xref: /openbmc/linux/fs/nfs/dir.c (revision da2014a2)
1 /*
2  *  linux/fs/nfs/dir.c
3  *
4  *  Copyright (C) 1992  Rick Sladkey
5  *
6  *  nfs directory handling functions
7  *
8  * 10 Apr 1996	Added silly rename for unlink	--okir
9  * 28 Sep 1996	Improved directory cache --okir
10  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
11  *              Re-implemented silly rename for unlink, newly implemented
12  *              silly rename for nfs_rename() following the suggestions
13  *              of Olaf Kirch (okir) found in this file.
14  *              Following Linus comments on my original hack, this version
15  *              depends only on the dcache stuff and doesn't touch the inode
16  *              layer (iput() and friends).
17  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
18  */
19 
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/smp_lock.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/sched.h>
37 
38 #include "nfs4_fs.h"
39 #include "delegation.h"
40 #include "iostat.h"
41 #include "internal.h"
42 
43 /* #define NFS_DEBUG_VERBOSE 1 */
44 
45 static int nfs_opendir(struct inode *, struct file *);
46 static int nfs_readdir(struct file *, void *, filldir_t);
47 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
48 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *);
49 static int nfs_mkdir(struct inode *, struct dentry *, int);
50 static int nfs_rmdir(struct inode *, struct dentry *);
51 static int nfs_unlink(struct inode *, struct dentry *);
52 static int nfs_symlink(struct inode *, struct dentry *, const char *);
53 static int nfs_link(struct dentry *, struct inode *, struct dentry *);
54 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t);
55 static int nfs_rename(struct inode *, struct dentry *,
56 		      struct inode *, struct dentry *);
57 static int nfs_fsync_dir(struct file *, struct dentry *, int);
58 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
59 
60 const struct file_operations nfs_dir_operations = {
61 	.llseek		= nfs_llseek_dir,
62 	.read		= generic_read_dir,
63 	.readdir	= nfs_readdir,
64 	.open		= nfs_opendir,
65 	.release	= nfs_release,
66 	.fsync		= nfs_fsync_dir,
67 };
68 
69 const struct inode_operations nfs_dir_inode_operations = {
70 	.create		= nfs_create,
71 	.lookup		= nfs_lookup,
72 	.link		= nfs_link,
73 	.unlink		= nfs_unlink,
74 	.symlink	= nfs_symlink,
75 	.mkdir		= nfs_mkdir,
76 	.rmdir		= nfs_rmdir,
77 	.mknod		= nfs_mknod,
78 	.rename		= nfs_rename,
79 	.permission	= nfs_permission,
80 	.getattr	= nfs_getattr,
81 	.setattr	= nfs_setattr,
82 };
83 
84 #ifdef CONFIG_NFS_V3
85 const struct inode_operations nfs3_dir_inode_operations = {
86 	.create		= nfs_create,
87 	.lookup		= nfs_lookup,
88 	.link		= nfs_link,
89 	.unlink		= nfs_unlink,
90 	.symlink	= nfs_symlink,
91 	.mkdir		= nfs_mkdir,
92 	.rmdir		= nfs_rmdir,
93 	.mknod		= nfs_mknod,
94 	.rename		= nfs_rename,
95 	.permission	= nfs_permission,
96 	.getattr	= nfs_getattr,
97 	.setattr	= nfs_setattr,
98 	.listxattr	= nfs3_listxattr,
99 	.getxattr	= nfs3_getxattr,
100 	.setxattr	= nfs3_setxattr,
101 	.removexattr	= nfs3_removexattr,
102 };
103 #endif  /* CONFIG_NFS_V3 */
104 
105 #ifdef CONFIG_NFS_V4
106 
107 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
108 const struct inode_operations nfs4_dir_inode_operations = {
109 	.create		= nfs_create,
110 	.lookup		= nfs_atomic_lookup,
111 	.link		= nfs_link,
112 	.unlink		= nfs_unlink,
113 	.symlink	= nfs_symlink,
114 	.mkdir		= nfs_mkdir,
115 	.rmdir		= nfs_rmdir,
116 	.mknod		= nfs_mknod,
117 	.rename		= nfs_rename,
118 	.permission	= nfs_permission,
119 	.getattr	= nfs_getattr,
120 	.setattr	= nfs_setattr,
121 	.getxattr       = nfs4_getxattr,
122 	.setxattr       = nfs4_setxattr,
123 	.listxattr      = nfs4_listxattr,
124 };
125 
126 #endif /* CONFIG_NFS_V4 */
127 
128 /*
129  * Open file
130  */
131 static int
132 nfs_opendir(struct inode *inode, struct file *filp)
133 {
134 	int res;
135 
136 	dfprintk(FILE, "NFS: open dir(%s/%s)\n",
137 			filp->f_path.dentry->d_parent->d_name.name,
138 			filp->f_path.dentry->d_name.name);
139 
140 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
141 
142 	/* Call generic open code in order to cache credentials */
143 	res = nfs_open(inode, filp);
144 	return res;
145 }
146 
147 typedef __be32 * (*decode_dirent_t)(__be32 *, struct nfs_entry *, int);
148 typedef struct {
149 	struct file	*file;
150 	struct page	*page;
151 	unsigned long	page_index;
152 	__be32		*ptr;
153 	u64		*dir_cookie;
154 	loff_t		current_index;
155 	struct nfs_entry *entry;
156 	decode_dirent_t	decode;
157 	int		plus;
158 	unsigned long	timestamp;
159 	int		timestamp_valid;
160 } nfs_readdir_descriptor_t;
161 
162 /* Now we cache directories properly, by stuffing the dirent
163  * data directly in the page cache.
164  *
165  * Inode invalidation due to refresh etc. takes care of
166  * _everything_, no sloppy entry flushing logic, no extraneous
167  * copying, network direct to page cache, the way it was meant
168  * to be.
169  *
170  * NOTE: Dirent information verification is done always by the
171  *	 page-in of the RPC reply, nowhere else, this simplies
172  *	 things substantially.
173  */
174 static
175 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page *page)
176 {
177 	struct file	*file = desc->file;
178 	struct inode	*inode = file->f_path.dentry->d_inode;
179 	struct rpc_cred	*cred = nfs_file_cred(file);
180 	unsigned long	timestamp;
181 	int		error;
182 
183 	dfprintk(DIRCACHE, "NFS: %s: reading cookie %Lu into page %lu\n",
184 			__func__, (long long)desc->entry->cookie,
185 			page->index);
186 
187  again:
188 	timestamp = jiffies;
189 	error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, desc->entry->cookie, page,
190 					  NFS_SERVER(inode)->dtsize, desc->plus);
191 	if (error < 0) {
192 		/* We requested READDIRPLUS, but the server doesn't grok it */
193 		if (error == -ENOTSUPP && desc->plus) {
194 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
195 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
196 			desc->plus = 0;
197 			goto again;
198 		}
199 		goto error;
200 	}
201 	desc->timestamp = timestamp;
202 	desc->timestamp_valid = 1;
203 	SetPageUptodate(page);
204 	/* Ensure consistent page alignment of the data.
205 	 * Note: assumes we have exclusive access to this mapping either
206 	 *	 through inode->i_mutex or some other mechanism.
207 	 */
208 	if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
209 		/* Should never happen */
210 		nfs_zap_mapping(inode, inode->i_mapping);
211 	}
212 	unlock_page(page);
213 	return 0;
214  error:
215 	unlock_page(page);
216 	return -EIO;
217 }
218 
219 static inline
220 int dir_decode(nfs_readdir_descriptor_t *desc)
221 {
222 	__be32	*p = desc->ptr;
223 	p = desc->decode(p, desc->entry, desc->plus);
224 	if (IS_ERR(p))
225 		return PTR_ERR(p);
226 	desc->ptr = p;
227 	if (desc->timestamp_valid)
228 		desc->entry->fattr->time_start = desc->timestamp;
229 	else
230 		desc->entry->fattr->valid &= ~NFS_ATTR_FATTR;
231 	return 0;
232 }
233 
234 static inline
235 void dir_page_release(nfs_readdir_descriptor_t *desc)
236 {
237 	kunmap(desc->page);
238 	page_cache_release(desc->page);
239 	desc->page = NULL;
240 	desc->ptr = NULL;
241 }
242 
243 /*
244  * Given a pointer to a buffer that has already been filled by a call
245  * to readdir, find the next entry with cookie '*desc->dir_cookie'.
246  *
247  * If the end of the buffer has been reached, return -EAGAIN, if not,
248  * return the offset within the buffer of the next entry to be
249  * read.
250  */
251 static inline
252 int find_dirent(nfs_readdir_descriptor_t *desc)
253 {
254 	struct nfs_entry *entry = desc->entry;
255 	int		loop_count = 0,
256 			status;
257 
258 	while((status = dir_decode(desc)) == 0) {
259 		dfprintk(DIRCACHE, "NFS: %s: examining cookie %Lu\n",
260 				__func__, (unsigned long long)entry->cookie);
261 		if (entry->prev_cookie == *desc->dir_cookie)
262 			break;
263 		if (loop_count++ > 200) {
264 			loop_count = 0;
265 			schedule();
266 		}
267 	}
268 	return status;
269 }
270 
271 /*
272  * Given a pointer to a buffer that has already been filled by a call
273  * to readdir, find the entry at offset 'desc->file->f_pos'.
274  *
275  * If the end of the buffer has been reached, return -EAGAIN, if not,
276  * return the offset within the buffer of the next entry to be
277  * read.
278  */
279 static inline
280 int find_dirent_index(nfs_readdir_descriptor_t *desc)
281 {
282 	struct nfs_entry *entry = desc->entry;
283 	int		loop_count = 0,
284 			status;
285 
286 	for(;;) {
287 		status = dir_decode(desc);
288 		if (status)
289 			break;
290 
291 		dfprintk(DIRCACHE, "NFS: found cookie %Lu at index %Ld\n",
292 				(unsigned long long)entry->cookie, desc->current_index);
293 
294 		if (desc->file->f_pos == desc->current_index) {
295 			*desc->dir_cookie = entry->cookie;
296 			break;
297 		}
298 		desc->current_index++;
299 		if (loop_count++ > 200) {
300 			loop_count = 0;
301 			schedule();
302 		}
303 	}
304 	return status;
305 }
306 
307 /*
308  * Find the given page, and call find_dirent() or find_dirent_index in
309  * order to try to return the next entry.
310  */
311 static inline
312 int find_dirent_page(nfs_readdir_descriptor_t *desc)
313 {
314 	struct inode	*inode = desc->file->f_path.dentry->d_inode;
315 	struct page	*page;
316 	int		status;
317 
318 	dfprintk(DIRCACHE, "NFS: %s: searching page %ld for target %Lu\n",
319 			__func__, desc->page_index,
320 			(long long) *desc->dir_cookie);
321 
322 	/* If we find the page in the page_cache, we cannot be sure
323 	 * how fresh the data is, so we will ignore readdir_plus attributes.
324 	 */
325 	desc->timestamp_valid = 0;
326 	page = read_cache_page(inode->i_mapping, desc->page_index,
327 			       (filler_t *)nfs_readdir_filler, desc);
328 	if (IS_ERR(page)) {
329 		status = PTR_ERR(page);
330 		goto out;
331 	}
332 
333 	/* NOTE: Someone else may have changed the READDIRPLUS flag */
334 	desc->page = page;
335 	desc->ptr = kmap(page);		/* matching kunmap in nfs_do_filldir */
336 	if (*desc->dir_cookie != 0)
337 		status = find_dirent(desc);
338 	else
339 		status = find_dirent_index(desc);
340 	if (status < 0)
341 		dir_page_release(desc);
342  out:
343 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
344 	return status;
345 }
346 
347 /*
348  * Recurse through the page cache pages, and return a
349  * filled nfs_entry structure of the next directory entry if possible.
350  *
351  * The target for the search is '*desc->dir_cookie' if non-0,
352  * 'desc->file->f_pos' otherwise
353  */
354 static inline
355 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
356 {
357 	int		loop_count = 0;
358 	int		res;
359 
360 	/* Always search-by-index from the beginning of the cache */
361 	if (*desc->dir_cookie == 0) {
362 		dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for offset %Ld\n",
363 				(long long)desc->file->f_pos);
364 		desc->page_index = 0;
365 		desc->entry->cookie = desc->entry->prev_cookie = 0;
366 		desc->entry->eof = 0;
367 		desc->current_index = 0;
368 	} else
369 		dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for cookie %Lu\n",
370 				(unsigned long long)*desc->dir_cookie);
371 
372 	for (;;) {
373 		res = find_dirent_page(desc);
374 		if (res != -EAGAIN)
375 			break;
376 		/* Align to beginning of next page */
377 		desc->page_index ++;
378 		if (loop_count++ > 200) {
379 			loop_count = 0;
380 			schedule();
381 		}
382 	}
383 
384 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, res);
385 	return res;
386 }
387 
388 static inline unsigned int dt_type(struct inode *inode)
389 {
390 	return (inode->i_mode >> 12) & 15;
391 }
392 
393 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc);
394 
395 /*
396  * Once we've found the start of the dirent within a page: fill 'er up...
397  */
398 static
399 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
400 		   filldir_t filldir)
401 {
402 	struct file	*file = desc->file;
403 	struct nfs_entry *entry = desc->entry;
404 	struct dentry	*dentry = NULL;
405 	u64		fileid;
406 	int		loop_count = 0,
407 			res;
408 
409 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling starting @ cookie %Lu\n",
410 			(unsigned long long)entry->cookie);
411 
412 	for(;;) {
413 		unsigned d_type = DT_UNKNOWN;
414 		/* Note: entry->prev_cookie contains the cookie for
415 		 *	 retrieving the current dirent on the server */
416 		fileid = entry->ino;
417 
418 		/* Get a dentry if we have one */
419 		if (dentry != NULL)
420 			dput(dentry);
421 		dentry = nfs_readdir_lookup(desc);
422 
423 		/* Use readdirplus info */
424 		if (dentry != NULL && dentry->d_inode != NULL) {
425 			d_type = dt_type(dentry->d_inode);
426 			fileid = NFS_FILEID(dentry->d_inode);
427 		}
428 
429 		res = filldir(dirent, entry->name, entry->len,
430 			      file->f_pos, nfs_compat_user_ino64(fileid),
431 			      d_type);
432 		if (res < 0)
433 			break;
434 		file->f_pos++;
435 		*desc->dir_cookie = entry->cookie;
436 		if (dir_decode(desc) != 0) {
437 			desc->page_index ++;
438 			break;
439 		}
440 		if (loop_count++ > 200) {
441 			loop_count = 0;
442 			schedule();
443 		}
444 	}
445 	dir_page_release(desc);
446 	if (dentry != NULL)
447 		dput(dentry);
448 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
449 			(unsigned long long)*desc->dir_cookie, res);
450 	return res;
451 }
452 
453 /*
454  * If we cannot find a cookie in our cache, we suspect that this is
455  * because it points to a deleted file, so we ask the server to return
456  * whatever it thinks is the next entry. We then feed this to filldir.
457  * If all goes well, we should then be able to find our way round the
458  * cache on the next call to readdir_search_pagecache();
459  *
460  * NOTE: we cannot add the anonymous page to the pagecache because
461  *	 the data it contains might not be page aligned. Besides,
462  *	 we should already have a complete representation of the
463  *	 directory in the page cache by the time we get here.
464  */
465 static inline
466 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
467 		     filldir_t filldir)
468 {
469 	struct file	*file = desc->file;
470 	struct inode	*inode = file->f_path.dentry->d_inode;
471 	struct rpc_cred	*cred = nfs_file_cred(file);
472 	struct page	*page = NULL;
473 	int		status;
474 	unsigned long	timestamp;
475 
476 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
477 			(unsigned long long)*desc->dir_cookie);
478 
479 	page = alloc_page(GFP_HIGHUSER);
480 	if (!page) {
481 		status = -ENOMEM;
482 		goto out;
483 	}
484 	timestamp = jiffies;
485 	status = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred,
486 						*desc->dir_cookie, page,
487 						NFS_SERVER(inode)->dtsize,
488 						desc->plus);
489 	desc->page = page;
490 	desc->ptr = kmap(page);		/* matching kunmap in nfs_do_filldir */
491 	if (status >= 0) {
492 		desc->timestamp = timestamp;
493 		desc->timestamp_valid = 1;
494 		if ((status = dir_decode(desc)) == 0)
495 			desc->entry->prev_cookie = *desc->dir_cookie;
496 	} else
497 		status = -EIO;
498 	if (status < 0)
499 		goto out_release;
500 
501 	status = nfs_do_filldir(desc, dirent, filldir);
502 
503 	/* Reset read descriptor so it searches the page cache from
504 	 * the start upon the next call to readdir_search_pagecache() */
505 	desc->page_index = 0;
506 	desc->entry->cookie = desc->entry->prev_cookie = 0;
507 	desc->entry->eof = 0;
508  out:
509 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
510 			__func__, status);
511 	return status;
512  out_release:
513 	dir_page_release(desc);
514 	goto out;
515 }
516 
517 /* The file offset position represents the dirent entry number.  A
518    last cookie cache takes care of the common case of reading the
519    whole directory.
520  */
521 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
522 {
523 	struct dentry	*dentry = filp->f_path.dentry;
524 	struct inode	*inode = dentry->d_inode;
525 	nfs_readdir_descriptor_t my_desc,
526 			*desc = &my_desc;
527 	struct nfs_entry my_entry;
528 	struct nfs_fh	 fh;
529 	struct nfs_fattr fattr;
530 	long		res;
531 
532 	dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n",
533 			dentry->d_parent->d_name.name, dentry->d_name.name,
534 			(long long)filp->f_pos);
535 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
536 
537 	/*
538 	 * filp->f_pos points to the dirent entry number.
539 	 * *desc->dir_cookie has the cookie for the next entry. We have
540 	 * to either find the entry with the appropriate number or
541 	 * revalidate the cookie.
542 	 */
543 	memset(desc, 0, sizeof(*desc));
544 
545 	desc->file = filp;
546 	desc->dir_cookie = &nfs_file_open_context(filp)->dir_cookie;
547 	desc->decode = NFS_PROTO(inode)->decode_dirent;
548 	desc->plus = NFS_USE_READDIRPLUS(inode);
549 
550 	my_entry.cookie = my_entry.prev_cookie = 0;
551 	my_entry.eof = 0;
552 	my_entry.fh = &fh;
553 	my_entry.fattr = &fattr;
554 	nfs_fattr_init(&fattr);
555 	desc->entry = &my_entry;
556 
557 	nfs_block_sillyrename(dentry);
558 	res = nfs_revalidate_mapping_nolock(inode, filp->f_mapping);
559 	if (res < 0)
560 		goto out;
561 
562 	while(!desc->entry->eof) {
563 		res = readdir_search_pagecache(desc);
564 
565 		if (res == -EBADCOOKIE) {
566 			/* This means either end of directory */
567 			if (*desc->dir_cookie && desc->entry->cookie != *desc->dir_cookie) {
568 				/* Or that the server has 'lost' a cookie */
569 				res = uncached_readdir(desc, dirent, filldir);
570 				if (res >= 0)
571 					continue;
572 			}
573 			res = 0;
574 			break;
575 		}
576 		if (res == -ETOOSMALL && desc->plus) {
577 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
578 			nfs_zap_caches(inode);
579 			desc->plus = 0;
580 			desc->entry->eof = 0;
581 			continue;
582 		}
583 		if (res < 0)
584 			break;
585 
586 		res = nfs_do_filldir(desc, dirent, filldir);
587 		if (res < 0) {
588 			res = 0;
589 			break;
590 		}
591 	}
592 out:
593 	nfs_unblock_sillyrename(dentry);
594 	if (res > 0)
595 		res = 0;
596 	dfprintk(FILE, "NFS: readdir(%s/%s) returns %ld\n",
597 			dentry->d_parent->d_name.name, dentry->d_name.name,
598 			res);
599 	return res;
600 }
601 
602 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
603 {
604 	struct dentry *dentry = filp->f_path.dentry;
605 	struct inode *inode = dentry->d_inode;
606 
607 	dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n",
608 			dentry->d_parent->d_name.name,
609 			dentry->d_name.name,
610 			offset, origin);
611 
612 	mutex_lock(&inode->i_mutex);
613 	switch (origin) {
614 		case 1:
615 			offset += filp->f_pos;
616 		case 0:
617 			if (offset >= 0)
618 				break;
619 		default:
620 			offset = -EINVAL;
621 			goto out;
622 	}
623 	if (offset != filp->f_pos) {
624 		filp->f_pos = offset;
625 		nfs_file_open_context(filp)->dir_cookie = 0;
626 	}
627 out:
628 	mutex_unlock(&inode->i_mutex);
629 	return offset;
630 }
631 
632 /*
633  * All directory operations under NFS are synchronous, so fsync()
634  * is a dummy operation.
635  */
636 static int nfs_fsync_dir(struct file *filp, struct dentry *dentry, int datasync)
637 {
638 	dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n",
639 			dentry->d_parent->d_name.name, dentry->d_name.name,
640 			datasync);
641 
642 	nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC);
643 	return 0;
644 }
645 
646 /**
647  * nfs_force_lookup_revalidate - Mark the directory as having changed
648  * @dir - pointer to directory inode
649  *
650  * This forces the revalidation code in nfs_lookup_revalidate() to do a
651  * full lookup on all child dentries of 'dir' whenever a change occurs
652  * on the server that might have invalidated our dcache.
653  *
654  * The caller should be holding dir->i_lock
655  */
656 void nfs_force_lookup_revalidate(struct inode *dir)
657 {
658 	NFS_I(dir)->cache_change_attribute = jiffies;
659 }
660 
661 /*
662  * A check for whether or not the parent directory has changed.
663  * In the case it has, we assume that the dentries are untrustworthy
664  * and may need to be looked up again.
665  */
666 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
667 {
668 	if (IS_ROOT(dentry))
669 		return 1;
670 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
671 		return 0;
672 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
673 	if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
674 		return 0;
675 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
676 		return 0;
677 	return 1;
678 }
679 
680 /*
681  * Return the intent data that applies to this particular path component
682  *
683  * Note that the current set of intents only apply to the very last
684  * component of the path.
685  * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
686  */
687 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, unsigned int mask)
688 {
689 	if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT))
690 		return 0;
691 	return nd->flags & mask;
692 }
693 
694 /*
695  * Use intent information to check whether or not we're going to do
696  * an O_EXCL create using this path component.
697  */
698 static int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
699 {
700 	if (NFS_PROTO(dir)->version == 2)
701 		return 0;
702 	if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_CREATE) == 0)
703 		return 0;
704 	return (nd->intent.open.flags & O_EXCL) != 0;
705 }
706 
707 /*
708  * Inode and filehandle revalidation for lookups.
709  *
710  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
711  * or if the intent information indicates that we're about to open this
712  * particular file and the "nocto" mount flag is not set.
713  *
714  */
715 static inline
716 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
717 {
718 	struct nfs_server *server = NFS_SERVER(inode);
719 
720 	if (test_bit(NFS_INO_MOUNTPOINT, &NFS_I(inode)->flags))
721 		return 0;
722 	if (nd != NULL) {
723 		/* VFS wants an on-the-wire revalidation */
724 		if (nd->flags & LOOKUP_REVAL)
725 			goto out_force;
726 		/* This is an open(2) */
727 		if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
728 				!(server->flags & NFS_MOUNT_NOCTO) &&
729 				(S_ISREG(inode->i_mode) ||
730 				 S_ISDIR(inode->i_mode)))
731 			goto out_force;
732 		return 0;
733 	}
734 	return nfs_revalidate_inode(server, inode);
735 out_force:
736 	return __nfs_revalidate_inode(server, inode);
737 }
738 
739 /*
740  * We judge how long we want to trust negative
741  * dentries by looking at the parent inode mtime.
742  *
743  * If parent mtime has changed, we revalidate, else we wait for a
744  * period corresponding to the parent's attribute cache timeout value.
745  */
746 static inline
747 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
748 		       struct nameidata *nd)
749 {
750 	/* Don't revalidate a negative dentry if we're creating a new file */
751 	if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
752 		return 0;
753 	return !nfs_check_verifier(dir, dentry);
754 }
755 
756 /*
757  * This is called every time the dcache has a lookup hit,
758  * and we should check whether we can really trust that
759  * lookup.
760  *
761  * NOTE! The hit can be a negative hit too, don't assume
762  * we have an inode!
763  *
764  * If the parent directory is seen to have changed, we throw out the
765  * cached dentry and do a new lookup.
766  */
767 static int nfs_lookup_revalidate(struct dentry * dentry, struct nameidata *nd)
768 {
769 	struct inode *dir;
770 	struct inode *inode;
771 	struct dentry *parent;
772 	int error;
773 	struct nfs_fh fhandle;
774 	struct nfs_fattr fattr;
775 
776 	parent = dget_parent(dentry);
777 	dir = parent->d_inode;
778 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
779 	inode = dentry->d_inode;
780 
781 	if (!inode) {
782 		if (nfs_neg_need_reval(dir, dentry, nd))
783 			goto out_bad;
784 		goto out_valid;
785 	}
786 
787 	if (is_bad_inode(inode)) {
788 		dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
789 				__func__, dentry->d_parent->d_name.name,
790 				dentry->d_name.name);
791 		goto out_bad;
792 	}
793 
794 	/* Force a full look up iff the parent directory has changed */
795 	if (!nfs_is_exclusive_create(dir, nd) && nfs_check_verifier(dir, dentry)) {
796 		if (nfs_lookup_verify_inode(inode, nd))
797 			goto out_zap_parent;
798 		goto out_valid;
799 	}
800 
801 	if (NFS_STALE(inode))
802 		goto out_bad;
803 
804 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
805 	if (error)
806 		goto out_bad;
807 	if (nfs_compare_fh(NFS_FH(inode), &fhandle))
808 		goto out_bad;
809 	if ((error = nfs_refresh_inode(inode, &fattr)) != 0)
810 		goto out_bad;
811 
812 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
813  out_valid:
814 	dput(parent);
815 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
816 			__func__, dentry->d_parent->d_name.name,
817 			dentry->d_name.name);
818 	return 1;
819 out_zap_parent:
820 	nfs_zap_caches(dir);
821  out_bad:
822 	nfs_mark_for_revalidate(dir);
823 	if (inode && S_ISDIR(inode->i_mode)) {
824 		/* Purge readdir caches. */
825 		nfs_zap_caches(inode);
826 		/* If we have submounts, don't unhash ! */
827 		if (have_submounts(dentry))
828 			goto out_valid;
829 		shrink_dcache_parent(dentry);
830 	}
831 	d_drop(dentry);
832 	dput(parent);
833 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
834 			__func__, dentry->d_parent->d_name.name,
835 			dentry->d_name.name);
836 	return 0;
837 }
838 
839 /*
840  * This is called from dput() when d_count is going to 0.
841  */
842 static int nfs_dentry_delete(struct dentry *dentry)
843 {
844 	dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
845 		dentry->d_parent->d_name.name, dentry->d_name.name,
846 		dentry->d_flags);
847 
848 	/* Unhash any dentry with a stale inode */
849 	if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
850 		return 1;
851 
852 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
853 		/* Unhash it, so that ->d_iput() would be called */
854 		return 1;
855 	}
856 	if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
857 		/* Unhash it, so that ancestors of killed async unlink
858 		 * files will be cleaned up during umount */
859 		return 1;
860 	}
861 	return 0;
862 
863 }
864 
865 static void nfs_drop_nlink(struct inode *inode)
866 {
867 	spin_lock(&inode->i_lock);
868 	if (inode->i_nlink > 0)
869 		drop_nlink(inode);
870 	spin_unlock(&inode->i_lock);
871 }
872 
873 /*
874  * Called when the dentry loses inode.
875  * We use it to clean up silly-renamed files.
876  */
877 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
878 {
879 	if (S_ISDIR(inode->i_mode))
880 		/* drop any readdir cache as it could easily be old */
881 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
882 
883 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
884 		drop_nlink(inode);
885 		nfs_complete_unlink(dentry, inode);
886 	}
887 	iput(inode);
888 }
889 
890 struct dentry_operations nfs_dentry_operations = {
891 	.d_revalidate	= nfs_lookup_revalidate,
892 	.d_delete	= nfs_dentry_delete,
893 	.d_iput		= nfs_dentry_iput,
894 };
895 
896 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
897 {
898 	struct dentry *res;
899 	struct dentry *parent;
900 	struct inode *inode = NULL;
901 	int error;
902 	struct nfs_fh fhandle;
903 	struct nfs_fattr fattr;
904 
905 	dfprintk(VFS, "NFS: lookup(%s/%s)\n",
906 		dentry->d_parent->d_name.name, dentry->d_name.name);
907 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
908 
909 	res = ERR_PTR(-ENAMETOOLONG);
910 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
911 		goto out;
912 
913 	res = ERR_PTR(-ENOMEM);
914 	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
915 
916 	/*
917 	 * If we're doing an exclusive create, optimize away the lookup
918 	 * but don't hash the dentry.
919 	 */
920 	if (nfs_is_exclusive_create(dir, nd)) {
921 		d_instantiate(dentry, NULL);
922 		res = NULL;
923 		goto out;
924 	}
925 
926 	parent = dentry->d_parent;
927 	/* Protect against concurrent sillydeletes */
928 	nfs_block_sillyrename(parent);
929 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
930 	if (error == -ENOENT)
931 		goto no_entry;
932 	if (error < 0) {
933 		res = ERR_PTR(error);
934 		goto out_unblock_sillyrename;
935 	}
936 	inode = nfs_fhget(dentry->d_sb, &fhandle, &fattr);
937 	res = (struct dentry *)inode;
938 	if (IS_ERR(res))
939 		goto out_unblock_sillyrename;
940 
941 no_entry:
942 	res = d_materialise_unique(dentry, inode);
943 	if (res != NULL) {
944 		if (IS_ERR(res))
945 			goto out_unblock_sillyrename;
946 		dentry = res;
947 	}
948 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
949 out_unblock_sillyrename:
950 	nfs_unblock_sillyrename(parent);
951 out:
952 	return res;
953 }
954 
955 #ifdef CONFIG_NFS_V4
956 static int nfs_open_revalidate(struct dentry *, struct nameidata *);
957 
958 struct dentry_operations nfs4_dentry_operations = {
959 	.d_revalidate	= nfs_open_revalidate,
960 	.d_delete	= nfs_dentry_delete,
961 	.d_iput		= nfs_dentry_iput,
962 };
963 
964 /*
965  * Use intent information to determine whether we need to substitute
966  * the NFSv4-style stateful OPEN for the LOOKUP call
967  */
968 static int is_atomic_open(struct inode *dir, struct nameidata *nd)
969 {
970 	if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
971 		return 0;
972 	/* NFS does not (yet) have a stateful open for directories */
973 	if (nd->flags & LOOKUP_DIRECTORY)
974 		return 0;
975 	/* Are we trying to write to a read only partition? */
976 	if (__mnt_is_readonly(nd->path.mnt) &&
977 	    (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE)))
978 		return 0;
979 	return 1;
980 }
981 
982 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
983 {
984 	struct dentry *res = NULL;
985 	int error;
986 
987 	dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
988 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
989 
990 	/* Check that we are indeed trying to open this file */
991 	if (!is_atomic_open(dir, nd))
992 		goto no_open;
993 
994 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
995 		res = ERR_PTR(-ENAMETOOLONG);
996 		goto out;
997 	}
998 	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
999 
1000 	/* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash
1001 	 * the dentry. */
1002 	if (nd->intent.open.flags & O_EXCL) {
1003 		d_instantiate(dentry, NULL);
1004 		goto out;
1005 	}
1006 
1007 	/* Open the file on the server */
1008 	res = nfs4_atomic_open(dir, dentry, nd);
1009 	if (IS_ERR(res)) {
1010 		error = PTR_ERR(res);
1011 		switch (error) {
1012 			/* Make a negative dentry */
1013 			case -ENOENT:
1014 				res = NULL;
1015 				goto out;
1016 			/* This turned out not to be a regular file */
1017 			case -EISDIR:
1018 			case -ENOTDIR:
1019 				goto no_open;
1020 			case -ELOOP:
1021 				if (!(nd->intent.open.flags & O_NOFOLLOW))
1022 					goto no_open;
1023 			/* case -EINVAL: */
1024 			default:
1025 				goto out;
1026 		}
1027 	} else if (res != NULL)
1028 		dentry = res;
1029 out:
1030 	return res;
1031 no_open:
1032 	return nfs_lookup(dir, dentry, nd);
1033 }
1034 
1035 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
1036 {
1037 	struct dentry *parent = NULL;
1038 	struct inode *inode = dentry->d_inode;
1039 	struct inode *dir;
1040 	int openflags, ret = 0;
1041 
1042 	parent = dget_parent(dentry);
1043 	dir = parent->d_inode;
1044 	if (!is_atomic_open(dir, nd))
1045 		goto no_open;
1046 	/* We can't create new files in nfs_open_revalidate(), so we
1047 	 * optimize away revalidation of negative dentries.
1048 	 */
1049 	if (inode == NULL) {
1050 		if (!nfs_neg_need_reval(dir, dentry, nd))
1051 			ret = 1;
1052 		goto out;
1053 	}
1054 
1055 	/* NFS only supports OPEN on regular files */
1056 	if (!S_ISREG(inode->i_mode))
1057 		goto no_open;
1058 	openflags = nd->intent.open.flags;
1059 	/* We cannot do exclusive creation on a positive dentry */
1060 	if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1061 		goto no_open;
1062 	/* We can't create new files, or truncate existing ones here */
1063 	openflags &= ~(O_CREAT|O_TRUNC);
1064 
1065 	/*
1066 	 * Note: we're not holding inode->i_mutex and so may be racing with
1067 	 * operations that change the directory. We therefore save the
1068 	 * change attribute *before* we do the RPC call.
1069 	 */
1070 	ret = nfs4_open_revalidate(dir, dentry, openflags, nd);
1071 out:
1072 	dput(parent);
1073 	if (!ret)
1074 		d_drop(dentry);
1075 	return ret;
1076 no_open:
1077 	dput(parent);
1078 	if (inode != NULL && nfs_have_delegation(inode, FMODE_READ))
1079 		return 1;
1080 	return nfs_lookup_revalidate(dentry, nd);
1081 }
1082 #endif /* CONFIG_NFSV4 */
1083 
1084 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc)
1085 {
1086 	struct dentry *parent = desc->file->f_path.dentry;
1087 	struct inode *dir = parent->d_inode;
1088 	struct nfs_entry *entry = desc->entry;
1089 	struct dentry *dentry, *alias;
1090 	struct qstr name = {
1091 		.name = entry->name,
1092 		.len = entry->len,
1093 	};
1094 	struct inode *inode;
1095 	unsigned long verf = nfs_save_change_attribute(dir);
1096 
1097 	switch (name.len) {
1098 		case 2:
1099 			if (name.name[0] == '.' && name.name[1] == '.')
1100 				return dget_parent(parent);
1101 			break;
1102 		case 1:
1103 			if (name.name[0] == '.')
1104 				return dget(parent);
1105 	}
1106 
1107 	spin_lock(&dir->i_lock);
1108 	if (NFS_I(dir)->cache_validity & NFS_INO_INVALID_DATA) {
1109 		spin_unlock(&dir->i_lock);
1110 		return NULL;
1111 	}
1112 	spin_unlock(&dir->i_lock);
1113 
1114 	name.hash = full_name_hash(name.name, name.len);
1115 	dentry = d_lookup(parent, &name);
1116 	if (dentry != NULL) {
1117 		/* Is this a positive dentry that matches the readdir info? */
1118 		if (dentry->d_inode != NULL &&
1119 				(NFS_FILEID(dentry->d_inode) == entry->ino ||
1120 				d_mountpoint(dentry))) {
1121 			if (!desc->plus || entry->fh->size == 0)
1122 				return dentry;
1123 			if (nfs_compare_fh(NFS_FH(dentry->d_inode),
1124 						entry->fh) == 0)
1125 				goto out_renew;
1126 		}
1127 		/* No, so d_drop to allow one to be created */
1128 		d_drop(dentry);
1129 		dput(dentry);
1130 	}
1131 	if (!desc->plus || !(entry->fattr->valid & NFS_ATTR_FATTR))
1132 		return NULL;
1133 	if (name.len > NFS_SERVER(dir)->namelen)
1134 		return NULL;
1135 	/* Note: caller is already holding the dir->i_mutex! */
1136 	dentry = d_alloc(parent, &name);
1137 	if (dentry == NULL)
1138 		return NULL;
1139 	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1140 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
1141 	if (IS_ERR(inode)) {
1142 		dput(dentry);
1143 		return NULL;
1144 	}
1145 
1146 	alias = d_materialise_unique(dentry, inode);
1147 	if (alias != NULL) {
1148 		dput(dentry);
1149 		if (IS_ERR(alias))
1150 			return NULL;
1151 		dentry = alias;
1152 	}
1153 
1154 out_renew:
1155 	nfs_set_verifier(dentry, verf);
1156 	return dentry;
1157 }
1158 
1159 /*
1160  * Code common to create, mkdir, and mknod.
1161  */
1162 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1163 				struct nfs_fattr *fattr)
1164 {
1165 	struct dentry *parent = dget_parent(dentry);
1166 	struct inode *dir = parent->d_inode;
1167 	struct inode *inode;
1168 	int error = -EACCES;
1169 
1170 	d_drop(dentry);
1171 
1172 	/* We may have been initialized further down */
1173 	if (dentry->d_inode)
1174 		goto out;
1175 	if (fhandle->size == 0) {
1176 		error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1177 		if (error)
1178 			goto out_error;
1179 	}
1180 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1181 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1182 		struct nfs_server *server = NFS_SB(dentry->d_sb);
1183 		error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1184 		if (error < 0)
1185 			goto out_error;
1186 	}
1187 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1188 	error = PTR_ERR(inode);
1189 	if (IS_ERR(inode))
1190 		goto out_error;
1191 	d_add(dentry, inode);
1192 out:
1193 	dput(parent);
1194 	return 0;
1195 out_error:
1196 	nfs_mark_for_revalidate(dir);
1197 	dput(parent);
1198 	return error;
1199 }
1200 
1201 /*
1202  * Following a failed create operation, we drop the dentry rather
1203  * than retain a negative dentry. This avoids a problem in the event
1204  * that the operation succeeded on the server, but an error in the
1205  * reply path made it appear to have failed.
1206  */
1207 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode,
1208 		struct nameidata *nd)
1209 {
1210 	struct iattr attr;
1211 	int error;
1212 	int open_flags = 0;
1213 
1214 	dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1215 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1216 
1217 	attr.ia_mode = mode;
1218 	attr.ia_valid = ATTR_MODE;
1219 
1220 	if ((nd->flags & LOOKUP_CREATE) != 0)
1221 		open_flags = nd->intent.open.flags;
1222 
1223 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, nd);
1224 	if (error != 0)
1225 		goto out_err;
1226 	return 0;
1227 out_err:
1228 	d_drop(dentry);
1229 	return error;
1230 }
1231 
1232 /*
1233  * See comments for nfs_proc_create regarding failed operations.
1234  */
1235 static int
1236 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev)
1237 {
1238 	struct iattr attr;
1239 	int status;
1240 
1241 	dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1242 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1243 
1244 	if (!new_valid_dev(rdev))
1245 		return -EINVAL;
1246 
1247 	attr.ia_mode = mode;
1248 	attr.ia_valid = ATTR_MODE;
1249 
1250 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1251 	if (status != 0)
1252 		goto out_err;
1253 	return 0;
1254 out_err:
1255 	d_drop(dentry);
1256 	return status;
1257 }
1258 
1259 /*
1260  * See comments for nfs_proc_create regarding failed operations.
1261  */
1262 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1263 {
1264 	struct iattr attr;
1265 	int error;
1266 
1267 	dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1268 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1269 
1270 	attr.ia_valid = ATTR_MODE;
1271 	attr.ia_mode = mode | S_IFDIR;
1272 
1273 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1274 	if (error != 0)
1275 		goto out_err;
1276 	return 0;
1277 out_err:
1278 	d_drop(dentry);
1279 	return error;
1280 }
1281 
1282 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1283 {
1284 	if (dentry->d_inode != NULL && !d_unhashed(dentry))
1285 		d_delete(dentry);
1286 }
1287 
1288 static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1289 {
1290 	int error;
1291 
1292 	dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1293 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1294 
1295 	error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1296 	/* Ensure the VFS deletes this inode */
1297 	if (error == 0 && dentry->d_inode != NULL)
1298 		clear_nlink(dentry->d_inode);
1299 	else if (error == -ENOENT)
1300 		nfs_dentry_handle_enoent(dentry);
1301 
1302 	return error;
1303 }
1304 
1305 static int nfs_sillyrename(struct inode *dir, struct dentry *dentry)
1306 {
1307 	static unsigned int sillycounter;
1308 	const int      fileidsize  = sizeof(NFS_FILEID(dentry->d_inode))*2;
1309 	const int      countersize = sizeof(sillycounter)*2;
1310 	const int      slen        = sizeof(".nfs")+fileidsize+countersize-1;
1311 	char           silly[slen+1];
1312 	struct qstr    qsilly;
1313 	struct dentry *sdentry;
1314 	int            error = -EIO;
1315 
1316 	dfprintk(VFS, "NFS: silly-rename(%s/%s, ct=%d)\n",
1317 		dentry->d_parent->d_name.name, dentry->d_name.name,
1318 		atomic_read(&dentry->d_count));
1319 	nfs_inc_stats(dir, NFSIOS_SILLYRENAME);
1320 
1321 	/*
1322 	 * We don't allow a dentry to be silly-renamed twice.
1323 	 */
1324 	error = -EBUSY;
1325 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1326 		goto out;
1327 
1328 	sprintf(silly, ".nfs%*.*Lx",
1329 		fileidsize, fileidsize,
1330 		(unsigned long long)NFS_FILEID(dentry->d_inode));
1331 
1332 	/* Return delegation in anticipation of the rename */
1333 	nfs_inode_return_delegation(dentry->d_inode);
1334 
1335 	sdentry = NULL;
1336 	do {
1337 		char *suffix = silly + slen - countersize;
1338 
1339 		dput(sdentry);
1340 		sillycounter++;
1341 		sprintf(suffix, "%*.*x", countersize, countersize, sillycounter);
1342 
1343 		dfprintk(VFS, "NFS: trying to rename %s to %s\n",
1344 				dentry->d_name.name, silly);
1345 
1346 		sdentry = lookup_one_len(silly, dentry->d_parent, slen);
1347 		/*
1348 		 * N.B. Better to return EBUSY here ... it could be
1349 		 * dangerous to delete the file while it's in use.
1350 		 */
1351 		if (IS_ERR(sdentry))
1352 			goto out;
1353 	} while(sdentry->d_inode != NULL); /* need negative lookup */
1354 
1355 	qsilly.name = silly;
1356 	qsilly.len  = strlen(silly);
1357 	if (dentry->d_inode) {
1358 		error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1359 				dir, &qsilly);
1360 		nfs_mark_for_revalidate(dentry->d_inode);
1361 	} else
1362 		error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1363 				dir, &qsilly);
1364 	if (!error) {
1365 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1366 		d_move(dentry, sdentry);
1367 		error = nfs_async_unlink(dir, dentry);
1368  		/* If we return 0 we don't unlink */
1369 	}
1370 	dput(sdentry);
1371 out:
1372 	return error;
1373 }
1374 
1375 /*
1376  * Remove a file after making sure there are no pending writes,
1377  * and after checking that the file has only one user.
1378  *
1379  * We invalidate the attribute cache and free the inode prior to the operation
1380  * to avoid possible races if the server reuses the inode.
1381  */
1382 static int nfs_safe_remove(struct dentry *dentry)
1383 {
1384 	struct inode *dir = dentry->d_parent->d_inode;
1385 	struct inode *inode = dentry->d_inode;
1386 	int error = -EBUSY;
1387 
1388 	dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1389 		dentry->d_parent->d_name.name, dentry->d_name.name);
1390 
1391 	/* If the dentry was sillyrenamed, we simply call d_delete() */
1392 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1393 		error = 0;
1394 		goto out;
1395 	}
1396 
1397 	if (inode != NULL) {
1398 		nfs_inode_return_delegation(inode);
1399 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1400 		/* The VFS may want to delete this inode */
1401 		if (error == 0)
1402 			nfs_drop_nlink(inode);
1403 		nfs_mark_for_revalidate(inode);
1404 	} else
1405 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1406 	if (error == -ENOENT)
1407 		nfs_dentry_handle_enoent(dentry);
1408 out:
1409 	return error;
1410 }
1411 
1412 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1413  *  belongs to an active ".nfs..." file and we return -EBUSY.
1414  *
1415  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1416  */
1417 static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1418 {
1419 	int error;
1420 	int need_rehash = 0;
1421 
1422 	dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1423 		dir->i_ino, dentry->d_name.name);
1424 
1425 	spin_lock(&dcache_lock);
1426 	spin_lock(&dentry->d_lock);
1427 	if (atomic_read(&dentry->d_count) > 1) {
1428 		spin_unlock(&dentry->d_lock);
1429 		spin_unlock(&dcache_lock);
1430 		/* Start asynchronous writeout of the inode */
1431 		write_inode_now(dentry->d_inode, 0);
1432 		error = nfs_sillyrename(dir, dentry);
1433 		return error;
1434 	}
1435 	if (!d_unhashed(dentry)) {
1436 		__d_drop(dentry);
1437 		need_rehash = 1;
1438 	}
1439 	spin_unlock(&dentry->d_lock);
1440 	spin_unlock(&dcache_lock);
1441 	error = nfs_safe_remove(dentry);
1442 	if (!error || error == -ENOENT) {
1443 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1444 	} else if (need_rehash)
1445 		d_rehash(dentry);
1446 	return error;
1447 }
1448 
1449 /*
1450  * To create a symbolic link, most file systems instantiate a new inode,
1451  * add a page to it containing the path, then write it out to the disk
1452  * using prepare_write/commit_write.
1453  *
1454  * Unfortunately the NFS client can't create the in-core inode first
1455  * because it needs a file handle to create an in-core inode (see
1456  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1457  * symlink request has completed on the server.
1458  *
1459  * So instead we allocate a raw page, copy the symname into it, then do
1460  * the SYMLINK request with the page as the buffer.  If it succeeds, we
1461  * now have a new file handle and can instantiate an in-core NFS inode
1462  * and move the raw page into its mapping.
1463  */
1464 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1465 {
1466 	struct pagevec lru_pvec;
1467 	struct page *page;
1468 	char *kaddr;
1469 	struct iattr attr;
1470 	unsigned int pathlen = strlen(symname);
1471 	int error;
1472 
1473 	dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1474 		dir->i_ino, dentry->d_name.name, symname);
1475 
1476 	if (pathlen > PAGE_SIZE)
1477 		return -ENAMETOOLONG;
1478 
1479 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
1480 	attr.ia_valid = ATTR_MODE;
1481 
1482 	page = alloc_page(GFP_HIGHUSER);
1483 	if (!page)
1484 		return -ENOMEM;
1485 
1486 	kaddr = kmap_atomic(page, KM_USER0);
1487 	memcpy(kaddr, symname, pathlen);
1488 	if (pathlen < PAGE_SIZE)
1489 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1490 	kunmap_atomic(kaddr, KM_USER0);
1491 
1492 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1493 	if (error != 0) {
1494 		dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1495 			dir->i_sb->s_id, dir->i_ino,
1496 			dentry->d_name.name, symname, error);
1497 		d_drop(dentry);
1498 		__free_page(page);
1499 		return error;
1500 	}
1501 
1502 	/*
1503 	 * No big deal if we can't add this page to the page cache here.
1504 	 * READLINK will get the missing page from the server if needed.
1505 	 */
1506 	pagevec_init(&lru_pvec, 0);
1507 	if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1508 							GFP_KERNEL)) {
1509 		pagevec_add(&lru_pvec, page);
1510 		pagevec_lru_add(&lru_pvec);
1511 		SetPageUptodate(page);
1512 		unlock_page(page);
1513 	} else
1514 		__free_page(page);
1515 
1516 	return 0;
1517 }
1518 
1519 static int
1520 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1521 {
1522 	struct inode *inode = old_dentry->d_inode;
1523 	int error;
1524 
1525 	dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1526 		old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1527 		dentry->d_parent->d_name.name, dentry->d_name.name);
1528 
1529 	d_drop(dentry);
1530 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1531 	if (error == 0) {
1532 		atomic_inc(&inode->i_count);
1533 		d_add(dentry, inode);
1534 	}
1535 	return error;
1536 }
1537 
1538 /*
1539  * RENAME
1540  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1541  * different file handle for the same inode after a rename (e.g. when
1542  * moving to a different directory). A fail-safe method to do so would
1543  * be to look up old_dir/old_name, create a link to new_dir/new_name and
1544  * rename the old file using the sillyrename stuff. This way, the original
1545  * file in old_dir will go away when the last process iput()s the inode.
1546  *
1547  * FIXED.
1548  *
1549  * It actually works quite well. One needs to have the possibility for
1550  * at least one ".nfs..." file in each directory the file ever gets
1551  * moved or linked to which happens automagically with the new
1552  * implementation that only depends on the dcache stuff instead of
1553  * using the inode layer
1554  *
1555  * Unfortunately, things are a little more complicated than indicated
1556  * above. For a cross-directory move, we want to make sure we can get
1557  * rid of the old inode after the operation.  This means there must be
1558  * no pending writes (if it's a file), and the use count must be 1.
1559  * If these conditions are met, we can drop the dentries before doing
1560  * the rename.
1561  */
1562 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1563 		      struct inode *new_dir, struct dentry *new_dentry)
1564 {
1565 	struct inode *old_inode = old_dentry->d_inode;
1566 	struct inode *new_inode = new_dentry->d_inode;
1567 	struct dentry *dentry = NULL, *rehash = NULL;
1568 	int error = -EBUSY;
1569 
1570 	/*
1571 	 * To prevent any new references to the target during the rename,
1572 	 * we unhash the dentry and free the inode in advance.
1573 	 */
1574 	if (!d_unhashed(new_dentry)) {
1575 		d_drop(new_dentry);
1576 		rehash = new_dentry;
1577 	}
1578 
1579 	dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1580 		 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1581 		 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1582 		 atomic_read(&new_dentry->d_count));
1583 
1584 	/*
1585 	 * First check whether the target is busy ... we can't
1586 	 * safely do _any_ rename if the target is in use.
1587 	 *
1588 	 * For files, make a copy of the dentry and then do a
1589 	 * silly-rename. If the silly-rename succeeds, the
1590 	 * copied dentry is hashed and becomes the new target.
1591 	 */
1592 	if (!new_inode)
1593 		goto go_ahead;
1594 	if (S_ISDIR(new_inode->i_mode)) {
1595 		error = -EISDIR;
1596 		if (!S_ISDIR(old_inode->i_mode))
1597 			goto out;
1598 	} else if (atomic_read(&new_dentry->d_count) > 2) {
1599 		int err;
1600 		/* copy the target dentry's name */
1601 		dentry = d_alloc(new_dentry->d_parent,
1602 				 &new_dentry->d_name);
1603 		if (!dentry)
1604 			goto out;
1605 
1606 		/* silly-rename the existing target ... */
1607 		err = nfs_sillyrename(new_dir, new_dentry);
1608 		if (!err) {
1609 			new_dentry = rehash = dentry;
1610 			new_inode = NULL;
1611 			/* instantiate the replacement target */
1612 			d_instantiate(new_dentry, NULL);
1613 		} else if (atomic_read(&new_dentry->d_count) > 1)
1614 			/* dentry still busy? */
1615 			goto out;
1616 	} else
1617 		nfs_drop_nlink(new_inode);
1618 
1619 go_ahead:
1620 	/*
1621 	 * ... prune child dentries and writebacks if needed.
1622 	 */
1623 	if (atomic_read(&old_dentry->d_count) > 1) {
1624 		if (S_ISREG(old_inode->i_mode))
1625 			nfs_wb_all(old_inode);
1626 		shrink_dcache_parent(old_dentry);
1627 	}
1628 	nfs_inode_return_delegation(old_inode);
1629 
1630 	if (new_inode != NULL) {
1631 		nfs_inode_return_delegation(new_inode);
1632 		d_delete(new_dentry);
1633 	}
1634 
1635 	error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1636 					   new_dir, &new_dentry->d_name);
1637 	nfs_mark_for_revalidate(old_inode);
1638 out:
1639 	if (rehash)
1640 		d_rehash(rehash);
1641 	if (!error) {
1642 		d_move(old_dentry, new_dentry);
1643 		nfs_set_verifier(new_dentry,
1644 					nfs_save_change_attribute(new_dir));
1645 	} else if (error == -ENOENT)
1646 		nfs_dentry_handle_enoent(old_dentry);
1647 
1648 	/* new dentry created? */
1649 	if (dentry)
1650 		dput(dentry);
1651 	return error;
1652 }
1653 
1654 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1655 static LIST_HEAD(nfs_access_lru_list);
1656 static atomic_long_t nfs_access_nr_entries;
1657 
1658 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1659 {
1660 	put_rpccred(entry->cred);
1661 	kfree(entry);
1662 	smp_mb__before_atomic_dec();
1663 	atomic_long_dec(&nfs_access_nr_entries);
1664 	smp_mb__after_atomic_dec();
1665 }
1666 
1667 int nfs_access_cache_shrinker(int nr_to_scan, gfp_t gfp_mask)
1668 {
1669 	LIST_HEAD(head);
1670 	struct nfs_inode *nfsi;
1671 	struct nfs_access_entry *cache;
1672 
1673 restart:
1674 	spin_lock(&nfs_access_lru_lock);
1675 	list_for_each_entry(nfsi, &nfs_access_lru_list, access_cache_inode_lru) {
1676 		struct rw_semaphore *s_umount;
1677 		struct inode *inode;
1678 
1679 		if (nr_to_scan-- == 0)
1680 			break;
1681 		s_umount = &nfsi->vfs_inode.i_sb->s_umount;
1682 		if (!down_read_trylock(s_umount))
1683 			continue;
1684 		inode = igrab(&nfsi->vfs_inode);
1685 		if (inode == NULL) {
1686 			up_read(s_umount);
1687 			continue;
1688 		}
1689 		spin_lock(&inode->i_lock);
1690 		if (list_empty(&nfsi->access_cache_entry_lru))
1691 			goto remove_lru_entry;
1692 		cache = list_entry(nfsi->access_cache_entry_lru.next,
1693 				struct nfs_access_entry, lru);
1694 		list_move(&cache->lru, &head);
1695 		rb_erase(&cache->rb_node, &nfsi->access_cache);
1696 		if (!list_empty(&nfsi->access_cache_entry_lru))
1697 			list_move_tail(&nfsi->access_cache_inode_lru,
1698 					&nfs_access_lru_list);
1699 		else {
1700 remove_lru_entry:
1701 			list_del_init(&nfsi->access_cache_inode_lru);
1702 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
1703 		}
1704 		spin_unlock(&inode->i_lock);
1705 		spin_unlock(&nfs_access_lru_lock);
1706 		iput(inode);
1707 		up_read(s_umount);
1708 		goto restart;
1709 	}
1710 	spin_unlock(&nfs_access_lru_lock);
1711 	while (!list_empty(&head)) {
1712 		cache = list_entry(head.next, struct nfs_access_entry, lru);
1713 		list_del(&cache->lru);
1714 		nfs_access_free_entry(cache);
1715 	}
1716 	return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
1717 }
1718 
1719 static void __nfs_access_zap_cache(struct inode *inode)
1720 {
1721 	struct nfs_inode *nfsi = NFS_I(inode);
1722 	struct rb_root *root_node = &nfsi->access_cache;
1723 	struct rb_node *n, *dispose = NULL;
1724 	struct nfs_access_entry *entry;
1725 
1726 	/* Unhook entries from the cache */
1727 	while ((n = rb_first(root_node)) != NULL) {
1728 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
1729 		rb_erase(n, root_node);
1730 		list_del(&entry->lru);
1731 		n->rb_left = dispose;
1732 		dispose = n;
1733 	}
1734 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
1735 	spin_unlock(&inode->i_lock);
1736 
1737 	/* Now kill them all! */
1738 	while (dispose != NULL) {
1739 		n = dispose;
1740 		dispose = n->rb_left;
1741 		nfs_access_free_entry(rb_entry(n, struct nfs_access_entry, rb_node));
1742 	}
1743 }
1744 
1745 void nfs_access_zap_cache(struct inode *inode)
1746 {
1747 	/* Remove from global LRU init */
1748 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
1749 		spin_lock(&nfs_access_lru_lock);
1750 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
1751 		spin_unlock(&nfs_access_lru_lock);
1752 	}
1753 
1754 	spin_lock(&inode->i_lock);
1755 	/* This will release the spinlock */
1756 	__nfs_access_zap_cache(inode);
1757 }
1758 
1759 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
1760 {
1761 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
1762 	struct nfs_access_entry *entry;
1763 
1764 	while (n != NULL) {
1765 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
1766 
1767 		if (cred < entry->cred)
1768 			n = n->rb_left;
1769 		else if (cred > entry->cred)
1770 			n = n->rb_right;
1771 		else
1772 			return entry;
1773 	}
1774 	return NULL;
1775 }
1776 
1777 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
1778 {
1779 	struct nfs_inode *nfsi = NFS_I(inode);
1780 	struct nfs_access_entry *cache;
1781 	int err = -ENOENT;
1782 
1783 	spin_lock(&inode->i_lock);
1784 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
1785 		goto out_zap;
1786 	cache = nfs_access_search_rbtree(inode, cred);
1787 	if (cache == NULL)
1788 		goto out;
1789 	if (!time_in_range(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
1790 		goto out_stale;
1791 	res->jiffies = cache->jiffies;
1792 	res->cred = cache->cred;
1793 	res->mask = cache->mask;
1794 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
1795 	err = 0;
1796 out:
1797 	spin_unlock(&inode->i_lock);
1798 	return err;
1799 out_stale:
1800 	rb_erase(&cache->rb_node, &nfsi->access_cache);
1801 	list_del(&cache->lru);
1802 	spin_unlock(&inode->i_lock);
1803 	nfs_access_free_entry(cache);
1804 	return -ENOENT;
1805 out_zap:
1806 	/* This will release the spinlock */
1807 	__nfs_access_zap_cache(inode);
1808 	return -ENOENT;
1809 }
1810 
1811 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
1812 {
1813 	struct nfs_inode *nfsi = NFS_I(inode);
1814 	struct rb_root *root_node = &nfsi->access_cache;
1815 	struct rb_node **p = &root_node->rb_node;
1816 	struct rb_node *parent = NULL;
1817 	struct nfs_access_entry *entry;
1818 
1819 	spin_lock(&inode->i_lock);
1820 	while (*p != NULL) {
1821 		parent = *p;
1822 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
1823 
1824 		if (set->cred < entry->cred)
1825 			p = &parent->rb_left;
1826 		else if (set->cred > entry->cred)
1827 			p = &parent->rb_right;
1828 		else
1829 			goto found;
1830 	}
1831 	rb_link_node(&set->rb_node, parent, p);
1832 	rb_insert_color(&set->rb_node, root_node);
1833 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1834 	spin_unlock(&inode->i_lock);
1835 	return;
1836 found:
1837 	rb_replace_node(parent, &set->rb_node, root_node);
1838 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1839 	list_del(&entry->lru);
1840 	spin_unlock(&inode->i_lock);
1841 	nfs_access_free_entry(entry);
1842 }
1843 
1844 static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
1845 {
1846 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
1847 	if (cache == NULL)
1848 		return;
1849 	RB_CLEAR_NODE(&cache->rb_node);
1850 	cache->jiffies = set->jiffies;
1851 	cache->cred = get_rpccred(set->cred);
1852 	cache->mask = set->mask;
1853 
1854 	nfs_access_add_rbtree(inode, cache);
1855 
1856 	/* Update accounting */
1857 	smp_mb__before_atomic_inc();
1858 	atomic_long_inc(&nfs_access_nr_entries);
1859 	smp_mb__after_atomic_inc();
1860 
1861 	/* Add inode to global LRU list */
1862 	if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
1863 		spin_lock(&nfs_access_lru_lock);
1864 		list_add_tail(&NFS_I(inode)->access_cache_inode_lru, &nfs_access_lru_list);
1865 		spin_unlock(&nfs_access_lru_lock);
1866 	}
1867 }
1868 
1869 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
1870 {
1871 	struct nfs_access_entry cache;
1872 	int status;
1873 
1874 	status = nfs_access_get_cached(inode, cred, &cache);
1875 	if (status == 0)
1876 		goto out;
1877 
1878 	/* Be clever: ask server to check for all possible rights */
1879 	cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
1880 	cache.cred = cred;
1881 	cache.jiffies = jiffies;
1882 	status = NFS_PROTO(inode)->access(inode, &cache);
1883 	if (status != 0)
1884 		return status;
1885 	nfs_access_add_cache(inode, &cache);
1886 out:
1887 	if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
1888 		return 0;
1889 	return -EACCES;
1890 }
1891 
1892 static int nfs_open_permission_mask(int openflags)
1893 {
1894 	int mask = 0;
1895 
1896 	if (openflags & FMODE_READ)
1897 		mask |= MAY_READ;
1898 	if (openflags & FMODE_WRITE)
1899 		mask |= MAY_WRITE;
1900 	if (openflags & FMODE_EXEC)
1901 		mask |= MAY_EXEC;
1902 	return mask;
1903 }
1904 
1905 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
1906 {
1907 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
1908 }
1909 
1910 int nfs_permission(struct inode *inode, int mask)
1911 {
1912 	struct rpc_cred *cred;
1913 	int res = 0;
1914 
1915 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
1916 
1917 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
1918 		goto out;
1919 	/* Is this sys_access() ? */
1920 	if (mask & MAY_ACCESS)
1921 		goto force_lookup;
1922 
1923 	switch (inode->i_mode & S_IFMT) {
1924 		case S_IFLNK:
1925 			goto out;
1926 		case S_IFREG:
1927 			/* NFSv4 has atomic_open... */
1928 			if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
1929 					&& (mask & MAY_OPEN))
1930 				goto out;
1931 			break;
1932 		case S_IFDIR:
1933 			/*
1934 			 * Optimize away all write operations, since the server
1935 			 * will check permissions when we perform the op.
1936 			 */
1937 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
1938 				goto out;
1939 	}
1940 
1941 force_lookup:
1942 	if (!NFS_PROTO(inode)->access)
1943 		goto out_notsup;
1944 
1945 	cred = rpc_lookup_cred();
1946 	if (!IS_ERR(cred)) {
1947 		res = nfs_do_access(inode, cred, mask);
1948 		put_rpccred(cred);
1949 	} else
1950 		res = PTR_ERR(cred);
1951 out:
1952 	dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
1953 		inode->i_sb->s_id, inode->i_ino, mask, res);
1954 	return res;
1955 out_notsup:
1956 	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1957 	if (res == 0)
1958 		res = generic_permission(inode, mask, NULL);
1959 	goto out;
1960 }
1961 
1962 /*
1963  * Local variables:
1964  *  version-control: t
1965  *  kept-new-versions: 5
1966  * End:
1967  */
1968