xref: /openbmc/linux/fs/nfs/dir.c (revision d9c4e39c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/nfs/dir.c
4  *
5  *  Copyright (C) 1992  Rick Sladkey
6  *
7  *  nfs directory handling functions
8  *
9  * 10 Apr 1996	Added silly rename for unlink	--okir
10  * 28 Sep 1996	Improved directory cache --okir
11  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
12  *              Re-implemented silly rename for unlink, newly implemented
13  *              silly rename for nfs_rename() following the suggestions
14  *              of Olaf Kirch (okir) found in this file.
15  *              Following Linus comments on my original hack, this version
16  *              depends only on the dcache stuff and doesn't touch the inode
17  *              layer (iput() and friends).
18  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
19  */
20 
21 #include <linux/compat.h>
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/errno.h>
25 #include <linux/stat.h>
26 #include <linux/fcntl.h>
27 #include <linux/string.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/mm.h>
31 #include <linux/sunrpc/clnt.h>
32 #include <linux/nfs_fs.h>
33 #include <linux/nfs_mount.h>
34 #include <linux/pagemap.h>
35 #include <linux/pagevec.h>
36 #include <linux/namei.h>
37 #include <linux/mount.h>
38 #include <linux/swap.h>
39 #include <linux/sched.h>
40 #include <linux/kmemleak.h>
41 #include <linux/xattr.h>
42 
43 #include "delegation.h"
44 #include "iostat.h"
45 #include "internal.h"
46 #include "fscache.h"
47 
48 #include "nfstrace.h"
49 
50 /* #define NFS_DEBUG_VERBOSE 1 */
51 
52 static int nfs_opendir(struct inode *, struct file *);
53 static int nfs_closedir(struct inode *, struct file *);
54 static int nfs_readdir(struct file *, struct dir_context *);
55 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
56 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
57 static void nfs_readdir_clear_array(struct page*);
58 
59 const struct file_operations nfs_dir_operations = {
60 	.llseek		= nfs_llseek_dir,
61 	.read		= generic_read_dir,
62 	.iterate_shared	= nfs_readdir,
63 	.open		= nfs_opendir,
64 	.release	= nfs_closedir,
65 	.fsync		= nfs_fsync_dir,
66 };
67 
68 const struct address_space_operations nfs_dir_aops = {
69 	.freepage = nfs_readdir_clear_array,
70 };
71 
72 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir)
73 {
74 	struct nfs_inode *nfsi = NFS_I(dir);
75 	struct nfs_open_dir_context *ctx;
76 	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
77 	if (ctx != NULL) {
78 		ctx->duped = 0;
79 		ctx->attr_gencount = nfsi->attr_gencount;
80 		ctx->dir_cookie = 0;
81 		ctx->dup_cookie = 0;
82 		ctx->page_index = 0;
83 		spin_lock(&dir->i_lock);
84 		if (list_empty(&nfsi->open_files) &&
85 		    (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
86 			nfs_set_cache_invalid(dir,
87 					      NFS_INO_INVALID_DATA |
88 						      NFS_INO_REVAL_FORCED);
89 		list_add(&ctx->list, &nfsi->open_files);
90 		clear_bit(NFS_INO_FORCE_READDIR, &nfsi->flags);
91 		spin_unlock(&dir->i_lock);
92 		return ctx;
93 	}
94 	return  ERR_PTR(-ENOMEM);
95 }
96 
97 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
98 {
99 	spin_lock(&dir->i_lock);
100 	list_del(&ctx->list);
101 	spin_unlock(&dir->i_lock);
102 	kfree(ctx);
103 }
104 
105 /*
106  * Open file
107  */
108 static int
109 nfs_opendir(struct inode *inode, struct file *filp)
110 {
111 	int res = 0;
112 	struct nfs_open_dir_context *ctx;
113 
114 	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
115 
116 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
117 
118 	ctx = alloc_nfs_open_dir_context(inode);
119 	if (IS_ERR(ctx)) {
120 		res = PTR_ERR(ctx);
121 		goto out;
122 	}
123 	filp->private_data = ctx;
124 out:
125 	return res;
126 }
127 
128 static int
129 nfs_closedir(struct inode *inode, struct file *filp)
130 {
131 	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
132 	return 0;
133 }
134 
135 struct nfs_cache_array_entry {
136 	u64 cookie;
137 	u64 ino;
138 	const char *name;
139 	unsigned int name_len;
140 	unsigned char d_type;
141 };
142 
143 struct nfs_cache_array {
144 	u64 last_cookie;
145 	unsigned int size;
146 	unsigned char page_full : 1,
147 		      page_is_eof : 1,
148 		      cookies_are_ordered : 1;
149 	struct nfs_cache_array_entry array[];
150 };
151 
152 struct nfs_readdir_descriptor {
153 	struct file	*file;
154 	struct page	*page;
155 	struct dir_context *ctx;
156 	pgoff_t		page_index;
157 	u64		dir_cookie;
158 	u64		last_cookie;
159 	u64		dup_cookie;
160 	loff_t		current_index;
161 	loff_t		prev_index;
162 
163 	__be32		verf[NFS_DIR_VERIFIER_SIZE];
164 	unsigned long	dir_verifier;
165 	unsigned long	timestamp;
166 	unsigned long	gencount;
167 	unsigned long	attr_gencount;
168 	unsigned int	cache_entry_index;
169 	signed char duped;
170 	bool plus;
171 	bool eof;
172 };
173 
174 static void nfs_readdir_array_init(struct nfs_cache_array *array)
175 {
176 	memset(array, 0, sizeof(struct nfs_cache_array));
177 }
178 
179 static void nfs_readdir_page_init_array(struct page *page, u64 last_cookie)
180 {
181 	struct nfs_cache_array *array;
182 
183 	array = kmap_atomic(page);
184 	nfs_readdir_array_init(array);
185 	array->last_cookie = last_cookie;
186 	array->cookies_are_ordered = 1;
187 	kunmap_atomic(array);
188 }
189 
190 /*
191  * we are freeing strings created by nfs_add_to_readdir_array()
192  */
193 static
194 void nfs_readdir_clear_array(struct page *page)
195 {
196 	struct nfs_cache_array *array;
197 	int i;
198 
199 	array = kmap_atomic(page);
200 	for (i = 0; i < array->size; i++)
201 		kfree(array->array[i].name);
202 	nfs_readdir_array_init(array);
203 	kunmap_atomic(array);
204 }
205 
206 static struct page *
207 nfs_readdir_page_array_alloc(u64 last_cookie, gfp_t gfp_flags)
208 {
209 	struct page *page = alloc_page(gfp_flags);
210 	if (page)
211 		nfs_readdir_page_init_array(page, last_cookie);
212 	return page;
213 }
214 
215 static void nfs_readdir_page_array_free(struct page *page)
216 {
217 	if (page) {
218 		nfs_readdir_clear_array(page);
219 		put_page(page);
220 	}
221 }
222 
223 static void nfs_readdir_array_set_eof(struct nfs_cache_array *array)
224 {
225 	array->page_is_eof = 1;
226 	array->page_full = 1;
227 }
228 
229 static bool nfs_readdir_array_is_full(struct nfs_cache_array *array)
230 {
231 	return array->page_full;
232 }
233 
234 /*
235  * the caller is responsible for freeing qstr.name
236  * when called by nfs_readdir_add_to_array, the strings will be freed in
237  * nfs_clear_readdir_array()
238  */
239 static const char *nfs_readdir_copy_name(const char *name, unsigned int len)
240 {
241 	const char *ret = kmemdup_nul(name, len, GFP_KERNEL);
242 
243 	/*
244 	 * Avoid a kmemleak false positive. The pointer to the name is stored
245 	 * in a page cache page which kmemleak does not scan.
246 	 */
247 	if (ret != NULL)
248 		kmemleak_not_leak(ret);
249 	return ret;
250 }
251 
252 /*
253  * Check that the next array entry lies entirely within the page bounds
254  */
255 static int nfs_readdir_array_can_expand(struct nfs_cache_array *array)
256 {
257 	struct nfs_cache_array_entry *cache_entry;
258 
259 	if (array->page_full)
260 		return -ENOSPC;
261 	cache_entry = &array->array[array->size + 1];
262 	if ((char *)cache_entry - (char *)array > PAGE_SIZE) {
263 		array->page_full = 1;
264 		return -ENOSPC;
265 	}
266 	return 0;
267 }
268 
269 static
270 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
271 {
272 	struct nfs_cache_array *array;
273 	struct nfs_cache_array_entry *cache_entry;
274 	const char *name;
275 	int ret;
276 
277 	name = nfs_readdir_copy_name(entry->name, entry->len);
278 	if (!name)
279 		return -ENOMEM;
280 
281 	array = kmap_atomic(page);
282 	ret = nfs_readdir_array_can_expand(array);
283 	if (ret) {
284 		kfree(name);
285 		goto out;
286 	}
287 
288 	cache_entry = &array->array[array->size];
289 	cache_entry->cookie = entry->prev_cookie;
290 	cache_entry->ino = entry->ino;
291 	cache_entry->d_type = entry->d_type;
292 	cache_entry->name_len = entry->len;
293 	cache_entry->name = name;
294 	array->last_cookie = entry->cookie;
295 	if (array->last_cookie <= cache_entry->cookie)
296 		array->cookies_are_ordered = 0;
297 	array->size++;
298 	if (entry->eof != 0)
299 		nfs_readdir_array_set_eof(array);
300 out:
301 	kunmap_atomic(array);
302 	return ret;
303 }
304 
305 static struct page *nfs_readdir_page_get_locked(struct address_space *mapping,
306 						pgoff_t index, u64 last_cookie)
307 {
308 	struct page *page;
309 
310 	page = grab_cache_page(mapping, index);
311 	if (page && !PageUptodate(page)) {
312 		nfs_readdir_page_init_array(page, last_cookie);
313 		if (invalidate_inode_pages2_range(mapping, index + 1, -1) < 0)
314 			nfs_zap_mapping(mapping->host, mapping);
315 		SetPageUptodate(page);
316 	}
317 
318 	return page;
319 }
320 
321 static u64 nfs_readdir_page_last_cookie(struct page *page)
322 {
323 	struct nfs_cache_array *array;
324 	u64 ret;
325 
326 	array = kmap_atomic(page);
327 	ret = array->last_cookie;
328 	kunmap_atomic(array);
329 	return ret;
330 }
331 
332 static bool nfs_readdir_page_needs_filling(struct page *page)
333 {
334 	struct nfs_cache_array *array;
335 	bool ret;
336 
337 	array = kmap_atomic(page);
338 	ret = !nfs_readdir_array_is_full(array);
339 	kunmap_atomic(array);
340 	return ret;
341 }
342 
343 static void nfs_readdir_page_set_eof(struct page *page)
344 {
345 	struct nfs_cache_array *array;
346 
347 	array = kmap_atomic(page);
348 	nfs_readdir_array_set_eof(array);
349 	kunmap_atomic(array);
350 }
351 
352 static void nfs_readdir_page_unlock_and_put(struct page *page)
353 {
354 	unlock_page(page);
355 	put_page(page);
356 }
357 
358 static struct page *nfs_readdir_page_get_next(struct address_space *mapping,
359 					      pgoff_t index, u64 cookie)
360 {
361 	struct page *page;
362 
363 	page = nfs_readdir_page_get_locked(mapping, index, cookie);
364 	if (page) {
365 		if (nfs_readdir_page_last_cookie(page) == cookie)
366 			return page;
367 		nfs_readdir_page_unlock_and_put(page);
368 	}
369 	return NULL;
370 }
371 
372 static inline
373 int is_32bit_api(void)
374 {
375 #ifdef CONFIG_COMPAT
376 	return in_compat_syscall();
377 #else
378 	return (BITS_PER_LONG == 32);
379 #endif
380 }
381 
382 static
383 bool nfs_readdir_use_cookie(const struct file *filp)
384 {
385 	if ((filp->f_mode & FMODE_32BITHASH) ||
386 	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
387 		return false;
388 	return true;
389 }
390 
391 static int nfs_readdir_search_for_pos(struct nfs_cache_array *array,
392 				      struct nfs_readdir_descriptor *desc)
393 {
394 	loff_t diff = desc->ctx->pos - desc->current_index;
395 	unsigned int index;
396 
397 	if (diff < 0)
398 		goto out_eof;
399 	if (diff >= array->size) {
400 		if (array->page_is_eof)
401 			goto out_eof;
402 		return -EAGAIN;
403 	}
404 
405 	index = (unsigned int)diff;
406 	desc->dir_cookie = array->array[index].cookie;
407 	desc->cache_entry_index = index;
408 	return 0;
409 out_eof:
410 	desc->eof = true;
411 	return -EBADCOOKIE;
412 }
413 
414 static bool
415 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
416 {
417 	if (nfsi->cache_validity & (NFS_INO_INVALID_CHANGE |
418 				    NFS_INO_INVALID_DATA))
419 		return false;
420 	smp_rmb();
421 	return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
422 }
423 
424 static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array,
425 					      u64 cookie)
426 {
427 	if (!array->cookies_are_ordered)
428 		return true;
429 	/* Optimisation for monotonically increasing cookies */
430 	if (cookie >= array->last_cookie)
431 		return false;
432 	if (array->size && cookie < array->array[0].cookie)
433 		return false;
434 	return true;
435 }
436 
437 static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array,
438 					 struct nfs_readdir_descriptor *desc)
439 {
440 	int i;
441 	loff_t new_pos;
442 	int status = -EAGAIN;
443 
444 	if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie))
445 		goto check_eof;
446 
447 	for (i = 0; i < array->size; i++) {
448 		if (array->array[i].cookie == desc->dir_cookie) {
449 			struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
450 
451 			new_pos = desc->current_index + i;
452 			if (desc->attr_gencount != nfsi->attr_gencount ||
453 			    !nfs_readdir_inode_mapping_valid(nfsi)) {
454 				desc->duped = 0;
455 				desc->attr_gencount = nfsi->attr_gencount;
456 			} else if (new_pos < desc->prev_index) {
457 				if (desc->duped > 0
458 				    && desc->dup_cookie == desc->dir_cookie) {
459 					if (printk_ratelimit()) {
460 						pr_notice("NFS: directory %pD2 contains a readdir loop."
461 								"Please contact your server vendor.  "
462 								"The file: %s has duplicate cookie %llu\n",
463 								desc->file, array->array[i].name, desc->dir_cookie);
464 					}
465 					status = -ELOOP;
466 					goto out;
467 				}
468 				desc->dup_cookie = desc->dir_cookie;
469 				desc->duped = -1;
470 			}
471 			if (nfs_readdir_use_cookie(desc->file))
472 				desc->ctx->pos = desc->dir_cookie;
473 			else
474 				desc->ctx->pos = new_pos;
475 			desc->prev_index = new_pos;
476 			desc->cache_entry_index = i;
477 			return 0;
478 		}
479 	}
480 check_eof:
481 	if (array->page_is_eof) {
482 		status = -EBADCOOKIE;
483 		if (desc->dir_cookie == array->last_cookie)
484 			desc->eof = true;
485 	}
486 out:
487 	return status;
488 }
489 
490 static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc)
491 {
492 	struct nfs_cache_array *array;
493 	int status;
494 
495 	array = kmap_atomic(desc->page);
496 
497 	if (desc->dir_cookie == 0)
498 		status = nfs_readdir_search_for_pos(array, desc);
499 	else
500 		status = nfs_readdir_search_for_cookie(array, desc);
501 
502 	if (status == -EAGAIN) {
503 		desc->last_cookie = array->last_cookie;
504 		desc->current_index += array->size;
505 		desc->page_index++;
506 	}
507 	kunmap_atomic(array);
508 	return status;
509 }
510 
511 /* Fill a page with xdr information before transferring to the cache page */
512 static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc,
513 				  __be32 *verf, u64 cookie,
514 				  struct page **pages, size_t bufsize,
515 				  __be32 *verf_res)
516 {
517 	struct inode *inode = file_inode(desc->file);
518 	struct nfs_readdir_arg arg = {
519 		.dentry = file_dentry(desc->file),
520 		.cred = desc->file->f_cred,
521 		.verf = verf,
522 		.cookie = cookie,
523 		.pages = pages,
524 		.page_len = bufsize,
525 		.plus = desc->plus,
526 	};
527 	struct nfs_readdir_res res = {
528 		.verf = verf_res,
529 	};
530 	unsigned long	timestamp, gencount;
531 	int		error;
532 
533  again:
534 	timestamp = jiffies;
535 	gencount = nfs_inc_attr_generation_counter();
536 	desc->dir_verifier = nfs_save_change_attribute(inode);
537 	error = NFS_PROTO(inode)->readdir(&arg, &res);
538 	if (error < 0) {
539 		/* We requested READDIRPLUS, but the server doesn't grok it */
540 		if (error == -ENOTSUPP && desc->plus) {
541 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
542 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
543 			desc->plus = arg.plus = false;
544 			goto again;
545 		}
546 		goto error;
547 	}
548 	desc->timestamp = timestamp;
549 	desc->gencount = gencount;
550 error:
551 	return error;
552 }
553 
554 static int xdr_decode(struct nfs_readdir_descriptor *desc,
555 		      struct nfs_entry *entry, struct xdr_stream *xdr)
556 {
557 	struct inode *inode = file_inode(desc->file);
558 	int error;
559 
560 	error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
561 	if (error)
562 		return error;
563 	entry->fattr->time_start = desc->timestamp;
564 	entry->fattr->gencount = desc->gencount;
565 	return 0;
566 }
567 
568 /* Match file and dirent using either filehandle or fileid
569  * Note: caller is responsible for checking the fsid
570  */
571 static
572 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
573 {
574 	struct inode *inode;
575 	struct nfs_inode *nfsi;
576 
577 	if (d_really_is_negative(dentry))
578 		return 0;
579 
580 	inode = d_inode(dentry);
581 	if (is_bad_inode(inode) || NFS_STALE(inode))
582 		return 0;
583 
584 	nfsi = NFS_I(inode);
585 	if (entry->fattr->fileid != nfsi->fileid)
586 		return 0;
587 	if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
588 		return 0;
589 	return 1;
590 }
591 
592 static
593 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
594 {
595 	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
596 		return false;
597 	if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
598 		return true;
599 	if (ctx->pos == 0)
600 		return true;
601 	return false;
602 }
603 
604 /*
605  * This function is called by the lookup and getattr code to request the
606  * use of readdirplus to accelerate any future lookups in the same
607  * directory.
608  */
609 void nfs_advise_use_readdirplus(struct inode *dir)
610 {
611 	struct nfs_inode *nfsi = NFS_I(dir);
612 
613 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
614 	    !list_empty(&nfsi->open_files))
615 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
616 }
617 
618 /*
619  * This function is mainly for use by nfs_getattr().
620  *
621  * If this is an 'ls -l', we want to force use of readdirplus.
622  * Do this by checking if there is an active file descriptor
623  * and calling nfs_advise_use_readdirplus, then forcing a
624  * cache flush.
625  */
626 void nfs_force_use_readdirplus(struct inode *dir)
627 {
628 	struct nfs_inode *nfsi = NFS_I(dir);
629 
630 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
631 	    !list_empty(&nfsi->open_files)) {
632 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
633 		set_bit(NFS_INO_FORCE_READDIR, &nfsi->flags);
634 	}
635 }
636 
637 static
638 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
639 		unsigned long dir_verifier)
640 {
641 	struct qstr filename = QSTR_INIT(entry->name, entry->len);
642 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
643 	struct dentry *dentry;
644 	struct dentry *alias;
645 	struct inode *inode;
646 	int status;
647 
648 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
649 		return;
650 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
651 		return;
652 	if (filename.len == 0)
653 		return;
654 	/* Validate that the name doesn't contain any illegal '\0' */
655 	if (strnlen(filename.name, filename.len) != filename.len)
656 		return;
657 	/* ...or '/' */
658 	if (strnchr(filename.name, filename.len, '/'))
659 		return;
660 	if (filename.name[0] == '.') {
661 		if (filename.len == 1)
662 			return;
663 		if (filename.len == 2 && filename.name[1] == '.')
664 			return;
665 	}
666 	filename.hash = full_name_hash(parent, filename.name, filename.len);
667 
668 	dentry = d_lookup(parent, &filename);
669 again:
670 	if (!dentry) {
671 		dentry = d_alloc_parallel(parent, &filename, &wq);
672 		if (IS_ERR(dentry))
673 			return;
674 	}
675 	if (!d_in_lookup(dentry)) {
676 		/* Is there a mountpoint here? If so, just exit */
677 		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
678 					&entry->fattr->fsid))
679 			goto out;
680 		if (nfs_same_file(dentry, entry)) {
681 			if (!entry->fh->size)
682 				goto out;
683 			nfs_set_verifier(dentry, dir_verifier);
684 			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
685 			if (!status)
686 				nfs_setsecurity(d_inode(dentry), entry->fattr);
687 			goto out;
688 		} else {
689 			d_invalidate(dentry);
690 			dput(dentry);
691 			dentry = NULL;
692 			goto again;
693 		}
694 	}
695 	if (!entry->fh->size) {
696 		d_lookup_done(dentry);
697 		goto out;
698 	}
699 
700 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
701 	alias = d_splice_alias(inode, dentry);
702 	d_lookup_done(dentry);
703 	if (alias) {
704 		if (IS_ERR(alias))
705 			goto out;
706 		dput(dentry);
707 		dentry = alias;
708 	}
709 	nfs_set_verifier(dentry, dir_verifier);
710 out:
711 	dput(dentry);
712 }
713 
714 /* Perform conversion from xdr to cache array */
715 static int nfs_readdir_page_filler(struct nfs_readdir_descriptor *desc,
716 				   struct nfs_entry *entry,
717 				   struct page **xdr_pages,
718 				   unsigned int buflen,
719 				   struct page **arrays,
720 				   size_t narrays)
721 {
722 	struct address_space *mapping = desc->file->f_mapping;
723 	struct xdr_stream stream;
724 	struct xdr_buf buf;
725 	struct page *scratch, *new, *page = *arrays;
726 	int status;
727 
728 	scratch = alloc_page(GFP_KERNEL);
729 	if (scratch == NULL)
730 		return -ENOMEM;
731 
732 	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
733 	xdr_set_scratch_page(&stream, scratch);
734 
735 	do {
736 		if (entry->fattr->label)
737 			entry->fattr->label->len = NFS4_MAXLABELLEN;
738 
739 		status = xdr_decode(desc, entry, &stream);
740 		if (status != 0)
741 			break;
742 
743 		if (desc->plus)
744 			nfs_prime_dcache(file_dentry(desc->file), entry,
745 					desc->dir_verifier);
746 
747 		status = nfs_readdir_add_to_array(entry, page);
748 		if (status != -ENOSPC)
749 			continue;
750 
751 		if (page->mapping != mapping) {
752 			if (!--narrays)
753 				break;
754 			new = nfs_readdir_page_array_alloc(entry->prev_cookie,
755 							   GFP_KERNEL);
756 			if (!new)
757 				break;
758 			arrays++;
759 			*arrays = page = new;
760 		} else {
761 			new = nfs_readdir_page_get_next(mapping,
762 							page->index + 1,
763 							entry->prev_cookie);
764 			if (!new)
765 				break;
766 			if (page != *arrays)
767 				nfs_readdir_page_unlock_and_put(page);
768 			page = new;
769 		}
770 		status = nfs_readdir_add_to_array(entry, page);
771 	} while (!status && !entry->eof);
772 
773 	switch (status) {
774 	case -EBADCOOKIE:
775 		if (entry->eof) {
776 			nfs_readdir_page_set_eof(page);
777 			status = 0;
778 		}
779 		break;
780 	case -ENOSPC:
781 	case -EAGAIN:
782 		status = 0;
783 		break;
784 	}
785 
786 	if (page != *arrays)
787 		nfs_readdir_page_unlock_and_put(page);
788 
789 	put_page(scratch);
790 	return status;
791 }
792 
793 static void nfs_readdir_free_pages(struct page **pages, size_t npages)
794 {
795 	while (npages--)
796 		put_page(pages[npages]);
797 	kfree(pages);
798 }
799 
800 /*
801  * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
802  * to nfs_readdir_free_pages()
803  */
804 static struct page **nfs_readdir_alloc_pages(size_t npages)
805 {
806 	struct page **pages;
807 	size_t i;
808 
809 	pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL);
810 	if (!pages)
811 		return NULL;
812 	for (i = 0; i < npages; i++) {
813 		struct page *page = alloc_page(GFP_KERNEL);
814 		if (page == NULL)
815 			goto out_freepages;
816 		pages[i] = page;
817 	}
818 	return pages;
819 
820 out_freepages:
821 	nfs_readdir_free_pages(pages, i);
822 	return NULL;
823 }
824 
825 static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc,
826 				    __be32 *verf_arg, __be32 *verf_res,
827 				    struct page **arrays, size_t narrays)
828 {
829 	struct page **pages;
830 	struct page *page = *arrays;
831 	struct nfs_entry *entry;
832 	size_t array_size;
833 	struct inode *inode = file_inode(desc->file);
834 	size_t dtsize = NFS_SERVER(inode)->dtsize;
835 	int status = -ENOMEM;
836 
837 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
838 	if (!entry)
839 		return -ENOMEM;
840 	entry->cookie = nfs_readdir_page_last_cookie(page);
841 	entry->fh = nfs_alloc_fhandle();
842 	entry->fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
843 	entry->server = NFS_SERVER(inode);
844 	if (entry->fh == NULL || entry->fattr == NULL)
845 		goto out;
846 
847 	array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT;
848 	pages = nfs_readdir_alloc_pages(array_size);
849 	if (!pages)
850 		goto out;
851 
852 	do {
853 		unsigned int pglen;
854 		status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie,
855 						pages, dtsize,
856 						verf_res);
857 		if (status < 0)
858 			break;
859 
860 		pglen = status;
861 		if (pglen == 0) {
862 			nfs_readdir_page_set_eof(page);
863 			break;
864 		}
865 
866 		verf_arg = verf_res;
867 
868 		status = nfs_readdir_page_filler(desc, entry, pages, pglen,
869 						 arrays, narrays);
870 	} while (!status && nfs_readdir_page_needs_filling(page) &&
871 		page_mapping(page));
872 
873 	nfs_readdir_free_pages(pages, array_size);
874 out:
875 	nfs_free_fattr(entry->fattr);
876 	nfs_free_fhandle(entry->fh);
877 	kfree(entry);
878 	return status;
879 }
880 
881 static void nfs_readdir_page_put(struct nfs_readdir_descriptor *desc)
882 {
883 	put_page(desc->page);
884 	desc->page = NULL;
885 }
886 
887 static void
888 nfs_readdir_page_unlock_and_put_cached(struct nfs_readdir_descriptor *desc)
889 {
890 	unlock_page(desc->page);
891 	nfs_readdir_page_put(desc);
892 }
893 
894 static struct page *
895 nfs_readdir_page_get_cached(struct nfs_readdir_descriptor *desc)
896 {
897 	return nfs_readdir_page_get_locked(desc->file->f_mapping,
898 					   desc->page_index,
899 					   desc->last_cookie);
900 }
901 
902 /*
903  * Returns 0 if desc->dir_cookie was found on page desc->page_index
904  * and locks the page to prevent removal from the page cache.
905  */
906 static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc)
907 {
908 	struct inode *inode = file_inode(desc->file);
909 	struct nfs_inode *nfsi = NFS_I(inode);
910 	__be32 verf[NFS_DIR_VERIFIER_SIZE];
911 	int res;
912 
913 	desc->page = nfs_readdir_page_get_cached(desc);
914 	if (!desc->page)
915 		return -ENOMEM;
916 	if (nfs_readdir_page_needs_filling(desc->page)) {
917 		res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf,
918 					       &desc->page, 1);
919 		if (res < 0) {
920 			nfs_readdir_page_unlock_and_put_cached(desc);
921 			if (res == -EBADCOOKIE || res == -ENOTSYNC) {
922 				invalidate_inode_pages2(desc->file->f_mapping);
923 				desc->page_index = 0;
924 				return -EAGAIN;
925 			}
926 			return res;
927 		}
928 		/*
929 		 * Set the cookie verifier if the page cache was empty
930 		 */
931 		if (desc->page_index == 0)
932 			memcpy(nfsi->cookieverf, verf,
933 			       sizeof(nfsi->cookieverf));
934 	}
935 	res = nfs_readdir_search_array(desc);
936 	if (res == 0)
937 		return 0;
938 	nfs_readdir_page_unlock_and_put_cached(desc);
939 	return res;
940 }
941 
942 static bool nfs_readdir_dont_search_cache(struct nfs_readdir_descriptor *desc)
943 {
944 	struct address_space *mapping = desc->file->f_mapping;
945 	struct inode *dir = file_inode(desc->file);
946 	unsigned int dtsize = NFS_SERVER(dir)->dtsize;
947 	loff_t size = i_size_read(dir);
948 
949 	/*
950 	 * Default to uncached readdir if the page cache is empty, and
951 	 * we're looking for a non-zero cookie in a large directory.
952 	 */
953 	return desc->dir_cookie != 0 && mapping->nrpages == 0 && size > dtsize;
954 }
955 
956 /* Search for desc->dir_cookie from the beginning of the page cache */
957 static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc)
958 {
959 	int res;
960 
961 	if (nfs_readdir_dont_search_cache(desc))
962 		return -EBADCOOKIE;
963 
964 	do {
965 		if (desc->page_index == 0) {
966 			desc->current_index = 0;
967 			desc->prev_index = 0;
968 			desc->last_cookie = 0;
969 		}
970 		res = find_and_lock_cache_page(desc);
971 	} while (res == -EAGAIN);
972 	return res;
973 }
974 
975 /*
976  * Once we've found the start of the dirent within a page: fill 'er up...
977  */
978 static void nfs_do_filldir(struct nfs_readdir_descriptor *desc,
979 			   const __be32 *verf)
980 {
981 	struct file	*file = desc->file;
982 	struct nfs_cache_array *array;
983 	unsigned int i = 0;
984 
985 	array = kmap(desc->page);
986 	for (i = desc->cache_entry_index; i < array->size; i++) {
987 		struct nfs_cache_array_entry *ent;
988 
989 		ent = &array->array[i];
990 		if (!dir_emit(desc->ctx, ent->name, ent->name_len,
991 		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
992 			desc->eof = true;
993 			break;
994 		}
995 		memcpy(desc->verf, verf, sizeof(desc->verf));
996 		if (i < (array->size-1))
997 			desc->dir_cookie = array->array[i+1].cookie;
998 		else
999 			desc->dir_cookie = array->last_cookie;
1000 		if (nfs_readdir_use_cookie(file))
1001 			desc->ctx->pos = desc->dir_cookie;
1002 		else
1003 			desc->ctx->pos++;
1004 		if (desc->duped != 0)
1005 			desc->duped = 1;
1006 	}
1007 	if (array->page_is_eof)
1008 		desc->eof = true;
1009 
1010 	kunmap(desc->page);
1011 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n",
1012 			(unsigned long long)desc->dir_cookie);
1013 }
1014 
1015 /*
1016  * If we cannot find a cookie in our cache, we suspect that this is
1017  * because it points to a deleted file, so we ask the server to return
1018  * whatever it thinks is the next entry. We then feed this to filldir.
1019  * If all goes well, we should then be able to find our way round the
1020  * cache on the next call to readdir_search_pagecache();
1021  *
1022  * NOTE: we cannot add the anonymous page to the pagecache because
1023  *	 the data it contains might not be page aligned. Besides,
1024  *	 we should already have a complete representation of the
1025  *	 directory in the page cache by the time we get here.
1026  */
1027 static int uncached_readdir(struct nfs_readdir_descriptor *desc)
1028 {
1029 	struct page	**arrays;
1030 	size_t		i, sz = 512;
1031 	__be32		verf[NFS_DIR_VERIFIER_SIZE];
1032 	int		status = -ENOMEM;
1033 
1034 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n",
1035 			(unsigned long long)desc->dir_cookie);
1036 
1037 	arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL);
1038 	if (!arrays)
1039 		goto out;
1040 	arrays[0] = nfs_readdir_page_array_alloc(desc->dir_cookie, GFP_KERNEL);
1041 	if (!arrays[0])
1042 		goto out;
1043 
1044 	desc->page_index = 0;
1045 	desc->last_cookie = desc->dir_cookie;
1046 	desc->duped = 0;
1047 
1048 	status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz);
1049 
1050 	for (i = 0; !desc->eof && i < sz && arrays[i]; i++) {
1051 		desc->page = arrays[i];
1052 		nfs_do_filldir(desc, verf);
1053 	}
1054 	desc->page = NULL;
1055 
1056 
1057 	for (i = 0; i < sz && arrays[i]; i++)
1058 		nfs_readdir_page_array_free(arrays[i]);
1059 out:
1060 	kfree(arrays);
1061 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
1062 	return status;
1063 }
1064 
1065 /* The file offset position represents the dirent entry number.  A
1066    last cookie cache takes care of the common case of reading the
1067    whole directory.
1068  */
1069 static int nfs_readdir(struct file *file, struct dir_context *ctx)
1070 {
1071 	struct dentry	*dentry = file_dentry(file);
1072 	struct inode	*inode = d_inode(dentry);
1073 	struct nfs_inode *nfsi = NFS_I(inode);
1074 	struct nfs_open_dir_context *dir_ctx = file->private_data;
1075 	struct nfs_readdir_descriptor *desc;
1076 	pgoff_t page_index;
1077 	int res;
1078 
1079 	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
1080 			file, (long long)ctx->pos);
1081 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
1082 
1083 	/*
1084 	 * ctx->pos points to the dirent entry number.
1085 	 * *desc->dir_cookie has the cookie for the next entry. We have
1086 	 * to either find the entry with the appropriate number or
1087 	 * revalidate the cookie.
1088 	 */
1089 	if (ctx->pos == 0 || nfs_attribute_cache_expired(inode)) {
1090 		res = nfs_revalidate_mapping(inode, file->f_mapping);
1091 		if (res < 0)
1092 			goto out;
1093 	}
1094 
1095 	res = -ENOMEM;
1096 	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
1097 	if (!desc)
1098 		goto out;
1099 	desc->file = file;
1100 	desc->ctx = ctx;
1101 	desc->plus = nfs_use_readdirplus(inode, ctx);
1102 
1103 	spin_lock(&file->f_lock);
1104 	desc->dir_cookie = dir_ctx->dir_cookie;
1105 	desc->dup_cookie = dir_ctx->dup_cookie;
1106 	desc->duped = dir_ctx->duped;
1107 	page_index = dir_ctx->page_index;
1108 	desc->attr_gencount = dir_ctx->attr_gencount;
1109 	memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf));
1110 	spin_unlock(&file->f_lock);
1111 
1112 	if (test_and_clear_bit(NFS_INO_FORCE_READDIR, &nfsi->flags) &&
1113 	    list_is_singular(&nfsi->open_files))
1114 		invalidate_mapping_pages(inode->i_mapping, page_index + 1, -1);
1115 
1116 	do {
1117 		res = readdir_search_pagecache(desc);
1118 
1119 		if (res == -EBADCOOKIE) {
1120 			res = 0;
1121 			/* This means either end of directory */
1122 			if (desc->dir_cookie && !desc->eof) {
1123 				/* Or that the server has 'lost' a cookie */
1124 				res = uncached_readdir(desc);
1125 				if (res == 0)
1126 					continue;
1127 				if (res == -EBADCOOKIE || res == -ENOTSYNC)
1128 					res = 0;
1129 			}
1130 			break;
1131 		}
1132 		if (res == -ETOOSMALL && desc->plus) {
1133 			clear_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
1134 			nfs_zap_caches(inode);
1135 			desc->page_index = 0;
1136 			desc->plus = false;
1137 			desc->eof = false;
1138 			continue;
1139 		}
1140 		if (res < 0)
1141 			break;
1142 
1143 		nfs_do_filldir(desc, nfsi->cookieverf);
1144 		nfs_readdir_page_unlock_and_put_cached(desc);
1145 	} while (!desc->eof);
1146 
1147 	spin_lock(&file->f_lock);
1148 	dir_ctx->dir_cookie = desc->dir_cookie;
1149 	dir_ctx->dup_cookie = desc->dup_cookie;
1150 	dir_ctx->duped = desc->duped;
1151 	dir_ctx->attr_gencount = desc->attr_gencount;
1152 	dir_ctx->page_index = desc->page_index;
1153 	memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf));
1154 	spin_unlock(&file->f_lock);
1155 
1156 	kfree(desc);
1157 
1158 out:
1159 	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
1160 	return res;
1161 }
1162 
1163 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
1164 {
1165 	struct nfs_open_dir_context *dir_ctx = filp->private_data;
1166 
1167 	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
1168 			filp, offset, whence);
1169 
1170 	switch (whence) {
1171 	default:
1172 		return -EINVAL;
1173 	case SEEK_SET:
1174 		if (offset < 0)
1175 			return -EINVAL;
1176 		spin_lock(&filp->f_lock);
1177 		break;
1178 	case SEEK_CUR:
1179 		if (offset == 0)
1180 			return filp->f_pos;
1181 		spin_lock(&filp->f_lock);
1182 		offset += filp->f_pos;
1183 		if (offset < 0) {
1184 			spin_unlock(&filp->f_lock);
1185 			return -EINVAL;
1186 		}
1187 	}
1188 	if (offset != filp->f_pos) {
1189 		filp->f_pos = offset;
1190 		if (nfs_readdir_use_cookie(filp))
1191 			dir_ctx->dir_cookie = offset;
1192 		else
1193 			dir_ctx->dir_cookie = 0;
1194 		if (offset == 0)
1195 			memset(dir_ctx->verf, 0, sizeof(dir_ctx->verf));
1196 		dir_ctx->duped = 0;
1197 	}
1198 	spin_unlock(&filp->f_lock);
1199 	return offset;
1200 }
1201 
1202 /*
1203  * All directory operations under NFS are synchronous, so fsync()
1204  * is a dummy operation.
1205  */
1206 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
1207 			 int datasync)
1208 {
1209 	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1210 
1211 	nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC);
1212 	return 0;
1213 }
1214 
1215 /**
1216  * nfs_force_lookup_revalidate - Mark the directory as having changed
1217  * @dir: pointer to directory inode
1218  *
1219  * This forces the revalidation code in nfs_lookup_revalidate() to do a
1220  * full lookup on all child dentries of 'dir' whenever a change occurs
1221  * on the server that might have invalidated our dcache.
1222  *
1223  * Note that we reserve bit '0' as a tag to let us know when a dentry
1224  * was revalidated while holding a delegation on its inode.
1225  *
1226  * The caller should be holding dir->i_lock
1227  */
1228 void nfs_force_lookup_revalidate(struct inode *dir)
1229 {
1230 	NFS_I(dir)->cache_change_attribute += 2;
1231 }
1232 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1233 
1234 /**
1235  * nfs_verify_change_attribute - Detects NFS remote directory changes
1236  * @dir: pointer to parent directory inode
1237  * @verf: previously saved change attribute
1238  *
1239  * Return "false" if the verifiers doesn't match the change attribute.
1240  * This would usually indicate that the directory contents have changed on
1241  * the server, and that any dentries need revalidating.
1242  */
1243 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1244 {
1245 	return (verf & ~1UL) == nfs_save_change_attribute(dir);
1246 }
1247 
1248 static void nfs_set_verifier_delegated(unsigned long *verf)
1249 {
1250 	*verf |= 1UL;
1251 }
1252 
1253 #if IS_ENABLED(CONFIG_NFS_V4)
1254 static void nfs_unset_verifier_delegated(unsigned long *verf)
1255 {
1256 	*verf &= ~1UL;
1257 }
1258 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1259 
1260 static bool nfs_test_verifier_delegated(unsigned long verf)
1261 {
1262 	return verf & 1;
1263 }
1264 
1265 static bool nfs_verifier_is_delegated(struct dentry *dentry)
1266 {
1267 	return nfs_test_verifier_delegated(dentry->d_time);
1268 }
1269 
1270 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1271 {
1272 	struct inode *inode = d_inode(dentry);
1273 	struct inode *dir = d_inode(dentry->d_parent);
1274 
1275 	if (!nfs_verify_change_attribute(dir, verf))
1276 		return;
1277 	if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
1278 		nfs_set_verifier_delegated(&verf);
1279 	dentry->d_time = verf;
1280 }
1281 
1282 /**
1283  * nfs_set_verifier - save a parent directory verifier in the dentry
1284  * @dentry: pointer to dentry
1285  * @verf: verifier to save
1286  *
1287  * Saves the parent directory verifier in @dentry. If the inode has
1288  * a delegation, we also tag the dentry as having been revalidated
1289  * while holding a delegation so that we know we don't have to
1290  * look it up again after a directory change.
1291  */
1292 void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1293 {
1294 
1295 	spin_lock(&dentry->d_lock);
1296 	nfs_set_verifier_locked(dentry, verf);
1297 	spin_unlock(&dentry->d_lock);
1298 }
1299 EXPORT_SYMBOL_GPL(nfs_set_verifier);
1300 
1301 #if IS_ENABLED(CONFIG_NFS_V4)
1302 /**
1303  * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1304  * @inode: pointer to inode
1305  *
1306  * Iterates through the dentries in the inode alias list and clears
1307  * the tag used to indicate that the dentry has been revalidated
1308  * while holding a delegation.
1309  * This function is intended for use when the delegation is being
1310  * returned or revoked.
1311  */
1312 void nfs_clear_verifier_delegated(struct inode *inode)
1313 {
1314 	struct dentry *alias;
1315 
1316 	if (!inode)
1317 		return;
1318 	spin_lock(&inode->i_lock);
1319 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1320 		spin_lock(&alias->d_lock);
1321 		nfs_unset_verifier_delegated(&alias->d_time);
1322 		spin_unlock(&alias->d_lock);
1323 	}
1324 	spin_unlock(&inode->i_lock);
1325 }
1326 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1327 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1328 
1329 static int nfs_dentry_verify_change(struct inode *dir, struct dentry *dentry)
1330 {
1331 	if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE) &&
1332 	    d_really_is_negative(dentry))
1333 		return dentry->d_time == inode_peek_iversion_raw(dir);
1334 	return nfs_verify_change_attribute(dir, dentry->d_time);
1335 }
1336 
1337 /*
1338  * A check for whether or not the parent directory has changed.
1339  * In the case it has, we assume that the dentries are untrustworthy
1340  * and may need to be looked up again.
1341  * If rcu_walk prevents us from performing a full check, return 0.
1342  */
1343 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1344 			      int rcu_walk)
1345 {
1346 	if (IS_ROOT(dentry))
1347 		return 1;
1348 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1349 		return 0;
1350 	if (!nfs_dentry_verify_change(dir, dentry))
1351 		return 0;
1352 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
1353 	if (nfs_mapping_need_revalidate_inode(dir)) {
1354 		if (rcu_walk)
1355 			return 0;
1356 		if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1357 			return 0;
1358 	}
1359 	if (!nfs_dentry_verify_change(dir, dentry))
1360 		return 0;
1361 	return 1;
1362 }
1363 
1364 /*
1365  * Use intent information to check whether or not we're going to do
1366  * an O_EXCL create using this path component.
1367  */
1368 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1369 {
1370 	if (NFS_PROTO(dir)->version == 2)
1371 		return 0;
1372 	return flags & LOOKUP_EXCL;
1373 }
1374 
1375 /*
1376  * Inode and filehandle revalidation for lookups.
1377  *
1378  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1379  * or if the intent information indicates that we're about to open this
1380  * particular file and the "nocto" mount flag is not set.
1381  *
1382  */
1383 static
1384 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1385 {
1386 	struct nfs_server *server = NFS_SERVER(inode);
1387 	int ret;
1388 
1389 	if (IS_AUTOMOUNT(inode))
1390 		return 0;
1391 
1392 	if (flags & LOOKUP_OPEN) {
1393 		switch (inode->i_mode & S_IFMT) {
1394 		case S_IFREG:
1395 			/* A NFSv4 OPEN will revalidate later */
1396 			if (server->caps & NFS_CAP_ATOMIC_OPEN)
1397 				goto out;
1398 			fallthrough;
1399 		case S_IFDIR:
1400 			if (server->flags & NFS_MOUNT_NOCTO)
1401 				break;
1402 			/* NFS close-to-open cache consistency validation */
1403 			goto out_force;
1404 		}
1405 	}
1406 
1407 	/* VFS wants an on-the-wire revalidation */
1408 	if (flags & LOOKUP_REVAL)
1409 		goto out_force;
1410 out:
1411 	return (inode->i_nlink == 0) ? -ESTALE : 0;
1412 out_force:
1413 	if (flags & LOOKUP_RCU)
1414 		return -ECHILD;
1415 	ret = __nfs_revalidate_inode(server, inode);
1416 	if (ret != 0)
1417 		return ret;
1418 	goto out;
1419 }
1420 
1421 static void nfs_mark_dir_for_revalidate(struct inode *inode)
1422 {
1423 	spin_lock(&inode->i_lock);
1424 	nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE);
1425 	spin_unlock(&inode->i_lock);
1426 }
1427 
1428 /*
1429  * We judge how long we want to trust negative
1430  * dentries by looking at the parent inode mtime.
1431  *
1432  * If parent mtime has changed, we revalidate, else we wait for a
1433  * period corresponding to the parent's attribute cache timeout value.
1434  *
1435  * If LOOKUP_RCU prevents us from performing a full check, return 1
1436  * suggesting a reval is needed.
1437  *
1438  * Note that when creating a new file, or looking up a rename target,
1439  * then it shouldn't be necessary to revalidate a negative dentry.
1440  */
1441 static inline
1442 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1443 		       unsigned int flags)
1444 {
1445 	if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1446 		return 0;
1447 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1448 		return 1;
1449 	/* Case insensitive server? Revalidate negative dentries */
1450 	if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1451 		return 1;
1452 	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1453 }
1454 
1455 static int
1456 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1457 			   struct inode *inode, int error)
1458 {
1459 	switch (error) {
1460 	case 1:
1461 		dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1462 			__func__, dentry);
1463 		return 1;
1464 	case 0:
1465 		/*
1466 		 * We can't d_drop the root of a disconnected tree:
1467 		 * its d_hash is on the s_anon list and d_drop() would hide
1468 		 * it from shrink_dcache_for_unmount(), leading to busy
1469 		 * inodes on unmount and further oopses.
1470 		 */
1471 		if (inode && IS_ROOT(dentry))
1472 			return 1;
1473 		dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1474 				__func__, dentry);
1475 		return 0;
1476 	}
1477 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1478 				__func__, dentry, error);
1479 	return error;
1480 }
1481 
1482 static int
1483 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1484 			       unsigned int flags)
1485 {
1486 	int ret = 1;
1487 	if (nfs_neg_need_reval(dir, dentry, flags)) {
1488 		if (flags & LOOKUP_RCU)
1489 			return -ECHILD;
1490 		ret = 0;
1491 	}
1492 	return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1493 }
1494 
1495 static int
1496 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1497 				struct inode *inode)
1498 {
1499 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1500 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1501 }
1502 
1503 static int
1504 nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry,
1505 			     struct inode *inode)
1506 {
1507 	struct nfs_fh *fhandle;
1508 	struct nfs_fattr *fattr;
1509 	unsigned long dir_verifier;
1510 	int ret;
1511 
1512 	ret = -ENOMEM;
1513 	fhandle = nfs_alloc_fhandle();
1514 	fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
1515 	if (fhandle == NULL || fattr == NULL)
1516 		goto out;
1517 
1518 	dir_verifier = nfs_save_change_attribute(dir);
1519 	ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1520 	if (ret < 0) {
1521 		switch (ret) {
1522 		case -ESTALE:
1523 		case -ENOENT:
1524 			ret = 0;
1525 			break;
1526 		case -ETIMEDOUT:
1527 			if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)
1528 				ret = 1;
1529 		}
1530 		goto out;
1531 	}
1532 	ret = 0;
1533 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1534 		goto out;
1535 	if (nfs_refresh_inode(inode, fattr) < 0)
1536 		goto out;
1537 
1538 	nfs_setsecurity(inode, fattr);
1539 	nfs_set_verifier(dentry, dir_verifier);
1540 
1541 	/* set a readdirplus hint that we had a cache miss */
1542 	nfs_force_use_readdirplus(dir);
1543 	ret = 1;
1544 out:
1545 	nfs_free_fattr(fattr);
1546 	nfs_free_fhandle(fhandle);
1547 
1548 	/*
1549 	 * If the lookup failed despite the dentry change attribute being
1550 	 * a match, then we should revalidate the directory cache.
1551 	 */
1552 	if (!ret && nfs_dentry_verify_change(dir, dentry))
1553 		nfs_mark_dir_for_revalidate(dir);
1554 	return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1555 }
1556 
1557 /*
1558  * This is called every time the dcache has a lookup hit,
1559  * and we should check whether we can really trust that
1560  * lookup.
1561  *
1562  * NOTE! The hit can be a negative hit too, don't assume
1563  * we have an inode!
1564  *
1565  * If the parent directory is seen to have changed, we throw out the
1566  * cached dentry and do a new lookup.
1567  */
1568 static int
1569 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1570 			 unsigned int flags)
1571 {
1572 	struct inode *inode;
1573 	int error;
1574 
1575 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1576 	inode = d_inode(dentry);
1577 
1578 	if (!inode)
1579 		return nfs_lookup_revalidate_negative(dir, dentry, flags);
1580 
1581 	if (is_bad_inode(inode)) {
1582 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1583 				__func__, dentry);
1584 		goto out_bad;
1585 	}
1586 
1587 	if (nfs_verifier_is_delegated(dentry))
1588 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1589 
1590 	/* Force a full look up iff the parent directory has changed */
1591 	if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1592 	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1593 		error = nfs_lookup_verify_inode(inode, flags);
1594 		if (error) {
1595 			if (error == -ESTALE)
1596 				nfs_mark_dir_for_revalidate(dir);
1597 			goto out_bad;
1598 		}
1599 		nfs_advise_use_readdirplus(dir);
1600 		goto out_valid;
1601 	}
1602 
1603 	if (flags & LOOKUP_RCU)
1604 		return -ECHILD;
1605 
1606 	if (NFS_STALE(inode))
1607 		goto out_bad;
1608 
1609 	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1610 	error = nfs_lookup_revalidate_dentry(dir, dentry, inode);
1611 	trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1612 	return error;
1613 out_valid:
1614 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1615 out_bad:
1616 	if (flags & LOOKUP_RCU)
1617 		return -ECHILD;
1618 	return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1619 }
1620 
1621 static int
1622 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1623 			int (*reval)(struct inode *, struct dentry *, unsigned int))
1624 {
1625 	struct dentry *parent;
1626 	struct inode *dir;
1627 	int ret;
1628 
1629 	if (flags & LOOKUP_RCU) {
1630 		parent = READ_ONCE(dentry->d_parent);
1631 		dir = d_inode_rcu(parent);
1632 		if (!dir)
1633 			return -ECHILD;
1634 		ret = reval(dir, dentry, flags);
1635 		if (parent != READ_ONCE(dentry->d_parent))
1636 			return -ECHILD;
1637 	} else {
1638 		parent = dget_parent(dentry);
1639 		ret = reval(d_inode(parent), dentry, flags);
1640 		dput(parent);
1641 	}
1642 	return ret;
1643 }
1644 
1645 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1646 {
1647 	return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1648 }
1649 
1650 /*
1651  * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1652  * when we don't really care about the dentry name. This is called when a
1653  * pathwalk ends on a dentry that was not found via a normal lookup in the
1654  * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1655  *
1656  * In this situation, we just want to verify that the inode itself is OK
1657  * since the dentry might have changed on the server.
1658  */
1659 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1660 {
1661 	struct inode *inode = d_inode(dentry);
1662 	int error = 0;
1663 
1664 	/*
1665 	 * I believe we can only get a negative dentry here in the case of a
1666 	 * procfs-style symlink. Just assume it's correct for now, but we may
1667 	 * eventually need to do something more here.
1668 	 */
1669 	if (!inode) {
1670 		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1671 				__func__, dentry);
1672 		return 1;
1673 	}
1674 
1675 	if (is_bad_inode(inode)) {
1676 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1677 				__func__, dentry);
1678 		return 0;
1679 	}
1680 
1681 	error = nfs_lookup_verify_inode(inode, flags);
1682 	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1683 			__func__, inode->i_ino, error ? "invalid" : "valid");
1684 	return !error;
1685 }
1686 
1687 /*
1688  * This is called from dput() when d_count is going to 0.
1689  */
1690 static int nfs_dentry_delete(const struct dentry *dentry)
1691 {
1692 	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1693 		dentry, dentry->d_flags);
1694 
1695 	/* Unhash any dentry with a stale inode */
1696 	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1697 		return 1;
1698 
1699 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1700 		/* Unhash it, so that ->d_iput() would be called */
1701 		return 1;
1702 	}
1703 	if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1704 		/* Unhash it, so that ancestors of killed async unlink
1705 		 * files will be cleaned up during umount */
1706 		return 1;
1707 	}
1708 	return 0;
1709 
1710 }
1711 
1712 /* Ensure that we revalidate inode->i_nlink */
1713 static void nfs_drop_nlink(struct inode *inode)
1714 {
1715 	spin_lock(&inode->i_lock);
1716 	/* drop the inode if we're reasonably sure this is the last link */
1717 	if (inode->i_nlink > 0)
1718 		drop_nlink(inode);
1719 	NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1720 	nfs_set_cache_invalid(
1721 		inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME |
1722 			       NFS_INO_INVALID_NLINK);
1723 	spin_unlock(&inode->i_lock);
1724 }
1725 
1726 /*
1727  * Called when the dentry loses inode.
1728  * We use it to clean up silly-renamed files.
1729  */
1730 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1731 {
1732 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1733 		nfs_complete_unlink(dentry, inode);
1734 		nfs_drop_nlink(inode);
1735 	}
1736 	iput(inode);
1737 }
1738 
1739 static void nfs_d_release(struct dentry *dentry)
1740 {
1741 	/* free cached devname value, if it survived that far */
1742 	if (unlikely(dentry->d_fsdata)) {
1743 		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1744 			WARN_ON(1);
1745 		else
1746 			kfree(dentry->d_fsdata);
1747 	}
1748 }
1749 
1750 const struct dentry_operations nfs_dentry_operations = {
1751 	.d_revalidate	= nfs_lookup_revalidate,
1752 	.d_weak_revalidate	= nfs_weak_revalidate,
1753 	.d_delete	= nfs_dentry_delete,
1754 	.d_iput		= nfs_dentry_iput,
1755 	.d_automount	= nfs_d_automount,
1756 	.d_release	= nfs_d_release,
1757 };
1758 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1759 
1760 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1761 {
1762 	struct dentry *res;
1763 	struct inode *inode = NULL;
1764 	struct nfs_fh *fhandle = NULL;
1765 	struct nfs_fattr *fattr = NULL;
1766 	unsigned long dir_verifier;
1767 	int error;
1768 
1769 	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1770 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1771 
1772 	if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1773 		return ERR_PTR(-ENAMETOOLONG);
1774 
1775 	/*
1776 	 * If we're doing an exclusive create, optimize away the lookup
1777 	 * but don't hash the dentry.
1778 	 */
1779 	if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1780 		return NULL;
1781 
1782 	res = ERR_PTR(-ENOMEM);
1783 	fhandle = nfs_alloc_fhandle();
1784 	fattr = nfs_alloc_fattr_with_label(NFS_SERVER(dir));
1785 	if (fhandle == NULL || fattr == NULL)
1786 		goto out;
1787 
1788 	dir_verifier = nfs_save_change_attribute(dir);
1789 	trace_nfs_lookup_enter(dir, dentry, flags);
1790 	error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1791 	if (error == -ENOENT) {
1792 		if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1793 			dir_verifier = inode_peek_iversion_raw(dir);
1794 		goto no_entry;
1795 	}
1796 	if (error < 0) {
1797 		res = ERR_PTR(error);
1798 		goto out;
1799 	}
1800 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1801 	res = ERR_CAST(inode);
1802 	if (IS_ERR(res))
1803 		goto out;
1804 
1805 	/* Notify readdir to use READDIRPLUS */
1806 	nfs_force_use_readdirplus(dir);
1807 
1808 no_entry:
1809 	res = d_splice_alias(inode, dentry);
1810 	if (res != NULL) {
1811 		if (IS_ERR(res))
1812 			goto out;
1813 		dentry = res;
1814 	}
1815 	nfs_set_verifier(dentry, dir_verifier);
1816 out:
1817 	trace_nfs_lookup_exit(dir, dentry, flags, PTR_ERR_OR_ZERO(res));
1818 	nfs_free_fattr(fattr);
1819 	nfs_free_fhandle(fhandle);
1820 	return res;
1821 }
1822 EXPORT_SYMBOL_GPL(nfs_lookup);
1823 
1824 void nfs_d_prune_case_insensitive_aliases(struct inode *inode)
1825 {
1826 	/* Case insensitive server? Revalidate dentries */
1827 	if (inode && nfs_server_capable(inode, NFS_CAP_CASE_INSENSITIVE))
1828 		d_prune_aliases(inode);
1829 }
1830 EXPORT_SYMBOL_GPL(nfs_d_prune_case_insensitive_aliases);
1831 
1832 #if IS_ENABLED(CONFIG_NFS_V4)
1833 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1834 
1835 const struct dentry_operations nfs4_dentry_operations = {
1836 	.d_revalidate	= nfs4_lookup_revalidate,
1837 	.d_weak_revalidate	= nfs_weak_revalidate,
1838 	.d_delete	= nfs_dentry_delete,
1839 	.d_iput		= nfs_dentry_iput,
1840 	.d_automount	= nfs_d_automount,
1841 	.d_release	= nfs_d_release,
1842 };
1843 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1844 
1845 static fmode_t flags_to_mode(int flags)
1846 {
1847 	fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1848 	if ((flags & O_ACCMODE) != O_WRONLY)
1849 		res |= FMODE_READ;
1850 	if ((flags & O_ACCMODE) != O_RDONLY)
1851 		res |= FMODE_WRITE;
1852 	return res;
1853 }
1854 
1855 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1856 {
1857 	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1858 }
1859 
1860 static int do_open(struct inode *inode, struct file *filp)
1861 {
1862 	nfs_fscache_open_file(inode, filp);
1863 	return 0;
1864 }
1865 
1866 static int nfs_finish_open(struct nfs_open_context *ctx,
1867 			   struct dentry *dentry,
1868 			   struct file *file, unsigned open_flags)
1869 {
1870 	int err;
1871 
1872 	err = finish_open(file, dentry, do_open);
1873 	if (err)
1874 		goto out;
1875 	if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
1876 		nfs_file_set_open_context(file, ctx);
1877 	else
1878 		err = -EOPENSTALE;
1879 out:
1880 	return err;
1881 }
1882 
1883 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1884 		    struct file *file, unsigned open_flags,
1885 		    umode_t mode)
1886 {
1887 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1888 	struct nfs_open_context *ctx;
1889 	struct dentry *res;
1890 	struct iattr attr = { .ia_valid = ATTR_OPEN };
1891 	struct inode *inode;
1892 	unsigned int lookup_flags = 0;
1893 	unsigned long dir_verifier;
1894 	bool switched = false;
1895 	int created = 0;
1896 	int err;
1897 
1898 	/* Expect a negative dentry */
1899 	BUG_ON(d_inode(dentry));
1900 
1901 	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1902 			dir->i_sb->s_id, dir->i_ino, dentry);
1903 
1904 	err = nfs_check_flags(open_flags);
1905 	if (err)
1906 		return err;
1907 
1908 	/* NFS only supports OPEN on regular files */
1909 	if ((open_flags & O_DIRECTORY)) {
1910 		if (!d_in_lookup(dentry)) {
1911 			/*
1912 			 * Hashed negative dentry with O_DIRECTORY: dentry was
1913 			 * revalidated and is fine, no need to perform lookup
1914 			 * again
1915 			 */
1916 			return -ENOENT;
1917 		}
1918 		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1919 		goto no_open;
1920 	}
1921 
1922 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1923 		return -ENAMETOOLONG;
1924 
1925 	if (open_flags & O_CREAT) {
1926 		struct nfs_server *server = NFS_SERVER(dir);
1927 
1928 		if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1929 			mode &= ~current_umask();
1930 
1931 		attr.ia_valid |= ATTR_MODE;
1932 		attr.ia_mode = mode;
1933 	}
1934 	if (open_flags & O_TRUNC) {
1935 		attr.ia_valid |= ATTR_SIZE;
1936 		attr.ia_size = 0;
1937 	}
1938 
1939 	if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1940 		d_drop(dentry);
1941 		switched = true;
1942 		dentry = d_alloc_parallel(dentry->d_parent,
1943 					  &dentry->d_name, &wq);
1944 		if (IS_ERR(dentry))
1945 			return PTR_ERR(dentry);
1946 		if (unlikely(!d_in_lookup(dentry)))
1947 			return finish_no_open(file, dentry);
1948 	}
1949 
1950 	ctx = create_nfs_open_context(dentry, open_flags, file);
1951 	err = PTR_ERR(ctx);
1952 	if (IS_ERR(ctx))
1953 		goto out;
1954 
1955 	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1956 	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
1957 	if (created)
1958 		file->f_mode |= FMODE_CREATED;
1959 	if (IS_ERR(inode)) {
1960 		err = PTR_ERR(inode);
1961 		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1962 		put_nfs_open_context(ctx);
1963 		d_drop(dentry);
1964 		switch (err) {
1965 		case -ENOENT:
1966 			d_splice_alias(NULL, dentry);
1967 			if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1968 				dir_verifier = inode_peek_iversion_raw(dir);
1969 			else
1970 				dir_verifier = nfs_save_change_attribute(dir);
1971 			nfs_set_verifier(dentry, dir_verifier);
1972 			break;
1973 		case -EISDIR:
1974 		case -ENOTDIR:
1975 			goto no_open;
1976 		case -ELOOP:
1977 			if (!(open_flags & O_NOFOLLOW))
1978 				goto no_open;
1979 			break;
1980 			/* case -EINVAL: */
1981 		default:
1982 			break;
1983 		}
1984 		goto out;
1985 	}
1986 
1987 	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
1988 	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1989 	put_nfs_open_context(ctx);
1990 out:
1991 	if (unlikely(switched)) {
1992 		d_lookup_done(dentry);
1993 		dput(dentry);
1994 	}
1995 	return err;
1996 
1997 no_open:
1998 	res = nfs_lookup(dir, dentry, lookup_flags);
1999 	if (!res) {
2000 		inode = d_inode(dentry);
2001 		if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2002 		    !S_ISDIR(inode->i_mode))
2003 			res = ERR_PTR(-ENOTDIR);
2004 		else if (inode && S_ISREG(inode->i_mode))
2005 			res = ERR_PTR(-EOPENSTALE);
2006 	} else if (!IS_ERR(res)) {
2007 		inode = d_inode(res);
2008 		if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2009 		    !S_ISDIR(inode->i_mode)) {
2010 			dput(res);
2011 			res = ERR_PTR(-ENOTDIR);
2012 		} else if (inode && S_ISREG(inode->i_mode)) {
2013 			dput(res);
2014 			res = ERR_PTR(-EOPENSTALE);
2015 		}
2016 	}
2017 	if (switched) {
2018 		d_lookup_done(dentry);
2019 		if (!res)
2020 			res = dentry;
2021 		else
2022 			dput(dentry);
2023 	}
2024 	if (IS_ERR(res))
2025 		return PTR_ERR(res);
2026 	return finish_no_open(file, res);
2027 }
2028 EXPORT_SYMBOL_GPL(nfs_atomic_open);
2029 
2030 static int
2031 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
2032 			  unsigned int flags)
2033 {
2034 	struct inode *inode;
2035 
2036 	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
2037 		goto full_reval;
2038 	if (d_mountpoint(dentry))
2039 		goto full_reval;
2040 
2041 	inode = d_inode(dentry);
2042 
2043 	/* We can't create new files in nfs_open_revalidate(), so we
2044 	 * optimize away revalidation of negative dentries.
2045 	 */
2046 	if (inode == NULL)
2047 		goto full_reval;
2048 
2049 	if (nfs_verifier_is_delegated(dentry))
2050 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
2051 
2052 	/* NFS only supports OPEN on regular files */
2053 	if (!S_ISREG(inode->i_mode))
2054 		goto full_reval;
2055 
2056 	/* We cannot do exclusive creation on a positive dentry */
2057 	if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
2058 		goto reval_dentry;
2059 
2060 	/* Check if the directory changed */
2061 	if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
2062 		goto reval_dentry;
2063 
2064 	/* Let f_op->open() actually open (and revalidate) the file */
2065 	return 1;
2066 reval_dentry:
2067 	if (flags & LOOKUP_RCU)
2068 		return -ECHILD;
2069 	return nfs_lookup_revalidate_dentry(dir, dentry, inode);
2070 
2071 full_reval:
2072 	return nfs_do_lookup_revalidate(dir, dentry, flags);
2073 }
2074 
2075 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
2076 {
2077 	return __nfs_lookup_revalidate(dentry, flags,
2078 			nfs4_do_lookup_revalidate);
2079 }
2080 
2081 #endif /* CONFIG_NFSV4 */
2082 
2083 struct dentry *
2084 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
2085 				struct nfs_fattr *fattr)
2086 {
2087 	struct dentry *parent = dget_parent(dentry);
2088 	struct inode *dir = d_inode(parent);
2089 	struct inode *inode;
2090 	struct dentry *d;
2091 	int error;
2092 
2093 	d_drop(dentry);
2094 
2095 	if (fhandle->size == 0) {
2096 		error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
2097 		if (error)
2098 			goto out_error;
2099 	}
2100 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2101 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
2102 		struct nfs_server *server = NFS_SB(dentry->d_sb);
2103 		error = server->nfs_client->rpc_ops->getattr(server, fhandle,
2104 				fattr, NULL);
2105 		if (error < 0)
2106 			goto out_error;
2107 	}
2108 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
2109 	d = d_splice_alias(inode, dentry);
2110 out:
2111 	dput(parent);
2112 	return d;
2113 out_error:
2114 	d = ERR_PTR(error);
2115 	goto out;
2116 }
2117 EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
2118 
2119 /*
2120  * Code common to create, mkdir, and mknod.
2121  */
2122 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
2123 				struct nfs_fattr *fattr)
2124 {
2125 	struct dentry *d;
2126 
2127 	d = nfs_add_or_obtain(dentry, fhandle, fattr);
2128 	if (IS_ERR(d))
2129 		return PTR_ERR(d);
2130 
2131 	/* Callers don't care */
2132 	dput(d);
2133 	return 0;
2134 }
2135 EXPORT_SYMBOL_GPL(nfs_instantiate);
2136 
2137 /*
2138  * Following a failed create operation, we drop the dentry rather
2139  * than retain a negative dentry. This avoids a problem in the event
2140  * that the operation succeeded on the server, but an error in the
2141  * reply path made it appear to have failed.
2142  */
2143 int nfs_create(struct user_namespace *mnt_userns, struct inode *dir,
2144 	       struct dentry *dentry, umode_t mode, bool excl)
2145 {
2146 	struct iattr attr;
2147 	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
2148 	int error;
2149 
2150 	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
2151 			dir->i_sb->s_id, dir->i_ino, dentry);
2152 
2153 	attr.ia_mode = mode;
2154 	attr.ia_valid = ATTR_MODE;
2155 
2156 	trace_nfs_create_enter(dir, dentry, open_flags);
2157 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
2158 	trace_nfs_create_exit(dir, dentry, open_flags, error);
2159 	if (error != 0)
2160 		goto out_err;
2161 	return 0;
2162 out_err:
2163 	d_drop(dentry);
2164 	return error;
2165 }
2166 EXPORT_SYMBOL_GPL(nfs_create);
2167 
2168 /*
2169  * See comments for nfs_proc_create regarding failed operations.
2170  */
2171 int
2172 nfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2173 	  struct dentry *dentry, umode_t mode, dev_t rdev)
2174 {
2175 	struct iattr attr;
2176 	int status;
2177 
2178 	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
2179 			dir->i_sb->s_id, dir->i_ino, dentry);
2180 
2181 	attr.ia_mode = mode;
2182 	attr.ia_valid = ATTR_MODE;
2183 
2184 	trace_nfs_mknod_enter(dir, dentry);
2185 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
2186 	trace_nfs_mknod_exit(dir, dentry, status);
2187 	if (status != 0)
2188 		goto out_err;
2189 	return 0;
2190 out_err:
2191 	d_drop(dentry);
2192 	return status;
2193 }
2194 EXPORT_SYMBOL_GPL(nfs_mknod);
2195 
2196 /*
2197  * See comments for nfs_proc_create regarding failed operations.
2198  */
2199 int nfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2200 	      struct dentry *dentry, umode_t mode)
2201 {
2202 	struct iattr attr;
2203 	int error;
2204 
2205 	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
2206 			dir->i_sb->s_id, dir->i_ino, dentry);
2207 
2208 	attr.ia_valid = ATTR_MODE;
2209 	attr.ia_mode = mode | S_IFDIR;
2210 
2211 	trace_nfs_mkdir_enter(dir, dentry);
2212 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
2213 	trace_nfs_mkdir_exit(dir, dentry, error);
2214 	if (error != 0)
2215 		goto out_err;
2216 	return 0;
2217 out_err:
2218 	d_drop(dentry);
2219 	return error;
2220 }
2221 EXPORT_SYMBOL_GPL(nfs_mkdir);
2222 
2223 static void nfs_dentry_handle_enoent(struct dentry *dentry)
2224 {
2225 	if (simple_positive(dentry))
2226 		d_delete(dentry);
2227 }
2228 
2229 static void nfs_dentry_remove_handle_error(struct inode *dir,
2230 					   struct dentry *dentry, int error)
2231 {
2232 	switch (error) {
2233 	case -ENOENT:
2234 		d_delete(dentry);
2235 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2236 		break;
2237 	case 0:
2238 		nfs_d_prune_case_insensitive_aliases(d_inode(dentry));
2239 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2240 	}
2241 }
2242 
2243 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
2244 {
2245 	int error;
2246 
2247 	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
2248 			dir->i_sb->s_id, dir->i_ino, dentry);
2249 
2250 	trace_nfs_rmdir_enter(dir, dentry);
2251 	if (d_really_is_positive(dentry)) {
2252 		down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2253 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2254 		/* Ensure the VFS deletes this inode */
2255 		switch (error) {
2256 		case 0:
2257 			clear_nlink(d_inode(dentry));
2258 			break;
2259 		case -ENOENT:
2260 			nfs_dentry_handle_enoent(dentry);
2261 		}
2262 		up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2263 	} else
2264 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2265 	nfs_dentry_remove_handle_error(dir, dentry, error);
2266 	trace_nfs_rmdir_exit(dir, dentry, error);
2267 
2268 	return error;
2269 }
2270 EXPORT_SYMBOL_GPL(nfs_rmdir);
2271 
2272 /*
2273  * Remove a file after making sure there are no pending writes,
2274  * and after checking that the file has only one user.
2275  *
2276  * We invalidate the attribute cache and free the inode prior to the operation
2277  * to avoid possible races if the server reuses the inode.
2278  */
2279 static int nfs_safe_remove(struct dentry *dentry)
2280 {
2281 	struct inode *dir = d_inode(dentry->d_parent);
2282 	struct inode *inode = d_inode(dentry);
2283 	int error = -EBUSY;
2284 
2285 	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2286 
2287 	/* If the dentry was sillyrenamed, we simply call d_delete() */
2288 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2289 		error = 0;
2290 		goto out;
2291 	}
2292 
2293 	trace_nfs_remove_enter(dir, dentry);
2294 	if (inode != NULL) {
2295 		error = NFS_PROTO(dir)->remove(dir, dentry);
2296 		if (error == 0)
2297 			nfs_drop_nlink(inode);
2298 	} else
2299 		error = NFS_PROTO(dir)->remove(dir, dentry);
2300 	if (error == -ENOENT)
2301 		nfs_dentry_handle_enoent(dentry);
2302 	trace_nfs_remove_exit(dir, dentry, error);
2303 out:
2304 	return error;
2305 }
2306 
2307 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
2308  *  belongs to an active ".nfs..." file and we return -EBUSY.
2309  *
2310  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
2311  */
2312 int nfs_unlink(struct inode *dir, struct dentry *dentry)
2313 {
2314 	int error;
2315 	int need_rehash = 0;
2316 
2317 	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2318 		dir->i_ino, dentry);
2319 
2320 	trace_nfs_unlink_enter(dir, dentry);
2321 	spin_lock(&dentry->d_lock);
2322 	if (d_count(dentry) > 1) {
2323 		spin_unlock(&dentry->d_lock);
2324 		/* Start asynchronous writeout of the inode */
2325 		write_inode_now(d_inode(dentry), 0);
2326 		error = nfs_sillyrename(dir, dentry);
2327 		goto out;
2328 	}
2329 	if (!d_unhashed(dentry)) {
2330 		__d_drop(dentry);
2331 		need_rehash = 1;
2332 	}
2333 	spin_unlock(&dentry->d_lock);
2334 	error = nfs_safe_remove(dentry);
2335 	nfs_dentry_remove_handle_error(dir, dentry, error);
2336 	if (need_rehash)
2337 		d_rehash(dentry);
2338 out:
2339 	trace_nfs_unlink_exit(dir, dentry, error);
2340 	return error;
2341 }
2342 EXPORT_SYMBOL_GPL(nfs_unlink);
2343 
2344 /*
2345  * To create a symbolic link, most file systems instantiate a new inode,
2346  * add a page to it containing the path, then write it out to the disk
2347  * using prepare_write/commit_write.
2348  *
2349  * Unfortunately the NFS client can't create the in-core inode first
2350  * because it needs a file handle to create an in-core inode (see
2351  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
2352  * symlink request has completed on the server.
2353  *
2354  * So instead we allocate a raw page, copy the symname into it, then do
2355  * the SYMLINK request with the page as the buffer.  If it succeeds, we
2356  * now have a new file handle and can instantiate an in-core NFS inode
2357  * and move the raw page into its mapping.
2358  */
2359 int nfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
2360 		struct dentry *dentry, const char *symname)
2361 {
2362 	struct page *page;
2363 	char *kaddr;
2364 	struct iattr attr;
2365 	unsigned int pathlen = strlen(symname);
2366 	int error;
2367 
2368 	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2369 		dir->i_ino, dentry, symname);
2370 
2371 	if (pathlen > PAGE_SIZE)
2372 		return -ENAMETOOLONG;
2373 
2374 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
2375 	attr.ia_valid = ATTR_MODE;
2376 
2377 	page = alloc_page(GFP_USER);
2378 	if (!page)
2379 		return -ENOMEM;
2380 
2381 	kaddr = page_address(page);
2382 	memcpy(kaddr, symname, pathlen);
2383 	if (pathlen < PAGE_SIZE)
2384 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2385 
2386 	trace_nfs_symlink_enter(dir, dentry);
2387 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
2388 	trace_nfs_symlink_exit(dir, dentry, error);
2389 	if (error != 0) {
2390 		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2391 			dir->i_sb->s_id, dir->i_ino,
2392 			dentry, symname, error);
2393 		d_drop(dentry);
2394 		__free_page(page);
2395 		return error;
2396 	}
2397 
2398 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2399 
2400 	/*
2401 	 * No big deal if we can't add this page to the page cache here.
2402 	 * READLINK will get the missing page from the server if needed.
2403 	 */
2404 	if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2405 							GFP_KERNEL)) {
2406 		SetPageUptodate(page);
2407 		unlock_page(page);
2408 		/*
2409 		 * add_to_page_cache_lru() grabs an extra page refcount.
2410 		 * Drop it here to avoid leaking this page later.
2411 		 */
2412 		put_page(page);
2413 	} else
2414 		__free_page(page);
2415 
2416 	return 0;
2417 }
2418 EXPORT_SYMBOL_GPL(nfs_symlink);
2419 
2420 int
2421 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2422 {
2423 	struct inode *inode = d_inode(old_dentry);
2424 	int error;
2425 
2426 	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2427 		old_dentry, dentry);
2428 
2429 	trace_nfs_link_enter(inode, dir, dentry);
2430 	d_drop(dentry);
2431 	if (S_ISREG(inode->i_mode))
2432 		nfs_sync_inode(inode);
2433 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2434 	if (error == 0) {
2435 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2436 		ihold(inode);
2437 		d_add(dentry, inode);
2438 	}
2439 	trace_nfs_link_exit(inode, dir, dentry, error);
2440 	return error;
2441 }
2442 EXPORT_SYMBOL_GPL(nfs_link);
2443 
2444 /*
2445  * RENAME
2446  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2447  * different file handle for the same inode after a rename (e.g. when
2448  * moving to a different directory). A fail-safe method to do so would
2449  * be to look up old_dir/old_name, create a link to new_dir/new_name and
2450  * rename the old file using the sillyrename stuff. This way, the original
2451  * file in old_dir will go away when the last process iput()s the inode.
2452  *
2453  * FIXED.
2454  *
2455  * It actually works quite well. One needs to have the possibility for
2456  * at least one ".nfs..." file in each directory the file ever gets
2457  * moved or linked to which happens automagically with the new
2458  * implementation that only depends on the dcache stuff instead of
2459  * using the inode layer
2460  *
2461  * Unfortunately, things are a little more complicated than indicated
2462  * above. For a cross-directory move, we want to make sure we can get
2463  * rid of the old inode after the operation.  This means there must be
2464  * no pending writes (if it's a file), and the use count must be 1.
2465  * If these conditions are met, we can drop the dentries before doing
2466  * the rename.
2467  */
2468 int nfs_rename(struct user_namespace *mnt_userns, struct inode *old_dir,
2469 	       struct dentry *old_dentry, struct inode *new_dir,
2470 	       struct dentry *new_dentry, unsigned int flags)
2471 {
2472 	struct inode *old_inode = d_inode(old_dentry);
2473 	struct inode *new_inode = d_inode(new_dentry);
2474 	struct dentry *dentry = NULL, *rehash = NULL;
2475 	struct rpc_task *task;
2476 	int error = -EBUSY;
2477 
2478 	if (flags)
2479 		return -EINVAL;
2480 
2481 	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2482 		 old_dentry, new_dentry,
2483 		 d_count(new_dentry));
2484 
2485 	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2486 	/*
2487 	 * For non-directories, check whether the target is busy and if so,
2488 	 * make a copy of the dentry and then do a silly-rename. If the
2489 	 * silly-rename succeeds, the copied dentry is hashed and becomes
2490 	 * the new target.
2491 	 */
2492 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2493 		/*
2494 		 * To prevent any new references to the target during the
2495 		 * rename, we unhash the dentry in advance.
2496 		 */
2497 		if (!d_unhashed(new_dentry)) {
2498 			d_drop(new_dentry);
2499 			rehash = new_dentry;
2500 		}
2501 
2502 		if (d_count(new_dentry) > 2) {
2503 			int err;
2504 
2505 			/* copy the target dentry's name */
2506 			dentry = d_alloc(new_dentry->d_parent,
2507 					 &new_dentry->d_name);
2508 			if (!dentry)
2509 				goto out;
2510 
2511 			/* silly-rename the existing target ... */
2512 			err = nfs_sillyrename(new_dir, new_dentry);
2513 			if (err)
2514 				goto out;
2515 
2516 			new_dentry = dentry;
2517 			rehash = NULL;
2518 			new_inode = NULL;
2519 		}
2520 	}
2521 
2522 	if (S_ISREG(old_inode->i_mode))
2523 		nfs_sync_inode(old_inode);
2524 	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2525 	if (IS_ERR(task)) {
2526 		error = PTR_ERR(task);
2527 		goto out;
2528 	}
2529 
2530 	error = rpc_wait_for_completion_task(task);
2531 	if (error != 0) {
2532 		((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2533 		/* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2534 		smp_wmb();
2535 	} else
2536 		error = task->tk_status;
2537 	rpc_put_task(task);
2538 	/* Ensure the inode attributes are revalidated */
2539 	if (error == 0) {
2540 		spin_lock(&old_inode->i_lock);
2541 		NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2542 		nfs_set_cache_invalid(old_inode, NFS_INO_INVALID_CHANGE |
2543 							 NFS_INO_INVALID_CTIME |
2544 							 NFS_INO_REVAL_FORCED);
2545 		spin_unlock(&old_inode->i_lock);
2546 	}
2547 out:
2548 	if (rehash)
2549 		d_rehash(rehash);
2550 	trace_nfs_rename_exit(old_dir, old_dentry,
2551 			new_dir, new_dentry, error);
2552 	if (!error) {
2553 		if (new_inode != NULL)
2554 			nfs_drop_nlink(new_inode);
2555 		/*
2556 		 * The d_move() should be here instead of in an async RPC completion
2557 		 * handler because we need the proper locks to move the dentry.  If
2558 		 * we're interrupted by a signal, the async RPC completion handler
2559 		 * should mark the directories for revalidation.
2560 		 */
2561 		d_move(old_dentry, new_dentry);
2562 		nfs_set_verifier(old_dentry,
2563 					nfs_save_change_attribute(new_dir));
2564 	} else if (error == -ENOENT)
2565 		nfs_dentry_handle_enoent(old_dentry);
2566 
2567 	/* new dentry created? */
2568 	if (dentry)
2569 		dput(dentry);
2570 	return error;
2571 }
2572 EXPORT_SYMBOL_GPL(nfs_rename);
2573 
2574 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2575 static LIST_HEAD(nfs_access_lru_list);
2576 static atomic_long_t nfs_access_nr_entries;
2577 
2578 static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2579 module_param(nfs_access_max_cachesize, ulong, 0644);
2580 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2581 
2582 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2583 {
2584 	put_group_info(entry->group_info);
2585 	kfree_rcu(entry, rcu_head);
2586 	smp_mb__before_atomic();
2587 	atomic_long_dec(&nfs_access_nr_entries);
2588 	smp_mb__after_atomic();
2589 }
2590 
2591 static void nfs_access_free_list(struct list_head *head)
2592 {
2593 	struct nfs_access_entry *cache;
2594 
2595 	while (!list_empty(head)) {
2596 		cache = list_entry(head->next, struct nfs_access_entry, lru);
2597 		list_del(&cache->lru);
2598 		nfs_access_free_entry(cache);
2599 	}
2600 }
2601 
2602 static unsigned long
2603 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2604 {
2605 	LIST_HEAD(head);
2606 	struct nfs_inode *nfsi, *next;
2607 	struct nfs_access_entry *cache;
2608 	long freed = 0;
2609 
2610 	spin_lock(&nfs_access_lru_lock);
2611 	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2612 		struct inode *inode;
2613 
2614 		if (nr_to_scan-- == 0)
2615 			break;
2616 		inode = &nfsi->vfs_inode;
2617 		spin_lock(&inode->i_lock);
2618 		if (list_empty(&nfsi->access_cache_entry_lru))
2619 			goto remove_lru_entry;
2620 		cache = list_entry(nfsi->access_cache_entry_lru.next,
2621 				struct nfs_access_entry, lru);
2622 		list_move(&cache->lru, &head);
2623 		rb_erase(&cache->rb_node, &nfsi->access_cache);
2624 		freed++;
2625 		if (!list_empty(&nfsi->access_cache_entry_lru))
2626 			list_move_tail(&nfsi->access_cache_inode_lru,
2627 					&nfs_access_lru_list);
2628 		else {
2629 remove_lru_entry:
2630 			list_del_init(&nfsi->access_cache_inode_lru);
2631 			smp_mb__before_atomic();
2632 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2633 			smp_mb__after_atomic();
2634 		}
2635 		spin_unlock(&inode->i_lock);
2636 	}
2637 	spin_unlock(&nfs_access_lru_lock);
2638 	nfs_access_free_list(&head);
2639 	return freed;
2640 }
2641 
2642 unsigned long
2643 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2644 {
2645 	int nr_to_scan = sc->nr_to_scan;
2646 	gfp_t gfp_mask = sc->gfp_mask;
2647 
2648 	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2649 		return SHRINK_STOP;
2650 	return nfs_do_access_cache_scan(nr_to_scan);
2651 }
2652 
2653 
2654 unsigned long
2655 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2656 {
2657 	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2658 }
2659 
2660 static void
2661 nfs_access_cache_enforce_limit(void)
2662 {
2663 	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2664 	unsigned long diff;
2665 	unsigned int nr_to_scan;
2666 
2667 	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2668 		return;
2669 	nr_to_scan = 100;
2670 	diff = nr_entries - nfs_access_max_cachesize;
2671 	if (diff < nr_to_scan)
2672 		nr_to_scan = diff;
2673 	nfs_do_access_cache_scan(nr_to_scan);
2674 }
2675 
2676 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2677 {
2678 	struct rb_root *root_node = &nfsi->access_cache;
2679 	struct rb_node *n;
2680 	struct nfs_access_entry *entry;
2681 
2682 	/* Unhook entries from the cache */
2683 	while ((n = rb_first(root_node)) != NULL) {
2684 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2685 		rb_erase(n, root_node);
2686 		list_move(&entry->lru, head);
2687 	}
2688 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2689 }
2690 
2691 void nfs_access_zap_cache(struct inode *inode)
2692 {
2693 	LIST_HEAD(head);
2694 
2695 	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2696 		return;
2697 	/* Remove from global LRU init */
2698 	spin_lock(&nfs_access_lru_lock);
2699 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2700 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2701 
2702 	spin_lock(&inode->i_lock);
2703 	__nfs_access_zap_cache(NFS_I(inode), &head);
2704 	spin_unlock(&inode->i_lock);
2705 	spin_unlock(&nfs_access_lru_lock);
2706 	nfs_access_free_list(&head);
2707 }
2708 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2709 
2710 static int access_cmp(const struct cred *a, const struct nfs_access_entry *b)
2711 {
2712 	struct group_info *ga, *gb;
2713 	int g;
2714 
2715 	if (uid_lt(a->fsuid, b->fsuid))
2716 		return -1;
2717 	if (uid_gt(a->fsuid, b->fsuid))
2718 		return 1;
2719 
2720 	if (gid_lt(a->fsgid, b->fsgid))
2721 		return -1;
2722 	if (gid_gt(a->fsgid, b->fsgid))
2723 		return 1;
2724 
2725 	ga = a->group_info;
2726 	gb = b->group_info;
2727 	if (ga == gb)
2728 		return 0;
2729 	if (ga == NULL)
2730 		return -1;
2731 	if (gb == NULL)
2732 		return 1;
2733 	if (ga->ngroups < gb->ngroups)
2734 		return -1;
2735 	if (ga->ngroups > gb->ngroups)
2736 		return 1;
2737 
2738 	for (g = 0; g < ga->ngroups; g++) {
2739 		if (gid_lt(ga->gid[g], gb->gid[g]))
2740 			return -1;
2741 		if (gid_gt(ga->gid[g], gb->gid[g]))
2742 			return 1;
2743 	}
2744 	return 0;
2745 }
2746 
2747 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2748 {
2749 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2750 
2751 	while (n != NULL) {
2752 		struct nfs_access_entry *entry =
2753 			rb_entry(n, struct nfs_access_entry, rb_node);
2754 		int cmp = access_cmp(cred, entry);
2755 
2756 		if (cmp < 0)
2757 			n = n->rb_left;
2758 		else if (cmp > 0)
2759 			n = n->rb_right;
2760 		else
2761 			return entry;
2762 	}
2763 	return NULL;
2764 }
2765 
2766 static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, u32 *mask, bool may_block)
2767 {
2768 	struct nfs_inode *nfsi = NFS_I(inode);
2769 	struct nfs_access_entry *cache;
2770 	bool retry = true;
2771 	int err;
2772 
2773 	spin_lock(&inode->i_lock);
2774 	for(;;) {
2775 		if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2776 			goto out_zap;
2777 		cache = nfs_access_search_rbtree(inode, cred);
2778 		err = -ENOENT;
2779 		if (cache == NULL)
2780 			goto out;
2781 		/* Found an entry, is our attribute cache valid? */
2782 		if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2783 			break;
2784 		if (!retry)
2785 			break;
2786 		err = -ECHILD;
2787 		if (!may_block)
2788 			goto out;
2789 		spin_unlock(&inode->i_lock);
2790 		err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2791 		if (err)
2792 			return err;
2793 		spin_lock(&inode->i_lock);
2794 		retry = false;
2795 	}
2796 	*mask = cache->mask;
2797 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2798 	err = 0;
2799 out:
2800 	spin_unlock(&inode->i_lock);
2801 	return err;
2802 out_zap:
2803 	spin_unlock(&inode->i_lock);
2804 	nfs_access_zap_cache(inode);
2805 	return -ENOENT;
2806 }
2807 
2808 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, u32 *mask)
2809 {
2810 	/* Only check the most recently returned cache entry,
2811 	 * but do it without locking.
2812 	 */
2813 	struct nfs_inode *nfsi = NFS_I(inode);
2814 	struct nfs_access_entry *cache;
2815 	int err = -ECHILD;
2816 	struct list_head *lh;
2817 
2818 	rcu_read_lock();
2819 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2820 		goto out;
2821 	lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
2822 	cache = list_entry(lh, struct nfs_access_entry, lru);
2823 	if (lh == &nfsi->access_cache_entry_lru ||
2824 	    access_cmp(cred, cache) != 0)
2825 		cache = NULL;
2826 	if (cache == NULL)
2827 		goto out;
2828 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2829 		goto out;
2830 	*mask = cache->mask;
2831 	err = 0;
2832 out:
2833 	rcu_read_unlock();
2834 	return err;
2835 }
2836 
2837 int nfs_access_get_cached(struct inode *inode, const struct cred *cred,
2838 			  u32 *mask, bool may_block)
2839 {
2840 	int status;
2841 
2842 	status = nfs_access_get_cached_rcu(inode, cred, mask);
2843 	if (status != 0)
2844 		status = nfs_access_get_cached_locked(inode, cred, mask,
2845 		    may_block);
2846 
2847 	return status;
2848 }
2849 EXPORT_SYMBOL_GPL(nfs_access_get_cached);
2850 
2851 static void nfs_access_add_rbtree(struct inode *inode,
2852 				  struct nfs_access_entry *set,
2853 				  const struct cred *cred)
2854 {
2855 	struct nfs_inode *nfsi = NFS_I(inode);
2856 	struct rb_root *root_node = &nfsi->access_cache;
2857 	struct rb_node **p = &root_node->rb_node;
2858 	struct rb_node *parent = NULL;
2859 	struct nfs_access_entry *entry;
2860 	int cmp;
2861 
2862 	spin_lock(&inode->i_lock);
2863 	while (*p != NULL) {
2864 		parent = *p;
2865 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2866 		cmp = access_cmp(cred, entry);
2867 
2868 		if (cmp < 0)
2869 			p = &parent->rb_left;
2870 		else if (cmp > 0)
2871 			p = &parent->rb_right;
2872 		else
2873 			goto found;
2874 	}
2875 	rb_link_node(&set->rb_node, parent, p);
2876 	rb_insert_color(&set->rb_node, root_node);
2877 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2878 	spin_unlock(&inode->i_lock);
2879 	return;
2880 found:
2881 	rb_replace_node(parent, &set->rb_node, root_node);
2882 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2883 	list_del(&entry->lru);
2884 	spin_unlock(&inode->i_lock);
2885 	nfs_access_free_entry(entry);
2886 }
2887 
2888 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set,
2889 			  const struct cred *cred)
2890 {
2891 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2892 	if (cache == NULL)
2893 		return;
2894 	RB_CLEAR_NODE(&cache->rb_node);
2895 	cache->fsuid = cred->fsuid;
2896 	cache->fsgid = cred->fsgid;
2897 	cache->group_info = get_group_info(cred->group_info);
2898 	cache->mask = set->mask;
2899 
2900 	/* The above field assignments must be visible
2901 	 * before this item appears on the lru.  We cannot easily
2902 	 * use rcu_assign_pointer, so just force the memory barrier.
2903 	 */
2904 	smp_wmb();
2905 	nfs_access_add_rbtree(inode, cache, cred);
2906 
2907 	/* Update accounting */
2908 	smp_mb__before_atomic();
2909 	atomic_long_inc(&nfs_access_nr_entries);
2910 	smp_mb__after_atomic();
2911 
2912 	/* Add inode to global LRU list */
2913 	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2914 		spin_lock(&nfs_access_lru_lock);
2915 		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2916 			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2917 					&nfs_access_lru_list);
2918 		spin_unlock(&nfs_access_lru_lock);
2919 	}
2920 	nfs_access_cache_enforce_limit();
2921 }
2922 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2923 
2924 #define NFS_MAY_READ (NFS_ACCESS_READ)
2925 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2926 		NFS_ACCESS_EXTEND | \
2927 		NFS_ACCESS_DELETE)
2928 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2929 		NFS_ACCESS_EXTEND)
2930 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2931 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2932 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2933 static int
2934 nfs_access_calc_mask(u32 access_result, umode_t umode)
2935 {
2936 	int mask = 0;
2937 
2938 	if (access_result & NFS_MAY_READ)
2939 		mask |= MAY_READ;
2940 	if (S_ISDIR(umode)) {
2941 		if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
2942 			mask |= MAY_WRITE;
2943 		if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
2944 			mask |= MAY_EXEC;
2945 	} else if (S_ISREG(umode)) {
2946 		if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
2947 			mask |= MAY_WRITE;
2948 		if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
2949 			mask |= MAY_EXEC;
2950 	} else if (access_result & NFS_MAY_WRITE)
2951 			mask |= MAY_WRITE;
2952 	return mask;
2953 }
2954 
2955 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2956 {
2957 	entry->mask = access_result;
2958 }
2959 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2960 
2961 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
2962 {
2963 	struct nfs_access_entry cache;
2964 	bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2965 	int cache_mask = -1;
2966 	int status;
2967 
2968 	trace_nfs_access_enter(inode);
2969 
2970 	status = nfs_access_get_cached(inode, cred, &cache.mask, may_block);
2971 	if (status == 0)
2972 		goto out_cached;
2973 
2974 	status = -ECHILD;
2975 	if (!may_block)
2976 		goto out;
2977 
2978 	/*
2979 	 * Determine which access bits we want to ask for...
2980 	 */
2981 	cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND;
2982 	if (nfs_server_capable(inode, NFS_CAP_XATTR)) {
2983 		cache.mask |= NFS_ACCESS_XAREAD | NFS_ACCESS_XAWRITE |
2984 		    NFS_ACCESS_XALIST;
2985 	}
2986 	if (S_ISDIR(inode->i_mode))
2987 		cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
2988 	else
2989 		cache.mask |= NFS_ACCESS_EXECUTE;
2990 	status = NFS_PROTO(inode)->access(inode, &cache, cred);
2991 	if (status != 0) {
2992 		if (status == -ESTALE) {
2993 			if (!S_ISDIR(inode->i_mode))
2994 				nfs_set_inode_stale(inode);
2995 			else
2996 				nfs_zap_caches(inode);
2997 		}
2998 		goto out;
2999 	}
3000 	nfs_access_add_cache(inode, &cache, cred);
3001 out_cached:
3002 	cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
3003 	if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
3004 		status = -EACCES;
3005 out:
3006 	trace_nfs_access_exit(inode, mask, cache_mask, status);
3007 	return status;
3008 }
3009 
3010 static int nfs_open_permission_mask(int openflags)
3011 {
3012 	int mask = 0;
3013 
3014 	if (openflags & __FMODE_EXEC) {
3015 		/* ONLY check exec rights */
3016 		mask = MAY_EXEC;
3017 	} else {
3018 		if ((openflags & O_ACCMODE) != O_WRONLY)
3019 			mask |= MAY_READ;
3020 		if ((openflags & O_ACCMODE) != O_RDONLY)
3021 			mask |= MAY_WRITE;
3022 	}
3023 
3024 	return mask;
3025 }
3026 
3027 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
3028 {
3029 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
3030 }
3031 EXPORT_SYMBOL_GPL(nfs_may_open);
3032 
3033 static int nfs_execute_ok(struct inode *inode, int mask)
3034 {
3035 	struct nfs_server *server = NFS_SERVER(inode);
3036 	int ret = 0;
3037 
3038 	if (S_ISDIR(inode->i_mode))
3039 		return 0;
3040 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_MODE)) {
3041 		if (mask & MAY_NOT_BLOCK)
3042 			return -ECHILD;
3043 		ret = __nfs_revalidate_inode(server, inode);
3044 	}
3045 	if (ret == 0 && !execute_ok(inode))
3046 		ret = -EACCES;
3047 	return ret;
3048 }
3049 
3050 int nfs_permission(struct user_namespace *mnt_userns,
3051 		   struct inode *inode,
3052 		   int mask)
3053 {
3054 	const struct cred *cred = current_cred();
3055 	int res = 0;
3056 
3057 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
3058 
3059 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
3060 		goto out;
3061 	/* Is this sys_access() ? */
3062 	if (mask & (MAY_ACCESS | MAY_CHDIR))
3063 		goto force_lookup;
3064 
3065 	switch (inode->i_mode & S_IFMT) {
3066 		case S_IFLNK:
3067 			goto out;
3068 		case S_IFREG:
3069 			if ((mask & MAY_OPEN) &&
3070 			   nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
3071 				return 0;
3072 			break;
3073 		case S_IFDIR:
3074 			/*
3075 			 * Optimize away all write operations, since the server
3076 			 * will check permissions when we perform the op.
3077 			 */
3078 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
3079 				goto out;
3080 	}
3081 
3082 force_lookup:
3083 	if (!NFS_PROTO(inode)->access)
3084 		goto out_notsup;
3085 
3086 	res = nfs_do_access(inode, cred, mask);
3087 out:
3088 	if (!res && (mask & MAY_EXEC))
3089 		res = nfs_execute_ok(inode, mask);
3090 
3091 	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
3092 		inode->i_sb->s_id, inode->i_ino, mask, res);
3093 	return res;
3094 out_notsup:
3095 	if (mask & MAY_NOT_BLOCK)
3096 		return -ECHILD;
3097 
3098 	res = nfs_revalidate_inode(inode, NFS_INO_INVALID_MODE |
3099 						  NFS_INO_INVALID_OTHER);
3100 	if (res == 0)
3101 		res = generic_permission(&init_user_ns, inode, mask);
3102 	goto out;
3103 }
3104 EXPORT_SYMBOL_GPL(nfs_permission);
3105