xref: /openbmc/linux/fs/nfs/dir.c (revision e190bfe5)
1 /*
2  *  linux/fs/nfs/dir.c
3  *
4  *  Copyright (C) 1992  Rick Sladkey
5  *
6  *  nfs directory handling functions
7  *
8  * 10 Apr 1996	Added silly rename for unlink	--okir
9  * 28 Sep 1996	Improved directory cache --okir
10  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
11  *              Re-implemented silly rename for unlink, newly implemented
12  *              silly rename for nfs_rename() following the suggestions
13  *              of Olaf Kirch (okir) found in this file.
14  *              Following Linus comments on my original hack, this version
15  *              depends only on the dcache stuff and doesn't touch the inode
16  *              layer (iput() and friends).
17  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
18  */
19 
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/pagevec.h>
33 #include <linux/namei.h>
34 #include <linux/mount.h>
35 #include <linux/sched.h>
36 
37 #include "nfs4_fs.h"
38 #include "delegation.h"
39 #include "iostat.h"
40 #include "internal.h"
41 
42 /* #define NFS_DEBUG_VERBOSE 1 */
43 
44 static int nfs_opendir(struct inode *, struct file *);
45 static int nfs_readdir(struct file *, void *, filldir_t);
46 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
47 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *);
48 static int nfs_mkdir(struct inode *, struct dentry *, int);
49 static int nfs_rmdir(struct inode *, struct dentry *);
50 static int nfs_unlink(struct inode *, struct dentry *);
51 static int nfs_symlink(struct inode *, struct dentry *, const char *);
52 static int nfs_link(struct dentry *, struct inode *, struct dentry *);
53 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t);
54 static int nfs_rename(struct inode *, struct dentry *,
55 		      struct inode *, struct dentry *);
56 static int nfs_fsync_dir(struct file *, int);
57 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
58 
59 const struct file_operations nfs_dir_operations = {
60 	.llseek		= nfs_llseek_dir,
61 	.read		= generic_read_dir,
62 	.readdir	= nfs_readdir,
63 	.open		= nfs_opendir,
64 	.release	= nfs_release,
65 	.fsync		= nfs_fsync_dir,
66 };
67 
68 const struct inode_operations nfs_dir_inode_operations = {
69 	.create		= nfs_create,
70 	.lookup		= nfs_lookup,
71 	.link		= nfs_link,
72 	.unlink		= nfs_unlink,
73 	.symlink	= nfs_symlink,
74 	.mkdir		= nfs_mkdir,
75 	.rmdir		= nfs_rmdir,
76 	.mknod		= nfs_mknod,
77 	.rename		= nfs_rename,
78 	.permission	= nfs_permission,
79 	.getattr	= nfs_getattr,
80 	.setattr	= nfs_setattr,
81 };
82 
83 #ifdef CONFIG_NFS_V3
84 const struct inode_operations nfs3_dir_inode_operations = {
85 	.create		= nfs_create,
86 	.lookup		= nfs_lookup,
87 	.link		= nfs_link,
88 	.unlink		= nfs_unlink,
89 	.symlink	= nfs_symlink,
90 	.mkdir		= nfs_mkdir,
91 	.rmdir		= nfs_rmdir,
92 	.mknod		= nfs_mknod,
93 	.rename		= nfs_rename,
94 	.permission	= nfs_permission,
95 	.getattr	= nfs_getattr,
96 	.setattr	= nfs_setattr,
97 	.listxattr	= nfs3_listxattr,
98 	.getxattr	= nfs3_getxattr,
99 	.setxattr	= nfs3_setxattr,
100 	.removexattr	= nfs3_removexattr,
101 };
102 #endif  /* CONFIG_NFS_V3 */
103 
104 #ifdef CONFIG_NFS_V4
105 
106 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
107 const struct inode_operations nfs4_dir_inode_operations = {
108 	.create		= nfs_create,
109 	.lookup		= nfs_atomic_lookup,
110 	.link		= nfs_link,
111 	.unlink		= nfs_unlink,
112 	.symlink	= nfs_symlink,
113 	.mkdir		= nfs_mkdir,
114 	.rmdir		= nfs_rmdir,
115 	.mknod		= nfs_mknod,
116 	.rename		= nfs_rename,
117 	.permission	= nfs_permission,
118 	.getattr	= nfs_getattr,
119 	.setattr	= nfs_setattr,
120 	.getxattr       = nfs4_getxattr,
121 	.setxattr       = nfs4_setxattr,
122 	.listxattr      = nfs4_listxattr,
123 };
124 
125 #endif /* CONFIG_NFS_V4 */
126 
127 /*
128  * Open file
129  */
130 static int
131 nfs_opendir(struct inode *inode, struct file *filp)
132 {
133 	int res;
134 
135 	dfprintk(FILE, "NFS: open dir(%s/%s)\n",
136 			filp->f_path.dentry->d_parent->d_name.name,
137 			filp->f_path.dentry->d_name.name);
138 
139 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
140 
141 	/* Call generic open code in order to cache credentials */
142 	res = nfs_open(inode, filp);
143 	return res;
144 }
145 
146 typedef __be32 * (*decode_dirent_t)(__be32 *, struct nfs_entry *, int);
147 typedef struct {
148 	struct file	*file;
149 	struct page	*page;
150 	unsigned long	page_index;
151 	__be32		*ptr;
152 	u64		*dir_cookie;
153 	loff_t		current_index;
154 	struct nfs_entry *entry;
155 	decode_dirent_t	decode;
156 	int		plus;
157 	unsigned long	timestamp;
158 	unsigned long	gencount;
159 	int		timestamp_valid;
160 } nfs_readdir_descriptor_t;
161 
162 /* Now we cache directories properly, by stuffing the dirent
163  * data directly in the page cache.
164  *
165  * Inode invalidation due to refresh etc. takes care of
166  * _everything_, no sloppy entry flushing logic, no extraneous
167  * copying, network direct to page cache, the way it was meant
168  * to be.
169  *
170  * NOTE: Dirent information verification is done always by the
171  *	 page-in of the RPC reply, nowhere else, this simplies
172  *	 things substantially.
173  */
174 static
175 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page *page)
176 {
177 	struct file	*file = desc->file;
178 	struct inode	*inode = file->f_path.dentry->d_inode;
179 	struct rpc_cred	*cred = nfs_file_cred(file);
180 	unsigned long	timestamp, gencount;
181 	int		error;
182 
183 	dfprintk(DIRCACHE, "NFS: %s: reading cookie %Lu into page %lu\n",
184 			__func__, (long long)desc->entry->cookie,
185 			page->index);
186 
187  again:
188 	timestamp = jiffies;
189 	gencount = nfs_inc_attr_generation_counter();
190 	error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, desc->entry->cookie, page,
191 					  NFS_SERVER(inode)->dtsize, desc->plus);
192 	if (error < 0) {
193 		/* We requested READDIRPLUS, but the server doesn't grok it */
194 		if (error == -ENOTSUPP && desc->plus) {
195 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
196 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
197 			desc->plus = 0;
198 			goto again;
199 		}
200 		goto error;
201 	}
202 	desc->timestamp = timestamp;
203 	desc->gencount = gencount;
204 	desc->timestamp_valid = 1;
205 	SetPageUptodate(page);
206 	/* Ensure consistent page alignment of the data.
207 	 * Note: assumes we have exclusive access to this mapping either
208 	 *	 through inode->i_mutex or some other mechanism.
209 	 */
210 	if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
211 		/* Should never happen */
212 		nfs_zap_mapping(inode, inode->i_mapping);
213 	}
214 	unlock_page(page);
215 	return 0;
216  error:
217 	unlock_page(page);
218 	return -EIO;
219 }
220 
221 static inline
222 int dir_decode(nfs_readdir_descriptor_t *desc)
223 {
224 	__be32	*p = desc->ptr;
225 	p = desc->decode(p, desc->entry, desc->plus);
226 	if (IS_ERR(p))
227 		return PTR_ERR(p);
228 	desc->ptr = p;
229 	if (desc->timestamp_valid) {
230 		desc->entry->fattr->time_start = desc->timestamp;
231 		desc->entry->fattr->gencount = desc->gencount;
232 	} else
233 		desc->entry->fattr->valid &= ~NFS_ATTR_FATTR;
234 	return 0;
235 }
236 
237 static inline
238 void dir_page_release(nfs_readdir_descriptor_t *desc)
239 {
240 	kunmap(desc->page);
241 	page_cache_release(desc->page);
242 	desc->page = NULL;
243 	desc->ptr = NULL;
244 }
245 
246 /*
247  * Given a pointer to a buffer that has already been filled by a call
248  * to readdir, find the next entry with cookie '*desc->dir_cookie'.
249  *
250  * If the end of the buffer has been reached, return -EAGAIN, if not,
251  * return the offset within the buffer of the next entry to be
252  * read.
253  */
254 static inline
255 int find_dirent(nfs_readdir_descriptor_t *desc)
256 {
257 	struct nfs_entry *entry = desc->entry;
258 	int		loop_count = 0,
259 			status;
260 
261 	while((status = dir_decode(desc)) == 0) {
262 		dfprintk(DIRCACHE, "NFS: %s: examining cookie %Lu\n",
263 				__func__, (unsigned long long)entry->cookie);
264 		if (entry->prev_cookie == *desc->dir_cookie)
265 			break;
266 		if (loop_count++ > 200) {
267 			loop_count = 0;
268 			schedule();
269 		}
270 	}
271 	return status;
272 }
273 
274 /*
275  * Given a pointer to a buffer that has already been filled by a call
276  * to readdir, find the entry at offset 'desc->file->f_pos'.
277  *
278  * If the end of the buffer has been reached, return -EAGAIN, if not,
279  * return the offset within the buffer of the next entry to be
280  * read.
281  */
282 static inline
283 int find_dirent_index(nfs_readdir_descriptor_t *desc)
284 {
285 	struct nfs_entry *entry = desc->entry;
286 	int		loop_count = 0,
287 			status;
288 
289 	for(;;) {
290 		status = dir_decode(desc);
291 		if (status)
292 			break;
293 
294 		dfprintk(DIRCACHE, "NFS: found cookie %Lu at index %Ld\n",
295 				(unsigned long long)entry->cookie, desc->current_index);
296 
297 		if (desc->file->f_pos == desc->current_index) {
298 			*desc->dir_cookie = entry->cookie;
299 			break;
300 		}
301 		desc->current_index++;
302 		if (loop_count++ > 200) {
303 			loop_count = 0;
304 			schedule();
305 		}
306 	}
307 	return status;
308 }
309 
310 /*
311  * Find the given page, and call find_dirent() or find_dirent_index in
312  * order to try to return the next entry.
313  */
314 static inline
315 int find_dirent_page(nfs_readdir_descriptor_t *desc)
316 {
317 	struct inode	*inode = desc->file->f_path.dentry->d_inode;
318 	struct page	*page;
319 	int		status;
320 
321 	dfprintk(DIRCACHE, "NFS: %s: searching page %ld for target %Lu\n",
322 			__func__, desc->page_index,
323 			(long long) *desc->dir_cookie);
324 
325 	/* If we find the page in the page_cache, we cannot be sure
326 	 * how fresh the data is, so we will ignore readdir_plus attributes.
327 	 */
328 	desc->timestamp_valid = 0;
329 	page = read_cache_page(inode->i_mapping, desc->page_index,
330 			       (filler_t *)nfs_readdir_filler, desc);
331 	if (IS_ERR(page)) {
332 		status = PTR_ERR(page);
333 		goto out;
334 	}
335 
336 	/* NOTE: Someone else may have changed the READDIRPLUS flag */
337 	desc->page = page;
338 	desc->ptr = kmap(page);		/* matching kunmap in nfs_do_filldir */
339 	if (*desc->dir_cookie != 0)
340 		status = find_dirent(desc);
341 	else
342 		status = find_dirent_index(desc);
343 	if (status < 0)
344 		dir_page_release(desc);
345  out:
346 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
347 	return status;
348 }
349 
350 /*
351  * Recurse through the page cache pages, and return a
352  * filled nfs_entry structure of the next directory entry if possible.
353  *
354  * The target for the search is '*desc->dir_cookie' if non-0,
355  * 'desc->file->f_pos' otherwise
356  */
357 static inline
358 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
359 {
360 	int		loop_count = 0;
361 	int		res;
362 
363 	/* Always search-by-index from the beginning of the cache */
364 	if (*desc->dir_cookie == 0) {
365 		dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for offset %Ld\n",
366 				(long long)desc->file->f_pos);
367 		desc->page_index = 0;
368 		desc->entry->cookie = desc->entry->prev_cookie = 0;
369 		desc->entry->eof = 0;
370 		desc->current_index = 0;
371 	} else
372 		dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for cookie %Lu\n",
373 				(unsigned long long)*desc->dir_cookie);
374 
375 	for (;;) {
376 		res = find_dirent_page(desc);
377 		if (res != -EAGAIN)
378 			break;
379 		/* Align to beginning of next page */
380 		desc->page_index ++;
381 		if (loop_count++ > 200) {
382 			loop_count = 0;
383 			schedule();
384 		}
385 	}
386 
387 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, res);
388 	return res;
389 }
390 
391 static inline unsigned int dt_type(struct inode *inode)
392 {
393 	return (inode->i_mode >> 12) & 15;
394 }
395 
396 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc);
397 
398 /*
399  * Once we've found the start of the dirent within a page: fill 'er up...
400  */
401 static
402 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
403 		   filldir_t filldir)
404 {
405 	struct file	*file = desc->file;
406 	struct nfs_entry *entry = desc->entry;
407 	struct dentry	*dentry = NULL;
408 	u64		fileid;
409 	int		loop_count = 0,
410 			res;
411 
412 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling starting @ cookie %Lu\n",
413 			(unsigned long long)entry->cookie);
414 
415 	for(;;) {
416 		unsigned d_type = DT_UNKNOWN;
417 		/* Note: entry->prev_cookie contains the cookie for
418 		 *	 retrieving the current dirent on the server */
419 		fileid = entry->ino;
420 
421 		/* Get a dentry if we have one */
422 		if (dentry != NULL)
423 			dput(dentry);
424 		dentry = nfs_readdir_lookup(desc);
425 
426 		/* Use readdirplus info */
427 		if (dentry != NULL && dentry->d_inode != NULL) {
428 			d_type = dt_type(dentry->d_inode);
429 			fileid = NFS_FILEID(dentry->d_inode);
430 		}
431 
432 		res = filldir(dirent, entry->name, entry->len,
433 			      file->f_pos, nfs_compat_user_ino64(fileid),
434 			      d_type);
435 		if (res < 0)
436 			break;
437 		file->f_pos++;
438 		*desc->dir_cookie = entry->cookie;
439 		if (dir_decode(desc) != 0) {
440 			desc->page_index ++;
441 			break;
442 		}
443 		if (loop_count++ > 200) {
444 			loop_count = 0;
445 			schedule();
446 		}
447 	}
448 	dir_page_release(desc);
449 	if (dentry != NULL)
450 		dput(dentry);
451 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
452 			(unsigned long long)*desc->dir_cookie, res);
453 	return res;
454 }
455 
456 /*
457  * If we cannot find a cookie in our cache, we suspect that this is
458  * because it points to a deleted file, so we ask the server to return
459  * whatever it thinks is the next entry. We then feed this to filldir.
460  * If all goes well, we should then be able to find our way round the
461  * cache on the next call to readdir_search_pagecache();
462  *
463  * NOTE: we cannot add the anonymous page to the pagecache because
464  *	 the data it contains might not be page aligned. Besides,
465  *	 we should already have a complete representation of the
466  *	 directory in the page cache by the time we get here.
467  */
468 static inline
469 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
470 		     filldir_t filldir)
471 {
472 	struct file	*file = desc->file;
473 	struct inode	*inode = file->f_path.dentry->d_inode;
474 	struct rpc_cred	*cred = nfs_file_cred(file);
475 	struct page	*page = NULL;
476 	int		status;
477 	unsigned long	timestamp, gencount;
478 
479 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
480 			(unsigned long long)*desc->dir_cookie);
481 
482 	page = alloc_page(GFP_HIGHUSER);
483 	if (!page) {
484 		status = -ENOMEM;
485 		goto out;
486 	}
487 	timestamp = jiffies;
488 	gencount = nfs_inc_attr_generation_counter();
489 	status = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred,
490 						*desc->dir_cookie, page,
491 						NFS_SERVER(inode)->dtsize,
492 						desc->plus);
493 	desc->page = page;
494 	desc->ptr = kmap(page);		/* matching kunmap in nfs_do_filldir */
495 	if (status >= 0) {
496 		desc->timestamp = timestamp;
497 		desc->gencount = gencount;
498 		desc->timestamp_valid = 1;
499 		if ((status = dir_decode(desc)) == 0)
500 			desc->entry->prev_cookie = *desc->dir_cookie;
501 	} else
502 		status = -EIO;
503 	if (status < 0)
504 		goto out_release;
505 
506 	status = nfs_do_filldir(desc, dirent, filldir);
507 
508 	/* Reset read descriptor so it searches the page cache from
509 	 * the start upon the next call to readdir_search_pagecache() */
510 	desc->page_index = 0;
511 	desc->entry->cookie = desc->entry->prev_cookie = 0;
512 	desc->entry->eof = 0;
513  out:
514 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
515 			__func__, status);
516 	return status;
517  out_release:
518 	dir_page_release(desc);
519 	goto out;
520 }
521 
522 /* The file offset position represents the dirent entry number.  A
523    last cookie cache takes care of the common case of reading the
524    whole directory.
525  */
526 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
527 {
528 	struct dentry	*dentry = filp->f_path.dentry;
529 	struct inode	*inode = dentry->d_inode;
530 	nfs_readdir_descriptor_t my_desc,
531 			*desc = &my_desc;
532 	struct nfs_entry my_entry;
533 	int res = -ENOMEM;
534 
535 	dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n",
536 			dentry->d_parent->d_name.name, dentry->d_name.name,
537 			(long long)filp->f_pos);
538 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
539 
540 	/*
541 	 * filp->f_pos points to the dirent entry number.
542 	 * *desc->dir_cookie has the cookie for the next entry. We have
543 	 * to either find the entry with the appropriate number or
544 	 * revalidate the cookie.
545 	 */
546 	memset(desc, 0, sizeof(*desc));
547 
548 	desc->file = filp;
549 	desc->dir_cookie = &nfs_file_open_context(filp)->dir_cookie;
550 	desc->decode = NFS_PROTO(inode)->decode_dirent;
551 	desc->plus = NFS_USE_READDIRPLUS(inode);
552 
553 	my_entry.cookie = my_entry.prev_cookie = 0;
554 	my_entry.eof = 0;
555 	my_entry.fh = nfs_alloc_fhandle();
556 	my_entry.fattr = nfs_alloc_fattr();
557 	if (my_entry.fh == NULL || my_entry.fattr == NULL)
558 		goto out_alloc_failed;
559 
560 	desc->entry = &my_entry;
561 
562 	nfs_block_sillyrename(dentry);
563 	res = nfs_revalidate_mapping(inode, filp->f_mapping);
564 	if (res < 0)
565 		goto out;
566 
567 	while(!desc->entry->eof) {
568 		res = readdir_search_pagecache(desc);
569 
570 		if (res == -EBADCOOKIE) {
571 			/* This means either end of directory */
572 			if (*desc->dir_cookie && desc->entry->cookie != *desc->dir_cookie) {
573 				/* Or that the server has 'lost' a cookie */
574 				res = uncached_readdir(desc, dirent, filldir);
575 				if (res >= 0)
576 					continue;
577 			}
578 			res = 0;
579 			break;
580 		}
581 		if (res == -ETOOSMALL && desc->plus) {
582 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
583 			nfs_zap_caches(inode);
584 			desc->plus = 0;
585 			desc->entry->eof = 0;
586 			continue;
587 		}
588 		if (res < 0)
589 			break;
590 
591 		res = nfs_do_filldir(desc, dirent, filldir);
592 		if (res < 0) {
593 			res = 0;
594 			break;
595 		}
596 	}
597 out:
598 	nfs_unblock_sillyrename(dentry);
599 	if (res > 0)
600 		res = 0;
601 out_alloc_failed:
602 	nfs_free_fattr(my_entry.fattr);
603 	nfs_free_fhandle(my_entry.fh);
604 	dfprintk(FILE, "NFS: readdir(%s/%s) returns %d\n",
605 			dentry->d_parent->d_name.name, dentry->d_name.name,
606 			res);
607 	return res;
608 }
609 
610 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
611 {
612 	struct dentry *dentry = filp->f_path.dentry;
613 	struct inode *inode = dentry->d_inode;
614 
615 	dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n",
616 			dentry->d_parent->d_name.name,
617 			dentry->d_name.name,
618 			offset, origin);
619 
620 	mutex_lock(&inode->i_mutex);
621 	switch (origin) {
622 		case 1:
623 			offset += filp->f_pos;
624 		case 0:
625 			if (offset >= 0)
626 				break;
627 		default:
628 			offset = -EINVAL;
629 			goto out;
630 	}
631 	if (offset != filp->f_pos) {
632 		filp->f_pos = offset;
633 		nfs_file_open_context(filp)->dir_cookie = 0;
634 	}
635 out:
636 	mutex_unlock(&inode->i_mutex);
637 	return offset;
638 }
639 
640 /*
641  * All directory operations under NFS are synchronous, so fsync()
642  * is a dummy operation.
643  */
644 static int nfs_fsync_dir(struct file *filp, int datasync)
645 {
646 	struct dentry *dentry = filp->f_path.dentry;
647 
648 	dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n",
649 			dentry->d_parent->d_name.name, dentry->d_name.name,
650 			datasync);
651 
652 	nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC);
653 	return 0;
654 }
655 
656 /**
657  * nfs_force_lookup_revalidate - Mark the directory as having changed
658  * @dir - pointer to directory inode
659  *
660  * This forces the revalidation code in nfs_lookup_revalidate() to do a
661  * full lookup on all child dentries of 'dir' whenever a change occurs
662  * on the server that might have invalidated our dcache.
663  *
664  * The caller should be holding dir->i_lock
665  */
666 void nfs_force_lookup_revalidate(struct inode *dir)
667 {
668 	NFS_I(dir)->cache_change_attribute++;
669 }
670 
671 /*
672  * A check for whether or not the parent directory has changed.
673  * In the case it has, we assume that the dentries are untrustworthy
674  * and may need to be looked up again.
675  */
676 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
677 {
678 	if (IS_ROOT(dentry))
679 		return 1;
680 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
681 		return 0;
682 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
683 		return 0;
684 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
685 	if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
686 		return 0;
687 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
688 		return 0;
689 	return 1;
690 }
691 
692 /*
693  * Return the intent data that applies to this particular path component
694  *
695  * Note that the current set of intents only apply to the very last
696  * component of the path.
697  * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
698  */
699 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, unsigned int mask)
700 {
701 	if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT))
702 		return 0;
703 	return nd->flags & mask;
704 }
705 
706 /*
707  * Use intent information to check whether or not we're going to do
708  * an O_EXCL create using this path component.
709  */
710 static int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
711 {
712 	if (NFS_PROTO(dir)->version == 2)
713 		return 0;
714 	return nd && nfs_lookup_check_intent(nd, LOOKUP_EXCL);
715 }
716 
717 /*
718  * Inode and filehandle revalidation for lookups.
719  *
720  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
721  * or if the intent information indicates that we're about to open this
722  * particular file and the "nocto" mount flag is not set.
723  *
724  */
725 static inline
726 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
727 {
728 	struct nfs_server *server = NFS_SERVER(inode);
729 
730 	if (test_bit(NFS_INO_MOUNTPOINT, &NFS_I(inode)->flags))
731 		return 0;
732 	if (nd != NULL) {
733 		/* VFS wants an on-the-wire revalidation */
734 		if (nd->flags & LOOKUP_REVAL)
735 			goto out_force;
736 		/* This is an open(2) */
737 		if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
738 				!(server->flags & NFS_MOUNT_NOCTO) &&
739 				(S_ISREG(inode->i_mode) ||
740 				 S_ISDIR(inode->i_mode)))
741 			goto out_force;
742 		return 0;
743 	}
744 	return nfs_revalidate_inode(server, inode);
745 out_force:
746 	return __nfs_revalidate_inode(server, inode);
747 }
748 
749 /*
750  * We judge how long we want to trust negative
751  * dentries by looking at the parent inode mtime.
752  *
753  * If parent mtime has changed, we revalidate, else we wait for a
754  * period corresponding to the parent's attribute cache timeout value.
755  */
756 static inline
757 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
758 		       struct nameidata *nd)
759 {
760 	/* Don't revalidate a negative dentry if we're creating a new file */
761 	if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
762 		return 0;
763 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
764 		return 1;
765 	return !nfs_check_verifier(dir, dentry);
766 }
767 
768 /*
769  * This is called every time the dcache has a lookup hit,
770  * and we should check whether we can really trust that
771  * lookup.
772  *
773  * NOTE! The hit can be a negative hit too, don't assume
774  * we have an inode!
775  *
776  * If the parent directory is seen to have changed, we throw out the
777  * cached dentry and do a new lookup.
778  */
779 static int nfs_lookup_revalidate(struct dentry * dentry, struct nameidata *nd)
780 {
781 	struct inode *dir;
782 	struct inode *inode;
783 	struct dentry *parent;
784 	struct nfs_fh *fhandle = NULL;
785 	struct nfs_fattr *fattr = NULL;
786 	int error;
787 
788 	parent = dget_parent(dentry);
789 	dir = parent->d_inode;
790 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
791 	inode = dentry->d_inode;
792 
793 	if (!inode) {
794 		if (nfs_neg_need_reval(dir, dentry, nd))
795 			goto out_bad;
796 		goto out_valid;
797 	}
798 
799 	if (is_bad_inode(inode)) {
800 		dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
801 				__func__, dentry->d_parent->d_name.name,
802 				dentry->d_name.name);
803 		goto out_bad;
804 	}
805 
806 	if (nfs_have_delegation(inode, FMODE_READ))
807 		goto out_set_verifier;
808 
809 	/* Force a full look up iff the parent directory has changed */
810 	if (!nfs_is_exclusive_create(dir, nd) && nfs_check_verifier(dir, dentry)) {
811 		if (nfs_lookup_verify_inode(inode, nd))
812 			goto out_zap_parent;
813 		goto out_valid;
814 	}
815 
816 	if (NFS_STALE(inode))
817 		goto out_bad;
818 
819 	error = -ENOMEM;
820 	fhandle = nfs_alloc_fhandle();
821 	fattr = nfs_alloc_fattr();
822 	if (fhandle == NULL || fattr == NULL)
823 		goto out_error;
824 
825 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
826 	if (error)
827 		goto out_bad;
828 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
829 		goto out_bad;
830 	if ((error = nfs_refresh_inode(inode, fattr)) != 0)
831 		goto out_bad;
832 
833 	nfs_free_fattr(fattr);
834 	nfs_free_fhandle(fhandle);
835 out_set_verifier:
836 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
837  out_valid:
838 	dput(parent);
839 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
840 			__func__, dentry->d_parent->d_name.name,
841 			dentry->d_name.name);
842 	return 1;
843 out_zap_parent:
844 	nfs_zap_caches(dir);
845  out_bad:
846 	nfs_mark_for_revalidate(dir);
847 	if (inode && S_ISDIR(inode->i_mode)) {
848 		/* Purge readdir caches. */
849 		nfs_zap_caches(inode);
850 		/* If we have submounts, don't unhash ! */
851 		if (have_submounts(dentry))
852 			goto out_valid;
853 		if (dentry->d_flags & DCACHE_DISCONNECTED)
854 			goto out_valid;
855 		shrink_dcache_parent(dentry);
856 	}
857 	d_drop(dentry);
858 	nfs_free_fattr(fattr);
859 	nfs_free_fhandle(fhandle);
860 	dput(parent);
861 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
862 			__func__, dentry->d_parent->d_name.name,
863 			dentry->d_name.name);
864 	return 0;
865 out_error:
866 	nfs_free_fattr(fattr);
867 	nfs_free_fhandle(fhandle);
868 	dput(parent);
869 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) lookup returned error %d\n",
870 			__func__, dentry->d_parent->d_name.name,
871 			dentry->d_name.name, error);
872 	return error;
873 }
874 
875 /*
876  * This is called from dput() when d_count is going to 0.
877  */
878 static int nfs_dentry_delete(struct dentry *dentry)
879 {
880 	dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
881 		dentry->d_parent->d_name.name, dentry->d_name.name,
882 		dentry->d_flags);
883 
884 	/* Unhash any dentry with a stale inode */
885 	if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
886 		return 1;
887 
888 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
889 		/* Unhash it, so that ->d_iput() would be called */
890 		return 1;
891 	}
892 	if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
893 		/* Unhash it, so that ancestors of killed async unlink
894 		 * files will be cleaned up during umount */
895 		return 1;
896 	}
897 	return 0;
898 
899 }
900 
901 static void nfs_drop_nlink(struct inode *inode)
902 {
903 	spin_lock(&inode->i_lock);
904 	if (inode->i_nlink > 0)
905 		drop_nlink(inode);
906 	spin_unlock(&inode->i_lock);
907 }
908 
909 /*
910  * Called when the dentry loses inode.
911  * We use it to clean up silly-renamed files.
912  */
913 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
914 {
915 	if (S_ISDIR(inode->i_mode))
916 		/* drop any readdir cache as it could easily be old */
917 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
918 
919 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
920 		drop_nlink(inode);
921 		nfs_complete_unlink(dentry, inode);
922 	}
923 	iput(inode);
924 }
925 
926 const struct dentry_operations nfs_dentry_operations = {
927 	.d_revalidate	= nfs_lookup_revalidate,
928 	.d_delete	= nfs_dentry_delete,
929 	.d_iput		= nfs_dentry_iput,
930 };
931 
932 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
933 {
934 	struct dentry *res;
935 	struct dentry *parent;
936 	struct inode *inode = NULL;
937 	struct nfs_fh *fhandle = NULL;
938 	struct nfs_fattr *fattr = NULL;
939 	int error;
940 
941 	dfprintk(VFS, "NFS: lookup(%s/%s)\n",
942 		dentry->d_parent->d_name.name, dentry->d_name.name);
943 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
944 
945 	res = ERR_PTR(-ENAMETOOLONG);
946 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
947 		goto out;
948 
949 	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
950 
951 	/*
952 	 * If we're doing an exclusive create, optimize away the lookup
953 	 * but don't hash the dentry.
954 	 */
955 	if (nfs_is_exclusive_create(dir, nd)) {
956 		d_instantiate(dentry, NULL);
957 		res = NULL;
958 		goto out;
959 	}
960 
961 	res = ERR_PTR(-ENOMEM);
962 	fhandle = nfs_alloc_fhandle();
963 	fattr = nfs_alloc_fattr();
964 	if (fhandle == NULL || fattr == NULL)
965 		goto out;
966 
967 	parent = dentry->d_parent;
968 	/* Protect against concurrent sillydeletes */
969 	nfs_block_sillyrename(parent);
970 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
971 	if (error == -ENOENT)
972 		goto no_entry;
973 	if (error < 0) {
974 		res = ERR_PTR(error);
975 		goto out_unblock_sillyrename;
976 	}
977 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
978 	res = (struct dentry *)inode;
979 	if (IS_ERR(res))
980 		goto out_unblock_sillyrename;
981 
982 no_entry:
983 	res = d_materialise_unique(dentry, inode);
984 	if (res != NULL) {
985 		if (IS_ERR(res))
986 			goto out_unblock_sillyrename;
987 		dentry = res;
988 	}
989 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
990 out_unblock_sillyrename:
991 	nfs_unblock_sillyrename(parent);
992 out:
993 	nfs_free_fattr(fattr);
994 	nfs_free_fhandle(fhandle);
995 	return res;
996 }
997 
998 #ifdef CONFIG_NFS_V4
999 static int nfs_open_revalidate(struct dentry *, struct nameidata *);
1000 
1001 const struct dentry_operations nfs4_dentry_operations = {
1002 	.d_revalidate	= nfs_open_revalidate,
1003 	.d_delete	= nfs_dentry_delete,
1004 	.d_iput		= nfs_dentry_iput,
1005 };
1006 
1007 /*
1008  * Use intent information to determine whether we need to substitute
1009  * the NFSv4-style stateful OPEN for the LOOKUP call
1010  */
1011 static int is_atomic_open(struct nameidata *nd)
1012 {
1013 	if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
1014 		return 0;
1015 	/* NFS does not (yet) have a stateful open for directories */
1016 	if (nd->flags & LOOKUP_DIRECTORY)
1017 		return 0;
1018 	/* Are we trying to write to a read only partition? */
1019 	if (__mnt_is_readonly(nd->path.mnt) &&
1020 	    (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE)))
1021 		return 0;
1022 	return 1;
1023 }
1024 
1025 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
1026 {
1027 	struct dentry *res = NULL;
1028 	int error;
1029 
1030 	dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
1031 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1032 
1033 	/* Check that we are indeed trying to open this file */
1034 	if (!is_atomic_open(nd))
1035 		goto no_open;
1036 
1037 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
1038 		res = ERR_PTR(-ENAMETOOLONG);
1039 		goto out;
1040 	}
1041 	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1042 
1043 	/* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash
1044 	 * the dentry. */
1045 	if (nd->flags & LOOKUP_EXCL) {
1046 		d_instantiate(dentry, NULL);
1047 		goto out;
1048 	}
1049 
1050 	/* Open the file on the server */
1051 	res = nfs4_atomic_open(dir, dentry, nd);
1052 	if (IS_ERR(res)) {
1053 		error = PTR_ERR(res);
1054 		switch (error) {
1055 			/* Make a negative dentry */
1056 			case -ENOENT:
1057 				res = NULL;
1058 				goto out;
1059 			/* This turned out not to be a regular file */
1060 			case -EISDIR:
1061 			case -ENOTDIR:
1062 				goto no_open;
1063 			case -ELOOP:
1064 				if (!(nd->intent.open.flags & O_NOFOLLOW))
1065 					goto no_open;
1066 			/* case -EINVAL: */
1067 			default:
1068 				goto out;
1069 		}
1070 	} else if (res != NULL)
1071 		dentry = res;
1072 out:
1073 	return res;
1074 no_open:
1075 	return nfs_lookup(dir, dentry, nd);
1076 }
1077 
1078 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
1079 {
1080 	struct dentry *parent = NULL;
1081 	struct inode *inode = dentry->d_inode;
1082 	struct inode *dir;
1083 	int openflags, ret = 0;
1084 
1085 	if (!is_atomic_open(nd) || d_mountpoint(dentry))
1086 		goto no_open;
1087 	parent = dget_parent(dentry);
1088 	dir = parent->d_inode;
1089 	/* We can't create new files in nfs_open_revalidate(), so we
1090 	 * optimize away revalidation of negative dentries.
1091 	 */
1092 	if (inode == NULL) {
1093 		if (!nfs_neg_need_reval(dir, dentry, nd))
1094 			ret = 1;
1095 		goto out;
1096 	}
1097 
1098 	/* NFS only supports OPEN on regular files */
1099 	if (!S_ISREG(inode->i_mode))
1100 		goto no_open_dput;
1101 	openflags = nd->intent.open.flags;
1102 	/* We cannot do exclusive creation on a positive dentry */
1103 	if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1104 		goto no_open_dput;
1105 	/* We can't create new files, or truncate existing ones here */
1106 	openflags &= ~(O_CREAT|O_TRUNC);
1107 
1108 	/*
1109 	 * Note: we're not holding inode->i_mutex and so may be racing with
1110 	 * operations that change the directory. We therefore save the
1111 	 * change attribute *before* we do the RPC call.
1112 	 */
1113 	ret = nfs4_open_revalidate(dir, dentry, openflags, nd);
1114 out:
1115 	dput(parent);
1116 	if (!ret)
1117 		d_drop(dentry);
1118 	return ret;
1119 no_open_dput:
1120 	dput(parent);
1121 no_open:
1122 	return nfs_lookup_revalidate(dentry, nd);
1123 }
1124 #endif /* CONFIG_NFSV4 */
1125 
1126 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc)
1127 {
1128 	struct dentry *parent = desc->file->f_path.dentry;
1129 	struct inode *dir = parent->d_inode;
1130 	struct nfs_entry *entry = desc->entry;
1131 	struct dentry *dentry, *alias;
1132 	struct qstr name = {
1133 		.name = entry->name,
1134 		.len = entry->len,
1135 	};
1136 	struct inode *inode;
1137 	unsigned long verf = nfs_save_change_attribute(dir);
1138 
1139 	switch (name.len) {
1140 		case 2:
1141 			if (name.name[0] == '.' && name.name[1] == '.')
1142 				return dget_parent(parent);
1143 			break;
1144 		case 1:
1145 			if (name.name[0] == '.')
1146 				return dget(parent);
1147 	}
1148 
1149 	spin_lock(&dir->i_lock);
1150 	if (NFS_I(dir)->cache_validity & NFS_INO_INVALID_DATA) {
1151 		spin_unlock(&dir->i_lock);
1152 		return NULL;
1153 	}
1154 	spin_unlock(&dir->i_lock);
1155 
1156 	name.hash = full_name_hash(name.name, name.len);
1157 	dentry = d_lookup(parent, &name);
1158 	if (dentry != NULL) {
1159 		/* Is this a positive dentry that matches the readdir info? */
1160 		if (dentry->d_inode != NULL &&
1161 				(NFS_FILEID(dentry->d_inode) == entry->ino ||
1162 				d_mountpoint(dentry))) {
1163 			if (!desc->plus || entry->fh->size == 0)
1164 				return dentry;
1165 			if (nfs_compare_fh(NFS_FH(dentry->d_inode),
1166 						entry->fh) == 0)
1167 				goto out_renew;
1168 		}
1169 		/* No, so d_drop to allow one to be created */
1170 		d_drop(dentry);
1171 		dput(dentry);
1172 	}
1173 	if (!desc->plus || !(entry->fattr->valid & NFS_ATTR_FATTR))
1174 		return NULL;
1175 	if (name.len > NFS_SERVER(dir)->namelen)
1176 		return NULL;
1177 	/* Note: caller is already holding the dir->i_mutex! */
1178 	dentry = d_alloc(parent, &name);
1179 	if (dentry == NULL)
1180 		return NULL;
1181 	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1182 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
1183 	if (IS_ERR(inode)) {
1184 		dput(dentry);
1185 		return NULL;
1186 	}
1187 
1188 	alias = d_materialise_unique(dentry, inode);
1189 	if (alias != NULL) {
1190 		dput(dentry);
1191 		if (IS_ERR(alias))
1192 			return NULL;
1193 		dentry = alias;
1194 	}
1195 
1196 out_renew:
1197 	nfs_set_verifier(dentry, verf);
1198 	return dentry;
1199 }
1200 
1201 /*
1202  * Code common to create, mkdir, and mknod.
1203  */
1204 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1205 				struct nfs_fattr *fattr)
1206 {
1207 	struct dentry *parent = dget_parent(dentry);
1208 	struct inode *dir = parent->d_inode;
1209 	struct inode *inode;
1210 	int error = -EACCES;
1211 
1212 	d_drop(dentry);
1213 
1214 	/* We may have been initialized further down */
1215 	if (dentry->d_inode)
1216 		goto out;
1217 	if (fhandle->size == 0) {
1218 		error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1219 		if (error)
1220 			goto out_error;
1221 	}
1222 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1223 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1224 		struct nfs_server *server = NFS_SB(dentry->d_sb);
1225 		error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1226 		if (error < 0)
1227 			goto out_error;
1228 	}
1229 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1230 	error = PTR_ERR(inode);
1231 	if (IS_ERR(inode))
1232 		goto out_error;
1233 	d_add(dentry, inode);
1234 out:
1235 	dput(parent);
1236 	return 0;
1237 out_error:
1238 	nfs_mark_for_revalidate(dir);
1239 	dput(parent);
1240 	return error;
1241 }
1242 
1243 /*
1244  * Following a failed create operation, we drop the dentry rather
1245  * than retain a negative dentry. This avoids a problem in the event
1246  * that the operation succeeded on the server, but an error in the
1247  * reply path made it appear to have failed.
1248  */
1249 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode,
1250 		struct nameidata *nd)
1251 {
1252 	struct iattr attr;
1253 	int error;
1254 	int open_flags = 0;
1255 
1256 	dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1257 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1258 
1259 	attr.ia_mode = mode;
1260 	attr.ia_valid = ATTR_MODE;
1261 
1262 	if ((nd->flags & LOOKUP_CREATE) != 0)
1263 		open_flags = nd->intent.open.flags;
1264 
1265 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, nd);
1266 	if (error != 0)
1267 		goto out_err;
1268 	return 0;
1269 out_err:
1270 	d_drop(dentry);
1271 	return error;
1272 }
1273 
1274 /*
1275  * See comments for nfs_proc_create regarding failed operations.
1276  */
1277 static int
1278 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev)
1279 {
1280 	struct iattr attr;
1281 	int status;
1282 
1283 	dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1284 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1285 
1286 	if (!new_valid_dev(rdev))
1287 		return -EINVAL;
1288 
1289 	attr.ia_mode = mode;
1290 	attr.ia_valid = ATTR_MODE;
1291 
1292 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1293 	if (status != 0)
1294 		goto out_err;
1295 	return 0;
1296 out_err:
1297 	d_drop(dentry);
1298 	return status;
1299 }
1300 
1301 /*
1302  * See comments for nfs_proc_create regarding failed operations.
1303  */
1304 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1305 {
1306 	struct iattr attr;
1307 	int error;
1308 
1309 	dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1310 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1311 
1312 	attr.ia_valid = ATTR_MODE;
1313 	attr.ia_mode = mode | S_IFDIR;
1314 
1315 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1316 	if (error != 0)
1317 		goto out_err;
1318 	return 0;
1319 out_err:
1320 	d_drop(dentry);
1321 	return error;
1322 }
1323 
1324 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1325 {
1326 	if (dentry->d_inode != NULL && !d_unhashed(dentry))
1327 		d_delete(dentry);
1328 }
1329 
1330 static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1331 {
1332 	int error;
1333 
1334 	dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1335 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1336 
1337 	error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1338 	/* Ensure the VFS deletes this inode */
1339 	if (error == 0 && dentry->d_inode != NULL)
1340 		clear_nlink(dentry->d_inode);
1341 	else if (error == -ENOENT)
1342 		nfs_dentry_handle_enoent(dentry);
1343 
1344 	return error;
1345 }
1346 
1347 static int nfs_sillyrename(struct inode *dir, struct dentry *dentry)
1348 {
1349 	static unsigned int sillycounter;
1350 	const int      fileidsize  = sizeof(NFS_FILEID(dentry->d_inode))*2;
1351 	const int      countersize = sizeof(sillycounter)*2;
1352 	const int      slen        = sizeof(".nfs")+fileidsize+countersize-1;
1353 	char           silly[slen+1];
1354 	struct qstr    qsilly;
1355 	struct dentry *sdentry;
1356 	int            error = -EIO;
1357 
1358 	dfprintk(VFS, "NFS: silly-rename(%s/%s, ct=%d)\n",
1359 		dentry->d_parent->d_name.name, dentry->d_name.name,
1360 		atomic_read(&dentry->d_count));
1361 	nfs_inc_stats(dir, NFSIOS_SILLYRENAME);
1362 
1363 	/*
1364 	 * We don't allow a dentry to be silly-renamed twice.
1365 	 */
1366 	error = -EBUSY;
1367 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1368 		goto out;
1369 
1370 	sprintf(silly, ".nfs%*.*Lx",
1371 		fileidsize, fileidsize,
1372 		(unsigned long long)NFS_FILEID(dentry->d_inode));
1373 
1374 	/* Return delegation in anticipation of the rename */
1375 	nfs_inode_return_delegation(dentry->d_inode);
1376 
1377 	sdentry = NULL;
1378 	do {
1379 		char *suffix = silly + slen - countersize;
1380 
1381 		dput(sdentry);
1382 		sillycounter++;
1383 		sprintf(suffix, "%*.*x", countersize, countersize, sillycounter);
1384 
1385 		dfprintk(VFS, "NFS: trying to rename %s to %s\n",
1386 				dentry->d_name.name, silly);
1387 
1388 		sdentry = lookup_one_len(silly, dentry->d_parent, slen);
1389 		/*
1390 		 * N.B. Better to return EBUSY here ... it could be
1391 		 * dangerous to delete the file while it's in use.
1392 		 */
1393 		if (IS_ERR(sdentry))
1394 			goto out;
1395 	} while(sdentry->d_inode != NULL); /* need negative lookup */
1396 
1397 	qsilly.name = silly;
1398 	qsilly.len  = strlen(silly);
1399 	if (dentry->d_inode) {
1400 		error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1401 				dir, &qsilly);
1402 		nfs_mark_for_revalidate(dentry->d_inode);
1403 	} else
1404 		error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1405 				dir, &qsilly);
1406 	if (!error) {
1407 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1408 		d_move(dentry, sdentry);
1409 		error = nfs_async_unlink(dir, dentry);
1410  		/* If we return 0 we don't unlink */
1411 	}
1412 	dput(sdentry);
1413 out:
1414 	return error;
1415 }
1416 
1417 /*
1418  * Remove a file after making sure there are no pending writes,
1419  * and after checking that the file has only one user.
1420  *
1421  * We invalidate the attribute cache and free the inode prior to the operation
1422  * to avoid possible races if the server reuses the inode.
1423  */
1424 static int nfs_safe_remove(struct dentry *dentry)
1425 {
1426 	struct inode *dir = dentry->d_parent->d_inode;
1427 	struct inode *inode = dentry->d_inode;
1428 	int error = -EBUSY;
1429 
1430 	dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1431 		dentry->d_parent->d_name.name, dentry->d_name.name);
1432 
1433 	/* If the dentry was sillyrenamed, we simply call d_delete() */
1434 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1435 		error = 0;
1436 		goto out;
1437 	}
1438 
1439 	if (inode != NULL) {
1440 		nfs_inode_return_delegation(inode);
1441 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1442 		/* The VFS may want to delete this inode */
1443 		if (error == 0)
1444 			nfs_drop_nlink(inode);
1445 		nfs_mark_for_revalidate(inode);
1446 	} else
1447 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1448 	if (error == -ENOENT)
1449 		nfs_dentry_handle_enoent(dentry);
1450 out:
1451 	return error;
1452 }
1453 
1454 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1455  *  belongs to an active ".nfs..." file and we return -EBUSY.
1456  *
1457  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1458  */
1459 static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1460 {
1461 	int error;
1462 	int need_rehash = 0;
1463 
1464 	dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1465 		dir->i_ino, dentry->d_name.name);
1466 
1467 	spin_lock(&dcache_lock);
1468 	spin_lock(&dentry->d_lock);
1469 	if (atomic_read(&dentry->d_count) > 1) {
1470 		spin_unlock(&dentry->d_lock);
1471 		spin_unlock(&dcache_lock);
1472 		/* Start asynchronous writeout of the inode */
1473 		write_inode_now(dentry->d_inode, 0);
1474 		error = nfs_sillyrename(dir, dentry);
1475 		return error;
1476 	}
1477 	if (!d_unhashed(dentry)) {
1478 		__d_drop(dentry);
1479 		need_rehash = 1;
1480 	}
1481 	spin_unlock(&dentry->d_lock);
1482 	spin_unlock(&dcache_lock);
1483 	error = nfs_safe_remove(dentry);
1484 	if (!error || error == -ENOENT) {
1485 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1486 	} else if (need_rehash)
1487 		d_rehash(dentry);
1488 	return error;
1489 }
1490 
1491 /*
1492  * To create a symbolic link, most file systems instantiate a new inode,
1493  * add a page to it containing the path, then write it out to the disk
1494  * using prepare_write/commit_write.
1495  *
1496  * Unfortunately the NFS client can't create the in-core inode first
1497  * because it needs a file handle to create an in-core inode (see
1498  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1499  * symlink request has completed on the server.
1500  *
1501  * So instead we allocate a raw page, copy the symname into it, then do
1502  * the SYMLINK request with the page as the buffer.  If it succeeds, we
1503  * now have a new file handle and can instantiate an in-core NFS inode
1504  * and move the raw page into its mapping.
1505  */
1506 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1507 {
1508 	struct pagevec lru_pvec;
1509 	struct page *page;
1510 	char *kaddr;
1511 	struct iattr attr;
1512 	unsigned int pathlen = strlen(symname);
1513 	int error;
1514 
1515 	dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1516 		dir->i_ino, dentry->d_name.name, symname);
1517 
1518 	if (pathlen > PAGE_SIZE)
1519 		return -ENAMETOOLONG;
1520 
1521 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
1522 	attr.ia_valid = ATTR_MODE;
1523 
1524 	page = alloc_page(GFP_HIGHUSER);
1525 	if (!page)
1526 		return -ENOMEM;
1527 
1528 	kaddr = kmap_atomic(page, KM_USER0);
1529 	memcpy(kaddr, symname, pathlen);
1530 	if (pathlen < PAGE_SIZE)
1531 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1532 	kunmap_atomic(kaddr, KM_USER0);
1533 
1534 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1535 	if (error != 0) {
1536 		dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1537 			dir->i_sb->s_id, dir->i_ino,
1538 			dentry->d_name.name, symname, error);
1539 		d_drop(dentry);
1540 		__free_page(page);
1541 		return error;
1542 	}
1543 
1544 	/*
1545 	 * No big deal if we can't add this page to the page cache here.
1546 	 * READLINK will get the missing page from the server if needed.
1547 	 */
1548 	pagevec_init(&lru_pvec, 0);
1549 	if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1550 							GFP_KERNEL)) {
1551 		pagevec_add(&lru_pvec, page);
1552 		pagevec_lru_add_file(&lru_pvec);
1553 		SetPageUptodate(page);
1554 		unlock_page(page);
1555 	} else
1556 		__free_page(page);
1557 
1558 	return 0;
1559 }
1560 
1561 static int
1562 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1563 {
1564 	struct inode *inode = old_dentry->d_inode;
1565 	int error;
1566 
1567 	dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1568 		old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1569 		dentry->d_parent->d_name.name, dentry->d_name.name);
1570 
1571 	nfs_inode_return_delegation(inode);
1572 
1573 	d_drop(dentry);
1574 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1575 	if (error == 0) {
1576 		atomic_inc(&inode->i_count);
1577 		d_add(dentry, inode);
1578 	}
1579 	return error;
1580 }
1581 
1582 /*
1583  * RENAME
1584  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1585  * different file handle for the same inode after a rename (e.g. when
1586  * moving to a different directory). A fail-safe method to do so would
1587  * be to look up old_dir/old_name, create a link to new_dir/new_name and
1588  * rename the old file using the sillyrename stuff. This way, the original
1589  * file in old_dir will go away when the last process iput()s the inode.
1590  *
1591  * FIXED.
1592  *
1593  * It actually works quite well. One needs to have the possibility for
1594  * at least one ".nfs..." file in each directory the file ever gets
1595  * moved or linked to which happens automagically with the new
1596  * implementation that only depends on the dcache stuff instead of
1597  * using the inode layer
1598  *
1599  * Unfortunately, things are a little more complicated than indicated
1600  * above. For a cross-directory move, we want to make sure we can get
1601  * rid of the old inode after the operation.  This means there must be
1602  * no pending writes (if it's a file), and the use count must be 1.
1603  * If these conditions are met, we can drop the dentries before doing
1604  * the rename.
1605  */
1606 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1607 		      struct inode *new_dir, struct dentry *new_dentry)
1608 {
1609 	struct inode *old_inode = old_dentry->d_inode;
1610 	struct inode *new_inode = new_dentry->d_inode;
1611 	struct dentry *dentry = NULL, *rehash = NULL;
1612 	int error = -EBUSY;
1613 
1614 	dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1615 		 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1616 		 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1617 		 atomic_read(&new_dentry->d_count));
1618 
1619 	/*
1620 	 * For non-directories, check whether the target is busy and if so,
1621 	 * make a copy of the dentry and then do a silly-rename. If the
1622 	 * silly-rename succeeds, the copied dentry is hashed and becomes
1623 	 * the new target.
1624 	 */
1625 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
1626 		/*
1627 		 * To prevent any new references to the target during the
1628 		 * rename, we unhash the dentry in advance.
1629 		 */
1630 		if (!d_unhashed(new_dentry)) {
1631 			d_drop(new_dentry);
1632 			rehash = new_dentry;
1633 		}
1634 
1635 		if (atomic_read(&new_dentry->d_count) > 2) {
1636 			int err;
1637 
1638 			/* copy the target dentry's name */
1639 			dentry = d_alloc(new_dentry->d_parent,
1640 					 &new_dentry->d_name);
1641 			if (!dentry)
1642 				goto out;
1643 
1644 			/* silly-rename the existing target ... */
1645 			err = nfs_sillyrename(new_dir, new_dentry);
1646 			if (err)
1647 				goto out;
1648 
1649 			new_dentry = dentry;
1650 			rehash = NULL;
1651 			new_inode = NULL;
1652 		}
1653 	}
1654 
1655 	/*
1656 	 * ... prune child dentries and writebacks if needed.
1657 	 */
1658 	if (atomic_read(&old_dentry->d_count) > 1) {
1659 		if (S_ISREG(old_inode->i_mode))
1660 			nfs_wb_all(old_inode);
1661 		shrink_dcache_parent(old_dentry);
1662 	}
1663 	nfs_inode_return_delegation(old_inode);
1664 
1665 	if (new_inode != NULL)
1666 		nfs_inode_return_delegation(new_inode);
1667 
1668 	error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1669 					   new_dir, &new_dentry->d_name);
1670 	nfs_mark_for_revalidate(old_inode);
1671 out:
1672 	if (rehash)
1673 		d_rehash(rehash);
1674 	if (!error) {
1675 		if (new_inode != NULL)
1676 			nfs_drop_nlink(new_inode);
1677 		d_move(old_dentry, new_dentry);
1678 		nfs_set_verifier(new_dentry,
1679 					nfs_save_change_attribute(new_dir));
1680 	} else if (error == -ENOENT)
1681 		nfs_dentry_handle_enoent(old_dentry);
1682 
1683 	/* new dentry created? */
1684 	if (dentry)
1685 		dput(dentry);
1686 	return error;
1687 }
1688 
1689 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1690 static LIST_HEAD(nfs_access_lru_list);
1691 static atomic_long_t nfs_access_nr_entries;
1692 
1693 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1694 {
1695 	put_rpccred(entry->cred);
1696 	kfree(entry);
1697 	smp_mb__before_atomic_dec();
1698 	atomic_long_dec(&nfs_access_nr_entries);
1699 	smp_mb__after_atomic_dec();
1700 }
1701 
1702 static void nfs_access_free_list(struct list_head *head)
1703 {
1704 	struct nfs_access_entry *cache;
1705 
1706 	while (!list_empty(head)) {
1707 		cache = list_entry(head->next, struct nfs_access_entry, lru);
1708 		list_del(&cache->lru);
1709 		nfs_access_free_entry(cache);
1710 	}
1711 }
1712 
1713 int nfs_access_cache_shrinker(int nr_to_scan, gfp_t gfp_mask)
1714 {
1715 	LIST_HEAD(head);
1716 	struct nfs_inode *nfsi;
1717 	struct nfs_access_entry *cache;
1718 
1719 	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
1720 		return (nr_to_scan == 0) ? 0 : -1;
1721 
1722 	spin_lock(&nfs_access_lru_lock);
1723 	list_for_each_entry(nfsi, &nfs_access_lru_list, access_cache_inode_lru) {
1724 		struct inode *inode;
1725 
1726 		if (nr_to_scan-- == 0)
1727 			break;
1728 		inode = &nfsi->vfs_inode;
1729 		spin_lock(&inode->i_lock);
1730 		if (list_empty(&nfsi->access_cache_entry_lru))
1731 			goto remove_lru_entry;
1732 		cache = list_entry(nfsi->access_cache_entry_lru.next,
1733 				struct nfs_access_entry, lru);
1734 		list_move(&cache->lru, &head);
1735 		rb_erase(&cache->rb_node, &nfsi->access_cache);
1736 		if (!list_empty(&nfsi->access_cache_entry_lru))
1737 			list_move_tail(&nfsi->access_cache_inode_lru,
1738 					&nfs_access_lru_list);
1739 		else {
1740 remove_lru_entry:
1741 			list_del_init(&nfsi->access_cache_inode_lru);
1742 			smp_mb__before_clear_bit();
1743 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
1744 			smp_mb__after_clear_bit();
1745 		}
1746 		spin_unlock(&inode->i_lock);
1747 	}
1748 	spin_unlock(&nfs_access_lru_lock);
1749 	nfs_access_free_list(&head);
1750 	return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
1751 }
1752 
1753 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
1754 {
1755 	struct rb_root *root_node = &nfsi->access_cache;
1756 	struct rb_node *n;
1757 	struct nfs_access_entry *entry;
1758 
1759 	/* Unhook entries from the cache */
1760 	while ((n = rb_first(root_node)) != NULL) {
1761 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
1762 		rb_erase(n, root_node);
1763 		list_move(&entry->lru, head);
1764 	}
1765 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
1766 }
1767 
1768 void nfs_access_zap_cache(struct inode *inode)
1769 {
1770 	LIST_HEAD(head);
1771 
1772 	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
1773 		return;
1774 	/* Remove from global LRU init */
1775 	spin_lock(&nfs_access_lru_lock);
1776 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
1777 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
1778 
1779 	spin_lock(&inode->i_lock);
1780 	__nfs_access_zap_cache(NFS_I(inode), &head);
1781 	spin_unlock(&inode->i_lock);
1782 	spin_unlock(&nfs_access_lru_lock);
1783 	nfs_access_free_list(&head);
1784 }
1785 
1786 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
1787 {
1788 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
1789 	struct nfs_access_entry *entry;
1790 
1791 	while (n != NULL) {
1792 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
1793 
1794 		if (cred < entry->cred)
1795 			n = n->rb_left;
1796 		else if (cred > entry->cred)
1797 			n = n->rb_right;
1798 		else
1799 			return entry;
1800 	}
1801 	return NULL;
1802 }
1803 
1804 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
1805 {
1806 	struct nfs_inode *nfsi = NFS_I(inode);
1807 	struct nfs_access_entry *cache;
1808 	int err = -ENOENT;
1809 
1810 	spin_lock(&inode->i_lock);
1811 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
1812 		goto out_zap;
1813 	cache = nfs_access_search_rbtree(inode, cred);
1814 	if (cache == NULL)
1815 		goto out;
1816 	if (!nfs_have_delegated_attributes(inode) &&
1817 	    !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
1818 		goto out_stale;
1819 	res->jiffies = cache->jiffies;
1820 	res->cred = cache->cred;
1821 	res->mask = cache->mask;
1822 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
1823 	err = 0;
1824 out:
1825 	spin_unlock(&inode->i_lock);
1826 	return err;
1827 out_stale:
1828 	rb_erase(&cache->rb_node, &nfsi->access_cache);
1829 	list_del(&cache->lru);
1830 	spin_unlock(&inode->i_lock);
1831 	nfs_access_free_entry(cache);
1832 	return -ENOENT;
1833 out_zap:
1834 	spin_unlock(&inode->i_lock);
1835 	nfs_access_zap_cache(inode);
1836 	return -ENOENT;
1837 }
1838 
1839 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
1840 {
1841 	struct nfs_inode *nfsi = NFS_I(inode);
1842 	struct rb_root *root_node = &nfsi->access_cache;
1843 	struct rb_node **p = &root_node->rb_node;
1844 	struct rb_node *parent = NULL;
1845 	struct nfs_access_entry *entry;
1846 
1847 	spin_lock(&inode->i_lock);
1848 	while (*p != NULL) {
1849 		parent = *p;
1850 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
1851 
1852 		if (set->cred < entry->cred)
1853 			p = &parent->rb_left;
1854 		else if (set->cred > entry->cred)
1855 			p = &parent->rb_right;
1856 		else
1857 			goto found;
1858 	}
1859 	rb_link_node(&set->rb_node, parent, p);
1860 	rb_insert_color(&set->rb_node, root_node);
1861 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1862 	spin_unlock(&inode->i_lock);
1863 	return;
1864 found:
1865 	rb_replace_node(parent, &set->rb_node, root_node);
1866 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1867 	list_del(&entry->lru);
1868 	spin_unlock(&inode->i_lock);
1869 	nfs_access_free_entry(entry);
1870 }
1871 
1872 static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
1873 {
1874 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
1875 	if (cache == NULL)
1876 		return;
1877 	RB_CLEAR_NODE(&cache->rb_node);
1878 	cache->jiffies = set->jiffies;
1879 	cache->cred = get_rpccred(set->cred);
1880 	cache->mask = set->mask;
1881 
1882 	nfs_access_add_rbtree(inode, cache);
1883 
1884 	/* Update accounting */
1885 	smp_mb__before_atomic_inc();
1886 	atomic_long_inc(&nfs_access_nr_entries);
1887 	smp_mb__after_atomic_inc();
1888 
1889 	/* Add inode to global LRU list */
1890 	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
1891 		spin_lock(&nfs_access_lru_lock);
1892 		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
1893 			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
1894 					&nfs_access_lru_list);
1895 		spin_unlock(&nfs_access_lru_lock);
1896 	}
1897 }
1898 
1899 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
1900 {
1901 	struct nfs_access_entry cache;
1902 	int status;
1903 
1904 	status = nfs_access_get_cached(inode, cred, &cache);
1905 	if (status == 0)
1906 		goto out;
1907 
1908 	/* Be clever: ask server to check for all possible rights */
1909 	cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
1910 	cache.cred = cred;
1911 	cache.jiffies = jiffies;
1912 	status = NFS_PROTO(inode)->access(inode, &cache);
1913 	if (status != 0) {
1914 		if (status == -ESTALE) {
1915 			nfs_zap_caches(inode);
1916 			if (!S_ISDIR(inode->i_mode))
1917 				set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
1918 		}
1919 		return status;
1920 	}
1921 	nfs_access_add_cache(inode, &cache);
1922 out:
1923 	if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
1924 		return 0;
1925 	return -EACCES;
1926 }
1927 
1928 static int nfs_open_permission_mask(int openflags)
1929 {
1930 	int mask = 0;
1931 
1932 	if (openflags & FMODE_READ)
1933 		mask |= MAY_READ;
1934 	if (openflags & FMODE_WRITE)
1935 		mask |= MAY_WRITE;
1936 	if (openflags & FMODE_EXEC)
1937 		mask |= MAY_EXEC;
1938 	return mask;
1939 }
1940 
1941 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
1942 {
1943 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
1944 }
1945 
1946 int nfs_permission(struct inode *inode, int mask)
1947 {
1948 	struct rpc_cred *cred;
1949 	int res = 0;
1950 
1951 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
1952 
1953 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
1954 		goto out;
1955 	/* Is this sys_access() ? */
1956 	if (mask & MAY_ACCESS)
1957 		goto force_lookup;
1958 
1959 	switch (inode->i_mode & S_IFMT) {
1960 		case S_IFLNK:
1961 			goto out;
1962 		case S_IFREG:
1963 			/* NFSv4 has atomic_open... */
1964 			if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
1965 					&& (mask & MAY_OPEN)
1966 					&& !(mask & MAY_EXEC))
1967 				goto out;
1968 			break;
1969 		case S_IFDIR:
1970 			/*
1971 			 * Optimize away all write operations, since the server
1972 			 * will check permissions when we perform the op.
1973 			 */
1974 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
1975 				goto out;
1976 	}
1977 
1978 force_lookup:
1979 	if (!NFS_PROTO(inode)->access)
1980 		goto out_notsup;
1981 
1982 	cred = rpc_lookup_cred();
1983 	if (!IS_ERR(cred)) {
1984 		res = nfs_do_access(inode, cred, mask);
1985 		put_rpccred(cred);
1986 	} else
1987 		res = PTR_ERR(cred);
1988 out:
1989 	if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
1990 		res = -EACCES;
1991 
1992 	dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
1993 		inode->i_sb->s_id, inode->i_ino, mask, res);
1994 	return res;
1995 out_notsup:
1996 	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1997 	if (res == 0)
1998 		res = generic_permission(inode, mask, NULL);
1999 	goto out;
2000 }
2001 
2002 /*
2003  * Local variables:
2004  *  version-control: t
2005  *  kept-new-versions: 5
2006  * End:
2007  */
2008