trace_nfs_mknod_exit(dir, dentry, status);
2175 	if (status != 0)
2176 		goto out_err;
2177 	return 0;
2178 out_err:
2179 	d_drop(dentry);
2180 	return status;
2181 }
2182 EXPORT_SYMBOL_GPL(nfs_mknod);
2183 
2184 /*
2185  * See comments for nfs_proc_create regarding failed operations.
2186  */
2187 int nfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2188 	      struct dentry *dentry, umode_t mode)
2189 {
2190 	struct iattr attr;
2191 	int error;
2192 
2193 	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
2194 			dir->i_sb->s_id, dir->i_ino, dentry);
2195 
2196 	attr.ia_valid = ATTR_MODE;
2197 	attr.ia_mode = mode | S_IFDIR;
2198 
2199 	trace_nfs_mkdir_enter(dir, dentry);
2200 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
2201 	trace_nfs_mkdir_exit(dir, dentry, error);
2202 	if (error != 0)
2203 		goto out_err;
2204 	return 0;
2205 out_err:
2206 	d_drop(dentry);
2207 	return error;
2208 }
2209 EXPORT_SYMBOL_GPL(nfs_mkdir);
2210 
2211 static void nfs_dentry_handle_enoent(struct dentry *dentry)
2212 {
2213 	if (simple_positive(dentry))
2214 		d_delete(dentry);
2215 }
2216 
2217 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
2218 {
2219 	int error;
2220 
2221 	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
2222 			dir->i_sb->s_id, dir->i_ino, dentry);
2223 
2224 	trace_nfs_rmdir_enter(dir, dentry);
2225 	if (d_really_is_positive(dentry)) {
2226 		down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2227 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2228 		/* Ensure the VFS deletes this inode */
2229 		switch (error) {
2230 		case 0:
2231 			clear_nlink(d_inode(dentry));
2232 			break;
2233 		case -ENOENT:
2234 			nfs_dentry_handle_enoent(dentry);
2235 		}
2236 		up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2237 	} else
2238 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2239 	trace_nfs_rmdir_exit(dir, dentry, error);
2240 
2241 	return error;
2242 }
2243 EXPORT_SYMBOL_GPL(nfs_rmdir);
2244 
2245 /*
2246  * Remove a file after making sure there are no pending writes,
2247  * and after checking that the file has only one user.
2248  *
2249  * We invalidate the attribute cache and free the inode prior to the operation
2250  * to avoid possible races if the server reuses the inode.
2251  */
2252 static int nfs_safe_remove(struct dentry *dentry)
2253 {
2254 	struct inode *dir = d_inode(dentry->d_parent);
2255 	struct inode *inode = d_inode(dentry);
2256 	int error = -EBUSY;
2257 
2258 	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2259 
2260 	/* If the dentry was sillyrenamed, we simply call d_delete() */
2261 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2262 		error = 0;
2263 		goto out;
2264 	}
2265 
2266 	trace_nfs_remove_enter(dir, dentry);
2267 	if (inode != NULL) {
2268 		error = NFS_PROTO(dir)->remove(dir, dentry);
2269 		if (error == 0)
2270 			nfs_drop_nlink(inode);
2271 	} else
2272 		error = NFS_PROTO(dir)->remove(dir, dentry);
2273 	if (error == -ENOENT)
2274 		nfs_dentry_handle_enoent(dentry);
2275 	trace_nfs_remove_exit(dir, dentry, error);
2276 out:
2277 	return error;
2278 }
2279 
2280 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
2281  *  belongs to an active ".nfs..." file and we return -EBUSY.
2282  *
2283  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
2284  */
2285 int nfs_unlink(struct inode *dir, struct dentry *dentry)
2286 {
2287 	int error;
2288 	int need_rehash = 0;
2289 
2290 	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2291 		dir->i_ino, dentry);
2292 
2293 	trace_nfs_unlink_enter(dir, dentry);
2294 	spin_lock(&dentry->d_lock);
2295 	if (d_count(dentry) > 1) {
2296 		spin_unlock(&dentry->d_lock);
2297 		/* Start asynchronous writeout of the inode */
2298 		write_inode_now(d_inode(dentry), 0);
2299 		error = nfs_sillyrename(dir, dentry);
2300 		goto out;
2301 	}
2302 	if (!d_unhashed(dentry)) {
2303 		__d_drop(dentry);
2304 		need_rehash = 1;
2305 	}
2306 	spin_unlock(&dentry->d_lock);
2307 	error = nfs_safe_remove(dentry);
2308 	if (!error || error == -ENOENT) {
2309 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2310 	} else if (need_rehash)
2311 		d_rehash(dentry);
2312 out:
2313 	trace_nfs_unlink_exit(dir, dentry, error);
2314 	return error;
2315 }
2316 EXPORT_SYMBOL_GPL(nfs_unlink);
2317 
2318 /*
2319  * To create a symbolic link, most file systems instantiate a new inode,
2320  * add a page to it containing the path, then write it out to the disk
2321  * using prepare_write/commit_write.
2322  *
2323  * Unfortunately the NFS client can't create the in-core inode first
2324  * because it needs a file handle to create an in-core inode (see
2325  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
2326  * symlink request has completed on the server.
2327  *
2328  * So instead we allocate a raw page, copy the symname into it, then do
2329  * the SYMLINK request with the page as the buffer.  If it succeeds, we
2330  * now have a new file handle and can instantiate an in-core NFS inode
2331  * and move the raw page into its mapping.
2332  */
2333 int nfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
2334 		struct dentry *dentry, const char *symname)
2335 {
2336 	struct page *page;
2337 	char *kaddr;
2338 	struct iattr attr;
2339 	unsigned int pathlen = strlen(symname);
2340 	int error;
2341 
2342 	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2343 		dir->i_ino, dentry, symname);
2344 
2345 	if (pathlen > PAGE_SIZE)
2346 		return -ENAMETOOLONG;
2347 
2348 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
2349 	attr.ia_valid = ATTR_MODE;
2350 
2351 	page = alloc_page(GFP_USER);
2352 	if (!page)
2353 		return -ENOMEM;
2354 
2355 	kaddr = page_address(page);
2356 	memcpy(kaddr, symname, pathlen);
2357 	if (pathlen < PAGE_SIZE)
2358 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2359 
2360 	trace_nfs_symlink_enter(dir, dentry);
2361 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
2362 	trace_nfs_symlink_exit(dir, dentry, error);
2363 	if (error != 0) {
2364 		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2365 			dir->i_sb->s_id, dir->i_ino,
2366 			dentry, symname, error);
2367 		d_drop(dentry);
2368 		__free_page(page);
2369 		return error;
2370 	}
2371 
2372 	/*
2373 	 * No big deal if we can't add this page to the page cache here.
2374 	 * READLINK will get the missing page from the server if needed.
2375 	 */
2376 	if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2377 							GFP_KERNEL)) {
2378 		SetPageUptodate(page);
2379 		unlock_page(page);
2380 		/*
2381 		 * add_to_page_cache_lru() grabs an extra page refcount.
2382 		 * Drop it here to avoid leaking this page later.
2383 		 */
2384 		put_page(page);
2385 	} else
2386 		__free_page(page);
2387 
2388 	return 0;
2389 }
2390 EXPORT_SYMBOL_GPL(nfs_symlink);
2391 
2392 int
2393 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2394 {
2395 	struct inode *inode = d_inode(old_dentry);
2396 	int error;
2397 
2398 	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2399 		old_dentry, dentry);
2400 
2401 	trace_nfs_link_enter(inode, dir, dentry);
2402 	d_drop(dentry);
2403 	if (S_ISREG(inode->i_mode))
2404 		nfs_sync_inode(inode);
2405 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2406 	if (error == 0) {
2407 		ihold(inode);
2408 		d_add(dentry, inode);
2409 	}
2410 	trace_nfs_link_exit(inode, dir, dentry, error);
2411 	return error;
2412 }
2413 EXPORT_SYMBOL_GPL(nfs_link);
2414 
2415 /*
2416  * RENAME
2417  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2418  * different file handle for the same inode after a rename (e.g. when
2419  * moving to a different directory). A fail-safe method to do so would
2420  * be to look up old_dir/old_name, create a link to new_dir/new_name and
2421  * rename the old file using the sillyrename stuff. This way, the original
2422  * file in old_dir will go away when the last process iput()s the inode.
2423  *
2424  * FIXED.
2425  *
2426  * It actually works quite well. One needs to have the possibility for
2427  * at least one ".nfs..." file in each directory the file ever gets
2428  * moved or linked to which happens automagically with the new
2429  * implementation that only depends on the dcache stuff instead of
2430  * using the inode layer
2431  *
2432  * Unfortunately, things are a little more complicated than indicated
2433  * above. For a cross-directory move, we want to make sure we can get
2434  * rid of the old inode after the operation.  This means there must be
2435  * no pending writes (if it's a file), and the use count must be 1.
2436  * If these conditions are met, we can drop the dentries before doing
2437  * the rename.
2438  */
2439 int nfs_rename(struct user_namespace *mnt_userns, struct inode *old_dir,
2440 	       struct dentry *old_dentry, struct inode *new_dir,
2441 	       struct dentry *new_dentry, unsigned int flags)
2442 {
2443 	struct inode *old_inode = d_inode(old_dentry);
2444 	struct inode *new_inode = d_inode(new_dentry);
2445 	struct dentry *dentry = NULL, *rehash = NULL;
2446 	struct rpc_task *task;
2447 	int error = -EBUSY;
2448 
2449 	if (flags)
2450 		return -EINVAL;
2451 
2452 	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2453 		 old_dentry, new_dentry,
2454 		 d_count(new_dentry));
2455 
2456 	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2457 	/*
2458 	 * For non-directories, check whether the target is busy and if so,
2459 	 * make a copy of the dentry and then do a silly-rename. If the
2460 	 * silly-rename succeeds, the copied dentry is hashed and becomes
2461 	 * the new target.
2462 	 */
2463 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2464 		/*
2465 		 * To prevent any new references to the target during the
2466 		 * rename, we unhash the dentry in advance.
2467 		 */
2468 		if (!d_unhashed(new_dentry)) {
2469 			d_drop(new_dentry);
2470 			rehash = new_dentry;
2471 		}
2472 
2473 		if (d_count(new_dentry) > 2) {
2474 			int err;
2475 
2476 			/* copy the target dentry's name */
2477 			dentry = d_alloc(new_dentry->d_parent,
2478 					 &new_dentry->d_name);
2479 			if (!dentry)
2480 				goto out;
2481 
2482 			/* silly-rename the existing target ... */
2483 			err = nfs_sillyrename(new_dir, new_dentry);
2484 			if (err)
2485 				goto out;
2486 
2487 			new_dentry = dentry;
2488 			rehash = NULL;
2489 			new_inode = NULL;
2490 		}
2491 	}
2492 
2493 	if (S_ISREG(old_inode->i_mode))
2494 		nfs_sync_inode(old_inode);
2495 	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2496 	if (IS_ERR(task)) {
2497 		error = PTR_ERR(task);
2498 		goto out;
2499 	}
2500 
2501 	error = rpc_wait_for_completion_task(task);
2502 	if (error != 0) {
2503 		((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2504 		/* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2505 		smp_wmb();
2506 	} else
2507 		error = task->tk_status;
2508 	rpc_put_task(task);
2509 	/* Ensure the inode attributes are revalidated */
2510 	if (error == 0) {
2511 		spin_lock(&old_inode->i_lock);
2512 		NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2513 		nfs_set_cache_invalid(old_inode, NFS_INO_INVALID_CHANGE |
2514 							 NFS_INO_INVALID_CTIME |
2515 							 NFS_INO_REVAL_FORCED);
2516 		spin_unlock(&old_inode->i_lock);
2517 	}
2518 out:
2519 	if (rehash)
2520 		d_rehash(rehash);
2521 	trace_nfs_rename_exit(old_dir, old_dentry,
2522 			new_dir, new_dentry, error);
2523 	if (!error) {
2524 		if (new_inode != NULL)
2525 			nfs_drop_nlink(new_inode);
2526 		/*
2527 		 * The d_move() should be here instead of in an async RPC completion
2528 		 * handler because we need the proper locks to move the dentry.  If
2529 		 * we're interrupted by a signal, the async RPC completion handler
2530 		 * should mark the directories for revalidation.
2531 		 */
2532 		d_move(old_dentry, new_dentry);
2533 		nfs_set_verifier(old_dentry,
2534 					nfs_save_change_attribute(new_dir));
2535 	} else if (error == -ENOENT)
2536 		nfs_dentry_handle_enoent(old_dentry);
2537 
2538 	/* new dentry created? */
2539 	if (dentry)
2540 		dput(dentry);
2541 	return error;
2542 }
2543 EXPORT_SYMBOL_GPL(nfs_rename);
2544 
2545 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2546 static LIST_HEAD(nfs_access_lru_list);
2547 static atomic_long_t nfs_access_nr_entries;
2548 
2549 static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2550 module_param(nfs_access_max_cachesize, ulong, 0644);
2551 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2552 
2553 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2554 {
2555 	put_cred(entry->cred);
2556 	kfree_rcu(entry, rcu_head);
2557 	smp_mb__before_atomic();
2558 	atomic_long_dec(&nfs_access_nr_entries);
2559 	smp_mb__after_atomic();
2560 }
2561 
2562 static void nfs_access_free_list(struct list_head *head)
2563 {
2564 	struct nfs_access_entry *cache;
2565 
2566 	while (!list_empty(head)) {
2567 		cache = list_entry(head->next, struct nfs_access_entry, lru);
2568 		list_del(&cache->lru);
2569 		nfs_access_free_entry(cache);
2570 	}
2571 }
2572 
2573 static unsigned long
2574 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2575 {
2576 	LIST_HEAD(head);
2577 	struct nfs_inode *nfsi, *next;
2578 	struct nfs_access_entry *cache;
2579 	long freed = 0;
2580 
2581 	spin_lock(&nfs_access_lru_lock);
2582 	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2583 		struct inode *inode;
2584 
2585 		if (nr_to_scan-- == 0)
2586 			break;
2587 		inode = &nfsi->vfs_inode;
2588 		spin_lock(&inode->i_lock);
2589 		if (list_empty(&nfsi->access_cache_entry_lru))
2590 			goto remove_lru_entry;
2591 		cache = list_entry(nfsi->access_cache_entry_lru.next,
2592 				struct nfs_access_entry, lru);
2593 		list_move(&cache->lru, &head);
2594 		rb_erase(&cache->rb_node, &nfsi->access_cache);
2595 		freed++;
2596 		if (!list_empty(&nfsi->access_cache_entry_lru))
2597 			list_move_tail(&nfsi->access_cache_inode_lru,
2598 					&nfs_access_lru_list);
2599 		else {
2600 remove_lru_entry:
2601 			list_del_init(&nfsi->access_cache_inode_lru);
2602 			smp_mb__before_atomic();
2603 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2604 			smp_mb__after_atomic();
2605 		}
2606 		spin_unlock(&inode->i_lock);
2607 	}
2608 	spin_unlock(&nfs_access_lru_lock);
2609 	nfs_access_free_list(&head);
2610 	return freed;
2611 }
2612 
2613 unsigned long
2614 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2615 {
2616 	int nr_to_scan = sc->nr_to_scan;
2617 	gfp_t gfp_mask = sc->gfp_mask;
2618 
2619 	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2620 		return SHRINK_STOP;
2621 	return nfs_do_access_cache_scan(nr_to_scan);
2622 }
2623 
2624 
2625 unsigned long
2626 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2627 {
2628 	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2629 }
2630 
2631 static void
2632 nfs_access_cache_enforce_limit(void)
2633 {
2634 	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2635 	unsigned long diff;
2636 	unsigned int nr_to_scan;
2637 
2638 	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2639 		return;
2640 	nr_to_scan = 100;
2641 	diff = nr_entries - nfs_access_max_cachesize;
2642 	if (diff < nr_to_scan)
2643 		nr_to_scan = diff;
2644 	nfs_do_access_cache_scan(nr_to_scan);
2645 }
2646 
2647 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2648 {
2649 	struct rb_root *root_node = &nfsi->access_cache;
2650 	struct rb_node *n;
2651 	struct nfs_access_entry *entry;
2652 
2653 	/* Unhook entries from the cache */
2654 	while ((n = rb_first(root_node)) != NULL) {
2655 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2656 		rb_erase(n, root_node);
2657 		list_move(&entry->lru, head);
2658 	}
2659 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2660 }
2661 
2662 void nfs_access_zap_cache(struct inode *inode)
2663 {
2664 	LIST_HEAD(head);
2665 
2666 	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2667 		return;
2668 	/* Remove from global LRU init */
2669 	spin_lock(&nfs_access_lru_lock);
2670 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2671 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2672 
2673 	spin_lock(&inode->i_lock);
2674 	__nfs_access_zap_cache(NFS_I(inode), &head);
2675 	spin_unlock(&inode->i_lock);
2676 	spin_unlock(&nfs_access_lru_lock);
2677 	nfs_access_free_list(&head);
2678 }
2679 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2680 
2681 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2682 {
2683 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2684 
2685 	while (n != NULL) {
2686 		struct nfs_access_entry *entry =
2687 			rb_entry(n, struct nfs_access_entry, rb_node);
2688 		int cmp = cred_fscmp(cred, entry->cred);
2689 
2690 		if (cmp < 0)
2691 			n = n->rb_left;
2692 		else if (cmp > 0)
2693 			n = n->rb_right;
2694 		else
2695 			return entry;
2696 	}
2697 	return NULL;
2698 }
2699 
2700 static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res, bool may_block)
2701 {
2702 	struct nfs_inode *nfsi = NFS_I(inode);
2703 	struct nfs_access_entry *cache;
2704 	bool retry = true;
2705 	int err;
2706 
2707 	spin_lock(&inode->i_lock);
2708 	for(;;) {
2709 		if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2710 			goto out_zap;
2711 		cache = nfs_access_search_rbtree(inode, cred);
2712 		err = -ENOENT;
2713 		if (cache == NULL)
2714 			goto out;
2715 		/* Found an entry, is our attribute cache valid? */
2716 		if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2717 			break;
2718 		if (!retry)
2719 			break;
2720 		err = -ECHILD;
2721 		if (!may_block)
2722 			goto out;
2723 		spin_unlock(&inode->i_lock);
2724 		err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2725 		if (err)
2726 			return err;
2727 		spin_lock(&inode->i_lock);
2728 		retry = false;
2729 	}
2730 	res->cred = cache->cred;
2731 	res->mask = cache->mask;
2732 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2733 	err = 0;
2734 out:
2735 	spin_unlock(&inode->i_lock);
2736 	return err;
2737 out_zap:
2738 	spin_unlock(&inode->i_lock);
2739 	nfs_access_zap_cache(inode);
2740 	return -ENOENT;
2741 }
2742 
2743 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res)
2744 {
2745 	/* Only check the most recently returned cache entry,
2746 	 * but do it without locking.
2747 	 */
2748 	struct nfs_inode *nfsi = NFS_I(inode);
2749 	struct nfs_access_entry *cache;
2750 	int err = -ECHILD;
2751 	struct list_head *lh;
2752 
2753 	rcu_read_lock();
2754 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2755 		goto out;
2756 	lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
2757 	cache = list_entry(lh, struct nfs_access_entry, lru);
2758 	if (lh == &nfsi->access_cache_entry_lru ||
2759 	    cred_fscmp(cred, cache->cred) != 0)
2760 		cache = NULL;
2761 	if (cache == NULL)
2762 		goto out;
2763 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2764 		goto out;
2765 	res->cred = cache->cred;
2766 	res->mask = cache->mask;
2767 	err = 0;
2768 out:
2769 	rcu_read_unlock();
2770 	return err;
2771 }
2772 
2773 int nfs_access_get_cached(struct inode *inode, const struct cred *cred, struct
2774 nfs_access_entry *res, bool may_block)
2775 {
2776 	int status;
2777 
2778 	status = nfs_access_get_cached_rcu(inode, cred, res);
2779 	if (status != 0)
2780 		status = nfs_access_get_cached_locked(inode, cred, res,
2781 		    may_block);
2782 
2783 	return status;
2784 }
2785 EXPORT_SYMBOL_GPL(nfs_access_get_cached);
2786 
2787 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2788 {
2789 	struct nfs_inode *nfsi = NFS_I(inode);
2790 	struct rb_root *root_node = &nfsi->access_cache;
2791 	struct rb_node **p = &root_node->rb_node;
2792 	struct rb_node *parent = NULL;
2793 	struct nfs_access_entry *entry;
2794 	int cmp;
2795 
2796 	spin_lock(&inode->i_lock);
2797 	while (*p != NULL) {
2798 		parent = *p;
2799 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2800 		cmp = cred_fscmp(set->cred, entry->cred);
2801 
2802 		if (cmp < 0)
2803 			p = &parent->rb_left;
2804 		else if (cmp > 0)
2805 			p = &parent->rb_right;
2806 		else
2807 			goto found;
2808 	}
2809 	rb_link_node(&set->rb_node, parent, p);
2810 	rb_insert_color(&set->rb_node, root_node);
2811 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2812 	spin_unlock(&inode->i_lock);
2813 	return;
2814 found:
2815 	rb_replace_node(parent, &set->rb_node, root_node);
2816 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2817 	list_del(&entry->lru);
2818 	spin_unlock(&inode->i_lock);
2819 	nfs_access_free_entry(entry);
2820 }
2821 
2822 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2823 {
2824 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2825 	if (cache == NULL)
2826 		return;
2827 	RB_CLEAR_NODE(&cache->rb_node);
2828 	cache->cred = get_cred(set->cred);
2829 	cache->mask = set->mask;
2830 
2831 	/* The above field assignments must be visible
2832 	 * before this item appears on the lru.  We cannot easily
2833 	 * use rcu_assign_pointer, so just force the memory barrier.
2834 	 */
2835 	smp_wmb();
2836 	nfs_access_add_rbtree(inode, cache);
2837 
2838 	/* Update accounting */
2839 	smp_mb__before_atomic();
2840 	atomic_long_inc(&nfs_access_nr_entries);
2841 	smp_mb__after_atomic();
2842 
2843 	/* Add inode to global LRU list */
2844 	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2845 		spin_lock(&nfs_access_lru_lock);
2846 		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2847 			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2848 					&nfs_access_lru_list);
2849 		spin_unlock(&nfs_access_lru_lock);
2850 	}
2851 	nfs_access_cache_enforce_limit();
2852 }
2853 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2854 
2855 #define NFS_MAY_READ (NFS_ACCESS_READ)
2856 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2857 		NFS_ACCESS_EXTEND | \
2858 		NFS_ACCESS_DELETE)
2859 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2860 		NFS_ACCESS_EXTEND)
2861 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2862 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2863 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2864 static int
2865 nfs_access_calc_mask(u32 access_result, umode_t umode)
2866 {
2867 	int mask = 0;
2868 
2869 	if (access_result & NFS_MAY_READ)
2870 		mask |= MAY_READ;
2871 	if (S_ISDIR(umode)) {
2872 		if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
2873 			mask |= MAY_WRITE;
2874 		if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
2875 			mask |= MAY_EXEC;
2876 	} else if (S_ISREG(umode)) {
2877 		if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
2878 			mask |= MAY_WRITE;
2879 		if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
2880 			mask |= MAY_EXEC;
2881 	} else if (access_result & NFS_MAY_WRITE)
2882 			mask |= MAY_WRITE;
2883 	return mask;
2884 }
2885 
2886 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2887 {
2888 	entry->mask = access_result;
2889 }
2890 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2891 
2892 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
2893 {
2894 	struct nfs_access_entry cache;
2895 	bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2896 	int cache_mask = -1;
2897 	int status;
2898 
2899 	trace_nfs_access_enter(inode);
2900 
2901 	status = nfs_access_get_cached(inode, cred, &cache, may_block);
2902 	if (status == 0)
2903 		goto out_cached;
2904 
2905 	status = -ECHILD;
2906 	if (!may_block)
2907 		goto out;
2908 
2909 	/*
2910 	 * Determine which access bits we want to ask for...
2911 	 */
2912 	cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND;
2913 	if (nfs_server_capable(inode, NFS_CAP_XATTR)) {
2914 		cache.mask |= NFS_ACCESS_XAREAD | NFS_ACCESS_XAWRITE |
2915 		    NFS_ACCESS_XALIST;
2916 	}
2917 	if (S_ISDIR(inode->i_mode))
2918 		cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
2919 	else
2920 		cache.mask |= NFS_ACCESS_EXECUTE;
2921 	cache.cred = cred;
2922 	status = NFS_PROTO(inode)->access(inode, &cache);
2923 	if (status != 0) {
2924 		if (status == -ESTALE) {
2925 			if (!S_ISDIR(inode->i_mode))
2926 				nfs_set_inode_stale(inode);
2927 			else
2928 				nfs_zap_caches(inode);
2929 		}
2930 		goto out;
2931 	}
2932 	nfs_access_add_cache(inode, &cache);
2933 out_cached:
2934 	cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
2935 	if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2936 		status = -EACCES;
2937 out:
2938 	trace_nfs_access_exit(inode, mask, cache_mask, status);
2939 	return status;
2940 }
2941 
2942 static int nfs_open_permission_mask(int openflags)
2943 {
2944 	int mask = 0;
2945 
2946 	if (openflags & __FMODE_EXEC) {
2947 		/* ONLY check exec rights */
2948 		mask = MAY_EXEC;
2949 	} else {
2950 		if ((openflags & O_ACCMODE) != O_WRONLY)
2951 			mask |= MAY_READ;
2952 		if ((openflags & O_ACCMODE) != O_RDONLY)
2953 			mask |= MAY_WRITE;
2954 	}
2955 
2956 	return mask;
2957 }
2958 
2959 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
2960 {
2961 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2962 }
2963 EXPORT_SYMBOL_GPL(nfs_may_open);
2964 
2965 static int nfs_execute_ok(struct inode *inode, int mask)
2966 {
2967 	struct nfs_server *server = NFS_SERVER(inode);
2968 	int ret = 0;
2969 
2970 	if (S_ISDIR(inode->i_mode))
2971 		return 0;
2972 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_MODE)) {
2973 		if (mask & MAY_NOT_BLOCK)
2974 			return -ECHILD;
2975 		ret = __nfs_revalidate_inode(server, inode);
2976 	}
2977 	if (ret == 0 && !execute_ok(inode))
2978 		ret = -EACCES;
2979 	return ret;
2980 }
2981 
2982 int nfs_permission(struct user_namespace *mnt_userns,
2983 		   struct inode *inode,
2984 		   int mask)
2985 {
2986 	const struct cred *cred = current_cred();
2987 	int res = 0;
2988 
2989 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2990 
2991 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2992 		goto out;
2993 	/* Is this sys_access() ? */
2994 	if (mask & (MAY_ACCESS | MAY_CHDIR))
2995 		goto force_lookup;
2996 
2997 	switch (inode->i_mode & S_IFMT) {
2998 		case S_IFLNK:
2999 			goto out;
3000 		case S_IFREG:
3001 			if ((mask & MAY_OPEN) &&
3002 			   nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
3003 				return 0;
3004 			break;
3005 		case S_IFDIR:
3006 			/*
3007 			 * Optimize away all write operations, since the server
3008 			 * will check permissions when we perform the op.
3009 			 */
3010 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
3011 				goto out;
3012 	}
3013 
3014 force_lookup:
3015 	if (!NFS_PROTO(inode)->access)
3016 		goto out_notsup;
3017 
3018 	res = nfs_do_access(inode, cred, mask);
3019 out:
3020 	if (!res && (mask & MAY_EXEC))
3021 		res = nfs_execute_ok(inode, mask);
3022 
3023 	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
3024 		inode->i_sb->s_id, inode->i_ino, mask, res);
3025 	return res;
3026 out_notsup:
3027 	if (mask & MAY_NOT_BLOCK)
3028 		return -ECHILD;
3029 
3030 	res = nfs_revalidate_inode(inode, NFS_INO_INVALID_MODE |
3031 						  NFS_INO_INVALID_OTHER);
3032 	if (res == 0)
3033 		res = generic_permission(&init_user_ns, inode, mask);
3034 	goto out;
3035 }
3036 EXPORT_SYMBOL_GPL(nfs_permission);
3037