1 /* 2 * linux/fs/nfs/dir.c 3 * 4 * Copyright (C) 1992 Rick Sladkey 5 * 6 * nfs directory handling functions 7 * 8 * 10 Apr 1996 Added silly rename for unlink --okir 9 * 28 Sep 1996 Improved directory cache --okir 10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de 11 * Re-implemented silly rename for unlink, newly implemented 12 * silly rename for nfs_rename() following the suggestions 13 * of Olaf Kirch (okir) found in this file. 14 * Following Linus comments on my original hack, this version 15 * depends only on the dcache stuff and doesn't touch the inode 16 * layer (iput() and friends). 17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM 18 */ 19 20 #include <linux/module.h> 21 #include <linux/time.h> 22 #include <linux/errno.h> 23 #include <linux/stat.h> 24 #include <linux/fcntl.h> 25 #include <linux/string.h> 26 #include <linux/kernel.h> 27 #include <linux/slab.h> 28 #include <linux/mm.h> 29 #include <linux/sunrpc/clnt.h> 30 #include <linux/nfs_fs.h> 31 #include <linux/nfs_mount.h> 32 #include <linux/pagemap.h> 33 #include <linux/pagevec.h> 34 #include <linux/namei.h> 35 #include <linux/mount.h> 36 #include <linux/swap.h> 37 #include <linux/sched.h> 38 #include <linux/kmemleak.h> 39 #include <linux/xattr.h> 40 41 #include "delegation.h" 42 #include "iostat.h" 43 #include "internal.h" 44 #include "fscache.h" 45 46 #include "nfstrace.h" 47 48 /* #define NFS_DEBUG_VERBOSE 1 */ 49 50 static int nfs_opendir(struct inode *, struct file *); 51 static int nfs_closedir(struct inode *, struct file *); 52 static int nfs_readdir(struct file *, struct dir_context *); 53 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int); 54 static loff_t nfs_llseek_dir(struct file *, loff_t, int); 55 static void nfs_readdir_clear_array(struct page*); 56 57 const struct file_operations nfs_dir_operations = { 58 .llseek = nfs_llseek_dir, 59 .read = generic_read_dir, 60 .iterate = nfs_readdir, 61 .open = nfs_opendir, 62 .release = nfs_closedir, 63 .fsync = nfs_fsync_dir, 64 }; 65 66 const struct address_space_operations nfs_dir_aops = { 67 .freepage = nfs_readdir_clear_array, 68 }; 69 70 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, const struct cred *cred) 71 { 72 struct nfs_inode *nfsi = NFS_I(dir); 73 struct nfs_open_dir_context *ctx; 74 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); 75 if (ctx != NULL) { 76 ctx->duped = 0; 77 ctx->attr_gencount = nfsi->attr_gencount; 78 ctx->dir_cookie = 0; 79 ctx->dup_cookie = 0; 80 ctx->cred = get_cred(cred); 81 spin_lock(&dir->i_lock); 82 list_add(&ctx->list, &nfsi->open_files); 83 spin_unlock(&dir->i_lock); 84 return ctx; 85 } 86 return ERR_PTR(-ENOMEM); 87 } 88 89 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx) 90 { 91 spin_lock(&dir->i_lock); 92 list_del(&ctx->list); 93 spin_unlock(&dir->i_lock); 94 put_cred(ctx->cred); 95 kfree(ctx); 96 } 97 98 /* 99 * Open file 100 */ 101 static int 102 nfs_opendir(struct inode *inode, struct file *filp) 103 { 104 int res = 0; 105 struct nfs_open_dir_context *ctx; 106 107 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp); 108 109 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 110 111 ctx = alloc_nfs_open_dir_context(inode, current_cred()); 112 if (IS_ERR(ctx)) { 113 res = PTR_ERR(ctx); 114 goto out; 115 } 116 filp->private_data = ctx; 117 out: 118 return res; 119 } 120 121 static int 122 nfs_closedir(struct inode *inode, struct file *filp) 123 { 124 put_nfs_open_dir_context(file_inode(filp), filp->private_data); 125 return 0; 126 } 127 128 struct nfs_cache_array_entry { 129 u64 cookie; 130 u64 ino; 131 struct qstr string; 132 unsigned char d_type; 133 }; 134 135 struct nfs_cache_array { 136 int size; 137 int eof_index; 138 u64 last_cookie; 139 struct nfs_cache_array_entry array[0]; 140 }; 141 142 struct readdirvec { 143 unsigned long nr; 144 unsigned long index; 145 struct page *pages[NFS_MAX_READDIR_RAPAGES]; 146 }; 147 148 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, bool); 149 typedef struct { 150 struct file *file; 151 struct page *page; 152 struct dir_context *ctx; 153 unsigned long page_index; 154 struct readdirvec pvec; 155 u64 *dir_cookie; 156 u64 last_cookie; 157 loff_t current_index; 158 decode_dirent_t decode; 159 160 unsigned long timestamp; 161 unsigned long gencount; 162 unsigned int cache_entry_index; 163 bool plus; 164 bool eof; 165 } nfs_readdir_descriptor_t; 166 167 /* 168 * we are freeing strings created by nfs_add_to_readdir_array() 169 */ 170 static 171 void nfs_readdir_clear_array(struct page *page) 172 { 173 struct nfs_cache_array *array; 174 int i; 175 176 array = kmap_atomic(page); 177 for (i = 0; i < array->size; i++) 178 kfree(array->array[i].string.name); 179 kunmap_atomic(array); 180 } 181 182 /* 183 * the caller is responsible for freeing qstr.name 184 * when called by nfs_readdir_add_to_array, the strings will be freed in 185 * nfs_clear_readdir_array() 186 */ 187 static 188 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len) 189 { 190 string->len = len; 191 string->name = kmemdup(name, len, GFP_KERNEL); 192 if (string->name == NULL) 193 return -ENOMEM; 194 /* 195 * Avoid a kmemleak false positive. The pointer to the name is stored 196 * in a page cache page which kmemleak does not scan. 197 */ 198 kmemleak_not_leak(string->name); 199 string->hash = full_name_hash(NULL, name, len); 200 return 0; 201 } 202 203 static 204 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page) 205 { 206 struct nfs_cache_array *array = kmap(page); 207 struct nfs_cache_array_entry *cache_entry; 208 int ret; 209 210 cache_entry = &array->array[array->size]; 211 212 /* Check that this entry lies within the page bounds */ 213 ret = -ENOSPC; 214 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE) 215 goto out; 216 217 cache_entry->cookie = entry->prev_cookie; 218 cache_entry->ino = entry->ino; 219 cache_entry->d_type = entry->d_type; 220 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len); 221 if (ret) 222 goto out; 223 array->last_cookie = entry->cookie; 224 array->size++; 225 if (entry->eof != 0) 226 array->eof_index = array->size; 227 out: 228 kunmap(page); 229 return ret; 230 } 231 232 static 233 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 234 { 235 loff_t diff = desc->ctx->pos - desc->current_index; 236 unsigned int index; 237 238 if (diff < 0) 239 goto out_eof; 240 if (diff >= array->size) { 241 if (array->eof_index >= 0) 242 goto out_eof; 243 return -EAGAIN; 244 } 245 246 index = (unsigned int)diff; 247 *desc->dir_cookie = array->array[index].cookie; 248 desc->cache_entry_index = index; 249 return 0; 250 out_eof: 251 desc->eof = true; 252 return -EBADCOOKIE; 253 } 254 255 static bool 256 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi) 257 { 258 if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA)) 259 return false; 260 smp_rmb(); 261 return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags); 262 } 263 264 static 265 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 266 { 267 int i; 268 loff_t new_pos; 269 int status = -EAGAIN; 270 271 for (i = 0; i < array->size; i++) { 272 if (array->array[i].cookie == *desc->dir_cookie) { 273 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file)); 274 struct nfs_open_dir_context *ctx = desc->file->private_data; 275 276 new_pos = desc->current_index + i; 277 if (ctx->attr_gencount != nfsi->attr_gencount || 278 !nfs_readdir_inode_mapping_valid(nfsi)) { 279 ctx->duped = 0; 280 ctx->attr_gencount = nfsi->attr_gencount; 281 } else if (new_pos < desc->ctx->pos) { 282 if (ctx->duped > 0 283 && ctx->dup_cookie == *desc->dir_cookie) { 284 if (printk_ratelimit()) { 285 pr_notice("NFS: directory %pD2 contains a readdir loop." 286 "Please contact your server vendor. " 287 "The file: %.*s has duplicate cookie %llu\n", 288 desc->file, array->array[i].string.len, 289 array->array[i].string.name, *desc->dir_cookie); 290 } 291 status = -ELOOP; 292 goto out; 293 } 294 ctx->dup_cookie = *desc->dir_cookie; 295 ctx->duped = -1; 296 } 297 desc->ctx->pos = new_pos; 298 desc->cache_entry_index = i; 299 return 0; 300 } 301 } 302 if (array->eof_index >= 0) { 303 status = -EBADCOOKIE; 304 if (*desc->dir_cookie == array->last_cookie) 305 desc->eof = true; 306 } 307 out: 308 return status; 309 } 310 311 static 312 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc) 313 { 314 struct nfs_cache_array *array; 315 int status; 316 317 array = kmap(desc->page); 318 319 if (*desc->dir_cookie == 0) 320 status = nfs_readdir_search_for_pos(array, desc); 321 else 322 status = nfs_readdir_search_for_cookie(array, desc); 323 324 if (status == -EAGAIN) { 325 desc->last_cookie = array->last_cookie; 326 desc->current_index += array->size; 327 desc->page_index++; 328 } 329 kunmap(desc->page); 330 return status; 331 } 332 333 /* Fill a page with xdr information before transferring to the cache page */ 334 static 335 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc, 336 struct nfs_entry *entry, struct file *file, struct inode *inode) 337 { 338 struct nfs_open_dir_context *ctx = file->private_data; 339 const struct cred *cred = ctx->cred; 340 unsigned long timestamp, gencount; 341 int error; 342 343 again: 344 timestamp = jiffies; 345 gencount = nfs_inc_attr_generation_counter(); 346 error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages, 347 NFS_SERVER(inode)->dtsize, desc->plus); 348 if (error < 0) { 349 /* We requested READDIRPLUS, but the server doesn't grok it */ 350 if (error == -ENOTSUPP && desc->plus) { 351 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS; 352 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 353 desc->plus = false; 354 goto again; 355 } 356 goto error; 357 } 358 desc->timestamp = timestamp; 359 desc->gencount = gencount; 360 error: 361 return error; 362 } 363 364 static int xdr_decode(nfs_readdir_descriptor_t *desc, 365 struct nfs_entry *entry, struct xdr_stream *xdr) 366 { 367 int error; 368 369 error = desc->decode(xdr, entry, desc->plus); 370 if (error) 371 return error; 372 entry->fattr->time_start = desc->timestamp; 373 entry->fattr->gencount = desc->gencount; 374 return 0; 375 } 376 377 /* Match file and dirent using either filehandle or fileid 378 * Note: caller is responsible for checking the fsid 379 */ 380 static 381 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry) 382 { 383 struct inode *inode; 384 struct nfs_inode *nfsi; 385 386 if (d_really_is_negative(dentry)) 387 return 0; 388 389 inode = d_inode(dentry); 390 if (is_bad_inode(inode) || NFS_STALE(inode)) 391 return 0; 392 393 nfsi = NFS_I(inode); 394 if (entry->fattr->fileid != nfsi->fileid) 395 return 0; 396 if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0) 397 return 0; 398 return 1; 399 } 400 401 static 402 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx) 403 { 404 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS)) 405 return false; 406 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags)) 407 return true; 408 if (ctx->pos == 0) 409 return true; 410 return false; 411 } 412 413 /* 414 * This function is called by the lookup and getattr code to request the 415 * use of readdirplus to accelerate any future lookups in the same 416 * directory. 417 */ 418 void nfs_advise_use_readdirplus(struct inode *dir) 419 { 420 struct nfs_inode *nfsi = NFS_I(dir); 421 422 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) && 423 !list_empty(&nfsi->open_files)) 424 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags); 425 } 426 427 /* 428 * This function is mainly for use by nfs_getattr(). 429 * 430 * If this is an 'ls -l', we want to force use of readdirplus. 431 * Do this by checking if there is an active file descriptor 432 * and calling nfs_advise_use_readdirplus, then forcing a 433 * cache flush. 434 */ 435 void nfs_force_use_readdirplus(struct inode *dir) 436 { 437 struct nfs_inode *nfsi = NFS_I(dir); 438 439 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) && 440 !list_empty(&nfsi->open_files)) { 441 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags); 442 invalidate_mapping_pages(dir->i_mapping, 0, -1); 443 } 444 } 445 446 static 447 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry) 448 { 449 struct qstr filename = QSTR_INIT(entry->name, entry->len); 450 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 451 struct dentry *dentry; 452 struct dentry *alias; 453 struct inode *dir = d_inode(parent); 454 struct inode *inode; 455 int status; 456 457 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID)) 458 return; 459 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID)) 460 return; 461 if (filename.len == 0) 462 return; 463 /* Validate that the name doesn't contain any illegal '\0' */ 464 if (strnlen(filename.name, filename.len) != filename.len) 465 return; 466 /* ...or '/' */ 467 if (strnchr(filename.name, filename.len, '/')) 468 return; 469 if (filename.name[0] == '.') { 470 if (filename.len == 1) 471 return; 472 if (filename.len == 2 && filename.name[1] == '.') 473 return; 474 } 475 filename.hash = full_name_hash(parent, filename.name, filename.len); 476 477 dentry = d_lookup(parent, &filename); 478 again: 479 if (!dentry) { 480 dentry = d_alloc_parallel(parent, &filename, &wq); 481 if (IS_ERR(dentry)) 482 return; 483 } 484 if (!d_in_lookup(dentry)) { 485 /* Is there a mountpoint here? If so, just exit */ 486 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid, 487 &entry->fattr->fsid)) 488 goto out; 489 if (nfs_same_file(dentry, entry)) { 490 if (!entry->fh->size) 491 goto out; 492 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 493 status = nfs_refresh_inode(d_inode(dentry), entry->fattr); 494 if (!status) 495 nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label); 496 goto out; 497 } else { 498 d_invalidate(dentry); 499 dput(dentry); 500 dentry = NULL; 501 goto again; 502 } 503 } 504 if (!entry->fh->size) { 505 d_lookup_done(dentry); 506 goto out; 507 } 508 509 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label); 510 alias = d_splice_alias(inode, dentry); 511 d_lookup_done(dentry); 512 if (alias) { 513 if (IS_ERR(alias)) 514 goto out; 515 dput(dentry); 516 dentry = alias; 517 } 518 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 519 out: 520 dput(dentry); 521 } 522 523 /* Perform conversion from xdr to cache array */ 524 static 525 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry, 526 struct page **xdr_pages, struct page *page, unsigned int buflen) 527 { 528 struct xdr_stream stream; 529 struct xdr_buf buf; 530 struct page *scratch; 531 struct nfs_cache_array *array; 532 unsigned int count = 0; 533 int status; 534 int max_rapages = NFS_MAX_READDIR_RAPAGES; 535 536 desc->pvec.index = desc->page_index; 537 desc->pvec.nr = 0; 538 539 scratch = alloc_page(GFP_KERNEL); 540 if (scratch == NULL) 541 return -ENOMEM; 542 543 if (buflen == 0) 544 goto out_nopages; 545 546 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen); 547 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE); 548 549 do { 550 status = xdr_decode(desc, entry, &stream); 551 if (status != 0) { 552 if (status == -EAGAIN) 553 status = 0; 554 break; 555 } 556 557 count++; 558 559 if (desc->plus) 560 nfs_prime_dcache(file_dentry(desc->file), entry); 561 562 status = nfs_readdir_add_to_array(entry, desc->pvec.pages[desc->pvec.nr]); 563 if (status == -ENOSPC) { 564 desc->pvec.nr++; 565 if (desc->pvec.nr == max_rapages) 566 break; 567 status = nfs_readdir_add_to_array(entry, desc->pvec.pages[desc->pvec.nr]); 568 } 569 if (status != 0) 570 break; 571 } while (!entry->eof); 572 573 /* 574 * page and desc->pvec.pages[0] are valid, don't need to check 575 * whether or not to be NULL. 576 */ 577 copy_highpage(page, desc->pvec.pages[0]); 578 579 out_nopages: 580 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) { 581 array = kmap_atomic(desc->pvec.pages[desc->pvec.nr]); 582 array->eof_index = array->size; 583 status = 0; 584 kunmap_atomic(array); 585 } 586 587 put_page(scratch); 588 589 /* 590 * desc->pvec.nr > 0 means at least one page was completely filled, 591 * we should return -ENOSPC. Otherwise function 592 * nfs_readdir_xdr_to_array will enter infinite loop. 593 */ 594 if (desc->pvec.nr > 0) 595 return -ENOSPC; 596 return status; 597 } 598 599 static 600 void nfs_readdir_free_pages(struct page **pages, unsigned int npages) 601 { 602 unsigned int i; 603 for (i = 0; i < npages; i++) 604 put_page(pages[i]); 605 } 606 607 /* 608 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call 609 * to nfs_readdir_free_pages() 610 */ 611 static 612 int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages) 613 { 614 unsigned int i; 615 616 for (i = 0; i < npages; i++) { 617 struct page *page = alloc_page(GFP_KERNEL); 618 if (page == NULL) 619 goto out_freepages; 620 pages[i] = page; 621 } 622 return 0; 623 624 out_freepages: 625 nfs_readdir_free_pages(pages, i); 626 return -ENOMEM; 627 } 628 629 /* 630 * nfs_readdir_rapages_init initialize rapages by nfs_cache_array structure. 631 */ 632 static 633 void nfs_readdir_rapages_init(nfs_readdir_descriptor_t *desc) 634 { 635 struct nfs_cache_array *array; 636 int max_rapages = NFS_MAX_READDIR_RAPAGES; 637 int index; 638 639 for (index = 0; index < max_rapages; index++) { 640 array = kmap_atomic(desc->pvec.pages[index]); 641 memset(array, 0, sizeof(struct nfs_cache_array)); 642 array->eof_index = -1; 643 kunmap_atomic(array); 644 } 645 } 646 647 static 648 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode) 649 { 650 struct page *pages[NFS_MAX_READDIR_PAGES]; 651 struct nfs_entry entry; 652 struct file *file = desc->file; 653 struct nfs_cache_array *array; 654 int status = -ENOMEM; 655 unsigned int array_size = ARRAY_SIZE(pages); 656 657 /* 658 * This means we hit readdir rdpages miss, the preallocated rdpages 659 * are useless, the preallocate rdpages should be reinitialized. 660 */ 661 nfs_readdir_rapages_init(desc); 662 663 entry.prev_cookie = 0; 664 entry.cookie = desc->last_cookie; 665 entry.eof = 0; 666 entry.fh = nfs_alloc_fhandle(); 667 entry.fattr = nfs_alloc_fattr(); 668 entry.server = NFS_SERVER(inode); 669 if (entry.fh == NULL || entry.fattr == NULL) 670 goto out; 671 672 entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT); 673 if (IS_ERR(entry.label)) { 674 status = PTR_ERR(entry.label); 675 goto out; 676 } 677 678 array = kmap(page); 679 memset(array, 0, sizeof(struct nfs_cache_array)); 680 array->eof_index = -1; 681 682 status = nfs_readdir_alloc_pages(pages, array_size); 683 if (status < 0) 684 goto out_release_array; 685 do { 686 unsigned int pglen; 687 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode); 688 689 if (status < 0) 690 break; 691 pglen = status; 692 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen); 693 if (status < 0) { 694 if (status == -ENOSPC) 695 status = 0; 696 break; 697 } 698 } while (array->eof_index < 0); 699 700 nfs_readdir_free_pages(pages, array_size); 701 out_release_array: 702 kunmap(page); 703 nfs4_label_free(entry.label); 704 out: 705 nfs_free_fattr(entry.fattr); 706 nfs_free_fhandle(entry.fh); 707 return status; 708 } 709 710 /* 711 * Now we cache directories properly, by converting xdr information 712 * to an array that can be used for lookups later. This results in 713 * fewer cache pages, since we can store more information on each page. 714 * We only need to convert from xdr once so future lookups are much simpler 715 */ 716 static 717 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page) 718 { 719 struct inode *inode = file_inode(desc->file); 720 int ret; 721 722 /* 723 * If desc->page_index in range desc->pvec.index and 724 * desc->pvec.index + desc->pvec.nr, we get readdir cache hit. 725 */ 726 if (desc->page_index >= desc->pvec.index && 727 desc->page_index < (desc->pvec.index + desc->pvec.nr)) { 728 /* 729 * page and desc->pvec.pages[x] are valid, don't need to check 730 * whether or not to be NULL. 731 */ 732 copy_highpage(page, desc->pvec.pages[desc->page_index - desc->pvec.index]); 733 ret = 0; 734 } else { 735 ret = nfs_readdir_xdr_to_array(desc, page, inode); 736 if (ret < 0) 737 goto error; 738 } 739 740 SetPageUptodate(page); 741 742 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) { 743 /* Should never happen */ 744 nfs_zap_mapping(inode, inode->i_mapping); 745 } 746 unlock_page(page); 747 return 0; 748 error: 749 unlock_page(page); 750 return ret; 751 } 752 753 static 754 void cache_page_release(nfs_readdir_descriptor_t *desc) 755 { 756 if (!desc->page->mapping) 757 nfs_readdir_clear_array(desc->page); 758 put_page(desc->page); 759 desc->page = NULL; 760 } 761 762 static 763 struct page *get_cache_page(nfs_readdir_descriptor_t *desc) 764 { 765 return read_cache_page(desc->file->f_mapping, 766 desc->page_index, (filler_t *)nfs_readdir_filler, desc); 767 } 768 769 /* 770 * Returns 0 if desc->dir_cookie was found on page desc->page_index 771 */ 772 static 773 int find_cache_page(nfs_readdir_descriptor_t *desc) 774 { 775 int res; 776 777 desc->page = get_cache_page(desc); 778 if (IS_ERR(desc->page)) 779 return PTR_ERR(desc->page); 780 781 res = nfs_readdir_search_array(desc); 782 if (res != 0) 783 cache_page_release(desc); 784 return res; 785 } 786 787 /* Search for desc->dir_cookie from the beginning of the page cache */ 788 static inline 789 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc) 790 { 791 int res; 792 793 if (desc->page_index == 0) { 794 desc->current_index = 0; 795 desc->last_cookie = 0; 796 } 797 do { 798 res = find_cache_page(desc); 799 } while (res == -EAGAIN); 800 return res; 801 } 802 803 /* 804 * Once we've found the start of the dirent within a page: fill 'er up... 805 */ 806 static 807 int nfs_do_filldir(nfs_readdir_descriptor_t *desc) 808 { 809 struct file *file = desc->file; 810 int i = 0; 811 int res = 0; 812 struct nfs_cache_array *array = NULL; 813 struct nfs_open_dir_context *ctx = file->private_data; 814 815 array = kmap(desc->page); 816 for (i = desc->cache_entry_index; i < array->size; i++) { 817 struct nfs_cache_array_entry *ent; 818 819 ent = &array->array[i]; 820 if (!dir_emit(desc->ctx, ent->string.name, ent->string.len, 821 nfs_compat_user_ino64(ent->ino), ent->d_type)) { 822 desc->eof = true; 823 break; 824 } 825 desc->ctx->pos++; 826 if (i < (array->size-1)) 827 *desc->dir_cookie = array->array[i+1].cookie; 828 else 829 *desc->dir_cookie = array->last_cookie; 830 if (ctx->duped != 0) 831 ctx->duped = 1; 832 } 833 if (array->eof_index >= 0) 834 desc->eof = true; 835 836 kunmap(desc->page); 837 cache_page_release(desc); 838 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n", 839 (unsigned long long)*desc->dir_cookie, res); 840 return res; 841 } 842 843 /* 844 * If we cannot find a cookie in our cache, we suspect that this is 845 * because it points to a deleted file, so we ask the server to return 846 * whatever it thinks is the next entry. We then feed this to filldir. 847 * If all goes well, we should then be able to find our way round the 848 * cache on the next call to readdir_search_pagecache(); 849 * 850 * NOTE: we cannot add the anonymous page to the pagecache because 851 * the data it contains might not be page aligned. Besides, 852 * we should already have a complete representation of the 853 * directory in the page cache by the time we get here. 854 */ 855 static inline 856 int uncached_readdir(nfs_readdir_descriptor_t *desc) 857 { 858 struct page *page = NULL; 859 int status; 860 struct inode *inode = file_inode(desc->file); 861 struct nfs_open_dir_context *ctx = desc->file->private_data; 862 863 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n", 864 (unsigned long long)*desc->dir_cookie); 865 866 page = alloc_page(GFP_HIGHUSER); 867 if (!page) { 868 status = -ENOMEM; 869 goto out; 870 } 871 872 desc->page_index = 0; 873 desc->last_cookie = *desc->dir_cookie; 874 desc->page = page; 875 ctx->duped = 0; 876 877 status = nfs_readdir_xdr_to_array(desc, page, inode); 878 if (status < 0) 879 goto out_release; 880 881 status = nfs_do_filldir(desc); 882 883 out: 884 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", 885 __func__, status); 886 return status; 887 out_release: 888 cache_page_release(desc); 889 goto out; 890 } 891 892 /* The file offset position represents the dirent entry number. A 893 last cookie cache takes care of the common case of reading the 894 whole directory. 895 */ 896 static int nfs_readdir(struct file *file, struct dir_context *ctx) 897 { 898 struct dentry *dentry = file_dentry(file); 899 struct inode *inode = d_inode(dentry); 900 nfs_readdir_descriptor_t my_desc, 901 *desc = &my_desc; 902 struct nfs_open_dir_context *dir_ctx = file->private_data; 903 int res = 0; 904 int max_rapages = NFS_MAX_READDIR_RAPAGES; 905 906 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n", 907 file, (long long)ctx->pos); 908 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS); 909 910 /* 911 * ctx->pos points to the dirent entry number. 912 * *desc->dir_cookie has the cookie for the next entry. We have 913 * to either find the entry with the appropriate number or 914 * revalidate the cookie. 915 */ 916 memset(desc, 0, sizeof(*desc)); 917 918 desc->file = file; 919 desc->ctx = ctx; 920 desc->dir_cookie = &dir_ctx->dir_cookie; 921 desc->decode = NFS_PROTO(inode)->decode_dirent; 922 desc->plus = nfs_use_readdirplus(inode, ctx); 923 924 res = nfs_readdir_alloc_pages(desc->pvec.pages, max_rapages); 925 if (res < 0) 926 return -ENOMEM; 927 928 nfs_readdir_rapages_init(desc); 929 930 if (ctx->pos == 0 || nfs_attribute_cache_expired(inode)) 931 res = nfs_revalidate_mapping(inode, file->f_mapping); 932 if (res < 0) 933 goto out; 934 935 do { 936 res = readdir_search_pagecache(desc); 937 938 if (res == -EBADCOOKIE) { 939 res = 0; 940 /* This means either end of directory */ 941 if (*desc->dir_cookie && !desc->eof) { 942 /* Or that the server has 'lost' a cookie */ 943 res = uncached_readdir(desc); 944 if (res == 0) 945 continue; 946 } 947 break; 948 } 949 if (res == -ETOOSMALL && desc->plus) { 950 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 951 nfs_zap_caches(inode); 952 desc->page_index = 0; 953 desc->plus = false; 954 desc->eof = false; 955 continue; 956 } 957 if (res < 0) 958 break; 959 960 res = nfs_do_filldir(desc); 961 if (res < 0) 962 break; 963 } while (!desc->eof); 964 out: 965 nfs_readdir_free_pages(desc->pvec.pages, max_rapages); 966 if (res > 0) 967 res = 0; 968 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res); 969 return res; 970 } 971 972 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence) 973 { 974 struct inode *inode = file_inode(filp); 975 struct nfs_open_dir_context *dir_ctx = filp->private_data; 976 977 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n", 978 filp, offset, whence); 979 980 switch (whence) { 981 default: 982 return -EINVAL; 983 case SEEK_SET: 984 if (offset < 0) 985 return -EINVAL; 986 inode_lock(inode); 987 break; 988 case SEEK_CUR: 989 if (offset == 0) 990 return filp->f_pos; 991 inode_lock(inode); 992 offset += filp->f_pos; 993 if (offset < 0) { 994 inode_unlock(inode); 995 return -EINVAL; 996 } 997 } 998 if (offset != filp->f_pos) { 999 filp->f_pos = offset; 1000 dir_ctx->dir_cookie = 0; 1001 dir_ctx->duped = 0; 1002 } 1003 inode_unlock(inode); 1004 return offset; 1005 } 1006 1007 /* 1008 * All directory operations under NFS are synchronous, so fsync() 1009 * is a dummy operation. 1010 */ 1011 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end, 1012 int datasync) 1013 { 1014 struct inode *inode = file_inode(filp); 1015 1016 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync); 1017 1018 inode_lock(inode); 1019 nfs_inc_stats(inode, NFSIOS_VFSFSYNC); 1020 inode_unlock(inode); 1021 return 0; 1022 } 1023 1024 /** 1025 * nfs_force_lookup_revalidate - Mark the directory as having changed 1026 * @dir: pointer to directory inode 1027 * 1028 * This forces the revalidation code in nfs_lookup_revalidate() to do a 1029 * full lookup on all child dentries of 'dir' whenever a change occurs 1030 * on the server that might have invalidated our dcache. 1031 * 1032 * The caller should be holding dir->i_lock 1033 */ 1034 void nfs_force_lookup_revalidate(struct inode *dir) 1035 { 1036 NFS_I(dir)->cache_change_attribute++; 1037 } 1038 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate); 1039 1040 /* 1041 * A check for whether or not the parent directory has changed. 1042 * In the case it has, we assume that the dentries are untrustworthy 1043 * and may need to be looked up again. 1044 * If rcu_walk prevents us from performing a full check, return 0. 1045 */ 1046 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry, 1047 int rcu_walk) 1048 { 1049 if (IS_ROOT(dentry)) 1050 return 1; 1051 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE) 1052 return 0; 1053 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 1054 return 0; 1055 /* Revalidate nfsi->cache_change_attribute before we declare a match */ 1056 if (nfs_mapping_need_revalidate_inode(dir)) { 1057 if (rcu_walk) 1058 return 0; 1059 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0) 1060 return 0; 1061 } 1062 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 1063 return 0; 1064 return 1; 1065 } 1066 1067 /* 1068 * Use intent information to check whether or not we're going to do 1069 * an O_EXCL create using this path component. 1070 */ 1071 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags) 1072 { 1073 if (NFS_PROTO(dir)->version == 2) 1074 return 0; 1075 return flags & LOOKUP_EXCL; 1076 } 1077 1078 /* 1079 * Inode and filehandle revalidation for lookups. 1080 * 1081 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL, 1082 * or if the intent information indicates that we're about to open this 1083 * particular file and the "nocto" mount flag is not set. 1084 * 1085 */ 1086 static 1087 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags) 1088 { 1089 struct nfs_server *server = NFS_SERVER(inode); 1090 int ret; 1091 1092 if (IS_AUTOMOUNT(inode)) 1093 return 0; 1094 1095 if (flags & LOOKUP_OPEN) { 1096 switch (inode->i_mode & S_IFMT) { 1097 case S_IFREG: 1098 /* A NFSv4 OPEN will revalidate later */ 1099 if (server->caps & NFS_CAP_ATOMIC_OPEN) 1100 goto out; 1101 /* Fallthrough */ 1102 case S_IFDIR: 1103 if (server->flags & NFS_MOUNT_NOCTO) 1104 break; 1105 /* NFS close-to-open cache consistency validation */ 1106 goto out_force; 1107 } 1108 } 1109 1110 /* VFS wants an on-the-wire revalidation */ 1111 if (flags & LOOKUP_REVAL) 1112 goto out_force; 1113 out: 1114 return (inode->i_nlink == 0) ? -ESTALE : 0; 1115 out_force: 1116 if (flags & LOOKUP_RCU) 1117 return -ECHILD; 1118 ret = __nfs_revalidate_inode(server, inode); 1119 if (ret != 0) 1120 return ret; 1121 goto out; 1122 } 1123 1124 /* 1125 * We judge how long we want to trust negative 1126 * dentries by looking at the parent inode mtime. 1127 * 1128 * If parent mtime has changed, we revalidate, else we wait for a 1129 * period corresponding to the parent's attribute cache timeout value. 1130 * 1131 * If LOOKUP_RCU prevents us from performing a full check, return 1 1132 * suggesting a reval is needed. 1133 * 1134 * Note that when creating a new file, or looking up a rename target, 1135 * then it shouldn't be necessary to revalidate a negative dentry. 1136 */ 1137 static inline 1138 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry, 1139 unsigned int flags) 1140 { 1141 if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET)) 1142 return 0; 1143 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG) 1144 return 1; 1145 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU); 1146 } 1147 1148 static int 1149 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry, 1150 struct inode *inode, int error) 1151 { 1152 switch (error) { 1153 case 1: 1154 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n", 1155 __func__, dentry); 1156 return 1; 1157 case 0: 1158 nfs_mark_for_revalidate(dir); 1159 if (inode && S_ISDIR(inode->i_mode)) { 1160 /* Purge readdir caches. */ 1161 nfs_zap_caches(inode); 1162 /* 1163 * We can't d_drop the root of a disconnected tree: 1164 * its d_hash is on the s_anon list and d_drop() would hide 1165 * it from shrink_dcache_for_unmount(), leading to busy 1166 * inodes on unmount and further oopses. 1167 */ 1168 if (IS_ROOT(dentry)) 1169 return 1; 1170 } 1171 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n", 1172 __func__, dentry); 1173 return 0; 1174 } 1175 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n", 1176 __func__, dentry, error); 1177 return error; 1178 } 1179 1180 static int 1181 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry, 1182 unsigned int flags) 1183 { 1184 int ret = 1; 1185 if (nfs_neg_need_reval(dir, dentry, flags)) { 1186 if (flags & LOOKUP_RCU) 1187 return -ECHILD; 1188 ret = 0; 1189 } 1190 return nfs_lookup_revalidate_done(dir, dentry, NULL, ret); 1191 } 1192 1193 static int 1194 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry, 1195 struct inode *inode) 1196 { 1197 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1198 return nfs_lookup_revalidate_done(dir, dentry, inode, 1); 1199 } 1200 1201 static int 1202 nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry, 1203 struct inode *inode) 1204 { 1205 struct nfs_fh *fhandle; 1206 struct nfs_fattr *fattr; 1207 struct nfs4_label *label; 1208 int ret; 1209 1210 ret = -ENOMEM; 1211 fhandle = nfs_alloc_fhandle(); 1212 fattr = nfs_alloc_fattr(); 1213 label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL); 1214 if (fhandle == NULL || fattr == NULL || IS_ERR(label)) 1215 goto out; 1216 1217 ret = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label); 1218 if (ret < 0) { 1219 if (ret == -ESTALE || ret == -ENOENT) 1220 ret = 0; 1221 goto out; 1222 } 1223 ret = 0; 1224 if (nfs_compare_fh(NFS_FH(inode), fhandle)) 1225 goto out; 1226 if (nfs_refresh_inode(inode, fattr) < 0) 1227 goto out; 1228 1229 nfs_setsecurity(inode, fattr, label); 1230 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1231 1232 /* set a readdirplus hint that we had a cache miss */ 1233 nfs_force_use_readdirplus(dir); 1234 ret = 1; 1235 out: 1236 nfs_free_fattr(fattr); 1237 nfs_free_fhandle(fhandle); 1238 nfs4_label_free(label); 1239 return nfs_lookup_revalidate_done(dir, dentry, inode, ret); 1240 } 1241 1242 /* 1243 * This is called every time the dcache has a lookup hit, 1244 * and we should check whether we can really trust that 1245 * lookup. 1246 * 1247 * NOTE! The hit can be a negative hit too, don't assume 1248 * we have an inode! 1249 * 1250 * If the parent directory is seen to have changed, we throw out the 1251 * cached dentry and do a new lookup. 1252 */ 1253 static int 1254 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry, 1255 unsigned int flags) 1256 { 1257 struct inode *inode; 1258 int error; 1259 1260 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE); 1261 inode = d_inode(dentry); 1262 1263 if (!inode) 1264 return nfs_lookup_revalidate_negative(dir, dentry, flags); 1265 1266 if (is_bad_inode(inode)) { 1267 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1268 __func__, dentry); 1269 goto out_bad; 1270 } 1271 1272 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ)) 1273 return nfs_lookup_revalidate_delegated(dir, dentry, inode); 1274 1275 /* Force a full look up iff the parent directory has changed */ 1276 if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) && 1277 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) { 1278 error = nfs_lookup_verify_inode(inode, flags); 1279 if (error) { 1280 if (error == -ESTALE) 1281 nfs_zap_caches(dir); 1282 goto out_bad; 1283 } 1284 nfs_advise_use_readdirplus(dir); 1285 goto out_valid; 1286 } 1287 1288 if (flags & LOOKUP_RCU) 1289 return -ECHILD; 1290 1291 if (NFS_STALE(inode)) 1292 goto out_bad; 1293 1294 trace_nfs_lookup_revalidate_enter(dir, dentry, flags); 1295 error = nfs_lookup_revalidate_dentry(dir, dentry, inode); 1296 trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error); 1297 return error; 1298 out_valid: 1299 return nfs_lookup_revalidate_done(dir, dentry, inode, 1); 1300 out_bad: 1301 if (flags & LOOKUP_RCU) 1302 return -ECHILD; 1303 return nfs_lookup_revalidate_done(dir, dentry, inode, 0); 1304 } 1305 1306 static int 1307 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags, 1308 int (*reval)(struct inode *, struct dentry *, unsigned int)) 1309 { 1310 struct dentry *parent; 1311 struct inode *dir; 1312 int ret; 1313 1314 if (flags & LOOKUP_RCU) { 1315 parent = READ_ONCE(dentry->d_parent); 1316 dir = d_inode_rcu(parent); 1317 if (!dir) 1318 return -ECHILD; 1319 ret = reval(dir, dentry, flags); 1320 if (parent != READ_ONCE(dentry->d_parent)) 1321 return -ECHILD; 1322 } else { 1323 parent = dget_parent(dentry); 1324 ret = reval(d_inode(parent), dentry, flags); 1325 dput(parent); 1326 } 1327 return ret; 1328 } 1329 1330 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1331 { 1332 return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate); 1333 } 1334 1335 /* 1336 * A weaker form of d_revalidate for revalidating just the d_inode(dentry) 1337 * when we don't really care about the dentry name. This is called when a 1338 * pathwalk ends on a dentry that was not found via a normal lookup in the 1339 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals). 1340 * 1341 * In this situation, we just want to verify that the inode itself is OK 1342 * since the dentry might have changed on the server. 1343 */ 1344 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags) 1345 { 1346 struct inode *inode = d_inode(dentry); 1347 int error = 0; 1348 1349 /* 1350 * I believe we can only get a negative dentry here in the case of a 1351 * procfs-style symlink. Just assume it's correct for now, but we may 1352 * eventually need to do something more here. 1353 */ 1354 if (!inode) { 1355 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n", 1356 __func__, dentry); 1357 return 1; 1358 } 1359 1360 if (is_bad_inode(inode)) { 1361 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1362 __func__, dentry); 1363 return 0; 1364 } 1365 1366 error = nfs_lookup_verify_inode(inode, flags); 1367 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n", 1368 __func__, inode->i_ino, error ? "invalid" : "valid"); 1369 return !error; 1370 } 1371 1372 /* 1373 * This is called from dput() when d_count is going to 0. 1374 */ 1375 static int nfs_dentry_delete(const struct dentry *dentry) 1376 { 1377 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n", 1378 dentry, dentry->d_flags); 1379 1380 /* Unhash any dentry with a stale inode */ 1381 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry))) 1382 return 1; 1383 1384 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1385 /* Unhash it, so that ->d_iput() would be called */ 1386 return 1; 1387 } 1388 if (!(dentry->d_sb->s_flags & SB_ACTIVE)) { 1389 /* Unhash it, so that ancestors of killed async unlink 1390 * files will be cleaned up during umount */ 1391 return 1; 1392 } 1393 return 0; 1394 1395 } 1396 1397 /* Ensure that we revalidate inode->i_nlink */ 1398 static void nfs_drop_nlink(struct inode *inode) 1399 { 1400 spin_lock(&inode->i_lock); 1401 /* drop the inode if we're reasonably sure this is the last link */ 1402 if (inode->i_nlink > 0) 1403 drop_nlink(inode); 1404 NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter(); 1405 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_CHANGE 1406 | NFS_INO_INVALID_CTIME 1407 | NFS_INO_INVALID_OTHER 1408 | NFS_INO_REVAL_FORCED; 1409 spin_unlock(&inode->i_lock); 1410 } 1411 1412 /* 1413 * Called when the dentry loses inode. 1414 * We use it to clean up silly-renamed files. 1415 */ 1416 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode) 1417 { 1418 if (S_ISDIR(inode->i_mode)) 1419 /* drop any readdir cache as it could easily be old */ 1420 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA; 1421 1422 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1423 nfs_complete_unlink(dentry, inode); 1424 nfs_drop_nlink(inode); 1425 } 1426 iput(inode); 1427 } 1428 1429 static void nfs_d_release(struct dentry *dentry) 1430 { 1431 /* free cached devname value, if it survived that far */ 1432 if (unlikely(dentry->d_fsdata)) { 1433 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) 1434 WARN_ON(1); 1435 else 1436 kfree(dentry->d_fsdata); 1437 } 1438 } 1439 1440 const struct dentry_operations nfs_dentry_operations = { 1441 .d_revalidate = nfs_lookup_revalidate, 1442 .d_weak_revalidate = nfs_weak_revalidate, 1443 .d_delete = nfs_dentry_delete, 1444 .d_iput = nfs_dentry_iput, 1445 .d_automount = nfs_d_automount, 1446 .d_release = nfs_d_release, 1447 }; 1448 EXPORT_SYMBOL_GPL(nfs_dentry_operations); 1449 1450 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 1451 { 1452 struct dentry *res; 1453 struct inode *inode = NULL; 1454 struct nfs_fh *fhandle = NULL; 1455 struct nfs_fattr *fattr = NULL; 1456 struct nfs4_label *label = NULL; 1457 int error; 1458 1459 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry); 1460 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP); 1461 1462 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen)) 1463 return ERR_PTR(-ENAMETOOLONG); 1464 1465 /* 1466 * If we're doing an exclusive create, optimize away the lookup 1467 * but don't hash the dentry. 1468 */ 1469 if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET) 1470 return NULL; 1471 1472 res = ERR_PTR(-ENOMEM); 1473 fhandle = nfs_alloc_fhandle(); 1474 fattr = nfs_alloc_fattr(); 1475 if (fhandle == NULL || fattr == NULL) 1476 goto out; 1477 1478 label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT); 1479 if (IS_ERR(label)) 1480 goto out; 1481 1482 trace_nfs_lookup_enter(dir, dentry, flags); 1483 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label); 1484 if (error == -ENOENT) 1485 goto no_entry; 1486 if (error < 0) { 1487 res = ERR_PTR(error); 1488 goto out_label; 1489 } 1490 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label); 1491 res = ERR_CAST(inode); 1492 if (IS_ERR(res)) 1493 goto out_label; 1494 1495 /* Notify readdir to use READDIRPLUS */ 1496 nfs_force_use_readdirplus(dir); 1497 1498 no_entry: 1499 res = d_splice_alias(inode, dentry); 1500 if (res != NULL) { 1501 if (IS_ERR(res)) 1502 goto out_label; 1503 dentry = res; 1504 } 1505 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1506 out_label: 1507 trace_nfs_lookup_exit(dir, dentry, flags, error); 1508 nfs4_label_free(label); 1509 out: 1510 nfs_free_fattr(fattr); 1511 nfs_free_fhandle(fhandle); 1512 return res; 1513 } 1514 EXPORT_SYMBOL_GPL(nfs_lookup); 1515 1516 #if IS_ENABLED(CONFIG_NFS_V4) 1517 static int nfs4_lookup_revalidate(struct dentry *, unsigned int); 1518 1519 const struct dentry_operations nfs4_dentry_operations = { 1520 .d_revalidate = nfs4_lookup_revalidate, 1521 .d_weak_revalidate = nfs_weak_revalidate, 1522 .d_delete = nfs_dentry_delete, 1523 .d_iput = nfs_dentry_iput, 1524 .d_automount = nfs_d_automount, 1525 .d_release = nfs_d_release, 1526 }; 1527 EXPORT_SYMBOL_GPL(nfs4_dentry_operations); 1528 1529 static fmode_t flags_to_mode(int flags) 1530 { 1531 fmode_t res = (__force fmode_t)flags & FMODE_EXEC; 1532 if ((flags & O_ACCMODE) != O_WRONLY) 1533 res |= FMODE_READ; 1534 if ((flags & O_ACCMODE) != O_RDONLY) 1535 res |= FMODE_WRITE; 1536 return res; 1537 } 1538 1539 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp) 1540 { 1541 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp); 1542 } 1543 1544 static int do_open(struct inode *inode, struct file *filp) 1545 { 1546 nfs_fscache_open_file(inode, filp); 1547 return 0; 1548 } 1549 1550 static int nfs_finish_open(struct nfs_open_context *ctx, 1551 struct dentry *dentry, 1552 struct file *file, unsigned open_flags) 1553 { 1554 int err; 1555 1556 err = finish_open(file, dentry, do_open); 1557 if (err) 1558 goto out; 1559 if (S_ISREG(file->f_path.dentry->d_inode->i_mode)) 1560 nfs_file_set_open_context(file, ctx); 1561 else 1562 err = -ESTALE; 1563 out: 1564 return err; 1565 } 1566 1567 int nfs_atomic_open(struct inode *dir, struct dentry *dentry, 1568 struct file *file, unsigned open_flags, 1569 umode_t mode) 1570 { 1571 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1572 struct nfs_open_context *ctx; 1573 struct dentry *res; 1574 struct iattr attr = { .ia_valid = ATTR_OPEN }; 1575 struct inode *inode; 1576 unsigned int lookup_flags = 0; 1577 bool switched = false; 1578 int created = 0; 1579 int err; 1580 1581 /* Expect a negative dentry */ 1582 BUG_ON(d_inode(dentry)); 1583 1584 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n", 1585 dir->i_sb->s_id, dir->i_ino, dentry); 1586 1587 err = nfs_check_flags(open_flags); 1588 if (err) 1589 return err; 1590 1591 /* NFS only supports OPEN on regular files */ 1592 if ((open_flags & O_DIRECTORY)) { 1593 if (!d_in_lookup(dentry)) { 1594 /* 1595 * Hashed negative dentry with O_DIRECTORY: dentry was 1596 * revalidated and is fine, no need to perform lookup 1597 * again 1598 */ 1599 return -ENOENT; 1600 } 1601 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY; 1602 goto no_open; 1603 } 1604 1605 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 1606 return -ENAMETOOLONG; 1607 1608 if (open_flags & O_CREAT) { 1609 struct nfs_server *server = NFS_SERVER(dir); 1610 1611 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK)) 1612 mode &= ~current_umask(); 1613 1614 attr.ia_valid |= ATTR_MODE; 1615 attr.ia_mode = mode; 1616 } 1617 if (open_flags & O_TRUNC) { 1618 attr.ia_valid |= ATTR_SIZE; 1619 attr.ia_size = 0; 1620 } 1621 1622 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) { 1623 d_drop(dentry); 1624 switched = true; 1625 dentry = d_alloc_parallel(dentry->d_parent, 1626 &dentry->d_name, &wq); 1627 if (IS_ERR(dentry)) 1628 return PTR_ERR(dentry); 1629 if (unlikely(!d_in_lookup(dentry))) 1630 return finish_no_open(file, dentry); 1631 } 1632 1633 ctx = create_nfs_open_context(dentry, open_flags, file); 1634 err = PTR_ERR(ctx); 1635 if (IS_ERR(ctx)) 1636 goto out; 1637 1638 trace_nfs_atomic_open_enter(dir, ctx, open_flags); 1639 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created); 1640 if (created) 1641 file->f_mode |= FMODE_CREATED; 1642 if (IS_ERR(inode)) { 1643 err = PTR_ERR(inode); 1644 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 1645 put_nfs_open_context(ctx); 1646 d_drop(dentry); 1647 switch (err) { 1648 case -ENOENT: 1649 d_splice_alias(NULL, dentry); 1650 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1651 break; 1652 case -EISDIR: 1653 case -ENOTDIR: 1654 goto no_open; 1655 case -ELOOP: 1656 if (!(open_flags & O_NOFOLLOW)) 1657 goto no_open; 1658 break; 1659 /* case -EINVAL: */ 1660 default: 1661 break; 1662 } 1663 goto out; 1664 } 1665 1666 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags); 1667 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 1668 put_nfs_open_context(ctx); 1669 out: 1670 if (unlikely(switched)) { 1671 d_lookup_done(dentry); 1672 dput(dentry); 1673 } 1674 return err; 1675 1676 no_open: 1677 res = nfs_lookup(dir, dentry, lookup_flags); 1678 if (switched) { 1679 d_lookup_done(dentry); 1680 if (!res) 1681 res = dentry; 1682 else 1683 dput(dentry); 1684 } 1685 if (IS_ERR(res)) 1686 return PTR_ERR(res); 1687 return finish_no_open(file, res); 1688 } 1689 EXPORT_SYMBOL_GPL(nfs_atomic_open); 1690 1691 static int 1692 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry, 1693 unsigned int flags) 1694 { 1695 struct inode *inode; 1696 1697 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY)) 1698 goto full_reval; 1699 if (d_mountpoint(dentry)) 1700 goto full_reval; 1701 1702 inode = d_inode(dentry); 1703 1704 /* We can't create new files in nfs_open_revalidate(), so we 1705 * optimize away revalidation of negative dentries. 1706 */ 1707 if (inode == NULL) 1708 goto full_reval; 1709 1710 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ)) 1711 return nfs_lookup_revalidate_delegated(dir, dentry, inode); 1712 1713 /* NFS only supports OPEN on regular files */ 1714 if (!S_ISREG(inode->i_mode)) 1715 goto full_reval; 1716 1717 /* We cannot do exclusive creation on a positive dentry */ 1718 if (flags & (LOOKUP_EXCL | LOOKUP_REVAL)) 1719 goto reval_dentry; 1720 1721 /* Check if the directory changed */ 1722 if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) 1723 goto reval_dentry; 1724 1725 /* Let f_op->open() actually open (and revalidate) the file */ 1726 return 1; 1727 reval_dentry: 1728 if (flags & LOOKUP_RCU) 1729 return -ECHILD; 1730 return nfs_lookup_revalidate_dentry(dir, dentry, inode); 1731 1732 full_reval: 1733 return nfs_do_lookup_revalidate(dir, dentry, flags); 1734 } 1735 1736 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1737 { 1738 return __nfs_lookup_revalidate(dentry, flags, 1739 nfs4_do_lookup_revalidate); 1740 } 1741 1742 #endif /* CONFIG_NFSV4 */ 1743 1744 /* 1745 * Code common to create, mkdir, and mknod. 1746 */ 1747 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle, 1748 struct nfs_fattr *fattr, 1749 struct nfs4_label *label) 1750 { 1751 struct dentry *parent = dget_parent(dentry); 1752 struct inode *dir = d_inode(parent); 1753 struct inode *inode; 1754 struct dentry *d; 1755 int error = -EACCES; 1756 1757 d_drop(dentry); 1758 1759 /* We may have been initialized further down */ 1760 if (d_really_is_positive(dentry)) 1761 goto out; 1762 if (fhandle->size == 0) { 1763 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL); 1764 if (error) 1765 goto out_error; 1766 } 1767 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1768 if (!(fattr->valid & NFS_ATTR_FATTR)) { 1769 struct nfs_server *server = NFS_SB(dentry->d_sb); 1770 error = server->nfs_client->rpc_ops->getattr(server, fhandle, 1771 fattr, NULL, NULL); 1772 if (error < 0) 1773 goto out_error; 1774 } 1775 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label); 1776 d = d_splice_alias(inode, dentry); 1777 if (IS_ERR(d)) { 1778 error = PTR_ERR(d); 1779 goto out_error; 1780 } 1781 dput(d); 1782 out: 1783 dput(parent); 1784 return 0; 1785 out_error: 1786 nfs_mark_for_revalidate(dir); 1787 dput(parent); 1788 return error; 1789 } 1790 EXPORT_SYMBOL_GPL(nfs_instantiate); 1791 1792 /* 1793 * Following a failed create operation, we drop the dentry rather 1794 * than retain a negative dentry. This avoids a problem in the event 1795 * that the operation succeeded on the server, but an error in the 1796 * reply path made it appear to have failed. 1797 */ 1798 int nfs_create(struct inode *dir, struct dentry *dentry, 1799 umode_t mode, bool excl) 1800 { 1801 struct iattr attr; 1802 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT; 1803 int error; 1804 1805 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n", 1806 dir->i_sb->s_id, dir->i_ino, dentry); 1807 1808 attr.ia_mode = mode; 1809 attr.ia_valid = ATTR_MODE; 1810 1811 trace_nfs_create_enter(dir, dentry, open_flags); 1812 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags); 1813 trace_nfs_create_exit(dir, dentry, open_flags, error); 1814 if (error != 0) 1815 goto out_err; 1816 return 0; 1817 out_err: 1818 d_drop(dentry); 1819 return error; 1820 } 1821 EXPORT_SYMBOL_GPL(nfs_create); 1822 1823 /* 1824 * See comments for nfs_proc_create regarding failed operations. 1825 */ 1826 int 1827 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev) 1828 { 1829 struct iattr attr; 1830 int status; 1831 1832 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n", 1833 dir->i_sb->s_id, dir->i_ino, dentry); 1834 1835 attr.ia_mode = mode; 1836 attr.ia_valid = ATTR_MODE; 1837 1838 trace_nfs_mknod_enter(dir, dentry); 1839 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev); 1840 trace_nfs_mknod_exit(dir, dentry, status); 1841 if (status != 0) 1842 goto out_err; 1843 return 0; 1844 out_err: 1845 d_drop(dentry); 1846 return status; 1847 } 1848 EXPORT_SYMBOL_GPL(nfs_mknod); 1849 1850 /* 1851 * See comments for nfs_proc_create regarding failed operations. 1852 */ 1853 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1854 { 1855 struct iattr attr; 1856 int error; 1857 1858 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n", 1859 dir->i_sb->s_id, dir->i_ino, dentry); 1860 1861 attr.ia_valid = ATTR_MODE; 1862 attr.ia_mode = mode | S_IFDIR; 1863 1864 trace_nfs_mkdir_enter(dir, dentry); 1865 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr); 1866 trace_nfs_mkdir_exit(dir, dentry, error); 1867 if (error != 0) 1868 goto out_err; 1869 return 0; 1870 out_err: 1871 d_drop(dentry); 1872 return error; 1873 } 1874 EXPORT_SYMBOL_GPL(nfs_mkdir); 1875 1876 static void nfs_dentry_handle_enoent(struct dentry *dentry) 1877 { 1878 if (simple_positive(dentry)) 1879 d_delete(dentry); 1880 } 1881 1882 int nfs_rmdir(struct inode *dir, struct dentry *dentry) 1883 { 1884 int error; 1885 1886 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n", 1887 dir->i_sb->s_id, dir->i_ino, dentry); 1888 1889 trace_nfs_rmdir_enter(dir, dentry); 1890 if (d_really_is_positive(dentry)) { 1891 down_write(&NFS_I(d_inode(dentry))->rmdir_sem); 1892 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 1893 /* Ensure the VFS deletes this inode */ 1894 switch (error) { 1895 case 0: 1896 clear_nlink(d_inode(dentry)); 1897 break; 1898 case -ENOENT: 1899 nfs_dentry_handle_enoent(dentry); 1900 } 1901 up_write(&NFS_I(d_inode(dentry))->rmdir_sem); 1902 } else 1903 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 1904 trace_nfs_rmdir_exit(dir, dentry, error); 1905 1906 return error; 1907 } 1908 EXPORT_SYMBOL_GPL(nfs_rmdir); 1909 1910 /* 1911 * Remove a file after making sure there are no pending writes, 1912 * and after checking that the file has only one user. 1913 * 1914 * We invalidate the attribute cache and free the inode prior to the operation 1915 * to avoid possible races if the server reuses the inode. 1916 */ 1917 static int nfs_safe_remove(struct dentry *dentry) 1918 { 1919 struct inode *dir = d_inode(dentry->d_parent); 1920 struct inode *inode = d_inode(dentry); 1921 int error = -EBUSY; 1922 1923 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry); 1924 1925 /* If the dentry was sillyrenamed, we simply call d_delete() */ 1926 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1927 error = 0; 1928 goto out; 1929 } 1930 1931 trace_nfs_remove_enter(dir, dentry); 1932 if (inode != NULL) { 1933 error = NFS_PROTO(dir)->remove(dir, dentry); 1934 if (error == 0) 1935 nfs_drop_nlink(inode); 1936 } else 1937 error = NFS_PROTO(dir)->remove(dir, dentry); 1938 if (error == -ENOENT) 1939 nfs_dentry_handle_enoent(dentry); 1940 trace_nfs_remove_exit(dir, dentry, error); 1941 out: 1942 return error; 1943 } 1944 1945 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode 1946 * belongs to an active ".nfs..." file and we return -EBUSY. 1947 * 1948 * If sillyrename() returns 0, we do nothing, otherwise we unlink. 1949 */ 1950 int nfs_unlink(struct inode *dir, struct dentry *dentry) 1951 { 1952 int error; 1953 int need_rehash = 0; 1954 1955 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id, 1956 dir->i_ino, dentry); 1957 1958 trace_nfs_unlink_enter(dir, dentry); 1959 spin_lock(&dentry->d_lock); 1960 if (d_count(dentry) > 1) { 1961 spin_unlock(&dentry->d_lock); 1962 /* Start asynchronous writeout of the inode */ 1963 write_inode_now(d_inode(dentry), 0); 1964 error = nfs_sillyrename(dir, dentry); 1965 goto out; 1966 } 1967 if (!d_unhashed(dentry)) { 1968 __d_drop(dentry); 1969 need_rehash = 1; 1970 } 1971 spin_unlock(&dentry->d_lock); 1972 error = nfs_safe_remove(dentry); 1973 if (!error || error == -ENOENT) { 1974 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1975 } else if (need_rehash) 1976 d_rehash(dentry); 1977 out: 1978 trace_nfs_unlink_exit(dir, dentry, error); 1979 return error; 1980 } 1981 EXPORT_SYMBOL_GPL(nfs_unlink); 1982 1983 /* 1984 * To create a symbolic link, most file systems instantiate a new inode, 1985 * add a page to it containing the path, then write it out to the disk 1986 * using prepare_write/commit_write. 1987 * 1988 * Unfortunately the NFS client can't create the in-core inode first 1989 * because it needs a file handle to create an in-core inode (see 1990 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the 1991 * symlink request has completed on the server. 1992 * 1993 * So instead we allocate a raw page, copy the symname into it, then do 1994 * the SYMLINK request with the page as the buffer. If it succeeds, we 1995 * now have a new file handle and can instantiate an in-core NFS inode 1996 * and move the raw page into its mapping. 1997 */ 1998 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 1999 { 2000 struct page *page; 2001 char *kaddr; 2002 struct iattr attr; 2003 unsigned int pathlen = strlen(symname); 2004 int error; 2005 2006 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id, 2007 dir->i_ino, dentry, symname); 2008 2009 if (pathlen > PAGE_SIZE) 2010 return -ENAMETOOLONG; 2011 2012 attr.ia_mode = S_IFLNK | S_IRWXUGO; 2013 attr.ia_valid = ATTR_MODE; 2014 2015 page = alloc_page(GFP_USER); 2016 if (!page) 2017 return -ENOMEM; 2018 2019 kaddr = page_address(page); 2020 memcpy(kaddr, symname, pathlen); 2021 if (pathlen < PAGE_SIZE) 2022 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen); 2023 2024 trace_nfs_symlink_enter(dir, dentry); 2025 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr); 2026 trace_nfs_symlink_exit(dir, dentry, error); 2027 if (error != 0) { 2028 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n", 2029 dir->i_sb->s_id, dir->i_ino, 2030 dentry, symname, error); 2031 d_drop(dentry); 2032 __free_page(page); 2033 return error; 2034 } 2035 2036 /* 2037 * No big deal if we can't add this page to the page cache here. 2038 * READLINK will get the missing page from the server if needed. 2039 */ 2040 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0, 2041 GFP_KERNEL)) { 2042 SetPageUptodate(page); 2043 unlock_page(page); 2044 /* 2045 * add_to_page_cache_lru() grabs an extra page refcount. 2046 * Drop it here to avoid leaking this page later. 2047 */ 2048 put_page(page); 2049 } else 2050 __free_page(page); 2051 2052 return 0; 2053 } 2054 EXPORT_SYMBOL_GPL(nfs_symlink); 2055 2056 int 2057 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2058 { 2059 struct inode *inode = d_inode(old_dentry); 2060 int error; 2061 2062 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n", 2063 old_dentry, dentry); 2064 2065 trace_nfs_link_enter(inode, dir, dentry); 2066 d_drop(dentry); 2067 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name); 2068 if (error == 0) { 2069 ihold(inode); 2070 d_add(dentry, inode); 2071 } 2072 trace_nfs_link_exit(inode, dir, dentry, error); 2073 return error; 2074 } 2075 EXPORT_SYMBOL_GPL(nfs_link); 2076 2077 /* 2078 * RENAME 2079 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a 2080 * different file handle for the same inode after a rename (e.g. when 2081 * moving to a different directory). A fail-safe method to do so would 2082 * be to look up old_dir/old_name, create a link to new_dir/new_name and 2083 * rename the old file using the sillyrename stuff. This way, the original 2084 * file in old_dir will go away when the last process iput()s the inode. 2085 * 2086 * FIXED. 2087 * 2088 * It actually works quite well. One needs to have the possibility for 2089 * at least one ".nfs..." file in each directory the file ever gets 2090 * moved or linked to which happens automagically with the new 2091 * implementation that only depends on the dcache stuff instead of 2092 * using the inode layer 2093 * 2094 * Unfortunately, things are a little more complicated than indicated 2095 * above. For a cross-directory move, we want to make sure we can get 2096 * rid of the old inode after the operation. This means there must be 2097 * no pending writes (if it's a file), and the use count must be 1. 2098 * If these conditions are met, we can drop the dentries before doing 2099 * the rename. 2100 */ 2101 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry, 2102 struct inode *new_dir, struct dentry *new_dentry, 2103 unsigned int flags) 2104 { 2105 struct inode *old_inode = d_inode(old_dentry); 2106 struct inode *new_inode = d_inode(new_dentry); 2107 struct dentry *dentry = NULL, *rehash = NULL; 2108 struct rpc_task *task; 2109 int error = -EBUSY; 2110 2111 if (flags) 2112 return -EINVAL; 2113 2114 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n", 2115 old_dentry, new_dentry, 2116 d_count(new_dentry)); 2117 2118 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry); 2119 /* 2120 * For non-directories, check whether the target is busy and if so, 2121 * make a copy of the dentry and then do a silly-rename. If the 2122 * silly-rename succeeds, the copied dentry is hashed and becomes 2123 * the new target. 2124 */ 2125 if (new_inode && !S_ISDIR(new_inode->i_mode)) { 2126 /* 2127 * To prevent any new references to the target during the 2128 * rename, we unhash the dentry in advance. 2129 */ 2130 if (!d_unhashed(new_dentry)) { 2131 d_drop(new_dentry); 2132 rehash = new_dentry; 2133 } 2134 2135 if (d_count(new_dentry) > 2) { 2136 int err; 2137 2138 /* copy the target dentry's name */ 2139 dentry = d_alloc(new_dentry->d_parent, 2140 &new_dentry->d_name); 2141 if (!dentry) 2142 goto out; 2143 2144 /* silly-rename the existing target ... */ 2145 err = nfs_sillyrename(new_dir, new_dentry); 2146 if (err) 2147 goto out; 2148 2149 new_dentry = dentry; 2150 rehash = NULL; 2151 new_inode = NULL; 2152 } 2153 } 2154 2155 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL); 2156 if (IS_ERR(task)) { 2157 error = PTR_ERR(task); 2158 goto out; 2159 } 2160 2161 error = rpc_wait_for_completion_task(task); 2162 if (error != 0) { 2163 ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1; 2164 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */ 2165 smp_wmb(); 2166 } else 2167 error = task->tk_status; 2168 rpc_put_task(task); 2169 /* Ensure the inode attributes are revalidated */ 2170 if (error == 0) { 2171 spin_lock(&old_inode->i_lock); 2172 NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter(); 2173 NFS_I(old_inode)->cache_validity |= NFS_INO_INVALID_CHANGE 2174 | NFS_INO_INVALID_CTIME 2175 | NFS_INO_REVAL_FORCED; 2176 spin_unlock(&old_inode->i_lock); 2177 } 2178 out: 2179 if (rehash) 2180 d_rehash(rehash); 2181 trace_nfs_rename_exit(old_dir, old_dentry, 2182 new_dir, new_dentry, error); 2183 if (!error) { 2184 if (new_inode != NULL) 2185 nfs_drop_nlink(new_inode); 2186 /* 2187 * The d_move() should be here instead of in an async RPC completion 2188 * handler because we need the proper locks to move the dentry. If 2189 * we're interrupted by a signal, the async RPC completion handler 2190 * should mark the directories for revalidation. 2191 */ 2192 d_move(old_dentry, new_dentry); 2193 nfs_set_verifier(old_dentry, 2194 nfs_save_change_attribute(new_dir)); 2195 } else if (error == -ENOENT) 2196 nfs_dentry_handle_enoent(old_dentry); 2197 2198 /* new dentry created? */ 2199 if (dentry) 2200 dput(dentry); 2201 return error; 2202 } 2203 EXPORT_SYMBOL_GPL(nfs_rename); 2204 2205 static DEFINE_SPINLOCK(nfs_access_lru_lock); 2206 static LIST_HEAD(nfs_access_lru_list); 2207 static atomic_long_t nfs_access_nr_entries; 2208 2209 static unsigned long nfs_access_max_cachesize = ULONG_MAX; 2210 module_param(nfs_access_max_cachesize, ulong, 0644); 2211 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length"); 2212 2213 static void nfs_access_free_entry(struct nfs_access_entry *entry) 2214 { 2215 put_cred(entry->cred); 2216 kfree_rcu(entry, rcu_head); 2217 smp_mb__before_atomic(); 2218 atomic_long_dec(&nfs_access_nr_entries); 2219 smp_mb__after_atomic(); 2220 } 2221 2222 static void nfs_access_free_list(struct list_head *head) 2223 { 2224 struct nfs_access_entry *cache; 2225 2226 while (!list_empty(head)) { 2227 cache = list_entry(head->next, struct nfs_access_entry, lru); 2228 list_del(&cache->lru); 2229 nfs_access_free_entry(cache); 2230 } 2231 } 2232 2233 static unsigned long 2234 nfs_do_access_cache_scan(unsigned int nr_to_scan) 2235 { 2236 LIST_HEAD(head); 2237 struct nfs_inode *nfsi, *next; 2238 struct nfs_access_entry *cache; 2239 long freed = 0; 2240 2241 spin_lock(&nfs_access_lru_lock); 2242 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) { 2243 struct inode *inode; 2244 2245 if (nr_to_scan-- == 0) 2246 break; 2247 inode = &nfsi->vfs_inode; 2248 spin_lock(&inode->i_lock); 2249 if (list_empty(&nfsi->access_cache_entry_lru)) 2250 goto remove_lru_entry; 2251 cache = list_entry(nfsi->access_cache_entry_lru.next, 2252 struct nfs_access_entry, lru); 2253 list_move(&cache->lru, &head); 2254 rb_erase(&cache->rb_node, &nfsi->access_cache); 2255 freed++; 2256 if (!list_empty(&nfsi->access_cache_entry_lru)) 2257 list_move_tail(&nfsi->access_cache_inode_lru, 2258 &nfs_access_lru_list); 2259 else { 2260 remove_lru_entry: 2261 list_del_init(&nfsi->access_cache_inode_lru); 2262 smp_mb__before_atomic(); 2263 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags); 2264 smp_mb__after_atomic(); 2265 } 2266 spin_unlock(&inode->i_lock); 2267 } 2268 spin_unlock(&nfs_access_lru_lock); 2269 nfs_access_free_list(&head); 2270 return freed; 2271 } 2272 2273 unsigned long 2274 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc) 2275 { 2276 int nr_to_scan = sc->nr_to_scan; 2277 gfp_t gfp_mask = sc->gfp_mask; 2278 2279 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL) 2280 return SHRINK_STOP; 2281 return nfs_do_access_cache_scan(nr_to_scan); 2282 } 2283 2284 2285 unsigned long 2286 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc) 2287 { 2288 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries)); 2289 } 2290 2291 static void 2292 nfs_access_cache_enforce_limit(void) 2293 { 2294 long nr_entries = atomic_long_read(&nfs_access_nr_entries); 2295 unsigned long diff; 2296 unsigned int nr_to_scan; 2297 2298 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize) 2299 return; 2300 nr_to_scan = 100; 2301 diff = nr_entries - nfs_access_max_cachesize; 2302 if (diff < nr_to_scan) 2303 nr_to_scan = diff; 2304 nfs_do_access_cache_scan(nr_to_scan); 2305 } 2306 2307 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head) 2308 { 2309 struct rb_root *root_node = &nfsi->access_cache; 2310 struct rb_node *n; 2311 struct nfs_access_entry *entry; 2312 2313 /* Unhook entries from the cache */ 2314 while ((n = rb_first(root_node)) != NULL) { 2315 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2316 rb_erase(n, root_node); 2317 list_move(&entry->lru, head); 2318 } 2319 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS; 2320 } 2321 2322 void nfs_access_zap_cache(struct inode *inode) 2323 { 2324 LIST_HEAD(head); 2325 2326 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0) 2327 return; 2328 /* Remove from global LRU init */ 2329 spin_lock(&nfs_access_lru_lock); 2330 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2331 list_del_init(&NFS_I(inode)->access_cache_inode_lru); 2332 2333 spin_lock(&inode->i_lock); 2334 __nfs_access_zap_cache(NFS_I(inode), &head); 2335 spin_unlock(&inode->i_lock); 2336 spin_unlock(&nfs_access_lru_lock); 2337 nfs_access_free_list(&head); 2338 } 2339 EXPORT_SYMBOL_GPL(nfs_access_zap_cache); 2340 2341 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred) 2342 { 2343 struct rb_node *n = NFS_I(inode)->access_cache.rb_node; 2344 2345 while (n != NULL) { 2346 struct nfs_access_entry *entry = 2347 rb_entry(n, struct nfs_access_entry, rb_node); 2348 int cmp = cred_fscmp(cred, entry->cred); 2349 2350 if (cmp < 0) 2351 n = n->rb_left; 2352 else if (cmp > 0) 2353 n = n->rb_right; 2354 else 2355 return entry; 2356 } 2357 return NULL; 2358 } 2359 2360 static int nfs_access_get_cached(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res, bool may_block) 2361 { 2362 struct nfs_inode *nfsi = NFS_I(inode); 2363 struct nfs_access_entry *cache; 2364 bool retry = true; 2365 int err; 2366 2367 spin_lock(&inode->i_lock); 2368 for(;;) { 2369 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2370 goto out_zap; 2371 cache = nfs_access_search_rbtree(inode, cred); 2372 err = -ENOENT; 2373 if (cache == NULL) 2374 goto out; 2375 /* Found an entry, is our attribute cache valid? */ 2376 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) 2377 break; 2378 err = -ECHILD; 2379 if (!may_block) 2380 goto out; 2381 if (!retry) 2382 goto out_zap; 2383 spin_unlock(&inode->i_lock); 2384 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode); 2385 if (err) 2386 return err; 2387 spin_lock(&inode->i_lock); 2388 retry = false; 2389 } 2390 res->cred = cache->cred; 2391 res->mask = cache->mask; 2392 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru); 2393 err = 0; 2394 out: 2395 spin_unlock(&inode->i_lock); 2396 return err; 2397 out_zap: 2398 spin_unlock(&inode->i_lock); 2399 nfs_access_zap_cache(inode); 2400 return -ENOENT; 2401 } 2402 2403 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res) 2404 { 2405 /* Only check the most recently returned cache entry, 2406 * but do it without locking. 2407 */ 2408 struct nfs_inode *nfsi = NFS_I(inode); 2409 struct nfs_access_entry *cache; 2410 int err = -ECHILD; 2411 struct list_head *lh; 2412 2413 rcu_read_lock(); 2414 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2415 goto out; 2416 lh = rcu_dereference(nfsi->access_cache_entry_lru.prev); 2417 cache = list_entry(lh, struct nfs_access_entry, lru); 2418 if (lh == &nfsi->access_cache_entry_lru || 2419 cred != cache->cred) 2420 cache = NULL; 2421 if (cache == NULL) 2422 goto out; 2423 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) 2424 goto out; 2425 res->cred = cache->cred; 2426 res->mask = cache->mask; 2427 err = 0; 2428 out: 2429 rcu_read_unlock(); 2430 return err; 2431 } 2432 2433 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set) 2434 { 2435 struct nfs_inode *nfsi = NFS_I(inode); 2436 struct rb_root *root_node = &nfsi->access_cache; 2437 struct rb_node **p = &root_node->rb_node; 2438 struct rb_node *parent = NULL; 2439 struct nfs_access_entry *entry; 2440 int cmp; 2441 2442 spin_lock(&inode->i_lock); 2443 while (*p != NULL) { 2444 parent = *p; 2445 entry = rb_entry(parent, struct nfs_access_entry, rb_node); 2446 cmp = cred_fscmp(set->cred, entry->cred); 2447 2448 if (cmp < 0) 2449 p = &parent->rb_left; 2450 else if (cmp > 0) 2451 p = &parent->rb_right; 2452 else 2453 goto found; 2454 } 2455 rb_link_node(&set->rb_node, parent, p); 2456 rb_insert_color(&set->rb_node, root_node); 2457 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2458 spin_unlock(&inode->i_lock); 2459 return; 2460 found: 2461 rb_replace_node(parent, &set->rb_node, root_node); 2462 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2463 list_del(&entry->lru); 2464 spin_unlock(&inode->i_lock); 2465 nfs_access_free_entry(entry); 2466 } 2467 2468 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set) 2469 { 2470 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL); 2471 if (cache == NULL) 2472 return; 2473 RB_CLEAR_NODE(&cache->rb_node); 2474 cache->cred = get_cred(set->cred); 2475 cache->mask = set->mask; 2476 2477 /* The above field assignments must be visible 2478 * before this item appears on the lru. We cannot easily 2479 * use rcu_assign_pointer, so just force the memory barrier. 2480 */ 2481 smp_wmb(); 2482 nfs_access_add_rbtree(inode, cache); 2483 2484 /* Update accounting */ 2485 smp_mb__before_atomic(); 2486 atomic_long_inc(&nfs_access_nr_entries); 2487 smp_mb__after_atomic(); 2488 2489 /* Add inode to global LRU list */ 2490 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) { 2491 spin_lock(&nfs_access_lru_lock); 2492 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2493 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, 2494 &nfs_access_lru_list); 2495 spin_unlock(&nfs_access_lru_lock); 2496 } 2497 nfs_access_cache_enforce_limit(); 2498 } 2499 EXPORT_SYMBOL_GPL(nfs_access_add_cache); 2500 2501 #define NFS_MAY_READ (NFS_ACCESS_READ) 2502 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \ 2503 NFS_ACCESS_EXTEND | \ 2504 NFS_ACCESS_DELETE) 2505 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \ 2506 NFS_ACCESS_EXTEND) 2507 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE 2508 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP) 2509 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE) 2510 static int 2511 nfs_access_calc_mask(u32 access_result, umode_t umode) 2512 { 2513 int mask = 0; 2514 2515 if (access_result & NFS_MAY_READ) 2516 mask |= MAY_READ; 2517 if (S_ISDIR(umode)) { 2518 if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE) 2519 mask |= MAY_WRITE; 2520 if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP) 2521 mask |= MAY_EXEC; 2522 } else if (S_ISREG(umode)) { 2523 if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE) 2524 mask |= MAY_WRITE; 2525 if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE) 2526 mask |= MAY_EXEC; 2527 } else if (access_result & NFS_MAY_WRITE) 2528 mask |= MAY_WRITE; 2529 return mask; 2530 } 2531 2532 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result) 2533 { 2534 entry->mask = access_result; 2535 } 2536 EXPORT_SYMBOL_GPL(nfs_access_set_mask); 2537 2538 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask) 2539 { 2540 struct nfs_access_entry cache; 2541 bool may_block = (mask & MAY_NOT_BLOCK) == 0; 2542 int cache_mask; 2543 int status; 2544 2545 trace_nfs_access_enter(inode); 2546 2547 status = nfs_access_get_cached_rcu(inode, cred, &cache); 2548 if (status != 0) 2549 status = nfs_access_get_cached(inode, cred, &cache, may_block); 2550 if (status == 0) 2551 goto out_cached; 2552 2553 status = -ECHILD; 2554 if (!may_block) 2555 goto out; 2556 2557 /* 2558 * Determine which access bits we want to ask for... 2559 */ 2560 cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND; 2561 if (S_ISDIR(inode->i_mode)) 2562 cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP; 2563 else 2564 cache.mask |= NFS_ACCESS_EXECUTE; 2565 cache.cred = cred; 2566 status = NFS_PROTO(inode)->access(inode, &cache); 2567 if (status != 0) { 2568 if (status == -ESTALE) { 2569 nfs_zap_caches(inode); 2570 if (!S_ISDIR(inode->i_mode)) 2571 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags); 2572 } 2573 goto out; 2574 } 2575 nfs_access_add_cache(inode, &cache); 2576 out_cached: 2577 cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode); 2578 if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0) 2579 status = -EACCES; 2580 out: 2581 trace_nfs_access_exit(inode, status); 2582 return status; 2583 } 2584 2585 static int nfs_open_permission_mask(int openflags) 2586 { 2587 int mask = 0; 2588 2589 if (openflags & __FMODE_EXEC) { 2590 /* ONLY check exec rights */ 2591 mask = MAY_EXEC; 2592 } else { 2593 if ((openflags & O_ACCMODE) != O_WRONLY) 2594 mask |= MAY_READ; 2595 if ((openflags & O_ACCMODE) != O_RDONLY) 2596 mask |= MAY_WRITE; 2597 } 2598 2599 return mask; 2600 } 2601 2602 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags) 2603 { 2604 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags)); 2605 } 2606 EXPORT_SYMBOL_GPL(nfs_may_open); 2607 2608 static int nfs_execute_ok(struct inode *inode, int mask) 2609 { 2610 struct nfs_server *server = NFS_SERVER(inode); 2611 int ret = 0; 2612 2613 if (S_ISDIR(inode->i_mode)) 2614 return 0; 2615 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_OTHER)) { 2616 if (mask & MAY_NOT_BLOCK) 2617 return -ECHILD; 2618 ret = __nfs_revalidate_inode(server, inode); 2619 } 2620 if (ret == 0 && !execute_ok(inode)) 2621 ret = -EACCES; 2622 return ret; 2623 } 2624 2625 int nfs_permission(struct inode *inode, int mask) 2626 { 2627 const struct cred *cred = current_cred(); 2628 int res = 0; 2629 2630 nfs_inc_stats(inode, NFSIOS_VFSACCESS); 2631 2632 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 2633 goto out; 2634 /* Is this sys_access() ? */ 2635 if (mask & (MAY_ACCESS | MAY_CHDIR)) 2636 goto force_lookup; 2637 2638 switch (inode->i_mode & S_IFMT) { 2639 case S_IFLNK: 2640 goto out; 2641 case S_IFREG: 2642 if ((mask & MAY_OPEN) && 2643 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)) 2644 return 0; 2645 break; 2646 case S_IFDIR: 2647 /* 2648 * Optimize away all write operations, since the server 2649 * will check permissions when we perform the op. 2650 */ 2651 if ((mask & MAY_WRITE) && !(mask & MAY_READ)) 2652 goto out; 2653 } 2654 2655 force_lookup: 2656 if (!NFS_PROTO(inode)->access) 2657 goto out_notsup; 2658 2659 /* Always try fast lookups first */ 2660 rcu_read_lock(); 2661 res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK); 2662 rcu_read_unlock(); 2663 if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) { 2664 /* Fast lookup failed, try the slow way */ 2665 res = nfs_do_access(inode, cred, mask); 2666 } 2667 out: 2668 if (!res && (mask & MAY_EXEC)) 2669 res = nfs_execute_ok(inode, mask); 2670 2671 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n", 2672 inode->i_sb->s_id, inode->i_ino, mask, res); 2673 return res; 2674 out_notsup: 2675 if (mask & MAY_NOT_BLOCK) 2676 return -ECHILD; 2677 2678 res = nfs_revalidate_inode(NFS_SERVER(inode), inode); 2679 if (res == 0) 2680 res = generic_permission(inode, mask); 2681 goto out; 2682 } 2683 EXPORT_SYMBOL_GPL(nfs_permission); 2684 2685 /* 2686 * Local variables: 2687 * version-control: t 2688 * kept-new-versions: 5 2689 * End: 2690 */ 2691