xref: /openbmc/linux/fs/nfs/dir.c (revision e762a639)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/nfs/dir.c
4  *
5  *  Copyright (C) 1992  Rick Sladkey
6  *
7  *  nfs directory handling functions
8  *
9  * 10 Apr 1996	Added silly rename for unlink	--okir
10  * 28 Sep 1996	Improved directory cache --okir
11  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
12  *              Re-implemented silly rename for unlink, newly implemented
13  *              silly rename for nfs_rename() following the suggestions
14  *              of Olaf Kirch (okir) found in this file.
15  *              Following Linus comments on my original hack, this version
16  *              depends only on the dcache stuff and doesn't touch the inode
17  *              layer (iput() and friends).
18  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
19  */
20 
21 #include <linux/module.h>
22 #include <linux/time.h>
23 #include <linux/errno.h>
24 #include <linux/stat.h>
25 #include <linux/fcntl.h>
26 #include <linux/string.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/mm.h>
30 #include <linux/sunrpc/clnt.h>
31 #include <linux/nfs_fs.h>
32 #include <linux/nfs_mount.h>
33 #include <linux/pagemap.h>
34 #include <linux/pagevec.h>
35 #include <linux/namei.h>
36 #include <linux/mount.h>
37 #include <linux/swap.h>
38 #include <linux/sched.h>
39 #include <linux/kmemleak.h>
40 #include <linux/xattr.h>
41 
42 #include "delegation.h"
43 #include "iostat.h"
44 #include "internal.h"
45 #include "fscache.h"
46 
47 #include "nfstrace.h"
48 
49 /* #define NFS_DEBUG_VERBOSE 1 */
50 
51 static int nfs_opendir(struct inode *, struct file *);
52 static int nfs_closedir(struct inode *, struct file *);
53 static int nfs_readdir(struct file *, struct dir_context *);
54 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
55 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
56 static void nfs_readdir_clear_array(struct page*);
57 
58 const struct file_operations nfs_dir_operations = {
59 	.llseek		= nfs_llseek_dir,
60 	.read		= generic_read_dir,
61 	.iterate_shared	= nfs_readdir,
62 	.open		= nfs_opendir,
63 	.release	= nfs_closedir,
64 	.fsync		= nfs_fsync_dir,
65 };
66 
67 const struct address_space_operations nfs_dir_aops = {
68 	.freepage = nfs_readdir_clear_array,
69 };
70 
71 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, const struct cred *cred)
72 {
73 	struct nfs_inode *nfsi = NFS_I(dir);
74 	struct nfs_open_dir_context *ctx;
75 	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
76 	if (ctx != NULL) {
77 		ctx->duped = 0;
78 		ctx->attr_gencount = nfsi->attr_gencount;
79 		ctx->dir_cookie = 0;
80 		ctx->dup_cookie = 0;
81 		ctx->cred = get_cred(cred);
82 		spin_lock(&dir->i_lock);
83 		if (list_empty(&nfsi->open_files) &&
84 		    (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
85 			nfsi->cache_validity |= NFS_INO_INVALID_DATA |
86 				NFS_INO_REVAL_FORCED;
87 		list_add(&ctx->list, &nfsi->open_files);
88 		spin_unlock(&dir->i_lock);
89 		return ctx;
90 	}
91 	return  ERR_PTR(-ENOMEM);
92 }
93 
94 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
95 {
96 	spin_lock(&dir->i_lock);
97 	list_del(&ctx->list);
98 	spin_unlock(&dir->i_lock);
99 	put_cred(ctx->cred);
100 	kfree(ctx);
101 }
102 
103 /*
104  * Open file
105  */
106 static int
107 nfs_opendir(struct inode *inode, struct file *filp)
108 {
109 	int res = 0;
110 	struct nfs_open_dir_context *ctx;
111 
112 	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
113 
114 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
115 
116 	ctx = alloc_nfs_open_dir_context(inode, current_cred());
117 	if (IS_ERR(ctx)) {
118 		res = PTR_ERR(ctx);
119 		goto out;
120 	}
121 	filp->private_data = ctx;
122 out:
123 	return res;
124 }
125 
126 static int
127 nfs_closedir(struct inode *inode, struct file *filp)
128 {
129 	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
130 	return 0;
131 }
132 
133 struct nfs_cache_array_entry {
134 	u64 cookie;
135 	u64 ino;
136 	struct qstr string;
137 	unsigned char d_type;
138 };
139 
140 struct nfs_cache_array {
141 	u64 last_cookie;
142 	unsigned int size;
143 	unsigned char page_full : 1,
144 		      page_is_eof : 1;
145 	struct nfs_cache_array_entry array[];
146 };
147 
148 typedef struct nfs_readdir_descriptor {
149 	struct file	*file;
150 	struct page	*page;
151 	struct dir_context *ctx;
152 	pgoff_t		page_index;
153 	u64		dir_cookie;
154 	u64		last_cookie;
155 	u64		dup_cookie;
156 	loff_t		current_index;
157 	loff_t		prev_index;
158 
159 	unsigned long	dir_verifier;
160 	unsigned long	timestamp;
161 	unsigned long	gencount;
162 	unsigned long	attr_gencount;
163 	unsigned int	cache_entry_index;
164 	signed char duped;
165 	bool plus;
166 	bool eof;
167 } nfs_readdir_descriptor_t;
168 
169 static void nfs_readdir_array_init(struct nfs_cache_array *array)
170 {
171 	memset(array, 0, sizeof(struct nfs_cache_array));
172 }
173 
174 static void nfs_readdir_page_init_array(struct page *page, u64 last_cookie)
175 {
176 	struct nfs_cache_array *array;
177 
178 	array = kmap_atomic(page);
179 	nfs_readdir_array_init(array);
180 	array->last_cookie = last_cookie;
181 	kunmap_atomic(array);
182 }
183 
184 /*
185  * we are freeing strings created by nfs_add_to_readdir_array()
186  */
187 static
188 void nfs_readdir_clear_array(struct page *page)
189 {
190 	struct nfs_cache_array *array;
191 	int i;
192 
193 	array = kmap_atomic(page);
194 	for (i = 0; i < array->size; i++)
195 		kfree(array->array[i].string.name);
196 	nfs_readdir_array_init(array);
197 	kunmap_atomic(array);
198 }
199 
200 static void nfs_readdir_array_set_eof(struct nfs_cache_array *array)
201 {
202 	array->page_is_eof = 1;
203 	array->page_full = 1;
204 }
205 
206 static bool nfs_readdir_array_is_full(struct nfs_cache_array *array)
207 {
208 	return array->page_full;
209 }
210 
211 /*
212  * the caller is responsible for freeing qstr.name
213  * when called by nfs_readdir_add_to_array, the strings will be freed in
214  * nfs_clear_readdir_array()
215  */
216 static
217 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
218 {
219 	string->len = len;
220 	string->name = kmemdup_nul(name, len, GFP_KERNEL);
221 	if (string->name == NULL)
222 		return -ENOMEM;
223 	/*
224 	 * Avoid a kmemleak false positive. The pointer to the name is stored
225 	 * in a page cache page which kmemleak does not scan.
226 	 */
227 	kmemleak_not_leak(string->name);
228 	string->hash = full_name_hash(NULL, name, len);
229 	return 0;
230 }
231 
232 /*
233  * Check that the next array entry lies entirely within the page bounds
234  */
235 static int nfs_readdir_array_can_expand(struct nfs_cache_array *array)
236 {
237 	struct nfs_cache_array_entry *cache_entry;
238 
239 	if (array->page_full)
240 		return -ENOSPC;
241 	cache_entry = &array->array[array->size + 1];
242 	if ((char *)cache_entry - (char *)array > PAGE_SIZE) {
243 		array->page_full = 1;
244 		return -ENOSPC;
245 	}
246 	return 0;
247 }
248 
249 static
250 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
251 {
252 	struct nfs_cache_array *array = kmap(page);
253 	struct nfs_cache_array_entry *cache_entry;
254 	int ret;
255 
256 	ret = nfs_readdir_array_can_expand(array);
257 	if (ret)
258 		goto out;
259 
260 	cache_entry = &array->array[array->size];
261 	cache_entry->cookie = entry->prev_cookie;
262 	cache_entry->ino = entry->ino;
263 	cache_entry->d_type = entry->d_type;
264 	ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
265 	if (ret)
266 		goto out;
267 	array->last_cookie = entry->cookie;
268 	array->size++;
269 	if (entry->eof != 0)
270 		nfs_readdir_array_set_eof(array);
271 out:
272 	kunmap(page);
273 	return ret;
274 }
275 
276 static struct page *nfs_readdir_page_get_locked(struct address_space *mapping,
277 						pgoff_t index, u64 last_cookie)
278 {
279 	struct page *page;
280 
281 	page = grab_cache_page(mapping, index);
282 	if (page && !PageUptodate(page)) {
283 		nfs_readdir_page_init_array(page, last_cookie);
284 		if (invalidate_inode_pages2_range(mapping, index + 1, -1) < 0)
285 			nfs_zap_mapping(mapping->host, mapping);
286 		SetPageUptodate(page);
287 	}
288 
289 	return page;
290 }
291 
292 static u64 nfs_readdir_page_last_cookie(struct page *page)
293 {
294 	struct nfs_cache_array *array;
295 	u64 ret;
296 
297 	array = kmap_atomic(page);
298 	ret = array->last_cookie;
299 	kunmap_atomic(array);
300 	return ret;
301 }
302 
303 static bool nfs_readdir_page_needs_filling(struct page *page)
304 {
305 	struct nfs_cache_array *array;
306 	bool ret;
307 
308 	array = kmap_atomic(page);
309 	ret = !nfs_readdir_array_is_full(array);
310 	kunmap_atomic(array);
311 	return ret;
312 }
313 
314 static void nfs_readdir_page_set_eof(struct page *page)
315 {
316 	struct nfs_cache_array *array;
317 
318 	array = kmap_atomic(page);
319 	nfs_readdir_array_set_eof(array);
320 	kunmap_atomic(array);
321 }
322 
323 static void nfs_readdir_page_unlock_and_put(struct page *page)
324 {
325 	unlock_page(page);
326 	put_page(page);
327 }
328 
329 static struct page *nfs_readdir_page_get_next(struct address_space *mapping,
330 					      pgoff_t index, u64 cookie)
331 {
332 	struct page *page;
333 
334 	page = nfs_readdir_page_get_locked(mapping, index, cookie);
335 	if (page) {
336 		if (nfs_readdir_page_last_cookie(page) == cookie)
337 			return page;
338 		nfs_readdir_page_unlock_and_put(page);
339 	}
340 	return NULL;
341 }
342 
343 static inline
344 int is_32bit_api(void)
345 {
346 #ifdef CONFIG_COMPAT
347 	return in_compat_syscall();
348 #else
349 	return (BITS_PER_LONG == 32);
350 #endif
351 }
352 
353 static
354 bool nfs_readdir_use_cookie(const struct file *filp)
355 {
356 	if ((filp->f_mode & FMODE_32BITHASH) ||
357 	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
358 		return false;
359 	return true;
360 }
361 
362 static
363 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
364 {
365 	loff_t diff = desc->ctx->pos - desc->current_index;
366 	unsigned int index;
367 
368 	if (diff < 0)
369 		goto out_eof;
370 	if (diff >= array->size) {
371 		if (array->page_is_eof)
372 			goto out_eof;
373 		return -EAGAIN;
374 	}
375 
376 	index = (unsigned int)diff;
377 	desc->dir_cookie = array->array[index].cookie;
378 	desc->cache_entry_index = index;
379 	return 0;
380 out_eof:
381 	desc->eof = true;
382 	return -EBADCOOKIE;
383 }
384 
385 static bool
386 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
387 {
388 	if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
389 		return false;
390 	smp_rmb();
391 	return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
392 }
393 
394 static
395 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
396 {
397 	int i;
398 	loff_t new_pos;
399 	int status = -EAGAIN;
400 
401 	for (i = 0; i < array->size; i++) {
402 		if (array->array[i].cookie == desc->dir_cookie) {
403 			struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
404 
405 			new_pos = desc->current_index + i;
406 			if (desc->attr_gencount != nfsi->attr_gencount ||
407 			    !nfs_readdir_inode_mapping_valid(nfsi)) {
408 				desc->duped = 0;
409 				desc->attr_gencount = nfsi->attr_gencount;
410 			} else if (new_pos < desc->prev_index) {
411 				if (desc->duped > 0
412 				    && desc->dup_cookie == desc->dir_cookie) {
413 					if (printk_ratelimit()) {
414 						pr_notice("NFS: directory %pD2 contains a readdir loop."
415 								"Please contact your server vendor.  "
416 								"The file: %.*s has duplicate cookie %llu\n",
417 								desc->file, array->array[i].string.len,
418 								array->array[i].string.name, desc->dir_cookie);
419 					}
420 					status = -ELOOP;
421 					goto out;
422 				}
423 				desc->dup_cookie = desc->dir_cookie;
424 				desc->duped = -1;
425 			}
426 			if (nfs_readdir_use_cookie(desc->file))
427 				desc->ctx->pos = desc->dir_cookie;
428 			else
429 				desc->ctx->pos = new_pos;
430 			desc->prev_index = new_pos;
431 			desc->cache_entry_index = i;
432 			return 0;
433 		}
434 	}
435 	if (array->page_is_eof) {
436 		status = -EBADCOOKIE;
437 		if (desc->dir_cookie == array->last_cookie)
438 			desc->eof = true;
439 	}
440 out:
441 	return status;
442 }
443 
444 static
445 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
446 {
447 	struct nfs_cache_array *array;
448 	int status;
449 
450 	array = kmap(desc->page);
451 
452 	if (desc->dir_cookie == 0)
453 		status = nfs_readdir_search_for_pos(array, desc);
454 	else
455 		status = nfs_readdir_search_for_cookie(array, desc);
456 
457 	if (status == -EAGAIN) {
458 		desc->last_cookie = array->last_cookie;
459 		desc->current_index += array->size;
460 		desc->page_index++;
461 	}
462 	kunmap(desc->page);
463 	return status;
464 }
465 
466 /* Fill a page with xdr information before transferring to the cache page */
467 static
468 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
469 			struct nfs_entry *entry, struct file *file, struct inode *inode)
470 {
471 	struct nfs_open_dir_context *ctx = file->private_data;
472 	const struct cred *cred = ctx->cred;
473 	unsigned long	timestamp, gencount;
474 	int		error;
475 
476  again:
477 	timestamp = jiffies;
478 	gencount = nfs_inc_attr_generation_counter();
479 	desc->dir_verifier = nfs_save_change_attribute(inode);
480 	error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages,
481 					  NFS_SERVER(inode)->dtsize, desc->plus);
482 	if (error < 0) {
483 		/* We requested READDIRPLUS, but the server doesn't grok it */
484 		if (error == -ENOTSUPP && desc->plus) {
485 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
486 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
487 			desc->plus = false;
488 			goto again;
489 		}
490 		goto error;
491 	}
492 	desc->timestamp = timestamp;
493 	desc->gencount = gencount;
494 error:
495 	return error;
496 }
497 
498 static int xdr_decode(nfs_readdir_descriptor_t *desc,
499 		      struct nfs_entry *entry, struct xdr_stream *xdr)
500 {
501 	struct inode *inode = file_inode(desc->file);
502 	int error;
503 
504 	error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
505 	if (error)
506 		return error;
507 	entry->fattr->time_start = desc->timestamp;
508 	entry->fattr->gencount = desc->gencount;
509 	return 0;
510 }
511 
512 /* Match file and dirent using either filehandle or fileid
513  * Note: caller is responsible for checking the fsid
514  */
515 static
516 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
517 {
518 	struct inode *inode;
519 	struct nfs_inode *nfsi;
520 
521 	if (d_really_is_negative(dentry))
522 		return 0;
523 
524 	inode = d_inode(dentry);
525 	if (is_bad_inode(inode) || NFS_STALE(inode))
526 		return 0;
527 
528 	nfsi = NFS_I(inode);
529 	if (entry->fattr->fileid != nfsi->fileid)
530 		return 0;
531 	if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
532 		return 0;
533 	return 1;
534 }
535 
536 static
537 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
538 {
539 	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
540 		return false;
541 	if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
542 		return true;
543 	if (ctx->pos == 0)
544 		return true;
545 	return false;
546 }
547 
548 /*
549  * This function is called by the lookup and getattr code to request the
550  * use of readdirplus to accelerate any future lookups in the same
551  * directory.
552  */
553 void nfs_advise_use_readdirplus(struct inode *dir)
554 {
555 	struct nfs_inode *nfsi = NFS_I(dir);
556 
557 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
558 	    !list_empty(&nfsi->open_files))
559 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
560 }
561 
562 /*
563  * This function is mainly for use by nfs_getattr().
564  *
565  * If this is an 'ls -l', we want to force use of readdirplus.
566  * Do this by checking if there is an active file descriptor
567  * and calling nfs_advise_use_readdirplus, then forcing a
568  * cache flush.
569  */
570 void nfs_force_use_readdirplus(struct inode *dir)
571 {
572 	struct nfs_inode *nfsi = NFS_I(dir);
573 
574 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
575 	    !list_empty(&nfsi->open_files)) {
576 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
577 		invalidate_mapping_pages(dir->i_mapping,
578 			nfsi->page_index + 1, -1);
579 	}
580 }
581 
582 static
583 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
584 		unsigned long dir_verifier)
585 {
586 	struct qstr filename = QSTR_INIT(entry->name, entry->len);
587 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
588 	struct dentry *dentry;
589 	struct dentry *alias;
590 	struct inode *inode;
591 	int status;
592 
593 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
594 		return;
595 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
596 		return;
597 	if (filename.len == 0)
598 		return;
599 	/* Validate that the name doesn't contain any illegal '\0' */
600 	if (strnlen(filename.name, filename.len) != filename.len)
601 		return;
602 	/* ...or '/' */
603 	if (strnchr(filename.name, filename.len, '/'))
604 		return;
605 	if (filename.name[0] == '.') {
606 		if (filename.len == 1)
607 			return;
608 		if (filename.len == 2 && filename.name[1] == '.')
609 			return;
610 	}
611 	filename.hash = full_name_hash(parent, filename.name, filename.len);
612 
613 	dentry = d_lookup(parent, &filename);
614 again:
615 	if (!dentry) {
616 		dentry = d_alloc_parallel(parent, &filename, &wq);
617 		if (IS_ERR(dentry))
618 			return;
619 	}
620 	if (!d_in_lookup(dentry)) {
621 		/* Is there a mountpoint here? If so, just exit */
622 		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
623 					&entry->fattr->fsid))
624 			goto out;
625 		if (nfs_same_file(dentry, entry)) {
626 			if (!entry->fh->size)
627 				goto out;
628 			nfs_set_verifier(dentry, dir_verifier);
629 			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
630 			if (!status)
631 				nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
632 			goto out;
633 		} else {
634 			d_invalidate(dentry);
635 			dput(dentry);
636 			dentry = NULL;
637 			goto again;
638 		}
639 	}
640 	if (!entry->fh->size) {
641 		d_lookup_done(dentry);
642 		goto out;
643 	}
644 
645 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
646 	alias = d_splice_alias(inode, dentry);
647 	d_lookup_done(dentry);
648 	if (alias) {
649 		if (IS_ERR(alias))
650 			goto out;
651 		dput(dentry);
652 		dentry = alias;
653 	}
654 	nfs_set_verifier(dentry, dir_verifier);
655 out:
656 	dput(dentry);
657 }
658 
659 /* Perform conversion from xdr to cache array */
660 static int nfs_readdir_page_filler(struct nfs_readdir_descriptor *desc,
661 				   struct nfs_entry *entry,
662 				   struct page **xdr_pages,
663 				   struct page *fillme, unsigned int buflen)
664 {
665 	struct address_space *mapping = desc->file->f_mapping;
666 	struct xdr_stream stream;
667 	struct xdr_buf buf;
668 	struct page *scratch, *new, *page = fillme;
669 	int status;
670 
671 	scratch = alloc_page(GFP_KERNEL);
672 	if (scratch == NULL)
673 		return -ENOMEM;
674 
675 	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
676 	xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
677 
678 	do {
679 		if (entry->label)
680 			entry->label->len = NFS4_MAXLABELLEN;
681 
682 		status = xdr_decode(desc, entry, &stream);
683 		if (status != 0)
684 			break;
685 
686 		if (desc->plus)
687 			nfs_prime_dcache(file_dentry(desc->file), entry,
688 					desc->dir_verifier);
689 
690 		status = nfs_readdir_add_to_array(entry, page);
691 		if (status != -ENOSPC)
692 			continue;
693 
694 		if (page->mapping != mapping)
695 			break;
696 		new = nfs_readdir_page_get_next(mapping, page->index + 1,
697 						entry->prev_cookie);
698 		if (!new)
699 			break;
700 		if (page != fillme)
701 			nfs_readdir_page_unlock_and_put(page);
702 		page = new;
703 		status = nfs_readdir_add_to_array(entry, page);
704 	} while (!status && !entry->eof);
705 
706 	switch (status) {
707 	case -EBADCOOKIE:
708 		if (entry->eof) {
709 			nfs_readdir_page_set_eof(page);
710 			status = 0;
711 		}
712 		break;
713 	case -ENOSPC:
714 	case -EAGAIN:
715 		status = 0;
716 		break;
717 	}
718 
719 	if (page != fillme)
720 		nfs_readdir_page_unlock_and_put(page);
721 
722 	put_page(scratch);
723 	return status;
724 }
725 
726 static
727 void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
728 {
729 	unsigned int i;
730 	for (i = 0; i < npages; i++)
731 		put_page(pages[i]);
732 }
733 
734 /*
735  * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
736  * to nfs_readdir_free_pages()
737  */
738 static
739 int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
740 {
741 	unsigned int i;
742 
743 	for (i = 0; i < npages; i++) {
744 		struct page *page = alloc_page(GFP_KERNEL);
745 		if (page == NULL)
746 			goto out_freepages;
747 		pages[i] = page;
748 	}
749 	return 0;
750 
751 out_freepages:
752 	nfs_readdir_free_pages(pages, i);
753 	return -ENOMEM;
754 }
755 
756 static
757 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
758 {
759 	struct page *pages[NFS_MAX_READDIR_PAGES];
760 	struct nfs_entry entry;
761 	struct file	*file = desc->file;
762 	int status = -ENOMEM;
763 	unsigned int array_size = ARRAY_SIZE(pages);
764 
765 	entry.prev_cookie = 0;
766 	entry.cookie = nfs_readdir_page_last_cookie(page);
767 	entry.eof = 0;
768 	entry.fh = nfs_alloc_fhandle();
769 	entry.fattr = nfs_alloc_fattr();
770 	entry.server = NFS_SERVER(inode);
771 	if (entry.fh == NULL || entry.fattr == NULL)
772 		goto out;
773 
774 	entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
775 	if (IS_ERR(entry.label)) {
776 		status = PTR_ERR(entry.label);
777 		goto out;
778 	}
779 
780 	status = nfs_readdir_alloc_pages(pages, array_size);
781 	if (status < 0)
782 		goto out_release_label;
783 	do {
784 		unsigned int pglen;
785 		status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
786 
787 		if (status < 0)
788 			break;
789 
790 		pglen = status;
791 		if (pglen == 0) {
792 			nfs_readdir_page_set_eof(page);
793 			break;
794 		}
795 
796 		status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
797 	} while (!status && nfs_readdir_page_needs_filling(page));
798 
799 	nfs_readdir_free_pages(pages, array_size);
800 out_release_label:
801 	nfs4_label_free(entry.label);
802 out:
803 	nfs_free_fattr(entry.fattr);
804 	nfs_free_fhandle(entry.fh);
805 	return status;
806 }
807 
808 static void nfs_readdir_page_put(struct nfs_readdir_descriptor *desc)
809 {
810 	put_page(desc->page);
811 	desc->page = NULL;
812 }
813 
814 static void
815 nfs_readdir_page_unlock_and_put_cached(struct nfs_readdir_descriptor *desc)
816 {
817 	unlock_page(desc->page);
818 	nfs_readdir_page_put(desc);
819 }
820 
821 static struct page *
822 nfs_readdir_page_get_cached(struct nfs_readdir_descriptor *desc)
823 {
824 	return nfs_readdir_page_get_locked(desc->file->f_mapping,
825 					   desc->page_index,
826 					   desc->last_cookie);
827 }
828 
829 /*
830  * Returns 0 if desc->dir_cookie was found on page desc->page_index
831  * and locks the page to prevent removal from the page cache.
832  */
833 static
834 int find_and_lock_cache_page(nfs_readdir_descriptor_t *desc)
835 {
836 	struct inode *inode = file_inode(desc->file);
837 	struct nfs_inode *nfsi = NFS_I(inode);
838 	int res;
839 
840 	desc->page = nfs_readdir_page_get_cached(desc);
841 	if (!desc->page)
842 		return -ENOMEM;
843 	if (nfs_readdir_page_needs_filling(desc->page)) {
844 		res = nfs_readdir_xdr_to_array(desc, desc->page, inode);
845 		if (res < 0)
846 			goto error;
847 	}
848 	res = nfs_readdir_search_array(desc);
849 	if (res == 0) {
850 		nfsi->page_index = desc->page_index;
851 		return 0;
852 	}
853 error:
854 	nfs_readdir_page_unlock_and_put_cached(desc);
855 	return res;
856 }
857 
858 /* Search for desc->dir_cookie from the beginning of the page cache */
859 static inline
860 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
861 {
862 	int res;
863 
864 	if (desc->page_index == 0) {
865 		desc->current_index = 0;
866 		desc->prev_index = 0;
867 		desc->last_cookie = 0;
868 	}
869 	do {
870 		res = find_and_lock_cache_page(desc);
871 	} while (res == -EAGAIN);
872 	return res;
873 }
874 
875 /*
876  * Once we've found the start of the dirent within a page: fill 'er up...
877  */
878 static
879 int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
880 {
881 	struct file	*file = desc->file;
882 	int i = 0;
883 	int res = 0;
884 	struct nfs_cache_array *array = NULL;
885 
886 	array = kmap(desc->page);
887 	for (i = desc->cache_entry_index; i < array->size; i++) {
888 		struct nfs_cache_array_entry *ent;
889 
890 		ent = &array->array[i];
891 		if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
892 		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
893 			desc->eof = true;
894 			break;
895 		}
896 		if (i < (array->size-1))
897 			desc->dir_cookie = array->array[i+1].cookie;
898 		else
899 			desc->dir_cookie = array->last_cookie;
900 		if (nfs_readdir_use_cookie(file))
901 			desc->ctx->pos = desc->dir_cookie;
902 		else
903 			desc->ctx->pos++;
904 		if (desc->duped != 0)
905 			desc->duped = 1;
906 	}
907 	if (array->page_is_eof)
908 		desc->eof = true;
909 
910 	kunmap(desc->page);
911 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
912 			(unsigned long long)desc->dir_cookie, res);
913 	return res;
914 }
915 
916 /*
917  * If we cannot find a cookie in our cache, we suspect that this is
918  * because it points to a deleted file, so we ask the server to return
919  * whatever it thinks is the next entry. We then feed this to filldir.
920  * If all goes well, we should then be able to find our way round the
921  * cache on the next call to readdir_search_pagecache();
922  *
923  * NOTE: we cannot add the anonymous page to the pagecache because
924  *	 the data it contains might not be page aligned. Besides,
925  *	 we should already have a complete representation of the
926  *	 directory in the page cache by the time we get here.
927  */
928 static inline
929 int uncached_readdir(nfs_readdir_descriptor_t *desc)
930 {
931 	struct page	*page = NULL;
932 	int		status;
933 	struct inode *inode = file_inode(desc->file);
934 
935 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
936 			(unsigned long long)desc->dir_cookie);
937 
938 	page = alloc_page(GFP_HIGHUSER);
939 	if (!page) {
940 		status = -ENOMEM;
941 		goto out;
942 	}
943 
944 	desc->page_index = 0;
945 	desc->last_cookie = desc->dir_cookie;
946 	desc->page = page;
947 	desc->duped = 0;
948 
949 	nfs_readdir_page_init_array(page, desc->dir_cookie);
950 	status = nfs_readdir_xdr_to_array(desc, page, inode);
951 	if (status < 0)
952 		goto out_release;
953 
954 	status = nfs_do_filldir(desc);
955 
956  out_release:
957 	nfs_readdir_clear_array(desc->page);
958 	nfs_readdir_page_put(desc);
959  out:
960 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
961 			__func__, status);
962 	return status;
963 }
964 
965 /* The file offset position represents the dirent entry number.  A
966    last cookie cache takes care of the common case of reading the
967    whole directory.
968  */
969 static int nfs_readdir(struct file *file, struct dir_context *ctx)
970 {
971 	struct dentry	*dentry = file_dentry(file);
972 	struct inode	*inode = d_inode(dentry);
973 	struct nfs_open_dir_context *dir_ctx = file->private_data;
974 	nfs_readdir_descriptor_t my_desc = {
975 		.file = file,
976 		.ctx = ctx,
977 		.plus = nfs_use_readdirplus(inode, ctx),
978 	},
979 			*desc = &my_desc;
980 	int res = 0;
981 
982 	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
983 			file, (long long)ctx->pos);
984 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
985 
986 	/*
987 	 * ctx->pos points to the dirent entry number.
988 	 * *desc->dir_cookie has the cookie for the next entry. We have
989 	 * to either find the entry with the appropriate number or
990 	 * revalidate the cookie.
991 	 */
992 	if (ctx->pos == 0 || nfs_attribute_cache_expired(inode))
993 		res = nfs_revalidate_mapping(inode, file->f_mapping);
994 	if (res < 0)
995 		goto out;
996 
997 	spin_lock(&file->f_lock);
998 	desc->dir_cookie = dir_ctx->dir_cookie;
999 	desc->dup_cookie = dir_ctx->dup_cookie;
1000 	desc->duped = dir_ctx->duped;
1001 	desc->attr_gencount = dir_ctx->attr_gencount;
1002 	spin_unlock(&file->f_lock);
1003 
1004 	do {
1005 		res = readdir_search_pagecache(desc);
1006 
1007 		if (res == -EBADCOOKIE) {
1008 			res = 0;
1009 			/* This means either end of directory */
1010 			if (desc->dir_cookie && !desc->eof) {
1011 				/* Or that the server has 'lost' a cookie */
1012 				res = uncached_readdir(desc);
1013 				if (res == 0)
1014 					continue;
1015 			}
1016 			break;
1017 		}
1018 		if (res == -ETOOSMALL && desc->plus) {
1019 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
1020 			nfs_zap_caches(inode);
1021 			desc->page_index = 0;
1022 			desc->plus = false;
1023 			desc->eof = false;
1024 			continue;
1025 		}
1026 		if (res < 0)
1027 			break;
1028 
1029 		res = nfs_do_filldir(desc);
1030 		nfs_readdir_page_unlock_and_put_cached(desc);
1031 		if (res < 0)
1032 			break;
1033 	} while (!desc->eof);
1034 
1035 	spin_lock(&file->f_lock);
1036 	dir_ctx->dir_cookie = desc->dir_cookie;
1037 	dir_ctx->dup_cookie = desc->dup_cookie;
1038 	dir_ctx->duped = desc->duped;
1039 	dir_ctx->attr_gencount = desc->attr_gencount;
1040 	spin_unlock(&file->f_lock);
1041 
1042 out:
1043 	if (res > 0)
1044 		res = 0;
1045 	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
1046 	return res;
1047 }
1048 
1049 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
1050 {
1051 	struct nfs_open_dir_context *dir_ctx = filp->private_data;
1052 
1053 	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
1054 			filp, offset, whence);
1055 
1056 	switch (whence) {
1057 	default:
1058 		return -EINVAL;
1059 	case SEEK_SET:
1060 		if (offset < 0)
1061 			return -EINVAL;
1062 		spin_lock(&filp->f_lock);
1063 		break;
1064 	case SEEK_CUR:
1065 		if (offset == 0)
1066 			return filp->f_pos;
1067 		spin_lock(&filp->f_lock);
1068 		offset += filp->f_pos;
1069 		if (offset < 0) {
1070 			spin_unlock(&filp->f_lock);
1071 			return -EINVAL;
1072 		}
1073 	}
1074 	if (offset != filp->f_pos) {
1075 		filp->f_pos = offset;
1076 		if (nfs_readdir_use_cookie(filp))
1077 			dir_ctx->dir_cookie = offset;
1078 		else
1079 			dir_ctx->dir_cookie = 0;
1080 		dir_ctx->duped = 0;
1081 	}
1082 	spin_unlock(&filp->f_lock);
1083 	return offset;
1084 }
1085 
1086 /*
1087  * All directory operations under NFS are synchronous, so fsync()
1088  * is a dummy operation.
1089  */
1090 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
1091 			 int datasync)
1092 {
1093 	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1094 
1095 	nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC);
1096 	return 0;
1097 }
1098 
1099 /**
1100  * nfs_force_lookup_revalidate - Mark the directory as having changed
1101  * @dir: pointer to directory inode
1102  *
1103  * This forces the revalidation code in nfs_lookup_revalidate() to do a
1104  * full lookup on all child dentries of 'dir' whenever a change occurs
1105  * on the server that might have invalidated our dcache.
1106  *
1107  * Note that we reserve bit '0' as a tag to let us know when a dentry
1108  * was revalidated while holding a delegation on its inode.
1109  *
1110  * The caller should be holding dir->i_lock
1111  */
1112 void nfs_force_lookup_revalidate(struct inode *dir)
1113 {
1114 	NFS_I(dir)->cache_change_attribute += 2;
1115 }
1116 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1117 
1118 /**
1119  * nfs_verify_change_attribute - Detects NFS remote directory changes
1120  * @dir: pointer to parent directory inode
1121  * @verf: previously saved change attribute
1122  *
1123  * Return "false" if the verifiers doesn't match the change attribute.
1124  * This would usually indicate that the directory contents have changed on
1125  * the server, and that any dentries need revalidating.
1126  */
1127 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1128 {
1129 	return (verf & ~1UL) == nfs_save_change_attribute(dir);
1130 }
1131 
1132 static void nfs_set_verifier_delegated(unsigned long *verf)
1133 {
1134 	*verf |= 1UL;
1135 }
1136 
1137 #if IS_ENABLED(CONFIG_NFS_V4)
1138 static void nfs_unset_verifier_delegated(unsigned long *verf)
1139 {
1140 	*verf &= ~1UL;
1141 }
1142 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1143 
1144 static bool nfs_test_verifier_delegated(unsigned long verf)
1145 {
1146 	return verf & 1;
1147 }
1148 
1149 static bool nfs_verifier_is_delegated(struct dentry *dentry)
1150 {
1151 	return nfs_test_verifier_delegated(dentry->d_time);
1152 }
1153 
1154 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1155 {
1156 	struct inode *inode = d_inode(dentry);
1157 
1158 	if (!nfs_verifier_is_delegated(dentry) &&
1159 	    !nfs_verify_change_attribute(d_inode(dentry->d_parent), verf))
1160 		goto out;
1161 	if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
1162 		nfs_set_verifier_delegated(&verf);
1163 out:
1164 	dentry->d_time = verf;
1165 }
1166 
1167 /**
1168  * nfs_set_verifier - save a parent directory verifier in the dentry
1169  * @dentry: pointer to dentry
1170  * @verf: verifier to save
1171  *
1172  * Saves the parent directory verifier in @dentry. If the inode has
1173  * a delegation, we also tag the dentry as having been revalidated
1174  * while holding a delegation so that we know we don't have to
1175  * look it up again after a directory change.
1176  */
1177 void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1178 {
1179 
1180 	spin_lock(&dentry->d_lock);
1181 	nfs_set_verifier_locked(dentry, verf);
1182 	spin_unlock(&dentry->d_lock);
1183 }
1184 EXPORT_SYMBOL_GPL(nfs_set_verifier);
1185 
1186 #if IS_ENABLED(CONFIG_NFS_V4)
1187 /**
1188  * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1189  * @inode: pointer to inode
1190  *
1191  * Iterates through the dentries in the inode alias list and clears
1192  * the tag used to indicate that the dentry has been revalidated
1193  * while holding a delegation.
1194  * This function is intended for use when the delegation is being
1195  * returned or revoked.
1196  */
1197 void nfs_clear_verifier_delegated(struct inode *inode)
1198 {
1199 	struct dentry *alias;
1200 
1201 	if (!inode)
1202 		return;
1203 	spin_lock(&inode->i_lock);
1204 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1205 		spin_lock(&alias->d_lock);
1206 		nfs_unset_verifier_delegated(&alias->d_time);
1207 		spin_unlock(&alias->d_lock);
1208 	}
1209 	spin_unlock(&inode->i_lock);
1210 }
1211 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1212 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1213 
1214 /*
1215  * A check for whether or not the parent directory has changed.
1216  * In the case it has, we assume that the dentries are untrustworthy
1217  * and may need to be looked up again.
1218  * If rcu_walk prevents us from performing a full check, return 0.
1219  */
1220 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1221 			      int rcu_walk)
1222 {
1223 	if (IS_ROOT(dentry))
1224 		return 1;
1225 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1226 		return 0;
1227 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1228 		return 0;
1229 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
1230 	if (nfs_mapping_need_revalidate_inode(dir)) {
1231 		if (rcu_walk)
1232 			return 0;
1233 		if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1234 			return 0;
1235 	}
1236 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1237 		return 0;
1238 	return 1;
1239 }
1240 
1241 /*
1242  * Use intent information to check whether or not we're going to do
1243  * an O_EXCL create using this path component.
1244  */
1245 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1246 {
1247 	if (NFS_PROTO(dir)->version == 2)
1248 		return 0;
1249 	return flags & LOOKUP_EXCL;
1250 }
1251 
1252 /*
1253  * Inode and filehandle revalidation for lookups.
1254  *
1255  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1256  * or if the intent information indicates that we're about to open this
1257  * particular file and the "nocto" mount flag is not set.
1258  *
1259  */
1260 static
1261 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1262 {
1263 	struct nfs_server *server = NFS_SERVER(inode);
1264 	int ret;
1265 
1266 	if (IS_AUTOMOUNT(inode))
1267 		return 0;
1268 
1269 	if (flags & LOOKUP_OPEN) {
1270 		switch (inode->i_mode & S_IFMT) {
1271 		case S_IFREG:
1272 			/* A NFSv4 OPEN will revalidate later */
1273 			if (server->caps & NFS_CAP_ATOMIC_OPEN)
1274 				goto out;
1275 			fallthrough;
1276 		case S_IFDIR:
1277 			if (server->flags & NFS_MOUNT_NOCTO)
1278 				break;
1279 			/* NFS close-to-open cache consistency validation */
1280 			goto out_force;
1281 		}
1282 	}
1283 
1284 	/* VFS wants an on-the-wire revalidation */
1285 	if (flags & LOOKUP_REVAL)
1286 		goto out_force;
1287 out:
1288 	return (inode->i_nlink == 0) ? -ESTALE : 0;
1289 out_force:
1290 	if (flags & LOOKUP_RCU)
1291 		return -ECHILD;
1292 	ret = __nfs_revalidate_inode(server, inode);
1293 	if (ret != 0)
1294 		return ret;
1295 	goto out;
1296 }
1297 
1298 /*
1299  * We judge how long we want to trust negative
1300  * dentries by looking at the parent inode mtime.
1301  *
1302  * If parent mtime has changed, we revalidate, else we wait for a
1303  * period corresponding to the parent's attribute cache timeout value.
1304  *
1305  * If LOOKUP_RCU prevents us from performing a full check, return 1
1306  * suggesting a reval is needed.
1307  *
1308  * Note that when creating a new file, or looking up a rename target,
1309  * then it shouldn't be necessary to revalidate a negative dentry.
1310  */
1311 static inline
1312 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1313 		       unsigned int flags)
1314 {
1315 	if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1316 		return 0;
1317 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1318 		return 1;
1319 	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1320 }
1321 
1322 static int
1323 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1324 			   struct inode *inode, int error)
1325 {
1326 	switch (error) {
1327 	case 1:
1328 		dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1329 			__func__, dentry);
1330 		return 1;
1331 	case 0:
1332 		nfs_mark_for_revalidate(dir);
1333 		if (inode && S_ISDIR(inode->i_mode)) {
1334 			/* Purge readdir caches. */
1335 			nfs_zap_caches(inode);
1336 			/*
1337 			 * We can't d_drop the root of a disconnected tree:
1338 			 * its d_hash is on the s_anon list and d_drop() would hide
1339 			 * it from shrink_dcache_for_unmount(), leading to busy
1340 			 * inodes on unmount and further oopses.
1341 			 */
1342 			if (IS_ROOT(dentry))
1343 				return 1;
1344 		}
1345 		dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1346 				__func__, dentry);
1347 		return 0;
1348 	}
1349 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1350 				__func__, dentry, error);
1351 	return error;
1352 }
1353 
1354 static int
1355 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1356 			       unsigned int flags)
1357 {
1358 	int ret = 1;
1359 	if (nfs_neg_need_reval(dir, dentry, flags)) {
1360 		if (flags & LOOKUP_RCU)
1361 			return -ECHILD;
1362 		ret = 0;
1363 	}
1364 	return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1365 }
1366 
1367 static int
1368 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1369 				struct inode *inode)
1370 {
1371 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1372 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1373 }
1374 
1375 static int
1376 nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry,
1377 			     struct inode *inode)
1378 {
1379 	struct nfs_fh *fhandle;
1380 	struct nfs_fattr *fattr;
1381 	struct nfs4_label *label;
1382 	unsigned long dir_verifier;
1383 	int ret;
1384 
1385 	ret = -ENOMEM;
1386 	fhandle = nfs_alloc_fhandle();
1387 	fattr = nfs_alloc_fattr();
1388 	label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL);
1389 	if (fhandle == NULL || fattr == NULL || IS_ERR(label))
1390 		goto out;
1391 
1392 	dir_verifier = nfs_save_change_attribute(dir);
1393 	ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1394 	if (ret < 0) {
1395 		switch (ret) {
1396 		case -ESTALE:
1397 		case -ENOENT:
1398 			ret = 0;
1399 			break;
1400 		case -ETIMEDOUT:
1401 			if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)
1402 				ret = 1;
1403 		}
1404 		goto out;
1405 	}
1406 	ret = 0;
1407 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1408 		goto out;
1409 	if (nfs_refresh_inode(inode, fattr) < 0)
1410 		goto out;
1411 
1412 	nfs_setsecurity(inode, fattr, label);
1413 	nfs_set_verifier(dentry, dir_verifier);
1414 
1415 	/* set a readdirplus hint that we had a cache miss */
1416 	nfs_force_use_readdirplus(dir);
1417 	ret = 1;
1418 out:
1419 	nfs_free_fattr(fattr);
1420 	nfs_free_fhandle(fhandle);
1421 	nfs4_label_free(label);
1422 	return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1423 }
1424 
1425 /*
1426  * This is called every time the dcache has a lookup hit,
1427  * and we should check whether we can really trust that
1428  * lookup.
1429  *
1430  * NOTE! The hit can be a negative hit too, don't assume
1431  * we have an inode!
1432  *
1433  * If the parent directory is seen to have changed, we throw out the
1434  * cached dentry and do a new lookup.
1435  */
1436 static int
1437 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1438 			 unsigned int flags)
1439 {
1440 	struct inode *inode;
1441 	int error;
1442 
1443 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1444 	inode = d_inode(dentry);
1445 
1446 	if (!inode)
1447 		return nfs_lookup_revalidate_negative(dir, dentry, flags);
1448 
1449 	if (is_bad_inode(inode)) {
1450 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1451 				__func__, dentry);
1452 		goto out_bad;
1453 	}
1454 
1455 	if (nfs_verifier_is_delegated(dentry))
1456 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1457 
1458 	/* Force a full look up iff the parent directory has changed */
1459 	if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1460 	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1461 		error = nfs_lookup_verify_inode(inode, flags);
1462 		if (error) {
1463 			if (error == -ESTALE)
1464 				nfs_zap_caches(dir);
1465 			goto out_bad;
1466 		}
1467 		nfs_advise_use_readdirplus(dir);
1468 		goto out_valid;
1469 	}
1470 
1471 	if (flags & LOOKUP_RCU)
1472 		return -ECHILD;
1473 
1474 	if (NFS_STALE(inode))
1475 		goto out_bad;
1476 
1477 	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1478 	error = nfs_lookup_revalidate_dentry(dir, dentry, inode);
1479 	trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1480 	return error;
1481 out_valid:
1482 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1483 out_bad:
1484 	if (flags & LOOKUP_RCU)
1485 		return -ECHILD;
1486 	return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1487 }
1488 
1489 static int
1490 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1491 			int (*reval)(struct inode *, struct dentry *, unsigned int))
1492 {
1493 	struct dentry *parent;
1494 	struct inode *dir;
1495 	int ret;
1496 
1497 	if (flags & LOOKUP_RCU) {
1498 		parent = READ_ONCE(dentry->d_parent);
1499 		dir = d_inode_rcu(parent);
1500 		if (!dir)
1501 			return -ECHILD;
1502 		ret = reval(dir, dentry, flags);
1503 		if (parent != READ_ONCE(dentry->d_parent))
1504 			return -ECHILD;
1505 	} else {
1506 		parent = dget_parent(dentry);
1507 		ret = reval(d_inode(parent), dentry, flags);
1508 		dput(parent);
1509 	}
1510 	return ret;
1511 }
1512 
1513 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1514 {
1515 	return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1516 }
1517 
1518 /*
1519  * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1520  * when we don't really care about the dentry name. This is called when a
1521  * pathwalk ends on a dentry that was not found via a normal lookup in the
1522  * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1523  *
1524  * In this situation, we just want to verify that the inode itself is OK
1525  * since the dentry might have changed on the server.
1526  */
1527 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1528 {
1529 	struct inode *inode = d_inode(dentry);
1530 	int error = 0;
1531 
1532 	/*
1533 	 * I believe we can only get a negative dentry here in the case of a
1534 	 * procfs-style symlink. Just assume it's correct for now, but we may
1535 	 * eventually need to do something more here.
1536 	 */
1537 	if (!inode) {
1538 		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1539 				__func__, dentry);
1540 		return 1;
1541 	}
1542 
1543 	if (is_bad_inode(inode)) {
1544 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1545 				__func__, dentry);
1546 		return 0;
1547 	}
1548 
1549 	error = nfs_lookup_verify_inode(inode, flags);
1550 	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1551 			__func__, inode->i_ino, error ? "invalid" : "valid");
1552 	return !error;
1553 }
1554 
1555 /*
1556  * This is called from dput() when d_count is going to 0.
1557  */
1558 static int nfs_dentry_delete(const struct dentry *dentry)
1559 {
1560 	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1561 		dentry, dentry->d_flags);
1562 
1563 	/* Unhash any dentry with a stale inode */
1564 	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1565 		return 1;
1566 
1567 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1568 		/* Unhash it, so that ->d_iput() would be called */
1569 		return 1;
1570 	}
1571 	if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1572 		/* Unhash it, so that ancestors of killed async unlink
1573 		 * files will be cleaned up during umount */
1574 		return 1;
1575 	}
1576 	return 0;
1577 
1578 }
1579 
1580 /* Ensure that we revalidate inode->i_nlink */
1581 static void nfs_drop_nlink(struct inode *inode)
1582 {
1583 	spin_lock(&inode->i_lock);
1584 	/* drop the inode if we're reasonably sure this is the last link */
1585 	if (inode->i_nlink > 0)
1586 		drop_nlink(inode);
1587 	NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1588 	NFS_I(inode)->cache_validity |= NFS_INO_INVALID_CHANGE
1589 		| NFS_INO_INVALID_CTIME
1590 		| NFS_INO_INVALID_OTHER
1591 		| NFS_INO_REVAL_FORCED;
1592 	spin_unlock(&inode->i_lock);
1593 }
1594 
1595 /*
1596  * Called when the dentry loses inode.
1597  * We use it to clean up silly-renamed files.
1598  */
1599 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1600 {
1601 	if (S_ISDIR(inode->i_mode))
1602 		/* drop any readdir cache as it could easily be old */
1603 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1604 
1605 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1606 		nfs_complete_unlink(dentry, inode);
1607 		nfs_drop_nlink(inode);
1608 	}
1609 	iput(inode);
1610 }
1611 
1612 static void nfs_d_release(struct dentry *dentry)
1613 {
1614 	/* free cached devname value, if it survived that far */
1615 	if (unlikely(dentry->d_fsdata)) {
1616 		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1617 			WARN_ON(1);
1618 		else
1619 			kfree(dentry->d_fsdata);
1620 	}
1621 }
1622 
1623 const struct dentry_operations nfs_dentry_operations = {
1624 	.d_revalidate	= nfs_lookup_revalidate,
1625 	.d_weak_revalidate	= nfs_weak_revalidate,
1626 	.d_delete	= nfs_dentry_delete,
1627 	.d_iput		= nfs_dentry_iput,
1628 	.d_automount	= nfs_d_automount,
1629 	.d_release	= nfs_d_release,
1630 };
1631 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1632 
1633 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1634 {
1635 	struct dentry *res;
1636 	struct inode *inode = NULL;
1637 	struct nfs_fh *fhandle = NULL;
1638 	struct nfs_fattr *fattr = NULL;
1639 	struct nfs4_label *label = NULL;
1640 	unsigned long dir_verifier;
1641 	int error;
1642 
1643 	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1644 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1645 
1646 	if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1647 		return ERR_PTR(-ENAMETOOLONG);
1648 
1649 	/*
1650 	 * If we're doing an exclusive create, optimize away the lookup
1651 	 * but don't hash the dentry.
1652 	 */
1653 	if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1654 		return NULL;
1655 
1656 	res = ERR_PTR(-ENOMEM);
1657 	fhandle = nfs_alloc_fhandle();
1658 	fattr = nfs_alloc_fattr();
1659 	if (fhandle == NULL || fattr == NULL)
1660 		goto out;
1661 
1662 	label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1663 	if (IS_ERR(label))
1664 		goto out;
1665 
1666 	dir_verifier = nfs_save_change_attribute(dir);
1667 	trace_nfs_lookup_enter(dir, dentry, flags);
1668 	error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1669 	if (error == -ENOENT)
1670 		goto no_entry;
1671 	if (error < 0) {
1672 		res = ERR_PTR(error);
1673 		goto out_label;
1674 	}
1675 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1676 	res = ERR_CAST(inode);
1677 	if (IS_ERR(res))
1678 		goto out_label;
1679 
1680 	/* Notify readdir to use READDIRPLUS */
1681 	nfs_force_use_readdirplus(dir);
1682 
1683 no_entry:
1684 	res = d_splice_alias(inode, dentry);
1685 	if (res != NULL) {
1686 		if (IS_ERR(res))
1687 			goto out_label;
1688 		dentry = res;
1689 	}
1690 	nfs_set_verifier(dentry, dir_verifier);
1691 out_label:
1692 	trace_nfs_lookup_exit(dir, dentry, flags, error);
1693 	nfs4_label_free(label);
1694 out:
1695 	nfs_free_fattr(fattr);
1696 	nfs_free_fhandle(fhandle);
1697 	return res;
1698 }
1699 EXPORT_SYMBOL_GPL(nfs_lookup);
1700 
1701 #if IS_ENABLED(CONFIG_NFS_V4)
1702 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1703 
1704 const struct dentry_operations nfs4_dentry_operations = {
1705 	.d_revalidate	= nfs4_lookup_revalidate,
1706 	.d_weak_revalidate	= nfs_weak_revalidate,
1707 	.d_delete	= nfs_dentry_delete,
1708 	.d_iput		= nfs_dentry_iput,
1709 	.d_automount	= nfs_d_automount,
1710 	.d_release	= nfs_d_release,
1711 };
1712 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1713 
1714 static fmode_t flags_to_mode(int flags)
1715 {
1716 	fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1717 	if ((flags & O_ACCMODE) != O_WRONLY)
1718 		res |= FMODE_READ;
1719 	if ((flags & O_ACCMODE) != O_RDONLY)
1720 		res |= FMODE_WRITE;
1721 	return res;
1722 }
1723 
1724 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1725 {
1726 	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1727 }
1728 
1729 static int do_open(struct inode *inode, struct file *filp)
1730 {
1731 	nfs_fscache_open_file(inode, filp);
1732 	return 0;
1733 }
1734 
1735 static int nfs_finish_open(struct nfs_open_context *ctx,
1736 			   struct dentry *dentry,
1737 			   struct file *file, unsigned open_flags)
1738 {
1739 	int err;
1740 
1741 	err = finish_open(file, dentry, do_open);
1742 	if (err)
1743 		goto out;
1744 	if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
1745 		nfs_file_set_open_context(file, ctx);
1746 	else
1747 		err = -EOPENSTALE;
1748 out:
1749 	return err;
1750 }
1751 
1752 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1753 		    struct file *file, unsigned open_flags,
1754 		    umode_t mode)
1755 {
1756 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1757 	struct nfs_open_context *ctx;
1758 	struct dentry *res;
1759 	struct iattr attr = { .ia_valid = ATTR_OPEN };
1760 	struct inode *inode;
1761 	unsigned int lookup_flags = 0;
1762 	bool switched = false;
1763 	int created = 0;
1764 	int err;
1765 
1766 	/* Expect a negative dentry */
1767 	BUG_ON(d_inode(dentry));
1768 
1769 	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1770 			dir->i_sb->s_id, dir->i_ino, dentry);
1771 
1772 	err = nfs_check_flags(open_flags);
1773 	if (err)
1774 		return err;
1775 
1776 	/* NFS only supports OPEN on regular files */
1777 	if ((open_flags & O_DIRECTORY)) {
1778 		if (!d_in_lookup(dentry)) {
1779 			/*
1780 			 * Hashed negative dentry with O_DIRECTORY: dentry was
1781 			 * revalidated and is fine, no need to perform lookup
1782 			 * again
1783 			 */
1784 			return -ENOENT;
1785 		}
1786 		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1787 		goto no_open;
1788 	}
1789 
1790 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1791 		return -ENAMETOOLONG;
1792 
1793 	if (open_flags & O_CREAT) {
1794 		struct nfs_server *server = NFS_SERVER(dir);
1795 
1796 		if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1797 			mode &= ~current_umask();
1798 
1799 		attr.ia_valid |= ATTR_MODE;
1800 		attr.ia_mode = mode;
1801 	}
1802 	if (open_flags & O_TRUNC) {
1803 		attr.ia_valid |= ATTR_SIZE;
1804 		attr.ia_size = 0;
1805 	}
1806 
1807 	if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1808 		d_drop(dentry);
1809 		switched = true;
1810 		dentry = d_alloc_parallel(dentry->d_parent,
1811 					  &dentry->d_name, &wq);
1812 		if (IS_ERR(dentry))
1813 			return PTR_ERR(dentry);
1814 		if (unlikely(!d_in_lookup(dentry)))
1815 			return finish_no_open(file, dentry);
1816 	}
1817 
1818 	ctx = create_nfs_open_context(dentry, open_flags, file);
1819 	err = PTR_ERR(ctx);
1820 	if (IS_ERR(ctx))
1821 		goto out;
1822 
1823 	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1824 	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
1825 	if (created)
1826 		file->f_mode |= FMODE_CREATED;
1827 	if (IS_ERR(inode)) {
1828 		err = PTR_ERR(inode);
1829 		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1830 		put_nfs_open_context(ctx);
1831 		d_drop(dentry);
1832 		switch (err) {
1833 		case -ENOENT:
1834 			d_splice_alias(NULL, dentry);
1835 			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1836 			break;
1837 		case -EISDIR:
1838 		case -ENOTDIR:
1839 			goto no_open;
1840 		case -ELOOP:
1841 			if (!(open_flags & O_NOFOLLOW))
1842 				goto no_open;
1843 			break;
1844 			/* case -EINVAL: */
1845 		default:
1846 			break;
1847 		}
1848 		goto out;
1849 	}
1850 
1851 	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
1852 	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1853 	put_nfs_open_context(ctx);
1854 out:
1855 	if (unlikely(switched)) {
1856 		d_lookup_done(dentry);
1857 		dput(dentry);
1858 	}
1859 	return err;
1860 
1861 no_open:
1862 	res = nfs_lookup(dir, dentry, lookup_flags);
1863 	if (switched) {
1864 		d_lookup_done(dentry);
1865 		if (!res)
1866 			res = dentry;
1867 		else
1868 			dput(dentry);
1869 	}
1870 	if (IS_ERR(res))
1871 		return PTR_ERR(res);
1872 	return finish_no_open(file, res);
1873 }
1874 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1875 
1876 static int
1877 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1878 			  unsigned int flags)
1879 {
1880 	struct inode *inode;
1881 
1882 	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1883 		goto full_reval;
1884 	if (d_mountpoint(dentry))
1885 		goto full_reval;
1886 
1887 	inode = d_inode(dentry);
1888 
1889 	/* We can't create new files in nfs_open_revalidate(), so we
1890 	 * optimize away revalidation of negative dentries.
1891 	 */
1892 	if (inode == NULL)
1893 		goto full_reval;
1894 
1895 	if (nfs_verifier_is_delegated(dentry))
1896 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1897 
1898 	/* NFS only supports OPEN on regular files */
1899 	if (!S_ISREG(inode->i_mode))
1900 		goto full_reval;
1901 
1902 	/* We cannot do exclusive creation on a positive dentry */
1903 	if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
1904 		goto reval_dentry;
1905 
1906 	/* Check if the directory changed */
1907 	if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
1908 		goto reval_dentry;
1909 
1910 	/* Let f_op->open() actually open (and revalidate) the file */
1911 	return 1;
1912 reval_dentry:
1913 	if (flags & LOOKUP_RCU)
1914 		return -ECHILD;
1915 	return nfs_lookup_revalidate_dentry(dir, dentry, inode);
1916 
1917 full_reval:
1918 	return nfs_do_lookup_revalidate(dir, dentry, flags);
1919 }
1920 
1921 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1922 {
1923 	return __nfs_lookup_revalidate(dentry, flags,
1924 			nfs4_do_lookup_revalidate);
1925 }
1926 
1927 #endif /* CONFIG_NFSV4 */
1928 
1929 struct dentry *
1930 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
1931 				struct nfs_fattr *fattr,
1932 				struct nfs4_label *label)
1933 {
1934 	struct dentry *parent = dget_parent(dentry);
1935 	struct inode *dir = d_inode(parent);
1936 	struct inode *inode;
1937 	struct dentry *d;
1938 	int error;
1939 
1940 	d_drop(dentry);
1941 
1942 	if (fhandle->size == 0) {
1943 		error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, NULL);
1944 		if (error)
1945 			goto out_error;
1946 	}
1947 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1948 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1949 		struct nfs_server *server = NFS_SB(dentry->d_sb);
1950 		error = server->nfs_client->rpc_ops->getattr(server, fhandle,
1951 				fattr, NULL, NULL);
1952 		if (error < 0)
1953 			goto out_error;
1954 	}
1955 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1956 	d = d_splice_alias(inode, dentry);
1957 out:
1958 	dput(parent);
1959 	return d;
1960 out_error:
1961 	nfs_mark_for_revalidate(dir);
1962 	d = ERR_PTR(error);
1963 	goto out;
1964 }
1965 EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
1966 
1967 /*
1968  * Code common to create, mkdir, and mknod.
1969  */
1970 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1971 				struct nfs_fattr *fattr,
1972 				struct nfs4_label *label)
1973 {
1974 	struct dentry *d;
1975 
1976 	d = nfs_add_or_obtain(dentry, fhandle, fattr, label);
1977 	if (IS_ERR(d))
1978 		return PTR_ERR(d);
1979 
1980 	/* Callers don't care */
1981 	dput(d);
1982 	return 0;
1983 }
1984 EXPORT_SYMBOL_GPL(nfs_instantiate);
1985 
1986 /*
1987  * Following a failed create operation, we drop the dentry rather
1988  * than retain a negative dentry. This avoids a problem in the event
1989  * that the operation succeeded on the server, but an error in the
1990  * reply path made it appear to have failed.
1991  */
1992 int nfs_create(struct inode *dir, struct dentry *dentry,
1993 		umode_t mode, bool excl)
1994 {
1995 	struct iattr attr;
1996 	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1997 	int error;
1998 
1999 	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
2000 			dir->i_sb->s_id, dir->i_ino, dentry);
2001 
2002 	attr.ia_mode = mode;
2003 	attr.ia_valid = ATTR_MODE;
2004 
2005 	trace_nfs_create_enter(dir, dentry, open_flags);
2006 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
2007 	trace_nfs_create_exit(dir, dentry, open_flags, error);
2008 	if (error != 0)
2009 		goto out_err;
2010 	return 0;
2011 out_err:
2012 	d_drop(dentry);
2013 	return error;
2014 }
2015 EXPORT_SYMBOL_GPL(nfs_create);
2016 
2017 /*
2018  * See comments for nfs_proc_create regarding failed operations.
2019  */
2020 int
2021 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
2022 {
2023 	struct iattr attr;
2024 	int status;
2025 
2026 	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
2027 			dir->i_sb->s_id, dir->i_ino, dentry);
2028 
2029 	attr.ia_mode = mode;
2030 	attr.ia_valid = ATTR_MODE;
2031 
2032 	trace_nfs_mknod_enter(dir, dentry);
2033 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
2034 	trace_nfs_mknod_exit(dir, dentry, status);
2035 	if (status != 0)
2036 		goto out_err;
2037 	return 0;
2038 out_err:
2039 	d_drop(dentry);
2040 	return status;
2041 }
2042 EXPORT_SYMBOL_GPL(nfs_mknod);
2043 
2044 /*
2045  * See comments for nfs_proc_create regarding failed operations.
2046  */
2047 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2048 {
2049 	struct iattr attr;
2050 	int error;
2051 
2052 	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
2053 			dir->i_sb->s_id, dir->i_ino, dentry);
2054 
2055 	attr.ia_valid = ATTR_MODE;
2056 	attr.ia_mode = mode | S_IFDIR;
2057 
2058 	trace_nfs_mkdir_enter(dir, dentry);
2059 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
2060 	trace_nfs_mkdir_exit(dir, dentry, error);
2061 	if (error != 0)
2062 		goto out_err;
2063 	return 0;
2064 out_err:
2065 	d_drop(dentry);
2066 	return error;
2067 }
2068 EXPORT_SYMBOL_GPL(nfs_mkdir);
2069 
2070 static void nfs_dentry_handle_enoent(struct dentry *dentry)
2071 {
2072 	if (simple_positive(dentry))
2073 		d_delete(dentry);
2074 }
2075 
2076 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
2077 {
2078 	int error;
2079 
2080 	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
2081 			dir->i_sb->s_id, dir->i_ino, dentry);
2082 
2083 	trace_nfs_rmdir_enter(dir, dentry);
2084 	if (d_really_is_positive(dentry)) {
2085 		down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2086 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2087 		/* Ensure the VFS deletes this inode */
2088 		switch (error) {
2089 		case 0:
2090 			clear_nlink(d_inode(dentry));
2091 			break;
2092 		case -ENOENT:
2093 			nfs_dentry_handle_enoent(dentry);
2094 		}
2095 		up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2096 	} else
2097 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2098 	trace_nfs_rmdir_exit(dir, dentry, error);
2099 
2100 	return error;
2101 }
2102 EXPORT_SYMBOL_GPL(nfs_rmdir);
2103 
2104 /*
2105  * Remove a file after making sure there are no pending writes,
2106  * and after checking that the file has only one user.
2107  *
2108  * We invalidate the attribute cache and free the inode prior to the operation
2109  * to avoid possible races if the server reuses the inode.
2110  */
2111 static int nfs_safe_remove(struct dentry *dentry)
2112 {
2113 	struct inode *dir = d_inode(dentry->d_parent);
2114 	struct inode *inode = d_inode(dentry);
2115 	int error = -EBUSY;
2116 
2117 	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2118 
2119 	/* If the dentry was sillyrenamed, we simply call d_delete() */
2120 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2121 		error = 0;
2122 		goto out;
2123 	}
2124 
2125 	trace_nfs_remove_enter(dir, dentry);
2126 	if (inode != NULL) {
2127 		error = NFS_PROTO(dir)->remove(dir, dentry);
2128 		if (error == 0)
2129 			nfs_drop_nlink(inode);
2130 	} else
2131 		error = NFS_PROTO(dir)->remove(dir, dentry);
2132 	if (error == -ENOENT)
2133 		nfs_dentry_handle_enoent(dentry);
2134 	trace_nfs_remove_exit(dir, dentry, error);
2135 out:
2136 	return error;
2137 }
2138 
2139 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
2140  *  belongs to an active ".nfs..." file and we return -EBUSY.
2141  *
2142  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
2143  */
2144 int nfs_unlink(struct inode *dir, struct dentry *dentry)
2145 {
2146 	int error;
2147 	int need_rehash = 0;
2148 
2149 	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2150 		dir->i_ino, dentry);
2151 
2152 	trace_nfs_unlink_enter(dir, dentry);
2153 	spin_lock(&dentry->d_lock);
2154 	if (d_count(dentry) > 1) {
2155 		spin_unlock(&dentry->d_lock);
2156 		/* Start asynchronous writeout of the inode */
2157 		write_inode_now(d_inode(dentry), 0);
2158 		error = nfs_sillyrename(dir, dentry);
2159 		goto out;
2160 	}
2161 	if (!d_unhashed(dentry)) {
2162 		__d_drop(dentry);
2163 		need_rehash = 1;
2164 	}
2165 	spin_unlock(&dentry->d_lock);
2166 	error = nfs_safe_remove(dentry);
2167 	if (!error || error == -ENOENT) {
2168 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2169 	} else if (need_rehash)
2170 		d_rehash(dentry);
2171 out:
2172 	trace_nfs_unlink_exit(dir, dentry, error);
2173 	return error;
2174 }
2175 EXPORT_SYMBOL_GPL(nfs_unlink);
2176 
2177 /*
2178  * To create a symbolic link, most file systems instantiate a new inode,
2179  * add a page to it containing the path, then write it out to the disk
2180  * using prepare_write/commit_write.
2181  *
2182  * Unfortunately the NFS client can't create the in-core inode first
2183  * because it needs a file handle to create an in-core inode (see
2184  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
2185  * symlink request has completed on the server.
2186  *
2187  * So instead we allocate a raw page, copy the symname into it, then do
2188  * the SYMLINK request with the page as the buffer.  If it succeeds, we
2189  * now have a new file handle and can instantiate an in-core NFS inode
2190  * and move the raw page into its mapping.
2191  */
2192 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2193 {
2194 	struct page *page;
2195 	char *kaddr;
2196 	struct iattr attr;
2197 	unsigned int pathlen = strlen(symname);
2198 	int error;
2199 
2200 	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2201 		dir->i_ino, dentry, symname);
2202 
2203 	if (pathlen > PAGE_SIZE)
2204 		return -ENAMETOOLONG;
2205 
2206 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
2207 	attr.ia_valid = ATTR_MODE;
2208 
2209 	page = alloc_page(GFP_USER);
2210 	if (!page)
2211 		return -ENOMEM;
2212 
2213 	kaddr = page_address(page);
2214 	memcpy(kaddr, symname, pathlen);
2215 	if (pathlen < PAGE_SIZE)
2216 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2217 
2218 	trace_nfs_symlink_enter(dir, dentry);
2219 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
2220 	trace_nfs_symlink_exit(dir, dentry, error);
2221 	if (error != 0) {
2222 		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2223 			dir->i_sb->s_id, dir->i_ino,
2224 			dentry, symname, error);
2225 		d_drop(dentry);
2226 		__free_page(page);
2227 		return error;
2228 	}
2229 
2230 	/*
2231 	 * No big deal if we can't add this page to the page cache here.
2232 	 * READLINK will get the missing page from the server if needed.
2233 	 */
2234 	if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2235 							GFP_KERNEL)) {
2236 		SetPageUptodate(page);
2237 		unlock_page(page);
2238 		/*
2239 		 * add_to_page_cache_lru() grabs an extra page refcount.
2240 		 * Drop it here to avoid leaking this page later.
2241 		 */
2242 		put_page(page);
2243 	} else
2244 		__free_page(page);
2245 
2246 	return 0;
2247 }
2248 EXPORT_SYMBOL_GPL(nfs_symlink);
2249 
2250 int
2251 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2252 {
2253 	struct inode *inode = d_inode(old_dentry);
2254 	int error;
2255 
2256 	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2257 		old_dentry, dentry);
2258 
2259 	trace_nfs_link_enter(inode, dir, dentry);
2260 	d_drop(dentry);
2261 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2262 	if (error == 0) {
2263 		ihold(inode);
2264 		d_add(dentry, inode);
2265 	}
2266 	trace_nfs_link_exit(inode, dir, dentry, error);
2267 	return error;
2268 }
2269 EXPORT_SYMBOL_GPL(nfs_link);
2270 
2271 /*
2272  * RENAME
2273  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2274  * different file handle for the same inode after a rename (e.g. when
2275  * moving to a different directory). A fail-safe method to do so would
2276  * be to look up old_dir/old_name, create a link to new_dir/new_name and
2277  * rename the old file using the sillyrename stuff. This way, the original
2278  * file in old_dir will go away when the last process iput()s the inode.
2279  *
2280  * FIXED.
2281  *
2282  * It actually works quite well. One needs to have the possibility for
2283  * at least one ".nfs..." file in each directory the file ever gets
2284  * moved or linked to which happens automagically with the new
2285  * implementation that only depends on the dcache stuff instead of
2286  * using the inode layer
2287  *
2288  * Unfortunately, things are a little more complicated than indicated
2289  * above. For a cross-directory move, we want to make sure we can get
2290  * rid of the old inode after the operation.  This means there must be
2291  * no pending writes (if it's a file), and the use count must be 1.
2292  * If these conditions are met, we can drop the dentries before doing
2293  * the rename.
2294  */
2295 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2296 	       struct inode *new_dir, struct dentry *new_dentry,
2297 	       unsigned int flags)
2298 {
2299 	struct inode *old_inode = d_inode(old_dentry);
2300 	struct inode *new_inode = d_inode(new_dentry);
2301 	struct dentry *dentry = NULL, *rehash = NULL;
2302 	struct rpc_task *task;
2303 	int error = -EBUSY;
2304 
2305 	if (flags)
2306 		return -EINVAL;
2307 
2308 	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2309 		 old_dentry, new_dentry,
2310 		 d_count(new_dentry));
2311 
2312 	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2313 	/*
2314 	 * For non-directories, check whether the target is busy and if so,
2315 	 * make a copy of the dentry and then do a silly-rename. If the
2316 	 * silly-rename succeeds, the copied dentry is hashed and becomes
2317 	 * the new target.
2318 	 */
2319 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2320 		/*
2321 		 * To prevent any new references to the target during the
2322 		 * rename, we unhash the dentry in advance.
2323 		 */
2324 		if (!d_unhashed(new_dentry)) {
2325 			d_drop(new_dentry);
2326 			rehash = new_dentry;
2327 		}
2328 
2329 		if (d_count(new_dentry) > 2) {
2330 			int err;
2331 
2332 			/* copy the target dentry's name */
2333 			dentry = d_alloc(new_dentry->d_parent,
2334 					 &new_dentry->d_name);
2335 			if (!dentry)
2336 				goto out;
2337 
2338 			/* silly-rename the existing target ... */
2339 			err = nfs_sillyrename(new_dir, new_dentry);
2340 			if (err)
2341 				goto out;
2342 
2343 			new_dentry = dentry;
2344 			rehash = NULL;
2345 			new_inode = NULL;
2346 		}
2347 	}
2348 
2349 	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2350 	if (IS_ERR(task)) {
2351 		error = PTR_ERR(task);
2352 		goto out;
2353 	}
2354 
2355 	error = rpc_wait_for_completion_task(task);
2356 	if (error != 0) {
2357 		((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2358 		/* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2359 		smp_wmb();
2360 	} else
2361 		error = task->tk_status;
2362 	rpc_put_task(task);
2363 	/* Ensure the inode attributes are revalidated */
2364 	if (error == 0) {
2365 		spin_lock(&old_inode->i_lock);
2366 		NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2367 		NFS_I(old_inode)->cache_validity |= NFS_INO_INVALID_CHANGE
2368 			| NFS_INO_INVALID_CTIME
2369 			| NFS_INO_REVAL_FORCED;
2370 		spin_unlock(&old_inode->i_lock);
2371 	}
2372 out:
2373 	if (rehash)
2374 		d_rehash(rehash);
2375 	trace_nfs_rename_exit(old_dir, old_dentry,
2376 			new_dir, new_dentry, error);
2377 	if (!error) {
2378 		if (new_inode != NULL)
2379 			nfs_drop_nlink(new_inode);
2380 		/*
2381 		 * The d_move() should be here instead of in an async RPC completion
2382 		 * handler because we need the proper locks to move the dentry.  If
2383 		 * we're interrupted by a signal, the async RPC completion handler
2384 		 * should mark the directories for revalidation.
2385 		 */
2386 		d_move(old_dentry, new_dentry);
2387 		nfs_set_verifier(old_dentry,
2388 					nfs_save_change_attribute(new_dir));
2389 	} else if (error == -ENOENT)
2390 		nfs_dentry_handle_enoent(old_dentry);
2391 
2392 	/* new dentry created? */
2393 	if (dentry)
2394 		dput(dentry);
2395 	return error;
2396 }
2397 EXPORT_SYMBOL_GPL(nfs_rename);
2398 
2399 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2400 static LIST_HEAD(nfs_access_lru_list);
2401 static atomic_long_t nfs_access_nr_entries;
2402 
2403 static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2404 module_param(nfs_access_max_cachesize, ulong, 0644);
2405 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2406 
2407 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2408 {
2409 	put_cred(entry->cred);
2410 	kfree_rcu(entry, rcu_head);
2411 	smp_mb__before_atomic();
2412 	atomic_long_dec(&nfs_access_nr_entries);
2413 	smp_mb__after_atomic();
2414 }
2415 
2416 static void nfs_access_free_list(struct list_head *head)
2417 {
2418 	struct nfs_access_entry *cache;
2419 
2420 	while (!list_empty(head)) {
2421 		cache = list_entry(head->next, struct nfs_access_entry, lru);
2422 		list_del(&cache->lru);
2423 		nfs_access_free_entry(cache);
2424 	}
2425 }
2426 
2427 static unsigned long
2428 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2429 {
2430 	LIST_HEAD(head);
2431 	struct nfs_inode *nfsi, *next;
2432 	struct nfs_access_entry *cache;
2433 	long freed = 0;
2434 
2435 	spin_lock(&nfs_access_lru_lock);
2436 	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2437 		struct inode *inode;
2438 
2439 		if (nr_to_scan-- == 0)
2440 			break;
2441 		inode = &nfsi->vfs_inode;
2442 		spin_lock(&inode->i_lock);
2443 		if (list_empty(&nfsi->access_cache_entry_lru))
2444 			goto remove_lru_entry;
2445 		cache = list_entry(nfsi->access_cache_entry_lru.next,
2446 				struct nfs_access_entry, lru);
2447 		list_move(&cache->lru, &head);
2448 		rb_erase(&cache->rb_node, &nfsi->access_cache);
2449 		freed++;
2450 		if (!list_empty(&nfsi->access_cache_entry_lru))
2451 			list_move_tail(&nfsi->access_cache_inode_lru,
2452 					&nfs_access_lru_list);
2453 		else {
2454 remove_lru_entry:
2455 			list_del_init(&nfsi->access_cache_inode_lru);
2456 			smp_mb__before_atomic();
2457 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2458 			smp_mb__after_atomic();
2459 		}
2460 		spin_unlock(&inode->i_lock);
2461 	}
2462 	spin_unlock(&nfs_access_lru_lock);
2463 	nfs_access_free_list(&head);
2464 	return freed;
2465 }
2466 
2467 unsigned long
2468 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2469 {
2470 	int nr_to_scan = sc->nr_to_scan;
2471 	gfp_t gfp_mask = sc->gfp_mask;
2472 
2473 	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2474 		return SHRINK_STOP;
2475 	return nfs_do_access_cache_scan(nr_to_scan);
2476 }
2477 
2478 
2479 unsigned long
2480 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2481 {
2482 	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2483 }
2484 
2485 static void
2486 nfs_access_cache_enforce_limit(void)
2487 {
2488 	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2489 	unsigned long diff;
2490 	unsigned int nr_to_scan;
2491 
2492 	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2493 		return;
2494 	nr_to_scan = 100;
2495 	diff = nr_entries - nfs_access_max_cachesize;
2496 	if (diff < nr_to_scan)
2497 		nr_to_scan = diff;
2498 	nfs_do_access_cache_scan(nr_to_scan);
2499 }
2500 
2501 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2502 {
2503 	struct rb_root *root_node = &nfsi->access_cache;
2504 	struct rb_node *n;
2505 	struct nfs_access_entry *entry;
2506 
2507 	/* Unhook entries from the cache */
2508 	while ((n = rb_first(root_node)) != NULL) {
2509 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2510 		rb_erase(n, root_node);
2511 		list_move(&entry->lru, head);
2512 	}
2513 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2514 }
2515 
2516 void nfs_access_zap_cache(struct inode *inode)
2517 {
2518 	LIST_HEAD(head);
2519 
2520 	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2521 		return;
2522 	/* Remove from global LRU init */
2523 	spin_lock(&nfs_access_lru_lock);
2524 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2525 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2526 
2527 	spin_lock(&inode->i_lock);
2528 	__nfs_access_zap_cache(NFS_I(inode), &head);
2529 	spin_unlock(&inode->i_lock);
2530 	spin_unlock(&nfs_access_lru_lock);
2531 	nfs_access_free_list(&head);
2532 }
2533 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2534 
2535 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2536 {
2537 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2538 
2539 	while (n != NULL) {
2540 		struct nfs_access_entry *entry =
2541 			rb_entry(n, struct nfs_access_entry, rb_node);
2542 		int cmp = cred_fscmp(cred, entry->cred);
2543 
2544 		if (cmp < 0)
2545 			n = n->rb_left;
2546 		else if (cmp > 0)
2547 			n = n->rb_right;
2548 		else
2549 			return entry;
2550 	}
2551 	return NULL;
2552 }
2553 
2554 static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res, bool may_block)
2555 {
2556 	struct nfs_inode *nfsi = NFS_I(inode);
2557 	struct nfs_access_entry *cache;
2558 	bool retry = true;
2559 	int err;
2560 
2561 	spin_lock(&inode->i_lock);
2562 	for(;;) {
2563 		if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2564 			goto out_zap;
2565 		cache = nfs_access_search_rbtree(inode, cred);
2566 		err = -ENOENT;
2567 		if (cache == NULL)
2568 			goto out;
2569 		/* Found an entry, is our attribute cache valid? */
2570 		if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2571 			break;
2572 		if (!retry)
2573 			break;
2574 		err = -ECHILD;
2575 		if (!may_block)
2576 			goto out;
2577 		spin_unlock(&inode->i_lock);
2578 		err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2579 		if (err)
2580 			return err;
2581 		spin_lock(&inode->i_lock);
2582 		retry = false;
2583 	}
2584 	res->cred = cache->cred;
2585 	res->mask = cache->mask;
2586 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2587 	err = 0;
2588 out:
2589 	spin_unlock(&inode->i_lock);
2590 	return err;
2591 out_zap:
2592 	spin_unlock(&inode->i_lock);
2593 	nfs_access_zap_cache(inode);
2594 	return -ENOENT;
2595 }
2596 
2597 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res)
2598 {
2599 	/* Only check the most recently returned cache entry,
2600 	 * but do it without locking.
2601 	 */
2602 	struct nfs_inode *nfsi = NFS_I(inode);
2603 	struct nfs_access_entry *cache;
2604 	int err = -ECHILD;
2605 	struct list_head *lh;
2606 
2607 	rcu_read_lock();
2608 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2609 		goto out;
2610 	lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
2611 	cache = list_entry(lh, struct nfs_access_entry, lru);
2612 	if (lh == &nfsi->access_cache_entry_lru ||
2613 	    cred_fscmp(cred, cache->cred) != 0)
2614 		cache = NULL;
2615 	if (cache == NULL)
2616 		goto out;
2617 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2618 		goto out;
2619 	res->cred = cache->cred;
2620 	res->mask = cache->mask;
2621 	err = 0;
2622 out:
2623 	rcu_read_unlock();
2624 	return err;
2625 }
2626 
2627 int nfs_access_get_cached(struct inode *inode, const struct cred *cred, struct
2628 nfs_access_entry *res, bool may_block)
2629 {
2630 	int status;
2631 
2632 	status = nfs_access_get_cached_rcu(inode, cred, res);
2633 	if (status != 0)
2634 		status = nfs_access_get_cached_locked(inode, cred, res,
2635 		    may_block);
2636 
2637 	return status;
2638 }
2639 EXPORT_SYMBOL_GPL(nfs_access_get_cached);
2640 
2641 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2642 {
2643 	struct nfs_inode *nfsi = NFS_I(inode);
2644 	struct rb_root *root_node = &nfsi->access_cache;
2645 	struct rb_node **p = &root_node->rb_node;
2646 	struct rb_node *parent = NULL;
2647 	struct nfs_access_entry *entry;
2648 	int cmp;
2649 
2650 	spin_lock(&inode->i_lock);
2651 	while (*p != NULL) {
2652 		parent = *p;
2653 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2654 		cmp = cred_fscmp(set->cred, entry->cred);
2655 
2656 		if (cmp < 0)
2657 			p = &parent->rb_left;
2658 		else if (cmp > 0)
2659 			p = &parent->rb_right;
2660 		else
2661 			goto found;
2662 	}
2663 	rb_link_node(&set->rb_node, parent, p);
2664 	rb_insert_color(&set->rb_node, root_node);
2665 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2666 	spin_unlock(&inode->i_lock);
2667 	return;
2668 found:
2669 	rb_replace_node(parent, &set->rb_node, root_node);
2670 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2671 	list_del(&entry->lru);
2672 	spin_unlock(&inode->i_lock);
2673 	nfs_access_free_entry(entry);
2674 }
2675 
2676 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2677 {
2678 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2679 	if (cache == NULL)
2680 		return;
2681 	RB_CLEAR_NODE(&cache->rb_node);
2682 	cache->cred = get_cred(set->cred);
2683 	cache->mask = set->mask;
2684 
2685 	/* The above field assignments must be visible
2686 	 * before this item appears on the lru.  We cannot easily
2687 	 * use rcu_assign_pointer, so just force the memory barrier.
2688 	 */
2689 	smp_wmb();
2690 	nfs_access_add_rbtree(inode, cache);
2691 
2692 	/* Update accounting */
2693 	smp_mb__before_atomic();
2694 	atomic_long_inc(&nfs_access_nr_entries);
2695 	smp_mb__after_atomic();
2696 
2697 	/* Add inode to global LRU list */
2698 	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2699 		spin_lock(&nfs_access_lru_lock);
2700 		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2701 			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2702 					&nfs_access_lru_list);
2703 		spin_unlock(&nfs_access_lru_lock);
2704 	}
2705 	nfs_access_cache_enforce_limit();
2706 }
2707 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2708 
2709 #define NFS_MAY_READ (NFS_ACCESS_READ)
2710 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2711 		NFS_ACCESS_EXTEND | \
2712 		NFS_ACCESS_DELETE)
2713 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2714 		NFS_ACCESS_EXTEND)
2715 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2716 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2717 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2718 static int
2719 nfs_access_calc_mask(u32 access_result, umode_t umode)
2720 {
2721 	int mask = 0;
2722 
2723 	if (access_result & NFS_MAY_READ)
2724 		mask |= MAY_READ;
2725 	if (S_ISDIR(umode)) {
2726 		if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
2727 			mask |= MAY_WRITE;
2728 		if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
2729 			mask |= MAY_EXEC;
2730 	} else if (S_ISREG(umode)) {
2731 		if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
2732 			mask |= MAY_WRITE;
2733 		if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
2734 			mask |= MAY_EXEC;
2735 	} else if (access_result & NFS_MAY_WRITE)
2736 			mask |= MAY_WRITE;
2737 	return mask;
2738 }
2739 
2740 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2741 {
2742 	entry->mask = access_result;
2743 }
2744 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2745 
2746 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
2747 {
2748 	struct nfs_access_entry cache;
2749 	bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2750 	int cache_mask = -1;
2751 	int status;
2752 
2753 	trace_nfs_access_enter(inode);
2754 
2755 	status = nfs_access_get_cached(inode, cred, &cache, may_block);
2756 	if (status == 0)
2757 		goto out_cached;
2758 
2759 	status = -ECHILD;
2760 	if (!may_block)
2761 		goto out;
2762 
2763 	/*
2764 	 * Determine which access bits we want to ask for...
2765 	 */
2766 	cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND;
2767 	if (nfs_server_capable(inode, NFS_CAP_XATTR)) {
2768 		cache.mask |= NFS_ACCESS_XAREAD | NFS_ACCESS_XAWRITE |
2769 		    NFS_ACCESS_XALIST;
2770 	}
2771 	if (S_ISDIR(inode->i_mode))
2772 		cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
2773 	else
2774 		cache.mask |= NFS_ACCESS_EXECUTE;
2775 	cache.cred = cred;
2776 	status = NFS_PROTO(inode)->access(inode, &cache);
2777 	if (status != 0) {
2778 		if (status == -ESTALE) {
2779 			if (!S_ISDIR(inode->i_mode))
2780 				nfs_set_inode_stale(inode);
2781 			else
2782 				nfs_zap_caches(inode);
2783 		}
2784 		goto out;
2785 	}
2786 	nfs_access_add_cache(inode, &cache);
2787 out_cached:
2788 	cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
2789 	if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2790 		status = -EACCES;
2791 out:
2792 	trace_nfs_access_exit(inode, mask, cache_mask, status);
2793 	return status;
2794 }
2795 
2796 static int nfs_open_permission_mask(int openflags)
2797 {
2798 	int mask = 0;
2799 
2800 	if (openflags & __FMODE_EXEC) {
2801 		/* ONLY check exec rights */
2802 		mask = MAY_EXEC;
2803 	} else {
2804 		if ((openflags & O_ACCMODE) != O_WRONLY)
2805 			mask |= MAY_READ;
2806 		if ((openflags & O_ACCMODE) != O_RDONLY)
2807 			mask |= MAY_WRITE;
2808 	}
2809 
2810 	return mask;
2811 }
2812 
2813 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
2814 {
2815 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2816 }
2817 EXPORT_SYMBOL_GPL(nfs_may_open);
2818 
2819 static int nfs_execute_ok(struct inode *inode, int mask)
2820 {
2821 	struct nfs_server *server = NFS_SERVER(inode);
2822 	int ret = 0;
2823 
2824 	if (S_ISDIR(inode->i_mode))
2825 		return 0;
2826 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_OTHER)) {
2827 		if (mask & MAY_NOT_BLOCK)
2828 			return -ECHILD;
2829 		ret = __nfs_revalidate_inode(server, inode);
2830 	}
2831 	if (ret == 0 && !execute_ok(inode))
2832 		ret = -EACCES;
2833 	return ret;
2834 }
2835 
2836 int nfs_permission(struct inode *inode, int mask)
2837 {
2838 	const struct cred *cred = current_cred();
2839 	int res = 0;
2840 
2841 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2842 
2843 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2844 		goto out;
2845 	/* Is this sys_access() ? */
2846 	if (mask & (MAY_ACCESS | MAY_CHDIR))
2847 		goto force_lookup;
2848 
2849 	switch (inode->i_mode & S_IFMT) {
2850 		case S_IFLNK:
2851 			goto out;
2852 		case S_IFREG:
2853 			if ((mask & MAY_OPEN) &&
2854 			   nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2855 				return 0;
2856 			break;
2857 		case S_IFDIR:
2858 			/*
2859 			 * Optimize away all write operations, since the server
2860 			 * will check permissions when we perform the op.
2861 			 */
2862 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2863 				goto out;
2864 	}
2865 
2866 force_lookup:
2867 	if (!NFS_PROTO(inode)->access)
2868 		goto out_notsup;
2869 
2870 	res = nfs_do_access(inode, cred, mask);
2871 out:
2872 	if (!res && (mask & MAY_EXEC))
2873 		res = nfs_execute_ok(inode, mask);
2874 
2875 	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2876 		inode->i_sb->s_id, inode->i_ino, mask, res);
2877 	return res;
2878 out_notsup:
2879 	if (mask & MAY_NOT_BLOCK)
2880 		return -ECHILD;
2881 
2882 	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2883 	if (res == 0)
2884 		res = generic_permission(inode, mask);
2885 	goto out;
2886 }
2887 EXPORT_SYMBOL_GPL(nfs_permission);
2888 
2889 /*
2890  * Local variables:
2891  *  version-control: t
2892  *  kept-new-versions: 5
2893  * End:
2894  */
2895