1 /* 2 * linux/fs/nfs/dir.c 3 * 4 * Copyright (C) 1992 Rick Sladkey 5 * 6 * nfs directory handling functions 7 * 8 * 10 Apr 1996 Added silly rename for unlink --okir 9 * 28 Sep 1996 Improved directory cache --okir 10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de 11 * Re-implemented silly rename for unlink, newly implemented 12 * silly rename for nfs_rename() following the suggestions 13 * of Olaf Kirch (okir) found in this file. 14 * Following Linus comments on my original hack, this version 15 * depends only on the dcache stuff and doesn't touch the inode 16 * layer (iput() and friends). 17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM 18 */ 19 20 #include <linux/module.h> 21 #include <linux/time.h> 22 #include <linux/errno.h> 23 #include <linux/stat.h> 24 #include <linux/fcntl.h> 25 #include <linux/string.h> 26 #include <linux/kernel.h> 27 #include <linux/slab.h> 28 #include <linux/mm.h> 29 #include <linux/sunrpc/clnt.h> 30 #include <linux/nfs_fs.h> 31 #include <linux/nfs_mount.h> 32 #include <linux/pagemap.h> 33 #include <linux/pagevec.h> 34 #include <linux/namei.h> 35 #include <linux/mount.h> 36 #include <linux/swap.h> 37 #include <linux/sched.h> 38 #include <linux/kmemleak.h> 39 #include <linux/xattr.h> 40 41 #include "delegation.h" 42 #include "iostat.h" 43 #include "internal.h" 44 #include "fscache.h" 45 46 #include "nfstrace.h" 47 48 /* #define NFS_DEBUG_VERBOSE 1 */ 49 50 static int nfs_opendir(struct inode *, struct file *); 51 static int nfs_closedir(struct inode *, struct file *); 52 static int nfs_readdir(struct file *, struct dir_context *); 53 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int); 54 static loff_t nfs_llseek_dir(struct file *, loff_t, int); 55 static void nfs_readdir_clear_array(struct page*); 56 57 const struct file_operations nfs_dir_operations = { 58 .llseek = nfs_llseek_dir, 59 .read = generic_read_dir, 60 .iterate = nfs_readdir, 61 .open = nfs_opendir, 62 .release = nfs_closedir, 63 .fsync = nfs_fsync_dir, 64 }; 65 66 const struct address_space_operations nfs_dir_aops = { 67 .freepage = nfs_readdir_clear_array, 68 }; 69 70 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, const struct cred *cred) 71 { 72 struct nfs_inode *nfsi = NFS_I(dir); 73 struct nfs_open_dir_context *ctx; 74 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); 75 if (ctx != NULL) { 76 ctx->duped = 0; 77 ctx->attr_gencount = nfsi->attr_gencount; 78 ctx->dir_cookie = 0; 79 ctx->dup_cookie = 0; 80 ctx->cred = get_cred(cred); 81 spin_lock(&dir->i_lock); 82 list_add(&ctx->list, &nfsi->open_files); 83 spin_unlock(&dir->i_lock); 84 return ctx; 85 } 86 return ERR_PTR(-ENOMEM); 87 } 88 89 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx) 90 { 91 spin_lock(&dir->i_lock); 92 list_del(&ctx->list); 93 spin_unlock(&dir->i_lock); 94 put_cred(ctx->cred); 95 kfree(ctx); 96 } 97 98 /* 99 * Open file 100 */ 101 static int 102 nfs_opendir(struct inode *inode, struct file *filp) 103 { 104 int res = 0; 105 struct nfs_open_dir_context *ctx; 106 107 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp); 108 109 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 110 111 ctx = alloc_nfs_open_dir_context(inode, current_cred()); 112 if (IS_ERR(ctx)) { 113 res = PTR_ERR(ctx); 114 goto out; 115 } 116 filp->private_data = ctx; 117 out: 118 return res; 119 } 120 121 static int 122 nfs_closedir(struct inode *inode, struct file *filp) 123 { 124 put_nfs_open_dir_context(file_inode(filp), filp->private_data); 125 return 0; 126 } 127 128 struct nfs_cache_array_entry { 129 u64 cookie; 130 u64 ino; 131 struct qstr string; 132 unsigned char d_type; 133 }; 134 135 struct nfs_cache_array { 136 int size; 137 int eof_index; 138 u64 last_cookie; 139 struct nfs_cache_array_entry array[0]; 140 }; 141 142 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, bool); 143 typedef struct { 144 struct file *file; 145 struct page *page; 146 struct dir_context *ctx; 147 unsigned long page_index; 148 u64 *dir_cookie; 149 u64 last_cookie; 150 loff_t current_index; 151 decode_dirent_t decode; 152 153 unsigned long timestamp; 154 unsigned long gencount; 155 unsigned int cache_entry_index; 156 bool plus; 157 bool eof; 158 } nfs_readdir_descriptor_t; 159 160 /* 161 * we are freeing strings created by nfs_add_to_readdir_array() 162 */ 163 static 164 void nfs_readdir_clear_array(struct page *page) 165 { 166 struct nfs_cache_array *array; 167 int i; 168 169 array = kmap_atomic(page); 170 for (i = 0; i < array->size; i++) 171 kfree(array->array[i].string.name); 172 kunmap_atomic(array); 173 } 174 175 /* 176 * the caller is responsible for freeing qstr.name 177 * when called by nfs_readdir_add_to_array, the strings will be freed in 178 * nfs_clear_readdir_array() 179 */ 180 static 181 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len) 182 { 183 string->len = len; 184 string->name = kmemdup(name, len, GFP_KERNEL); 185 if (string->name == NULL) 186 return -ENOMEM; 187 /* 188 * Avoid a kmemleak false positive. The pointer to the name is stored 189 * in a page cache page which kmemleak does not scan. 190 */ 191 kmemleak_not_leak(string->name); 192 string->hash = full_name_hash(NULL, name, len); 193 return 0; 194 } 195 196 static 197 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page) 198 { 199 struct nfs_cache_array *array = kmap(page); 200 struct nfs_cache_array_entry *cache_entry; 201 int ret; 202 203 cache_entry = &array->array[array->size]; 204 205 /* Check that this entry lies within the page bounds */ 206 ret = -ENOSPC; 207 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE) 208 goto out; 209 210 cache_entry->cookie = entry->prev_cookie; 211 cache_entry->ino = entry->ino; 212 cache_entry->d_type = entry->d_type; 213 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len); 214 if (ret) 215 goto out; 216 array->last_cookie = entry->cookie; 217 array->size++; 218 if (entry->eof != 0) 219 array->eof_index = array->size; 220 out: 221 kunmap(page); 222 return ret; 223 } 224 225 static 226 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 227 { 228 loff_t diff = desc->ctx->pos - desc->current_index; 229 unsigned int index; 230 231 if (diff < 0) 232 goto out_eof; 233 if (diff >= array->size) { 234 if (array->eof_index >= 0) 235 goto out_eof; 236 return -EAGAIN; 237 } 238 239 index = (unsigned int)diff; 240 *desc->dir_cookie = array->array[index].cookie; 241 desc->cache_entry_index = index; 242 return 0; 243 out_eof: 244 desc->eof = true; 245 return -EBADCOOKIE; 246 } 247 248 static bool 249 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi) 250 { 251 if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA)) 252 return false; 253 smp_rmb(); 254 return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags); 255 } 256 257 static 258 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 259 { 260 int i; 261 loff_t new_pos; 262 int status = -EAGAIN; 263 264 for (i = 0; i < array->size; i++) { 265 if (array->array[i].cookie == *desc->dir_cookie) { 266 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file)); 267 struct nfs_open_dir_context *ctx = desc->file->private_data; 268 269 new_pos = desc->current_index + i; 270 if (ctx->attr_gencount != nfsi->attr_gencount || 271 !nfs_readdir_inode_mapping_valid(nfsi)) { 272 ctx->duped = 0; 273 ctx->attr_gencount = nfsi->attr_gencount; 274 } else if (new_pos < desc->ctx->pos) { 275 if (ctx->duped > 0 276 && ctx->dup_cookie == *desc->dir_cookie) { 277 if (printk_ratelimit()) { 278 pr_notice("NFS: directory %pD2 contains a readdir loop." 279 "Please contact your server vendor. " 280 "The file: %.*s has duplicate cookie %llu\n", 281 desc->file, array->array[i].string.len, 282 array->array[i].string.name, *desc->dir_cookie); 283 } 284 status = -ELOOP; 285 goto out; 286 } 287 ctx->dup_cookie = *desc->dir_cookie; 288 ctx->duped = -1; 289 } 290 desc->ctx->pos = new_pos; 291 desc->cache_entry_index = i; 292 return 0; 293 } 294 } 295 if (array->eof_index >= 0) { 296 status = -EBADCOOKIE; 297 if (*desc->dir_cookie == array->last_cookie) 298 desc->eof = true; 299 } 300 out: 301 return status; 302 } 303 304 static 305 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc) 306 { 307 struct nfs_cache_array *array; 308 int status; 309 310 array = kmap(desc->page); 311 312 if (*desc->dir_cookie == 0) 313 status = nfs_readdir_search_for_pos(array, desc); 314 else 315 status = nfs_readdir_search_for_cookie(array, desc); 316 317 if (status == -EAGAIN) { 318 desc->last_cookie = array->last_cookie; 319 desc->current_index += array->size; 320 desc->page_index++; 321 } 322 kunmap(desc->page); 323 return status; 324 } 325 326 /* Fill a page with xdr information before transferring to the cache page */ 327 static 328 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc, 329 struct nfs_entry *entry, struct file *file, struct inode *inode) 330 { 331 struct nfs_open_dir_context *ctx = file->private_data; 332 const struct cred *cred = ctx->cred; 333 unsigned long timestamp, gencount; 334 int error; 335 336 again: 337 timestamp = jiffies; 338 gencount = nfs_inc_attr_generation_counter(); 339 error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages, 340 NFS_SERVER(inode)->dtsize, desc->plus); 341 if (error < 0) { 342 /* We requested READDIRPLUS, but the server doesn't grok it */ 343 if (error == -ENOTSUPP && desc->plus) { 344 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS; 345 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 346 desc->plus = false; 347 goto again; 348 } 349 goto error; 350 } 351 desc->timestamp = timestamp; 352 desc->gencount = gencount; 353 error: 354 return error; 355 } 356 357 static int xdr_decode(nfs_readdir_descriptor_t *desc, 358 struct nfs_entry *entry, struct xdr_stream *xdr) 359 { 360 int error; 361 362 error = desc->decode(xdr, entry, desc->plus); 363 if (error) 364 return error; 365 entry->fattr->time_start = desc->timestamp; 366 entry->fattr->gencount = desc->gencount; 367 return 0; 368 } 369 370 /* Match file and dirent using either filehandle or fileid 371 * Note: caller is responsible for checking the fsid 372 */ 373 static 374 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry) 375 { 376 struct inode *inode; 377 struct nfs_inode *nfsi; 378 379 if (d_really_is_negative(dentry)) 380 return 0; 381 382 inode = d_inode(dentry); 383 if (is_bad_inode(inode) || NFS_STALE(inode)) 384 return 0; 385 386 nfsi = NFS_I(inode); 387 if (entry->fattr->fileid != nfsi->fileid) 388 return 0; 389 if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0) 390 return 0; 391 return 1; 392 } 393 394 static 395 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx) 396 { 397 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS)) 398 return false; 399 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags)) 400 return true; 401 if (ctx->pos == 0) 402 return true; 403 return false; 404 } 405 406 /* 407 * This function is called by the lookup and getattr code to request the 408 * use of readdirplus to accelerate any future lookups in the same 409 * directory. 410 */ 411 void nfs_advise_use_readdirplus(struct inode *dir) 412 { 413 struct nfs_inode *nfsi = NFS_I(dir); 414 415 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) && 416 !list_empty(&nfsi->open_files)) 417 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags); 418 } 419 420 /* 421 * This function is mainly for use by nfs_getattr(). 422 * 423 * If this is an 'ls -l', we want to force use of readdirplus. 424 * Do this by checking if there is an active file descriptor 425 * and calling nfs_advise_use_readdirplus, then forcing a 426 * cache flush. 427 */ 428 void nfs_force_use_readdirplus(struct inode *dir) 429 { 430 struct nfs_inode *nfsi = NFS_I(dir); 431 432 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) && 433 !list_empty(&nfsi->open_files)) { 434 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags); 435 invalidate_mapping_pages(dir->i_mapping, 0, -1); 436 } 437 } 438 439 static 440 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry) 441 { 442 struct qstr filename = QSTR_INIT(entry->name, entry->len); 443 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 444 struct dentry *dentry; 445 struct dentry *alias; 446 struct inode *dir = d_inode(parent); 447 struct inode *inode; 448 int status; 449 450 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID)) 451 return; 452 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID)) 453 return; 454 if (filename.len == 0) 455 return; 456 /* Validate that the name doesn't contain any illegal '\0' */ 457 if (strnlen(filename.name, filename.len) != filename.len) 458 return; 459 /* ...or '/' */ 460 if (strnchr(filename.name, filename.len, '/')) 461 return; 462 if (filename.name[0] == '.') { 463 if (filename.len == 1) 464 return; 465 if (filename.len == 2 && filename.name[1] == '.') 466 return; 467 } 468 filename.hash = full_name_hash(parent, filename.name, filename.len); 469 470 dentry = d_lookup(parent, &filename); 471 again: 472 if (!dentry) { 473 dentry = d_alloc_parallel(parent, &filename, &wq); 474 if (IS_ERR(dentry)) 475 return; 476 } 477 if (!d_in_lookup(dentry)) { 478 /* Is there a mountpoint here? If so, just exit */ 479 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid, 480 &entry->fattr->fsid)) 481 goto out; 482 if (nfs_same_file(dentry, entry)) { 483 if (!entry->fh->size) 484 goto out; 485 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 486 status = nfs_refresh_inode(d_inode(dentry), entry->fattr); 487 if (!status) 488 nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label); 489 goto out; 490 } else { 491 d_invalidate(dentry); 492 dput(dentry); 493 dentry = NULL; 494 goto again; 495 } 496 } 497 if (!entry->fh->size) { 498 d_lookup_done(dentry); 499 goto out; 500 } 501 502 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label); 503 alias = d_splice_alias(inode, dentry); 504 d_lookup_done(dentry); 505 if (alias) { 506 if (IS_ERR(alias)) 507 goto out; 508 dput(dentry); 509 dentry = alias; 510 } 511 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 512 out: 513 dput(dentry); 514 } 515 516 /* Perform conversion from xdr to cache array */ 517 static 518 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry, 519 struct page **xdr_pages, struct page *page, unsigned int buflen) 520 { 521 struct xdr_stream stream; 522 struct xdr_buf buf; 523 struct page *scratch; 524 struct nfs_cache_array *array; 525 unsigned int count = 0; 526 int status; 527 528 scratch = alloc_page(GFP_KERNEL); 529 if (scratch == NULL) 530 return -ENOMEM; 531 532 if (buflen == 0) 533 goto out_nopages; 534 535 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen); 536 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE); 537 538 do { 539 status = xdr_decode(desc, entry, &stream); 540 if (status != 0) { 541 if (status == -EAGAIN) 542 status = 0; 543 break; 544 } 545 546 count++; 547 548 if (desc->plus) 549 nfs_prime_dcache(file_dentry(desc->file), entry); 550 551 status = nfs_readdir_add_to_array(entry, page); 552 if (status != 0) 553 break; 554 } while (!entry->eof); 555 556 out_nopages: 557 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) { 558 array = kmap(page); 559 array->eof_index = array->size; 560 status = 0; 561 kunmap(page); 562 } 563 564 put_page(scratch); 565 return status; 566 } 567 568 static 569 void nfs_readdir_free_pages(struct page **pages, unsigned int npages) 570 { 571 unsigned int i; 572 for (i = 0; i < npages; i++) 573 put_page(pages[i]); 574 } 575 576 /* 577 * nfs_readdir_large_page will allocate pages that must be freed with a call 578 * to nfs_readdir_free_pagearray 579 */ 580 static 581 int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages) 582 { 583 unsigned int i; 584 585 for (i = 0; i < npages; i++) { 586 struct page *page = alloc_page(GFP_KERNEL); 587 if (page == NULL) 588 goto out_freepages; 589 pages[i] = page; 590 } 591 return 0; 592 593 out_freepages: 594 nfs_readdir_free_pages(pages, i); 595 return -ENOMEM; 596 } 597 598 static 599 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode) 600 { 601 struct page *pages[NFS_MAX_READDIR_PAGES]; 602 struct nfs_entry entry; 603 struct file *file = desc->file; 604 struct nfs_cache_array *array; 605 int status = -ENOMEM; 606 unsigned int array_size = ARRAY_SIZE(pages); 607 608 entry.prev_cookie = 0; 609 entry.cookie = desc->last_cookie; 610 entry.eof = 0; 611 entry.fh = nfs_alloc_fhandle(); 612 entry.fattr = nfs_alloc_fattr(); 613 entry.server = NFS_SERVER(inode); 614 if (entry.fh == NULL || entry.fattr == NULL) 615 goto out; 616 617 entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT); 618 if (IS_ERR(entry.label)) { 619 status = PTR_ERR(entry.label); 620 goto out; 621 } 622 623 array = kmap(page); 624 memset(array, 0, sizeof(struct nfs_cache_array)); 625 array->eof_index = -1; 626 627 status = nfs_readdir_alloc_pages(pages, array_size); 628 if (status < 0) 629 goto out_release_array; 630 do { 631 unsigned int pglen; 632 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode); 633 634 if (status < 0) 635 break; 636 pglen = status; 637 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen); 638 if (status < 0) { 639 if (status == -ENOSPC) 640 status = 0; 641 break; 642 } 643 } while (array->eof_index < 0); 644 645 nfs_readdir_free_pages(pages, array_size); 646 out_release_array: 647 kunmap(page); 648 nfs4_label_free(entry.label); 649 out: 650 nfs_free_fattr(entry.fattr); 651 nfs_free_fhandle(entry.fh); 652 return status; 653 } 654 655 /* 656 * Now we cache directories properly, by converting xdr information 657 * to an array that can be used for lookups later. This results in 658 * fewer cache pages, since we can store more information on each page. 659 * We only need to convert from xdr once so future lookups are much simpler 660 */ 661 static 662 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page) 663 { 664 struct inode *inode = file_inode(desc->file); 665 int ret; 666 667 ret = nfs_readdir_xdr_to_array(desc, page, inode); 668 if (ret < 0) 669 goto error; 670 SetPageUptodate(page); 671 672 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) { 673 /* Should never happen */ 674 nfs_zap_mapping(inode, inode->i_mapping); 675 } 676 unlock_page(page); 677 return 0; 678 error: 679 unlock_page(page); 680 return ret; 681 } 682 683 static 684 void cache_page_release(nfs_readdir_descriptor_t *desc) 685 { 686 if (!desc->page->mapping) 687 nfs_readdir_clear_array(desc->page); 688 put_page(desc->page); 689 desc->page = NULL; 690 } 691 692 static 693 struct page *get_cache_page(nfs_readdir_descriptor_t *desc) 694 { 695 return read_cache_page(desc->file->f_mapping, 696 desc->page_index, (filler_t *)nfs_readdir_filler, desc); 697 } 698 699 /* 700 * Returns 0 if desc->dir_cookie was found on page desc->page_index 701 */ 702 static 703 int find_cache_page(nfs_readdir_descriptor_t *desc) 704 { 705 int res; 706 707 desc->page = get_cache_page(desc); 708 if (IS_ERR(desc->page)) 709 return PTR_ERR(desc->page); 710 711 res = nfs_readdir_search_array(desc); 712 if (res != 0) 713 cache_page_release(desc); 714 return res; 715 } 716 717 /* Search for desc->dir_cookie from the beginning of the page cache */ 718 static inline 719 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc) 720 { 721 int res; 722 723 if (desc->page_index == 0) { 724 desc->current_index = 0; 725 desc->last_cookie = 0; 726 } 727 do { 728 res = find_cache_page(desc); 729 } while (res == -EAGAIN); 730 return res; 731 } 732 733 /* 734 * Once we've found the start of the dirent within a page: fill 'er up... 735 */ 736 static 737 int nfs_do_filldir(nfs_readdir_descriptor_t *desc) 738 { 739 struct file *file = desc->file; 740 int i = 0; 741 int res = 0; 742 struct nfs_cache_array *array = NULL; 743 struct nfs_open_dir_context *ctx = file->private_data; 744 745 array = kmap(desc->page); 746 for (i = desc->cache_entry_index; i < array->size; i++) { 747 struct nfs_cache_array_entry *ent; 748 749 ent = &array->array[i]; 750 if (!dir_emit(desc->ctx, ent->string.name, ent->string.len, 751 nfs_compat_user_ino64(ent->ino), ent->d_type)) { 752 desc->eof = true; 753 break; 754 } 755 desc->ctx->pos++; 756 if (i < (array->size-1)) 757 *desc->dir_cookie = array->array[i+1].cookie; 758 else 759 *desc->dir_cookie = array->last_cookie; 760 if (ctx->duped != 0) 761 ctx->duped = 1; 762 } 763 if (array->eof_index >= 0) 764 desc->eof = true; 765 766 kunmap(desc->page); 767 cache_page_release(desc); 768 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n", 769 (unsigned long long)*desc->dir_cookie, res); 770 return res; 771 } 772 773 /* 774 * If we cannot find a cookie in our cache, we suspect that this is 775 * because it points to a deleted file, so we ask the server to return 776 * whatever it thinks is the next entry. We then feed this to filldir. 777 * If all goes well, we should then be able to find our way round the 778 * cache on the next call to readdir_search_pagecache(); 779 * 780 * NOTE: we cannot add the anonymous page to the pagecache because 781 * the data it contains might not be page aligned. Besides, 782 * we should already have a complete representation of the 783 * directory in the page cache by the time we get here. 784 */ 785 static inline 786 int uncached_readdir(nfs_readdir_descriptor_t *desc) 787 { 788 struct page *page = NULL; 789 int status; 790 struct inode *inode = file_inode(desc->file); 791 struct nfs_open_dir_context *ctx = desc->file->private_data; 792 793 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n", 794 (unsigned long long)*desc->dir_cookie); 795 796 page = alloc_page(GFP_HIGHUSER); 797 if (!page) { 798 status = -ENOMEM; 799 goto out; 800 } 801 802 desc->page_index = 0; 803 desc->last_cookie = *desc->dir_cookie; 804 desc->page = page; 805 ctx->duped = 0; 806 807 status = nfs_readdir_xdr_to_array(desc, page, inode); 808 if (status < 0) 809 goto out_release; 810 811 status = nfs_do_filldir(desc); 812 813 out: 814 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", 815 __func__, status); 816 return status; 817 out_release: 818 cache_page_release(desc); 819 goto out; 820 } 821 822 /* The file offset position represents the dirent entry number. A 823 last cookie cache takes care of the common case of reading the 824 whole directory. 825 */ 826 static int nfs_readdir(struct file *file, struct dir_context *ctx) 827 { 828 struct dentry *dentry = file_dentry(file); 829 struct inode *inode = d_inode(dentry); 830 nfs_readdir_descriptor_t my_desc, 831 *desc = &my_desc; 832 struct nfs_open_dir_context *dir_ctx = file->private_data; 833 int res = 0; 834 835 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n", 836 file, (long long)ctx->pos); 837 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS); 838 839 /* 840 * ctx->pos points to the dirent entry number. 841 * *desc->dir_cookie has the cookie for the next entry. We have 842 * to either find the entry with the appropriate number or 843 * revalidate the cookie. 844 */ 845 memset(desc, 0, sizeof(*desc)); 846 847 desc->file = file; 848 desc->ctx = ctx; 849 desc->dir_cookie = &dir_ctx->dir_cookie; 850 desc->decode = NFS_PROTO(inode)->decode_dirent; 851 desc->plus = nfs_use_readdirplus(inode, ctx); 852 853 if (ctx->pos == 0 || nfs_attribute_cache_expired(inode)) 854 res = nfs_revalidate_mapping(inode, file->f_mapping); 855 if (res < 0) 856 goto out; 857 858 do { 859 res = readdir_search_pagecache(desc); 860 861 if (res == -EBADCOOKIE) { 862 res = 0; 863 /* This means either end of directory */ 864 if (*desc->dir_cookie && !desc->eof) { 865 /* Or that the server has 'lost' a cookie */ 866 res = uncached_readdir(desc); 867 if (res == 0) 868 continue; 869 } 870 break; 871 } 872 if (res == -ETOOSMALL && desc->plus) { 873 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 874 nfs_zap_caches(inode); 875 desc->page_index = 0; 876 desc->plus = false; 877 desc->eof = false; 878 continue; 879 } 880 if (res < 0) 881 break; 882 883 res = nfs_do_filldir(desc); 884 if (res < 0) 885 break; 886 } while (!desc->eof); 887 out: 888 if (res > 0) 889 res = 0; 890 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res); 891 return res; 892 } 893 894 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence) 895 { 896 struct inode *inode = file_inode(filp); 897 struct nfs_open_dir_context *dir_ctx = filp->private_data; 898 899 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n", 900 filp, offset, whence); 901 902 switch (whence) { 903 default: 904 return -EINVAL; 905 case SEEK_SET: 906 if (offset < 0) 907 return -EINVAL; 908 inode_lock(inode); 909 break; 910 case SEEK_CUR: 911 if (offset == 0) 912 return filp->f_pos; 913 inode_lock(inode); 914 offset += filp->f_pos; 915 if (offset < 0) { 916 inode_unlock(inode); 917 return -EINVAL; 918 } 919 } 920 if (offset != filp->f_pos) { 921 filp->f_pos = offset; 922 dir_ctx->dir_cookie = 0; 923 dir_ctx->duped = 0; 924 } 925 inode_unlock(inode); 926 return offset; 927 } 928 929 /* 930 * All directory operations under NFS are synchronous, so fsync() 931 * is a dummy operation. 932 */ 933 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end, 934 int datasync) 935 { 936 struct inode *inode = file_inode(filp); 937 938 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync); 939 940 inode_lock(inode); 941 nfs_inc_stats(inode, NFSIOS_VFSFSYNC); 942 inode_unlock(inode); 943 return 0; 944 } 945 946 /** 947 * nfs_force_lookup_revalidate - Mark the directory as having changed 948 * @dir - pointer to directory inode 949 * 950 * This forces the revalidation code in nfs_lookup_revalidate() to do a 951 * full lookup on all child dentries of 'dir' whenever a change occurs 952 * on the server that might have invalidated our dcache. 953 * 954 * The caller should be holding dir->i_lock 955 */ 956 void nfs_force_lookup_revalidate(struct inode *dir) 957 { 958 NFS_I(dir)->cache_change_attribute++; 959 } 960 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate); 961 962 /* 963 * A check for whether or not the parent directory has changed. 964 * In the case it has, we assume that the dentries are untrustworthy 965 * and may need to be looked up again. 966 * If rcu_walk prevents us from performing a full check, return 0. 967 */ 968 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry, 969 int rcu_walk) 970 { 971 if (IS_ROOT(dentry)) 972 return 1; 973 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE) 974 return 0; 975 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 976 return 0; 977 /* Revalidate nfsi->cache_change_attribute before we declare a match */ 978 if (nfs_mapping_need_revalidate_inode(dir)) { 979 if (rcu_walk) 980 return 0; 981 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0) 982 return 0; 983 } 984 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 985 return 0; 986 return 1; 987 } 988 989 /* 990 * Use intent information to check whether or not we're going to do 991 * an O_EXCL create using this path component. 992 */ 993 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags) 994 { 995 if (NFS_PROTO(dir)->version == 2) 996 return 0; 997 return flags & LOOKUP_EXCL; 998 } 999 1000 /* 1001 * Inode and filehandle revalidation for lookups. 1002 * 1003 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL, 1004 * or if the intent information indicates that we're about to open this 1005 * particular file and the "nocto" mount flag is not set. 1006 * 1007 */ 1008 static 1009 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags) 1010 { 1011 struct nfs_server *server = NFS_SERVER(inode); 1012 int ret; 1013 1014 if (IS_AUTOMOUNT(inode)) 1015 return 0; 1016 1017 if (flags & LOOKUP_OPEN) { 1018 switch (inode->i_mode & S_IFMT) { 1019 case S_IFREG: 1020 /* A NFSv4 OPEN will revalidate later */ 1021 if (server->caps & NFS_CAP_ATOMIC_OPEN) 1022 goto out; 1023 /* Fallthrough */ 1024 case S_IFDIR: 1025 if (server->flags & NFS_MOUNT_NOCTO) 1026 break; 1027 /* NFS close-to-open cache consistency validation */ 1028 goto out_force; 1029 } 1030 } 1031 1032 /* VFS wants an on-the-wire revalidation */ 1033 if (flags & LOOKUP_REVAL) 1034 goto out_force; 1035 out: 1036 return (inode->i_nlink == 0) ? -ESTALE : 0; 1037 out_force: 1038 if (flags & LOOKUP_RCU) 1039 return -ECHILD; 1040 ret = __nfs_revalidate_inode(server, inode); 1041 if (ret != 0) 1042 return ret; 1043 goto out; 1044 } 1045 1046 /* 1047 * We judge how long we want to trust negative 1048 * dentries by looking at the parent inode mtime. 1049 * 1050 * If parent mtime has changed, we revalidate, else we wait for a 1051 * period corresponding to the parent's attribute cache timeout value. 1052 * 1053 * If LOOKUP_RCU prevents us from performing a full check, return 1 1054 * suggesting a reval is needed. 1055 * 1056 * Note that when creating a new file, or looking up a rename target, 1057 * then it shouldn't be necessary to revalidate a negative dentry. 1058 */ 1059 static inline 1060 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry, 1061 unsigned int flags) 1062 { 1063 if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET)) 1064 return 0; 1065 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG) 1066 return 1; 1067 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU); 1068 } 1069 1070 static int 1071 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry, 1072 struct inode *inode, int error) 1073 { 1074 switch (error) { 1075 case 1: 1076 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n", 1077 __func__, dentry); 1078 return 1; 1079 case 0: 1080 nfs_mark_for_revalidate(dir); 1081 if (inode && S_ISDIR(inode->i_mode)) { 1082 /* Purge readdir caches. */ 1083 nfs_zap_caches(inode); 1084 /* 1085 * We can't d_drop the root of a disconnected tree: 1086 * its d_hash is on the s_anon list and d_drop() would hide 1087 * it from shrink_dcache_for_unmount(), leading to busy 1088 * inodes on unmount and further oopses. 1089 */ 1090 if (IS_ROOT(dentry)) 1091 return 1; 1092 } 1093 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n", 1094 __func__, dentry); 1095 return 0; 1096 } 1097 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n", 1098 __func__, dentry, error); 1099 return error; 1100 } 1101 1102 static int 1103 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry, 1104 unsigned int flags) 1105 { 1106 int ret = 1; 1107 if (nfs_neg_need_reval(dir, dentry, flags)) { 1108 if (flags & LOOKUP_RCU) 1109 return -ECHILD; 1110 ret = 0; 1111 } 1112 return nfs_lookup_revalidate_done(dir, dentry, NULL, ret); 1113 } 1114 1115 static int 1116 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry, 1117 struct inode *inode) 1118 { 1119 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1120 return nfs_lookup_revalidate_done(dir, dentry, inode, 1); 1121 } 1122 1123 static int 1124 nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry, 1125 struct inode *inode) 1126 { 1127 struct nfs_fh *fhandle; 1128 struct nfs_fattr *fattr; 1129 struct nfs4_label *label; 1130 int ret; 1131 1132 ret = -ENOMEM; 1133 fhandle = nfs_alloc_fhandle(); 1134 fattr = nfs_alloc_fattr(); 1135 label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL); 1136 if (fhandle == NULL || fattr == NULL || IS_ERR(label)) 1137 goto out; 1138 1139 ret = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label); 1140 if (ret < 0) { 1141 if (ret == -ESTALE || ret == -ENOENT) 1142 ret = 0; 1143 goto out; 1144 } 1145 ret = 0; 1146 if (nfs_compare_fh(NFS_FH(inode), fhandle)) 1147 goto out; 1148 if (nfs_refresh_inode(inode, fattr) < 0) 1149 goto out; 1150 1151 nfs_setsecurity(inode, fattr, label); 1152 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1153 1154 /* set a readdirplus hint that we had a cache miss */ 1155 nfs_force_use_readdirplus(dir); 1156 ret = 1; 1157 out: 1158 nfs_free_fattr(fattr); 1159 nfs_free_fhandle(fhandle); 1160 nfs4_label_free(label); 1161 return nfs_lookup_revalidate_done(dir, dentry, inode, ret); 1162 } 1163 1164 /* 1165 * This is called every time the dcache has a lookup hit, 1166 * and we should check whether we can really trust that 1167 * lookup. 1168 * 1169 * NOTE! The hit can be a negative hit too, don't assume 1170 * we have an inode! 1171 * 1172 * If the parent directory is seen to have changed, we throw out the 1173 * cached dentry and do a new lookup. 1174 */ 1175 static int 1176 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry, 1177 unsigned int flags) 1178 { 1179 struct inode *inode; 1180 int error; 1181 1182 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE); 1183 inode = d_inode(dentry); 1184 1185 if (!inode) 1186 return nfs_lookup_revalidate_negative(dir, dentry, flags); 1187 1188 if (is_bad_inode(inode)) { 1189 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1190 __func__, dentry); 1191 goto out_bad; 1192 } 1193 1194 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ)) 1195 return nfs_lookup_revalidate_delegated(dir, dentry, inode); 1196 1197 /* Force a full look up iff the parent directory has changed */ 1198 if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) && 1199 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) { 1200 error = nfs_lookup_verify_inode(inode, flags); 1201 if (error) { 1202 if (error == -ESTALE) 1203 nfs_zap_caches(dir); 1204 goto out_bad; 1205 } 1206 nfs_advise_use_readdirplus(dir); 1207 goto out_valid; 1208 } 1209 1210 if (flags & LOOKUP_RCU) 1211 return -ECHILD; 1212 1213 if (NFS_STALE(inode)) 1214 goto out_bad; 1215 1216 trace_nfs_lookup_revalidate_enter(dir, dentry, flags); 1217 error = nfs_lookup_revalidate_dentry(dir, dentry, inode); 1218 trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error); 1219 return error; 1220 out_valid: 1221 return nfs_lookup_revalidate_done(dir, dentry, inode, 1); 1222 out_bad: 1223 if (flags & LOOKUP_RCU) 1224 return -ECHILD; 1225 return nfs_lookup_revalidate_done(dir, dentry, inode, 0); 1226 } 1227 1228 static int 1229 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags, 1230 int (*reval)(struct inode *, struct dentry *, unsigned int)) 1231 { 1232 struct dentry *parent; 1233 struct inode *dir; 1234 int ret; 1235 1236 if (flags & LOOKUP_RCU) { 1237 parent = READ_ONCE(dentry->d_parent); 1238 dir = d_inode_rcu(parent); 1239 if (!dir) 1240 return -ECHILD; 1241 ret = reval(dir, dentry, flags); 1242 if (parent != READ_ONCE(dentry->d_parent)) 1243 return -ECHILD; 1244 } else { 1245 parent = dget_parent(dentry); 1246 ret = reval(d_inode(parent), dentry, flags); 1247 dput(parent); 1248 } 1249 return ret; 1250 } 1251 1252 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1253 { 1254 return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate); 1255 } 1256 1257 /* 1258 * A weaker form of d_revalidate for revalidating just the d_inode(dentry) 1259 * when we don't really care about the dentry name. This is called when a 1260 * pathwalk ends on a dentry that was not found via a normal lookup in the 1261 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals). 1262 * 1263 * In this situation, we just want to verify that the inode itself is OK 1264 * since the dentry might have changed on the server. 1265 */ 1266 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags) 1267 { 1268 struct inode *inode = d_inode(dentry); 1269 int error = 0; 1270 1271 /* 1272 * I believe we can only get a negative dentry here in the case of a 1273 * procfs-style symlink. Just assume it's correct for now, but we may 1274 * eventually need to do something more here. 1275 */ 1276 if (!inode) { 1277 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n", 1278 __func__, dentry); 1279 return 1; 1280 } 1281 1282 if (is_bad_inode(inode)) { 1283 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1284 __func__, dentry); 1285 return 0; 1286 } 1287 1288 error = nfs_lookup_verify_inode(inode, flags); 1289 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n", 1290 __func__, inode->i_ino, error ? "invalid" : "valid"); 1291 return !error; 1292 } 1293 1294 /* 1295 * This is called from dput() when d_count is going to 0. 1296 */ 1297 static int nfs_dentry_delete(const struct dentry *dentry) 1298 { 1299 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n", 1300 dentry, dentry->d_flags); 1301 1302 /* Unhash any dentry with a stale inode */ 1303 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry))) 1304 return 1; 1305 1306 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1307 /* Unhash it, so that ->d_iput() would be called */ 1308 return 1; 1309 } 1310 if (!(dentry->d_sb->s_flags & SB_ACTIVE)) { 1311 /* Unhash it, so that ancestors of killed async unlink 1312 * files will be cleaned up during umount */ 1313 return 1; 1314 } 1315 return 0; 1316 1317 } 1318 1319 /* Ensure that we revalidate inode->i_nlink */ 1320 static void nfs_drop_nlink(struct inode *inode) 1321 { 1322 spin_lock(&inode->i_lock); 1323 /* drop the inode if we're reasonably sure this is the last link */ 1324 if (inode->i_nlink > 0) 1325 drop_nlink(inode); 1326 NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter(); 1327 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_CHANGE 1328 | NFS_INO_INVALID_CTIME 1329 | NFS_INO_INVALID_OTHER 1330 | NFS_INO_REVAL_FORCED; 1331 spin_unlock(&inode->i_lock); 1332 } 1333 1334 /* 1335 * Called when the dentry loses inode. 1336 * We use it to clean up silly-renamed files. 1337 */ 1338 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode) 1339 { 1340 if (S_ISDIR(inode->i_mode)) 1341 /* drop any readdir cache as it could easily be old */ 1342 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA; 1343 1344 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1345 nfs_complete_unlink(dentry, inode); 1346 nfs_drop_nlink(inode); 1347 } 1348 iput(inode); 1349 } 1350 1351 static void nfs_d_release(struct dentry *dentry) 1352 { 1353 /* free cached devname value, if it survived that far */ 1354 if (unlikely(dentry->d_fsdata)) { 1355 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) 1356 WARN_ON(1); 1357 else 1358 kfree(dentry->d_fsdata); 1359 } 1360 } 1361 1362 const struct dentry_operations nfs_dentry_operations = { 1363 .d_revalidate = nfs_lookup_revalidate, 1364 .d_weak_revalidate = nfs_weak_revalidate, 1365 .d_delete = nfs_dentry_delete, 1366 .d_iput = nfs_dentry_iput, 1367 .d_automount = nfs_d_automount, 1368 .d_release = nfs_d_release, 1369 }; 1370 EXPORT_SYMBOL_GPL(nfs_dentry_operations); 1371 1372 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 1373 { 1374 struct dentry *res; 1375 struct inode *inode = NULL; 1376 struct nfs_fh *fhandle = NULL; 1377 struct nfs_fattr *fattr = NULL; 1378 struct nfs4_label *label = NULL; 1379 int error; 1380 1381 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry); 1382 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP); 1383 1384 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen)) 1385 return ERR_PTR(-ENAMETOOLONG); 1386 1387 /* 1388 * If we're doing an exclusive create, optimize away the lookup 1389 * but don't hash the dentry. 1390 */ 1391 if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET) 1392 return NULL; 1393 1394 res = ERR_PTR(-ENOMEM); 1395 fhandle = nfs_alloc_fhandle(); 1396 fattr = nfs_alloc_fattr(); 1397 if (fhandle == NULL || fattr == NULL) 1398 goto out; 1399 1400 label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT); 1401 if (IS_ERR(label)) 1402 goto out; 1403 1404 trace_nfs_lookup_enter(dir, dentry, flags); 1405 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label); 1406 if (error == -ENOENT) 1407 goto no_entry; 1408 if (error < 0) { 1409 res = ERR_PTR(error); 1410 goto out_label; 1411 } 1412 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label); 1413 res = ERR_CAST(inode); 1414 if (IS_ERR(res)) 1415 goto out_label; 1416 1417 /* Notify readdir to use READDIRPLUS */ 1418 nfs_force_use_readdirplus(dir); 1419 1420 no_entry: 1421 res = d_splice_alias(inode, dentry); 1422 if (res != NULL) { 1423 if (IS_ERR(res)) 1424 goto out_label; 1425 dentry = res; 1426 } 1427 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1428 out_label: 1429 trace_nfs_lookup_exit(dir, dentry, flags, error); 1430 nfs4_label_free(label); 1431 out: 1432 nfs_free_fattr(fattr); 1433 nfs_free_fhandle(fhandle); 1434 return res; 1435 } 1436 EXPORT_SYMBOL_GPL(nfs_lookup); 1437 1438 #if IS_ENABLED(CONFIG_NFS_V4) 1439 static int nfs4_lookup_revalidate(struct dentry *, unsigned int); 1440 1441 const struct dentry_operations nfs4_dentry_operations = { 1442 .d_revalidate = nfs4_lookup_revalidate, 1443 .d_weak_revalidate = nfs_weak_revalidate, 1444 .d_delete = nfs_dentry_delete, 1445 .d_iput = nfs_dentry_iput, 1446 .d_automount = nfs_d_automount, 1447 .d_release = nfs_d_release, 1448 }; 1449 EXPORT_SYMBOL_GPL(nfs4_dentry_operations); 1450 1451 static fmode_t flags_to_mode(int flags) 1452 { 1453 fmode_t res = (__force fmode_t)flags & FMODE_EXEC; 1454 if ((flags & O_ACCMODE) != O_WRONLY) 1455 res |= FMODE_READ; 1456 if ((flags & O_ACCMODE) != O_RDONLY) 1457 res |= FMODE_WRITE; 1458 return res; 1459 } 1460 1461 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp) 1462 { 1463 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp); 1464 } 1465 1466 static int do_open(struct inode *inode, struct file *filp) 1467 { 1468 nfs_fscache_open_file(inode, filp); 1469 return 0; 1470 } 1471 1472 static int nfs_finish_open(struct nfs_open_context *ctx, 1473 struct dentry *dentry, 1474 struct file *file, unsigned open_flags) 1475 { 1476 int err; 1477 1478 err = finish_open(file, dentry, do_open); 1479 if (err) 1480 goto out; 1481 if (S_ISREG(file->f_path.dentry->d_inode->i_mode)) 1482 nfs_file_set_open_context(file, ctx); 1483 else 1484 err = -ESTALE; 1485 out: 1486 return err; 1487 } 1488 1489 int nfs_atomic_open(struct inode *dir, struct dentry *dentry, 1490 struct file *file, unsigned open_flags, 1491 umode_t mode) 1492 { 1493 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1494 struct nfs_open_context *ctx; 1495 struct dentry *res; 1496 struct iattr attr = { .ia_valid = ATTR_OPEN }; 1497 struct inode *inode; 1498 unsigned int lookup_flags = 0; 1499 bool switched = false; 1500 int created = 0; 1501 int err; 1502 1503 /* Expect a negative dentry */ 1504 BUG_ON(d_inode(dentry)); 1505 1506 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n", 1507 dir->i_sb->s_id, dir->i_ino, dentry); 1508 1509 err = nfs_check_flags(open_flags); 1510 if (err) 1511 return err; 1512 1513 /* NFS only supports OPEN on regular files */ 1514 if ((open_flags & O_DIRECTORY)) { 1515 if (!d_in_lookup(dentry)) { 1516 /* 1517 * Hashed negative dentry with O_DIRECTORY: dentry was 1518 * revalidated and is fine, no need to perform lookup 1519 * again 1520 */ 1521 return -ENOENT; 1522 } 1523 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY; 1524 goto no_open; 1525 } 1526 1527 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 1528 return -ENAMETOOLONG; 1529 1530 if (open_flags & O_CREAT) { 1531 struct nfs_server *server = NFS_SERVER(dir); 1532 1533 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK)) 1534 mode &= ~current_umask(); 1535 1536 attr.ia_valid |= ATTR_MODE; 1537 attr.ia_mode = mode; 1538 } 1539 if (open_flags & O_TRUNC) { 1540 attr.ia_valid |= ATTR_SIZE; 1541 attr.ia_size = 0; 1542 } 1543 1544 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) { 1545 d_drop(dentry); 1546 switched = true; 1547 dentry = d_alloc_parallel(dentry->d_parent, 1548 &dentry->d_name, &wq); 1549 if (IS_ERR(dentry)) 1550 return PTR_ERR(dentry); 1551 if (unlikely(!d_in_lookup(dentry))) 1552 return finish_no_open(file, dentry); 1553 } 1554 1555 ctx = create_nfs_open_context(dentry, open_flags, file); 1556 err = PTR_ERR(ctx); 1557 if (IS_ERR(ctx)) 1558 goto out; 1559 1560 trace_nfs_atomic_open_enter(dir, ctx, open_flags); 1561 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created); 1562 if (created) 1563 file->f_mode |= FMODE_CREATED; 1564 if (IS_ERR(inode)) { 1565 err = PTR_ERR(inode); 1566 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 1567 put_nfs_open_context(ctx); 1568 d_drop(dentry); 1569 switch (err) { 1570 case -ENOENT: 1571 d_splice_alias(NULL, dentry); 1572 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1573 break; 1574 case -EISDIR: 1575 case -ENOTDIR: 1576 goto no_open; 1577 case -ELOOP: 1578 if (!(open_flags & O_NOFOLLOW)) 1579 goto no_open; 1580 break; 1581 /* case -EINVAL: */ 1582 default: 1583 break; 1584 } 1585 goto out; 1586 } 1587 1588 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags); 1589 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 1590 put_nfs_open_context(ctx); 1591 out: 1592 if (unlikely(switched)) { 1593 d_lookup_done(dentry); 1594 dput(dentry); 1595 } 1596 return err; 1597 1598 no_open: 1599 res = nfs_lookup(dir, dentry, lookup_flags); 1600 if (switched) { 1601 d_lookup_done(dentry); 1602 if (!res) 1603 res = dentry; 1604 else 1605 dput(dentry); 1606 } 1607 if (IS_ERR(res)) 1608 return PTR_ERR(res); 1609 return finish_no_open(file, res); 1610 } 1611 EXPORT_SYMBOL_GPL(nfs_atomic_open); 1612 1613 static int 1614 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry, 1615 unsigned int flags) 1616 { 1617 struct inode *inode; 1618 1619 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY)) 1620 goto full_reval; 1621 if (d_mountpoint(dentry)) 1622 goto full_reval; 1623 1624 inode = d_inode(dentry); 1625 1626 /* We can't create new files in nfs_open_revalidate(), so we 1627 * optimize away revalidation of negative dentries. 1628 */ 1629 if (inode == NULL) 1630 goto full_reval; 1631 1632 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ)) 1633 return nfs_lookup_revalidate_delegated(dir, dentry, inode); 1634 1635 /* NFS only supports OPEN on regular files */ 1636 if (!S_ISREG(inode->i_mode)) 1637 goto full_reval; 1638 1639 /* We cannot do exclusive creation on a positive dentry */ 1640 if (flags & (LOOKUP_EXCL | LOOKUP_REVAL)) 1641 goto reval_dentry; 1642 1643 /* Check if the directory changed */ 1644 if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) 1645 goto reval_dentry; 1646 1647 /* Let f_op->open() actually open (and revalidate) the file */ 1648 return 1; 1649 reval_dentry: 1650 if (flags & LOOKUP_RCU) 1651 return -ECHILD; 1652 return nfs_lookup_revalidate_dentry(dir, dentry, inode);; 1653 1654 full_reval: 1655 return nfs_do_lookup_revalidate(dir, dentry, flags); 1656 } 1657 1658 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1659 { 1660 return __nfs_lookup_revalidate(dentry, flags, 1661 nfs4_do_lookup_revalidate); 1662 } 1663 1664 #endif /* CONFIG_NFSV4 */ 1665 1666 /* 1667 * Code common to create, mkdir, and mknod. 1668 */ 1669 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle, 1670 struct nfs_fattr *fattr, 1671 struct nfs4_label *label) 1672 { 1673 struct dentry *parent = dget_parent(dentry); 1674 struct inode *dir = d_inode(parent); 1675 struct inode *inode; 1676 struct dentry *d; 1677 int error = -EACCES; 1678 1679 d_drop(dentry); 1680 1681 /* We may have been initialized further down */ 1682 if (d_really_is_positive(dentry)) 1683 goto out; 1684 if (fhandle->size == 0) { 1685 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL); 1686 if (error) 1687 goto out_error; 1688 } 1689 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1690 if (!(fattr->valid & NFS_ATTR_FATTR)) { 1691 struct nfs_server *server = NFS_SB(dentry->d_sb); 1692 error = server->nfs_client->rpc_ops->getattr(server, fhandle, 1693 fattr, NULL, NULL); 1694 if (error < 0) 1695 goto out_error; 1696 } 1697 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label); 1698 d = d_splice_alias(inode, dentry); 1699 if (IS_ERR(d)) { 1700 error = PTR_ERR(d); 1701 goto out_error; 1702 } 1703 dput(d); 1704 out: 1705 dput(parent); 1706 return 0; 1707 out_error: 1708 nfs_mark_for_revalidate(dir); 1709 dput(parent); 1710 return error; 1711 } 1712 EXPORT_SYMBOL_GPL(nfs_instantiate); 1713 1714 /* 1715 * Following a failed create operation, we drop the dentry rather 1716 * than retain a negative dentry. This avoids a problem in the event 1717 * that the operation succeeded on the server, but an error in the 1718 * reply path made it appear to have failed. 1719 */ 1720 int nfs_create(struct inode *dir, struct dentry *dentry, 1721 umode_t mode, bool excl) 1722 { 1723 struct iattr attr; 1724 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT; 1725 int error; 1726 1727 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n", 1728 dir->i_sb->s_id, dir->i_ino, dentry); 1729 1730 attr.ia_mode = mode; 1731 attr.ia_valid = ATTR_MODE; 1732 1733 trace_nfs_create_enter(dir, dentry, open_flags); 1734 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags); 1735 trace_nfs_create_exit(dir, dentry, open_flags, error); 1736 if (error != 0) 1737 goto out_err; 1738 return 0; 1739 out_err: 1740 d_drop(dentry); 1741 return error; 1742 } 1743 EXPORT_SYMBOL_GPL(nfs_create); 1744 1745 /* 1746 * See comments for nfs_proc_create regarding failed operations. 1747 */ 1748 int 1749 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev) 1750 { 1751 struct iattr attr; 1752 int status; 1753 1754 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n", 1755 dir->i_sb->s_id, dir->i_ino, dentry); 1756 1757 attr.ia_mode = mode; 1758 attr.ia_valid = ATTR_MODE; 1759 1760 trace_nfs_mknod_enter(dir, dentry); 1761 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev); 1762 trace_nfs_mknod_exit(dir, dentry, status); 1763 if (status != 0) 1764 goto out_err; 1765 return 0; 1766 out_err: 1767 d_drop(dentry); 1768 return status; 1769 } 1770 EXPORT_SYMBOL_GPL(nfs_mknod); 1771 1772 /* 1773 * See comments for nfs_proc_create regarding failed operations. 1774 */ 1775 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1776 { 1777 struct iattr attr; 1778 int error; 1779 1780 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n", 1781 dir->i_sb->s_id, dir->i_ino, dentry); 1782 1783 attr.ia_valid = ATTR_MODE; 1784 attr.ia_mode = mode | S_IFDIR; 1785 1786 trace_nfs_mkdir_enter(dir, dentry); 1787 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr); 1788 trace_nfs_mkdir_exit(dir, dentry, error); 1789 if (error != 0) 1790 goto out_err; 1791 return 0; 1792 out_err: 1793 d_drop(dentry); 1794 return error; 1795 } 1796 EXPORT_SYMBOL_GPL(nfs_mkdir); 1797 1798 static void nfs_dentry_handle_enoent(struct dentry *dentry) 1799 { 1800 if (simple_positive(dentry)) 1801 d_delete(dentry); 1802 } 1803 1804 int nfs_rmdir(struct inode *dir, struct dentry *dentry) 1805 { 1806 int error; 1807 1808 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n", 1809 dir->i_sb->s_id, dir->i_ino, dentry); 1810 1811 trace_nfs_rmdir_enter(dir, dentry); 1812 if (d_really_is_positive(dentry)) { 1813 down_write(&NFS_I(d_inode(dentry))->rmdir_sem); 1814 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 1815 /* Ensure the VFS deletes this inode */ 1816 switch (error) { 1817 case 0: 1818 clear_nlink(d_inode(dentry)); 1819 break; 1820 case -ENOENT: 1821 nfs_dentry_handle_enoent(dentry); 1822 } 1823 up_write(&NFS_I(d_inode(dentry))->rmdir_sem); 1824 } else 1825 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 1826 trace_nfs_rmdir_exit(dir, dentry, error); 1827 1828 return error; 1829 } 1830 EXPORT_SYMBOL_GPL(nfs_rmdir); 1831 1832 /* 1833 * Remove a file after making sure there are no pending writes, 1834 * and after checking that the file has only one user. 1835 * 1836 * We invalidate the attribute cache and free the inode prior to the operation 1837 * to avoid possible races if the server reuses the inode. 1838 */ 1839 static int nfs_safe_remove(struct dentry *dentry) 1840 { 1841 struct inode *dir = d_inode(dentry->d_parent); 1842 struct inode *inode = d_inode(dentry); 1843 int error = -EBUSY; 1844 1845 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry); 1846 1847 /* If the dentry was sillyrenamed, we simply call d_delete() */ 1848 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1849 error = 0; 1850 goto out; 1851 } 1852 1853 trace_nfs_remove_enter(dir, dentry); 1854 if (inode != NULL) { 1855 error = NFS_PROTO(dir)->remove(dir, dentry); 1856 if (error == 0) 1857 nfs_drop_nlink(inode); 1858 } else 1859 error = NFS_PROTO(dir)->remove(dir, dentry); 1860 if (error == -ENOENT) 1861 nfs_dentry_handle_enoent(dentry); 1862 trace_nfs_remove_exit(dir, dentry, error); 1863 out: 1864 return error; 1865 } 1866 1867 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode 1868 * belongs to an active ".nfs..." file and we return -EBUSY. 1869 * 1870 * If sillyrename() returns 0, we do nothing, otherwise we unlink. 1871 */ 1872 int nfs_unlink(struct inode *dir, struct dentry *dentry) 1873 { 1874 int error; 1875 int need_rehash = 0; 1876 1877 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id, 1878 dir->i_ino, dentry); 1879 1880 trace_nfs_unlink_enter(dir, dentry); 1881 spin_lock(&dentry->d_lock); 1882 if (d_count(dentry) > 1) { 1883 spin_unlock(&dentry->d_lock); 1884 /* Start asynchronous writeout of the inode */ 1885 write_inode_now(d_inode(dentry), 0); 1886 error = nfs_sillyrename(dir, dentry); 1887 goto out; 1888 } 1889 if (!d_unhashed(dentry)) { 1890 __d_drop(dentry); 1891 need_rehash = 1; 1892 } 1893 spin_unlock(&dentry->d_lock); 1894 error = nfs_safe_remove(dentry); 1895 if (!error || error == -ENOENT) { 1896 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1897 } else if (need_rehash) 1898 d_rehash(dentry); 1899 out: 1900 trace_nfs_unlink_exit(dir, dentry, error); 1901 return error; 1902 } 1903 EXPORT_SYMBOL_GPL(nfs_unlink); 1904 1905 /* 1906 * To create a symbolic link, most file systems instantiate a new inode, 1907 * add a page to it containing the path, then write it out to the disk 1908 * using prepare_write/commit_write. 1909 * 1910 * Unfortunately the NFS client can't create the in-core inode first 1911 * because it needs a file handle to create an in-core inode (see 1912 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the 1913 * symlink request has completed on the server. 1914 * 1915 * So instead we allocate a raw page, copy the symname into it, then do 1916 * the SYMLINK request with the page as the buffer. If it succeeds, we 1917 * now have a new file handle and can instantiate an in-core NFS inode 1918 * and move the raw page into its mapping. 1919 */ 1920 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 1921 { 1922 struct page *page; 1923 char *kaddr; 1924 struct iattr attr; 1925 unsigned int pathlen = strlen(symname); 1926 int error; 1927 1928 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id, 1929 dir->i_ino, dentry, symname); 1930 1931 if (pathlen > PAGE_SIZE) 1932 return -ENAMETOOLONG; 1933 1934 attr.ia_mode = S_IFLNK | S_IRWXUGO; 1935 attr.ia_valid = ATTR_MODE; 1936 1937 page = alloc_page(GFP_USER); 1938 if (!page) 1939 return -ENOMEM; 1940 1941 kaddr = page_address(page); 1942 memcpy(kaddr, symname, pathlen); 1943 if (pathlen < PAGE_SIZE) 1944 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen); 1945 1946 trace_nfs_symlink_enter(dir, dentry); 1947 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr); 1948 trace_nfs_symlink_exit(dir, dentry, error); 1949 if (error != 0) { 1950 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n", 1951 dir->i_sb->s_id, dir->i_ino, 1952 dentry, symname, error); 1953 d_drop(dentry); 1954 __free_page(page); 1955 return error; 1956 } 1957 1958 /* 1959 * No big deal if we can't add this page to the page cache here. 1960 * READLINK will get the missing page from the server if needed. 1961 */ 1962 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0, 1963 GFP_KERNEL)) { 1964 SetPageUptodate(page); 1965 unlock_page(page); 1966 /* 1967 * add_to_page_cache_lru() grabs an extra page refcount. 1968 * Drop it here to avoid leaking this page later. 1969 */ 1970 put_page(page); 1971 } else 1972 __free_page(page); 1973 1974 return 0; 1975 } 1976 EXPORT_SYMBOL_GPL(nfs_symlink); 1977 1978 int 1979 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 1980 { 1981 struct inode *inode = d_inode(old_dentry); 1982 int error; 1983 1984 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n", 1985 old_dentry, dentry); 1986 1987 trace_nfs_link_enter(inode, dir, dentry); 1988 d_drop(dentry); 1989 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name); 1990 if (error == 0) { 1991 ihold(inode); 1992 d_add(dentry, inode); 1993 } 1994 trace_nfs_link_exit(inode, dir, dentry, error); 1995 return error; 1996 } 1997 EXPORT_SYMBOL_GPL(nfs_link); 1998 1999 /* 2000 * RENAME 2001 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a 2002 * different file handle for the same inode after a rename (e.g. when 2003 * moving to a different directory). A fail-safe method to do so would 2004 * be to look up old_dir/old_name, create a link to new_dir/new_name and 2005 * rename the old file using the sillyrename stuff. This way, the original 2006 * file in old_dir will go away when the last process iput()s the inode. 2007 * 2008 * FIXED. 2009 * 2010 * It actually works quite well. One needs to have the possibility for 2011 * at least one ".nfs..." file in each directory the file ever gets 2012 * moved or linked to which happens automagically with the new 2013 * implementation that only depends on the dcache stuff instead of 2014 * using the inode layer 2015 * 2016 * Unfortunately, things are a little more complicated than indicated 2017 * above. For a cross-directory move, we want to make sure we can get 2018 * rid of the old inode after the operation. This means there must be 2019 * no pending writes (if it's a file), and the use count must be 1. 2020 * If these conditions are met, we can drop the dentries before doing 2021 * the rename. 2022 */ 2023 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry, 2024 struct inode *new_dir, struct dentry *new_dentry, 2025 unsigned int flags) 2026 { 2027 struct inode *old_inode = d_inode(old_dentry); 2028 struct inode *new_inode = d_inode(new_dentry); 2029 struct dentry *dentry = NULL, *rehash = NULL; 2030 struct rpc_task *task; 2031 int error = -EBUSY; 2032 2033 if (flags) 2034 return -EINVAL; 2035 2036 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n", 2037 old_dentry, new_dentry, 2038 d_count(new_dentry)); 2039 2040 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry); 2041 /* 2042 * For non-directories, check whether the target is busy and if so, 2043 * make a copy of the dentry and then do a silly-rename. If the 2044 * silly-rename succeeds, the copied dentry is hashed and becomes 2045 * the new target. 2046 */ 2047 if (new_inode && !S_ISDIR(new_inode->i_mode)) { 2048 /* 2049 * To prevent any new references to the target during the 2050 * rename, we unhash the dentry in advance. 2051 */ 2052 if (!d_unhashed(new_dentry)) { 2053 d_drop(new_dentry); 2054 rehash = new_dentry; 2055 } 2056 2057 if (d_count(new_dentry) > 2) { 2058 int err; 2059 2060 /* copy the target dentry's name */ 2061 dentry = d_alloc(new_dentry->d_parent, 2062 &new_dentry->d_name); 2063 if (!dentry) 2064 goto out; 2065 2066 /* silly-rename the existing target ... */ 2067 err = nfs_sillyrename(new_dir, new_dentry); 2068 if (err) 2069 goto out; 2070 2071 new_dentry = dentry; 2072 rehash = NULL; 2073 new_inode = NULL; 2074 } 2075 } 2076 2077 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL); 2078 if (IS_ERR(task)) { 2079 error = PTR_ERR(task); 2080 goto out; 2081 } 2082 2083 error = rpc_wait_for_completion_task(task); 2084 if (error != 0) { 2085 ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1; 2086 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */ 2087 smp_wmb(); 2088 } else 2089 error = task->tk_status; 2090 rpc_put_task(task); 2091 /* Ensure the inode attributes are revalidated */ 2092 if (error == 0) { 2093 spin_lock(&old_inode->i_lock); 2094 NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter(); 2095 NFS_I(old_inode)->cache_validity |= NFS_INO_INVALID_CHANGE 2096 | NFS_INO_INVALID_CTIME 2097 | NFS_INO_REVAL_FORCED; 2098 spin_unlock(&old_inode->i_lock); 2099 } 2100 out: 2101 if (rehash) 2102 d_rehash(rehash); 2103 trace_nfs_rename_exit(old_dir, old_dentry, 2104 new_dir, new_dentry, error); 2105 if (!error) { 2106 if (new_inode != NULL) 2107 nfs_drop_nlink(new_inode); 2108 /* 2109 * The d_move() should be here instead of in an async RPC completion 2110 * handler because we need the proper locks to move the dentry. If 2111 * we're interrupted by a signal, the async RPC completion handler 2112 * should mark the directories for revalidation. 2113 */ 2114 d_move(old_dentry, new_dentry); 2115 nfs_set_verifier(old_dentry, 2116 nfs_save_change_attribute(new_dir)); 2117 } else if (error == -ENOENT) 2118 nfs_dentry_handle_enoent(old_dentry); 2119 2120 /* new dentry created? */ 2121 if (dentry) 2122 dput(dentry); 2123 return error; 2124 } 2125 EXPORT_SYMBOL_GPL(nfs_rename); 2126 2127 static DEFINE_SPINLOCK(nfs_access_lru_lock); 2128 static LIST_HEAD(nfs_access_lru_list); 2129 static atomic_long_t nfs_access_nr_entries; 2130 2131 static unsigned long nfs_access_max_cachesize = ULONG_MAX; 2132 module_param(nfs_access_max_cachesize, ulong, 0644); 2133 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length"); 2134 2135 static void nfs_access_free_entry(struct nfs_access_entry *entry) 2136 { 2137 put_cred(entry->cred); 2138 kfree_rcu(entry, rcu_head); 2139 smp_mb__before_atomic(); 2140 atomic_long_dec(&nfs_access_nr_entries); 2141 smp_mb__after_atomic(); 2142 } 2143 2144 static void nfs_access_free_list(struct list_head *head) 2145 { 2146 struct nfs_access_entry *cache; 2147 2148 while (!list_empty(head)) { 2149 cache = list_entry(head->next, struct nfs_access_entry, lru); 2150 list_del(&cache->lru); 2151 nfs_access_free_entry(cache); 2152 } 2153 } 2154 2155 static unsigned long 2156 nfs_do_access_cache_scan(unsigned int nr_to_scan) 2157 { 2158 LIST_HEAD(head); 2159 struct nfs_inode *nfsi, *next; 2160 struct nfs_access_entry *cache; 2161 long freed = 0; 2162 2163 spin_lock(&nfs_access_lru_lock); 2164 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) { 2165 struct inode *inode; 2166 2167 if (nr_to_scan-- == 0) 2168 break; 2169 inode = &nfsi->vfs_inode; 2170 spin_lock(&inode->i_lock); 2171 if (list_empty(&nfsi->access_cache_entry_lru)) 2172 goto remove_lru_entry; 2173 cache = list_entry(nfsi->access_cache_entry_lru.next, 2174 struct nfs_access_entry, lru); 2175 list_move(&cache->lru, &head); 2176 rb_erase(&cache->rb_node, &nfsi->access_cache); 2177 freed++; 2178 if (!list_empty(&nfsi->access_cache_entry_lru)) 2179 list_move_tail(&nfsi->access_cache_inode_lru, 2180 &nfs_access_lru_list); 2181 else { 2182 remove_lru_entry: 2183 list_del_init(&nfsi->access_cache_inode_lru); 2184 smp_mb__before_atomic(); 2185 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags); 2186 smp_mb__after_atomic(); 2187 } 2188 spin_unlock(&inode->i_lock); 2189 } 2190 spin_unlock(&nfs_access_lru_lock); 2191 nfs_access_free_list(&head); 2192 return freed; 2193 } 2194 2195 unsigned long 2196 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc) 2197 { 2198 int nr_to_scan = sc->nr_to_scan; 2199 gfp_t gfp_mask = sc->gfp_mask; 2200 2201 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL) 2202 return SHRINK_STOP; 2203 return nfs_do_access_cache_scan(nr_to_scan); 2204 } 2205 2206 2207 unsigned long 2208 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc) 2209 { 2210 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries)); 2211 } 2212 2213 static void 2214 nfs_access_cache_enforce_limit(void) 2215 { 2216 long nr_entries = atomic_long_read(&nfs_access_nr_entries); 2217 unsigned long diff; 2218 unsigned int nr_to_scan; 2219 2220 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize) 2221 return; 2222 nr_to_scan = 100; 2223 diff = nr_entries - nfs_access_max_cachesize; 2224 if (diff < nr_to_scan) 2225 nr_to_scan = diff; 2226 nfs_do_access_cache_scan(nr_to_scan); 2227 } 2228 2229 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head) 2230 { 2231 struct rb_root *root_node = &nfsi->access_cache; 2232 struct rb_node *n; 2233 struct nfs_access_entry *entry; 2234 2235 /* Unhook entries from the cache */ 2236 while ((n = rb_first(root_node)) != NULL) { 2237 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2238 rb_erase(n, root_node); 2239 list_move(&entry->lru, head); 2240 } 2241 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS; 2242 } 2243 2244 void nfs_access_zap_cache(struct inode *inode) 2245 { 2246 LIST_HEAD(head); 2247 2248 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0) 2249 return; 2250 /* Remove from global LRU init */ 2251 spin_lock(&nfs_access_lru_lock); 2252 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2253 list_del_init(&NFS_I(inode)->access_cache_inode_lru); 2254 2255 spin_lock(&inode->i_lock); 2256 __nfs_access_zap_cache(NFS_I(inode), &head); 2257 spin_unlock(&inode->i_lock); 2258 spin_unlock(&nfs_access_lru_lock); 2259 nfs_access_free_list(&head); 2260 } 2261 EXPORT_SYMBOL_GPL(nfs_access_zap_cache); 2262 2263 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred) 2264 { 2265 struct rb_node *n = NFS_I(inode)->access_cache.rb_node; 2266 2267 while (n != NULL) { 2268 struct nfs_access_entry *entry = 2269 rb_entry(n, struct nfs_access_entry, rb_node); 2270 int cmp = cred_fscmp(cred, entry->cred); 2271 2272 if (cmp < 0) 2273 n = n->rb_left; 2274 else if (cmp > 0) 2275 n = n->rb_right; 2276 else 2277 return entry; 2278 } 2279 return NULL; 2280 } 2281 2282 static int nfs_access_get_cached(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res, bool may_block) 2283 { 2284 struct nfs_inode *nfsi = NFS_I(inode); 2285 struct nfs_access_entry *cache; 2286 bool retry = true; 2287 int err; 2288 2289 spin_lock(&inode->i_lock); 2290 for(;;) { 2291 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2292 goto out_zap; 2293 cache = nfs_access_search_rbtree(inode, cred); 2294 err = -ENOENT; 2295 if (cache == NULL) 2296 goto out; 2297 /* Found an entry, is our attribute cache valid? */ 2298 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) 2299 break; 2300 err = -ECHILD; 2301 if (!may_block) 2302 goto out; 2303 if (!retry) 2304 goto out_zap; 2305 spin_unlock(&inode->i_lock); 2306 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode); 2307 if (err) 2308 return err; 2309 spin_lock(&inode->i_lock); 2310 retry = false; 2311 } 2312 res->cred = cache->cred; 2313 res->mask = cache->mask; 2314 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru); 2315 err = 0; 2316 out: 2317 spin_unlock(&inode->i_lock); 2318 return err; 2319 out_zap: 2320 spin_unlock(&inode->i_lock); 2321 nfs_access_zap_cache(inode); 2322 return -ENOENT; 2323 } 2324 2325 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res) 2326 { 2327 /* Only check the most recently returned cache entry, 2328 * but do it without locking. 2329 */ 2330 struct nfs_inode *nfsi = NFS_I(inode); 2331 struct nfs_access_entry *cache; 2332 int err = -ECHILD; 2333 struct list_head *lh; 2334 2335 rcu_read_lock(); 2336 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2337 goto out; 2338 lh = rcu_dereference(nfsi->access_cache_entry_lru.prev); 2339 cache = list_entry(lh, struct nfs_access_entry, lru); 2340 if (lh == &nfsi->access_cache_entry_lru || 2341 cred != cache->cred) 2342 cache = NULL; 2343 if (cache == NULL) 2344 goto out; 2345 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) 2346 goto out; 2347 res->cred = cache->cred; 2348 res->mask = cache->mask; 2349 err = 0; 2350 out: 2351 rcu_read_unlock(); 2352 return err; 2353 } 2354 2355 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set) 2356 { 2357 struct nfs_inode *nfsi = NFS_I(inode); 2358 struct rb_root *root_node = &nfsi->access_cache; 2359 struct rb_node **p = &root_node->rb_node; 2360 struct rb_node *parent = NULL; 2361 struct nfs_access_entry *entry; 2362 int cmp; 2363 2364 spin_lock(&inode->i_lock); 2365 while (*p != NULL) { 2366 parent = *p; 2367 entry = rb_entry(parent, struct nfs_access_entry, rb_node); 2368 cmp = cred_fscmp(set->cred, entry->cred); 2369 2370 if (cmp < 0) 2371 p = &parent->rb_left; 2372 else if (cmp > 0) 2373 p = &parent->rb_right; 2374 else 2375 goto found; 2376 } 2377 rb_link_node(&set->rb_node, parent, p); 2378 rb_insert_color(&set->rb_node, root_node); 2379 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2380 spin_unlock(&inode->i_lock); 2381 return; 2382 found: 2383 rb_replace_node(parent, &set->rb_node, root_node); 2384 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2385 list_del(&entry->lru); 2386 spin_unlock(&inode->i_lock); 2387 nfs_access_free_entry(entry); 2388 } 2389 2390 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set) 2391 { 2392 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL); 2393 if (cache == NULL) 2394 return; 2395 RB_CLEAR_NODE(&cache->rb_node); 2396 cache->cred = get_cred(set->cred); 2397 cache->mask = set->mask; 2398 2399 /* The above field assignments must be visible 2400 * before this item appears on the lru. We cannot easily 2401 * use rcu_assign_pointer, so just force the memory barrier. 2402 */ 2403 smp_wmb(); 2404 nfs_access_add_rbtree(inode, cache); 2405 2406 /* Update accounting */ 2407 smp_mb__before_atomic(); 2408 atomic_long_inc(&nfs_access_nr_entries); 2409 smp_mb__after_atomic(); 2410 2411 /* Add inode to global LRU list */ 2412 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) { 2413 spin_lock(&nfs_access_lru_lock); 2414 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2415 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, 2416 &nfs_access_lru_list); 2417 spin_unlock(&nfs_access_lru_lock); 2418 } 2419 nfs_access_cache_enforce_limit(); 2420 } 2421 EXPORT_SYMBOL_GPL(nfs_access_add_cache); 2422 2423 #define NFS_MAY_READ (NFS_ACCESS_READ) 2424 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \ 2425 NFS_ACCESS_EXTEND | \ 2426 NFS_ACCESS_DELETE) 2427 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \ 2428 NFS_ACCESS_EXTEND) 2429 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE 2430 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP) 2431 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE) 2432 static int 2433 nfs_access_calc_mask(u32 access_result, umode_t umode) 2434 { 2435 int mask = 0; 2436 2437 if (access_result & NFS_MAY_READ) 2438 mask |= MAY_READ; 2439 if (S_ISDIR(umode)) { 2440 if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE) 2441 mask |= MAY_WRITE; 2442 if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP) 2443 mask |= MAY_EXEC; 2444 } else if (S_ISREG(umode)) { 2445 if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE) 2446 mask |= MAY_WRITE; 2447 if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE) 2448 mask |= MAY_EXEC; 2449 } else if (access_result & NFS_MAY_WRITE) 2450 mask |= MAY_WRITE; 2451 return mask; 2452 } 2453 2454 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result) 2455 { 2456 entry->mask = access_result; 2457 } 2458 EXPORT_SYMBOL_GPL(nfs_access_set_mask); 2459 2460 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask) 2461 { 2462 struct nfs_access_entry cache; 2463 bool may_block = (mask & MAY_NOT_BLOCK) == 0; 2464 int cache_mask; 2465 int status; 2466 2467 trace_nfs_access_enter(inode); 2468 2469 status = nfs_access_get_cached_rcu(inode, cred, &cache); 2470 if (status != 0) 2471 status = nfs_access_get_cached(inode, cred, &cache, may_block); 2472 if (status == 0) 2473 goto out_cached; 2474 2475 status = -ECHILD; 2476 if (!may_block) 2477 goto out; 2478 2479 /* 2480 * Determine which access bits we want to ask for... 2481 */ 2482 cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND; 2483 if (S_ISDIR(inode->i_mode)) 2484 cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP; 2485 else 2486 cache.mask |= NFS_ACCESS_EXECUTE; 2487 cache.cred = cred; 2488 status = NFS_PROTO(inode)->access(inode, &cache); 2489 if (status != 0) { 2490 if (status == -ESTALE) { 2491 nfs_zap_caches(inode); 2492 if (!S_ISDIR(inode->i_mode)) 2493 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags); 2494 } 2495 goto out; 2496 } 2497 nfs_access_add_cache(inode, &cache); 2498 out_cached: 2499 cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode); 2500 if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0) 2501 status = -EACCES; 2502 out: 2503 trace_nfs_access_exit(inode, status); 2504 return status; 2505 } 2506 2507 static int nfs_open_permission_mask(int openflags) 2508 { 2509 int mask = 0; 2510 2511 if (openflags & __FMODE_EXEC) { 2512 /* ONLY check exec rights */ 2513 mask = MAY_EXEC; 2514 } else { 2515 if ((openflags & O_ACCMODE) != O_WRONLY) 2516 mask |= MAY_READ; 2517 if ((openflags & O_ACCMODE) != O_RDONLY) 2518 mask |= MAY_WRITE; 2519 } 2520 2521 return mask; 2522 } 2523 2524 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags) 2525 { 2526 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags)); 2527 } 2528 EXPORT_SYMBOL_GPL(nfs_may_open); 2529 2530 static int nfs_execute_ok(struct inode *inode, int mask) 2531 { 2532 struct nfs_server *server = NFS_SERVER(inode); 2533 int ret = 0; 2534 2535 if (S_ISDIR(inode->i_mode)) 2536 return 0; 2537 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_OTHER)) { 2538 if (mask & MAY_NOT_BLOCK) 2539 return -ECHILD; 2540 ret = __nfs_revalidate_inode(server, inode); 2541 } 2542 if (ret == 0 && !execute_ok(inode)) 2543 ret = -EACCES; 2544 return ret; 2545 } 2546 2547 int nfs_permission(struct inode *inode, int mask) 2548 { 2549 const struct cred *cred = current_cred(); 2550 int res = 0; 2551 2552 nfs_inc_stats(inode, NFSIOS_VFSACCESS); 2553 2554 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 2555 goto out; 2556 /* Is this sys_access() ? */ 2557 if (mask & (MAY_ACCESS | MAY_CHDIR)) 2558 goto force_lookup; 2559 2560 switch (inode->i_mode & S_IFMT) { 2561 case S_IFLNK: 2562 goto out; 2563 case S_IFREG: 2564 if ((mask & MAY_OPEN) && 2565 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)) 2566 return 0; 2567 break; 2568 case S_IFDIR: 2569 /* 2570 * Optimize away all write operations, since the server 2571 * will check permissions when we perform the op. 2572 */ 2573 if ((mask & MAY_WRITE) && !(mask & MAY_READ)) 2574 goto out; 2575 } 2576 2577 force_lookup: 2578 if (!NFS_PROTO(inode)->access) 2579 goto out_notsup; 2580 2581 /* Always try fast lookups first */ 2582 rcu_read_lock(); 2583 res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK); 2584 rcu_read_unlock(); 2585 if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) { 2586 /* Fast lookup failed, try the slow way */ 2587 res = nfs_do_access(inode, cred, mask); 2588 } 2589 out: 2590 if (!res && (mask & MAY_EXEC)) 2591 res = nfs_execute_ok(inode, mask); 2592 2593 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n", 2594 inode->i_sb->s_id, inode->i_ino, mask, res); 2595 return res; 2596 out_notsup: 2597 if (mask & MAY_NOT_BLOCK) 2598 return -ECHILD; 2599 2600 res = nfs_revalidate_inode(NFS_SERVER(inode), inode); 2601 if (res == 0) 2602 res = generic_permission(inode, mask); 2603 goto out; 2604 } 2605 EXPORT_SYMBOL_GPL(nfs_permission); 2606 2607 /* 2608 * Local variables: 2609 * version-control: t 2610 * kept-new-versions: 5 2611 * End: 2612 */ 2613