xref: /openbmc/linux/fs/nfs/dir.c (revision d5532ee7)
1 /*
2  *  linux/fs/nfs/dir.c
3  *
4  *  Copyright (C) 1992  Rick Sladkey
5  *
6  *  nfs directory handling functions
7  *
8  * 10 Apr 1996	Added silly rename for unlink	--okir
9  * 28 Sep 1996	Improved directory cache --okir
10  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
11  *              Re-implemented silly rename for unlink, newly implemented
12  *              silly rename for nfs_rename() following the suggestions
13  *              of Olaf Kirch (okir) found in this file.
14  *              Following Linus comments on my original hack, this version
15  *              depends only on the dcache stuff and doesn't touch the inode
16  *              layer (iput() and friends).
17  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
18  */
19 
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/pagevec.h>
33 #include <linux/namei.h>
34 #include <linux/mount.h>
35 #include <linux/sched.h>
36 
37 #include "nfs4_fs.h"
38 #include "delegation.h"
39 #include "iostat.h"
40 #include "internal.h"
41 
42 /* #define NFS_DEBUG_VERBOSE 1 */
43 
44 static int nfs_opendir(struct inode *, struct file *);
45 static int nfs_readdir(struct file *, void *, filldir_t);
46 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
47 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *);
48 static int nfs_mkdir(struct inode *, struct dentry *, int);
49 static int nfs_rmdir(struct inode *, struct dentry *);
50 static int nfs_unlink(struct inode *, struct dentry *);
51 static int nfs_symlink(struct inode *, struct dentry *, const char *);
52 static int nfs_link(struct dentry *, struct inode *, struct dentry *);
53 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t);
54 static int nfs_rename(struct inode *, struct dentry *,
55 		      struct inode *, struct dentry *);
56 static int nfs_fsync_dir(struct file *, int);
57 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
58 
59 const struct file_operations nfs_dir_operations = {
60 	.llseek		= nfs_llseek_dir,
61 	.read		= generic_read_dir,
62 	.readdir	= nfs_readdir,
63 	.open		= nfs_opendir,
64 	.release	= nfs_release,
65 	.fsync		= nfs_fsync_dir,
66 };
67 
68 const struct inode_operations nfs_dir_inode_operations = {
69 	.create		= nfs_create,
70 	.lookup		= nfs_lookup,
71 	.link		= nfs_link,
72 	.unlink		= nfs_unlink,
73 	.symlink	= nfs_symlink,
74 	.mkdir		= nfs_mkdir,
75 	.rmdir		= nfs_rmdir,
76 	.mknod		= nfs_mknod,
77 	.rename		= nfs_rename,
78 	.permission	= nfs_permission,
79 	.getattr	= nfs_getattr,
80 	.setattr	= nfs_setattr,
81 };
82 
83 #ifdef CONFIG_NFS_V3
84 const struct inode_operations nfs3_dir_inode_operations = {
85 	.create		= nfs_create,
86 	.lookup		= nfs_lookup,
87 	.link		= nfs_link,
88 	.unlink		= nfs_unlink,
89 	.symlink	= nfs_symlink,
90 	.mkdir		= nfs_mkdir,
91 	.rmdir		= nfs_rmdir,
92 	.mknod		= nfs_mknod,
93 	.rename		= nfs_rename,
94 	.permission	= nfs_permission,
95 	.getattr	= nfs_getattr,
96 	.setattr	= nfs_setattr,
97 	.listxattr	= nfs3_listxattr,
98 	.getxattr	= nfs3_getxattr,
99 	.setxattr	= nfs3_setxattr,
100 	.removexattr	= nfs3_removexattr,
101 };
102 #endif  /* CONFIG_NFS_V3 */
103 
104 #ifdef CONFIG_NFS_V4
105 
106 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
107 const struct inode_operations nfs4_dir_inode_operations = {
108 	.create		= nfs_create,
109 	.lookup		= nfs_atomic_lookup,
110 	.link		= nfs_link,
111 	.unlink		= nfs_unlink,
112 	.symlink	= nfs_symlink,
113 	.mkdir		= nfs_mkdir,
114 	.rmdir		= nfs_rmdir,
115 	.mknod		= nfs_mknod,
116 	.rename		= nfs_rename,
117 	.permission	= nfs_permission,
118 	.getattr	= nfs_getattr,
119 	.setattr	= nfs_setattr,
120 	.getxattr       = nfs4_getxattr,
121 	.setxattr       = nfs4_setxattr,
122 	.listxattr      = nfs4_listxattr,
123 };
124 
125 #endif /* CONFIG_NFS_V4 */
126 
127 /*
128  * Open file
129  */
130 static int
131 nfs_opendir(struct inode *inode, struct file *filp)
132 {
133 	int res;
134 
135 	dfprintk(FILE, "NFS: open dir(%s/%s)\n",
136 			filp->f_path.dentry->d_parent->d_name.name,
137 			filp->f_path.dentry->d_name.name);
138 
139 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
140 
141 	/* Call generic open code in order to cache credentials */
142 	res = nfs_open(inode, filp);
143 	if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
144 		/* This is a mountpoint, so d_revalidate will never
145 		 * have been called, so we need to refresh the
146 		 * inode (for close-open consistency) ourselves.
147 		 */
148 		__nfs_revalidate_inode(NFS_SERVER(inode), inode);
149 	}
150 	return res;
151 }
152 
153 typedef __be32 * (*decode_dirent_t)(__be32 *, struct nfs_entry *, int);
154 typedef struct {
155 	struct file	*file;
156 	struct page	*page;
157 	unsigned long	page_index;
158 	__be32		*ptr;
159 	u64		*dir_cookie;
160 	loff_t		current_index;
161 	struct nfs_entry *entry;
162 	decode_dirent_t	decode;
163 	int		plus;
164 	unsigned long	timestamp;
165 	unsigned long	gencount;
166 	int		timestamp_valid;
167 } nfs_readdir_descriptor_t;
168 
169 /* Now we cache directories properly, by stuffing the dirent
170  * data directly in the page cache.
171  *
172  * Inode invalidation due to refresh etc. takes care of
173  * _everything_, no sloppy entry flushing logic, no extraneous
174  * copying, network direct to page cache, the way it was meant
175  * to be.
176  *
177  * NOTE: Dirent information verification is done always by the
178  *	 page-in of the RPC reply, nowhere else, this simplies
179  *	 things substantially.
180  */
181 static
182 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page *page)
183 {
184 	struct file	*file = desc->file;
185 	struct inode	*inode = file->f_path.dentry->d_inode;
186 	struct rpc_cred	*cred = nfs_file_cred(file);
187 	unsigned long	timestamp, gencount;
188 	int		error;
189 
190 	dfprintk(DIRCACHE, "NFS: %s: reading cookie %Lu into page %lu\n",
191 			__func__, (long long)desc->entry->cookie,
192 			page->index);
193 
194  again:
195 	timestamp = jiffies;
196 	gencount = nfs_inc_attr_generation_counter();
197 	error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, desc->entry->cookie, page,
198 					  NFS_SERVER(inode)->dtsize, desc->plus);
199 	if (error < 0) {
200 		/* We requested READDIRPLUS, but the server doesn't grok it */
201 		if (error == -ENOTSUPP && desc->plus) {
202 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
203 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
204 			desc->plus = 0;
205 			goto again;
206 		}
207 		goto error;
208 	}
209 	desc->timestamp = timestamp;
210 	desc->gencount = gencount;
211 	desc->timestamp_valid = 1;
212 	SetPageUptodate(page);
213 	/* Ensure consistent page alignment of the data.
214 	 * Note: assumes we have exclusive access to this mapping either
215 	 *	 through inode->i_mutex or some other mechanism.
216 	 */
217 	if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
218 		/* Should never happen */
219 		nfs_zap_mapping(inode, inode->i_mapping);
220 	}
221 	unlock_page(page);
222 	return 0;
223  error:
224 	unlock_page(page);
225 	return -EIO;
226 }
227 
228 static inline
229 int dir_decode(nfs_readdir_descriptor_t *desc)
230 {
231 	__be32	*p = desc->ptr;
232 	p = desc->decode(p, desc->entry, desc->plus);
233 	if (IS_ERR(p))
234 		return PTR_ERR(p);
235 	desc->ptr = p;
236 	if (desc->timestamp_valid) {
237 		desc->entry->fattr->time_start = desc->timestamp;
238 		desc->entry->fattr->gencount = desc->gencount;
239 	} else
240 		desc->entry->fattr->valid &= ~NFS_ATTR_FATTR;
241 	return 0;
242 }
243 
244 static inline
245 void dir_page_release(nfs_readdir_descriptor_t *desc)
246 {
247 	kunmap(desc->page);
248 	page_cache_release(desc->page);
249 	desc->page = NULL;
250 	desc->ptr = NULL;
251 }
252 
253 /*
254  * Given a pointer to a buffer that has already been filled by a call
255  * to readdir, find the next entry with cookie '*desc->dir_cookie'.
256  *
257  * If the end of the buffer has been reached, return -EAGAIN, if not,
258  * return the offset within the buffer of the next entry to be
259  * read.
260  */
261 static inline
262 int find_dirent(nfs_readdir_descriptor_t *desc)
263 {
264 	struct nfs_entry *entry = desc->entry;
265 	int		loop_count = 0,
266 			status;
267 
268 	while((status = dir_decode(desc)) == 0) {
269 		dfprintk(DIRCACHE, "NFS: %s: examining cookie %Lu\n",
270 				__func__, (unsigned long long)entry->cookie);
271 		if (entry->prev_cookie == *desc->dir_cookie)
272 			break;
273 		if (loop_count++ > 200) {
274 			loop_count = 0;
275 			schedule();
276 		}
277 	}
278 	return status;
279 }
280 
281 /*
282  * Given a pointer to a buffer that has already been filled by a call
283  * to readdir, find the entry at offset 'desc->file->f_pos'.
284  *
285  * If the end of the buffer has been reached, return -EAGAIN, if not,
286  * return the offset within the buffer of the next entry to be
287  * read.
288  */
289 static inline
290 int find_dirent_index(nfs_readdir_descriptor_t *desc)
291 {
292 	struct nfs_entry *entry = desc->entry;
293 	int		loop_count = 0,
294 			status;
295 
296 	for(;;) {
297 		status = dir_decode(desc);
298 		if (status)
299 			break;
300 
301 		dfprintk(DIRCACHE, "NFS: found cookie %Lu at index %Ld\n",
302 				(unsigned long long)entry->cookie, desc->current_index);
303 
304 		if (desc->file->f_pos == desc->current_index) {
305 			*desc->dir_cookie = entry->cookie;
306 			break;
307 		}
308 		desc->current_index++;
309 		if (loop_count++ > 200) {
310 			loop_count = 0;
311 			schedule();
312 		}
313 	}
314 	return status;
315 }
316 
317 /*
318  * Find the given page, and call find_dirent() or find_dirent_index in
319  * order to try to return the next entry.
320  */
321 static inline
322 int find_dirent_page(nfs_readdir_descriptor_t *desc)
323 {
324 	struct inode	*inode = desc->file->f_path.dentry->d_inode;
325 	struct page	*page;
326 	int		status;
327 
328 	dfprintk(DIRCACHE, "NFS: %s: searching page %ld for target %Lu\n",
329 			__func__, desc->page_index,
330 			(long long) *desc->dir_cookie);
331 
332 	/* If we find the page in the page_cache, we cannot be sure
333 	 * how fresh the data is, so we will ignore readdir_plus attributes.
334 	 */
335 	desc->timestamp_valid = 0;
336 	page = read_cache_page(inode->i_mapping, desc->page_index,
337 			       (filler_t *)nfs_readdir_filler, desc);
338 	if (IS_ERR(page)) {
339 		status = PTR_ERR(page);
340 		goto out;
341 	}
342 
343 	/* NOTE: Someone else may have changed the READDIRPLUS flag */
344 	desc->page = page;
345 	desc->ptr = kmap(page);		/* matching kunmap in nfs_do_filldir */
346 	if (*desc->dir_cookie != 0)
347 		status = find_dirent(desc);
348 	else
349 		status = find_dirent_index(desc);
350 	if (status < 0)
351 		dir_page_release(desc);
352  out:
353 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
354 	return status;
355 }
356 
357 /*
358  * Recurse through the page cache pages, and return a
359  * filled nfs_entry structure of the next directory entry if possible.
360  *
361  * The target for the search is '*desc->dir_cookie' if non-0,
362  * 'desc->file->f_pos' otherwise
363  */
364 static inline
365 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
366 {
367 	int		loop_count = 0;
368 	int		res;
369 
370 	/* Always search-by-index from the beginning of the cache */
371 	if (*desc->dir_cookie == 0) {
372 		dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for offset %Ld\n",
373 				(long long)desc->file->f_pos);
374 		desc->page_index = 0;
375 		desc->entry->cookie = desc->entry->prev_cookie = 0;
376 		desc->entry->eof = 0;
377 		desc->current_index = 0;
378 	} else
379 		dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for cookie %Lu\n",
380 				(unsigned long long)*desc->dir_cookie);
381 
382 	for (;;) {
383 		res = find_dirent_page(desc);
384 		if (res != -EAGAIN)
385 			break;
386 		/* Align to beginning of next page */
387 		desc->page_index ++;
388 		if (loop_count++ > 200) {
389 			loop_count = 0;
390 			schedule();
391 		}
392 	}
393 
394 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, res);
395 	return res;
396 }
397 
398 static inline unsigned int dt_type(struct inode *inode)
399 {
400 	return (inode->i_mode >> 12) & 15;
401 }
402 
403 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc);
404 
405 /*
406  * Once we've found the start of the dirent within a page: fill 'er up...
407  */
408 static
409 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
410 		   filldir_t filldir)
411 {
412 	struct file	*file = desc->file;
413 	struct nfs_entry *entry = desc->entry;
414 	struct dentry	*dentry = NULL;
415 	u64		fileid;
416 	int		loop_count = 0,
417 			res;
418 
419 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling starting @ cookie %Lu\n",
420 			(unsigned long long)entry->cookie);
421 
422 	for(;;) {
423 		unsigned d_type = DT_UNKNOWN;
424 		/* Note: entry->prev_cookie contains the cookie for
425 		 *	 retrieving the current dirent on the server */
426 		fileid = entry->ino;
427 
428 		/* Get a dentry if we have one */
429 		if (dentry != NULL)
430 			dput(dentry);
431 		dentry = nfs_readdir_lookup(desc);
432 
433 		/* Use readdirplus info */
434 		if (dentry != NULL && dentry->d_inode != NULL) {
435 			d_type = dt_type(dentry->d_inode);
436 			fileid = NFS_FILEID(dentry->d_inode);
437 		}
438 
439 		res = filldir(dirent, entry->name, entry->len,
440 			      file->f_pos, nfs_compat_user_ino64(fileid),
441 			      d_type);
442 		if (res < 0)
443 			break;
444 		file->f_pos++;
445 		*desc->dir_cookie = entry->cookie;
446 		if (dir_decode(desc) != 0) {
447 			desc->page_index ++;
448 			break;
449 		}
450 		if (loop_count++ > 200) {
451 			loop_count = 0;
452 			schedule();
453 		}
454 	}
455 	dir_page_release(desc);
456 	if (dentry != NULL)
457 		dput(dentry);
458 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
459 			(unsigned long long)*desc->dir_cookie, res);
460 	return res;
461 }
462 
463 /*
464  * If we cannot find a cookie in our cache, we suspect that this is
465  * because it points to a deleted file, so we ask the server to return
466  * whatever it thinks is the next entry. We then feed this to filldir.
467  * If all goes well, we should then be able to find our way round the
468  * cache on the next call to readdir_search_pagecache();
469  *
470  * NOTE: we cannot add the anonymous page to the pagecache because
471  *	 the data it contains might not be page aligned. Besides,
472  *	 we should already have a complete representation of the
473  *	 directory in the page cache by the time we get here.
474  */
475 static inline
476 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
477 		     filldir_t filldir)
478 {
479 	struct file	*file = desc->file;
480 	struct inode	*inode = file->f_path.dentry->d_inode;
481 	struct rpc_cred	*cred = nfs_file_cred(file);
482 	struct page	*page = NULL;
483 	int		status;
484 	unsigned long	timestamp, gencount;
485 
486 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
487 			(unsigned long long)*desc->dir_cookie);
488 
489 	page = alloc_page(GFP_HIGHUSER);
490 	if (!page) {
491 		status = -ENOMEM;
492 		goto out;
493 	}
494 	timestamp = jiffies;
495 	gencount = nfs_inc_attr_generation_counter();
496 	status = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred,
497 						*desc->dir_cookie, page,
498 						NFS_SERVER(inode)->dtsize,
499 						desc->plus);
500 	desc->page = page;
501 	desc->ptr = kmap(page);		/* matching kunmap in nfs_do_filldir */
502 	if (status >= 0) {
503 		desc->timestamp = timestamp;
504 		desc->gencount = gencount;
505 		desc->timestamp_valid = 1;
506 		if ((status = dir_decode(desc)) == 0)
507 			desc->entry->prev_cookie = *desc->dir_cookie;
508 	} else
509 		status = -EIO;
510 	if (status < 0)
511 		goto out_release;
512 
513 	status = nfs_do_filldir(desc, dirent, filldir);
514 
515 	/* Reset read descriptor so it searches the page cache from
516 	 * the start upon the next call to readdir_search_pagecache() */
517 	desc->page_index = 0;
518 	desc->entry->cookie = desc->entry->prev_cookie = 0;
519 	desc->entry->eof = 0;
520  out:
521 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
522 			__func__, status);
523 	return status;
524  out_release:
525 	dir_page_release(desc);
526 	goto out;
527 }
528 
529 /* The file offset position represents the dirent entry number.  A
530    last cookie cache takes care of the common case of reading the
531    whole directory.
532  */
533 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
534 {
535 	struct dentry	*dentry = filp->f_path.dentry;
536 	struct inode	*inode = dentry->d_inode;
537 	nfs_readdir_descriptor_t my_desc,
538 			*desc = &my_desc;
539 	struct nfs_entry my_entry;
540 	int res = -ENOMEM;
541 
542 	dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n",
543 			dentry->d_parent->d_name.name, dentry->d_name.name,
544 			(long long)filp->f_pos);
545 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
546 
547 	/*
548 	 * filp->f_pos points to the dirent entry number.
549 	 * *desc->dir_cookie has the cookie for the next entry. We have
550 	 * to either find the entry with the appropriate number or
551 	 * revalidate the cookie.
552 	 */
553 	memset(desc, 0, sizeof(*desc));
554 
555 	desc->file = filp;
556 	desc->dir_cookie = &nfs_file_open_context(filp)->dir_cookie;
557 	desc->decode = NFS_PROTO(inode)->decode_dirent;
558 	desc->plus = NFS_USE_READDIRPLUS(inode);
559 
560 	my_entry.cookie = my_entry.prev_cookie = 0;
561 	my_entry.eof = 0;
562 	my_entry.fh = nfs_alloc_fhandle();
563 	my_entry.fattr = nfs_alloc_fattr();
564 	if (my_entry.fh == NULL || my_entry.fattr == NULL)
565 		goto out_alloc_failed;
566 
567 	desc->entry = &my_entry;
568 
569 	nfs_block_sillyrename(dentry);
570 	res = nfs_revalidate_mapping(inode, filp->f_mapping);
571 	if (res < 0)
572 		goto out;
573 
574 	while(!desc->entry->eof) {
575 		res = readdir_search_pagecache(desc);
576 
577 		if (res == -EBADCOOKIE) {
578 			/* This means either end of directory */
579 			if (*desc->dir_cookie && desc->entry->cookie != *desc->dir_cookie) {
580 				/* Or that the server has 'lost' a cookie */
581 				res = uncached_readdir(desc, dirent, filldir);
582 				if (res >= 0)
583 					continue;
584 			}
585 			res = 0;
586 			break;
587 		}
588 		if (res == -ETOOSMALL && desc->plus) {
589 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
590 			nfs_zap_caches(inode);
591 			desc->plus = 0;
592 			desc->entry->eof = 0;
593 			continue;
594 		}
595 		if (res < 0)
596 			break;
597 
598 		res = nfs_do_filldir(desc, dirent, filldir);
599 		if (res < 0) {
600 			res = 0;
601 			break;
602 		}
603 	}
604 out:
605 	nfs_unblock_sillyrename(dentry);
606 	if (res > 0)
607 		res = 0;
608 out_alloc_failed:
609 	nfs_free_fattr(my_entry.fattr);
610 	nfs_free_fhandle(my_entry.fh);
611 	dfprintk(FILE, "NFS: readdir(%s/%s) returns %d\n",
612 			dentry->d_parent->d_name.name, dentry->d_name.name,
613 			res);
614 	return res;
615 }
616 
617 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
618 {
619 	struct dentry *dentry = filp->f_path.dentry;
620 	struct inode *inode = dentry->d_inode;
621 
622 	dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n",
623 			dentry->d_parent->d_name.name,
624 			dentry->d_name.name,
625 			offset, origin);
626 
627 	mutex_lock(&inode->i_mutex);
628 	switch (origin) {
629 		case 1:
630 			offset += filp->f_pos;
631 		case 0:
632 			if (offset >= 0)
633 				break;
634 		default:
635 			offset = -EINVAL;
636 			goto out;
637 	}
638 	if (offset != filp->f_pos) {
639 		filp->f_pos = offset;
640 		nfs_file_open_context(filp)->dir_cookie = 0;
641 	}
642 out:
643 	mutex_unlock(&inode->i_mutex);
644 	return offset;
645 }
646 
647 /*
648  * All directory operations under NFS are synchronous, so fsync()
649  * is a dummy operation.
650  */
651 static int nfs_fsync_dir(struct file *filp, int datasync)
652 {
653 	struct dentry *dentry = filp->f_path.dentry;
654 
655 	dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n",
656 			dentry->d_parent->d_name.name, dentry->d_name.name,
657 			datasync);
658 
659 	nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC);
660 	return 0;
661 }
662 
663 /**
664  * nfs_force_lookup_revalidate - Mark the directory as having changed
665  * @dir - pointer to directory inode
666  *
667  * This forces the revalidation code in nfs_lookup_revalidate() to do a
668  * full lookup on all child dentries of 'dir' whenever a change occurs
669  * on the server that might have invalidated our dcache.
670  *
671  * The caller should be holding dir->i_lock
672  */
673 void nfs_force_lookup_revalidate(struct inode *dir)
674 {
675 	NFS_I(dir)->cache_change_attribute++;
676 }
677 
678 /*
679  * A check for whether or not the parent directory has changed.
680  * In the case it has, we assume that the dentries are untrustworthy
681  * and may need to be looked up again.
682  */
683 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
684 {
685 	if (IS_ROOT(dentry))
686 		return 1;
687 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
688 		return 0;
689 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
690 		return 0;
691 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
692 	if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
693 		return 0;
694 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
695 		return 0;
696 	return 1;
697 }
698 
699 /*
700  * Return the intent data that applies to this particular path component
701  *
702  * Note that the current set of intents only apply to the very last
703  * component of the path.
704  * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
705  */
706 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, unsigned int mask)
707 {
708 	if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT))
709 		return 0;
710 	return nd->flags & mask;
711 }
712 
713 /*
714  * Use intent information to check whether or not we're going to do
715  * an O_EXCL create using this path component.
716  */
717 static int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
718 {
719 	if (NFS_PROTO(dir)->version == 2)
720 		return 0;
721 	return nd && nfs_lookup_check_intent(nd, LOOKUP_EXCL);
722 }
723 
724 /*
725  * Inode and filehandle revalidation for lookups.
726  *
727  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
728  * or if the intent information indicates that we're about to open this
729  * particular file and the "nocto" mount flag is not set.
730  *
731  */
732 static inline
733 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
734 {
735 	struct nfs_server *server = NFS_SERVER(inode);
736 
737 	if (test_bit(NFS_INO_MOUNTPOINT, &NFS_I(inode)->flags))
738 		return 0;
739 	if (nd != NULL) {
740 		/* VFS wants an on-the-wire revalidation */
741 		if (nd->flags & LOOKUP_REVAL)
742 			goto out_force;
743 		/* This is an open(2) */
744 		if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
745 				!(server->flags & NFS_MOUNT_NOCTO) &&
746 				(S_ISREG(inode->i_mode) ||
747 				 S_ISDIR(inode->i_mode)))
748 			goto out_force;
749 		return 0;
750 	}
751 	return nfs_revalidate_inode(server, inode);
752 out_force:
753 	return __nfs_revalidate_inode(server, inode);
754 }
755 
756 /*
757  * We judge how long we want to trust negative
758  * dentries by looking at the parent inode mtime.
759  *
760  * If parent mtime has changed, we revalidate, else we wait for a
761  * period corresponding to the parent's attribute cache timeout value.
762  */
763 static inline
764 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
765 		       struct nameidata *nd)
766 {
767 	/* Don't revalidate a negative dentry if we're creating a new file */
768 	if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
769 		return 0;
770 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
771 		return 1;
772 	return !nfs_check_verifier(dir, dentry);
773 }
774 
775 /*
776  * This is called every time the dcache has a lookup hit,
777  * and we should check whether we can really trust that
778  * lookup.
779  *
780  * NOTE! The hit can be a negative hit too, don't assume
781  * we have an inode!
782  *
783  * If the parent directory is seen to have changed, we throw out the
784  * cached dentry and do a new lookup.
785  */
786 static int nfs_lookup_revalidate(struct dentry * dentry, struct nameidata *nd)
787 {
788 	struct inode *dir;
789 	struct inode *inode;
790 	struct dentry *parent;
791 	struct nfs_fh *fhandle = NULL;
792 	struct nfs_fattr *fattr = NULL;
793 	int error;
794 
795 	parent = dget_parent(dentry);
796 	dir = parent->d_inode;
797 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
798 	inode = dentry->d_inode;
799 
800 	if (!inode) {
801 		if (nfs_neg_need_reval(dir, dentry, nd))
802 			goto out_bad;
803 		goto out_valid;
804 	}
805 
806 	if (is_bad_inode(inode)) {
807 		dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
808 				__func__, dentry->d_parent->d_name.name,
809 				dentry->d_name.name);
810 		goto out_bad;
811 	}
812 
813 	if (nfs_have_delegation(inode, FMODE_READ))
814 		goto out_set_verifier;
815 
816 	/* Force a full look up iff the parent directory has changed */
817 	if (!nfs_is_exclusive_create(dir, nd) && nfs_check_verifier(dir, dentry)) {
818 		if (nfs_lookup_verify_inode(inode, nd))
819 			goto out_zap_parent;
820 		goto out_valid;
821 	}
822 
823 	if (NFS_STALE(inode))
824 		goto out_bad;
825 
826 	error = -ENOMEM;
827 	fhandle = nfs_alloc_fhandle();
828 	fattr = nfs_alloc_fattr();
829 	if (fhandle == NULL || fattr == NULL)
830 		goto out_error;
831 
832 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
833 	if (error)
834 		goto out_bad;
835 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
836 		goto out_bad;
837 	if ((error = nfs_refresh_inode(inode, fattr)) != 0)
838 		goto out_bad;
839 
840 	nfs_free_fattr(fattr);
841 	nfs_free_fhandle(fhandle);
842 out_set_verifier:
843 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
844  out_valid:
845 	dput(parent);
846 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
847 			__func__, dentry->d_parent->d_name.name,
848 			dentry->d_name.name);
849 	return 1;
850 out_zap_parent:
851 	nfs_zap_caches(dir);
852  out_bad:
853 	nfs_mark_for_revalidate(dir);
854 	if (inode && S_ISDIR(inode->i_mode)) {
855 		/* Purge readdir caches. */
856 		nfs_zap_caches(inode);
857 		/* If we have submounts, don't unhash ! */
858 		if (have_submounts(dentry))
859 			goto out_valid;
860 		if (dentry->d_flags & DCACHE_DISCONNECTED)
861 			goto out_valid;
862 		shrink_dcache_parent(dentry);
863 	}
864 	d_drop(dentry);
865 	nfs_free_fattr(fattr);
866 	nfs_free_fhandle(fhandle);
867 	dput(parent);
868 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
869 			__func__, dentry->d_parent->d_name.name,
870 			dentry->d_name.name);
871 	return 0;
872 out_error:
873 	nfs_free_fattr(fattr);
874 	nfs_free_fhandle(fhandle);
875 	dput(parent);
876 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) lookup returned error %d\n",
877 			__func__, dentry->d_parent->d_name.name,
878 			dentry->d_name.name, error);
879 	return error;
880 }
881 
882 /*
883  * This is called from dput() when d_count is going to 0.
884  */
885 static int nfs_dentry_delete(struct dentry *dentry)
886 {
887 	dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
888 		dentry->d_parent->d_name.name, dentry->d_name.name,
889 		dentry->d_flags);
890 
891 	/* Unhash any dentry with a stale inode */
892 	if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
893 		return 1;
894 
895 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
896 		/* Unhash it, so that ->d_iput() would be called */
897 		return 1;
898 	}
899 	if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
900 		/* Unhash it, so that ancestors of killed async unlink
901 		 * files will be cleaned up during umount */
902 		return 1;
903 	}
904 	return 0;
905 
906 }
907 
908 static void nfs_drop_nlink(struct inode *inode)
909 {
910 	spin_lock(&inode->i_lock);
911 	if (inode->i_nlink > 0)
912 		drop_nlink(inode);
913 	spin_unlock(&inode->i_lock);
914 }
915 
916 /*
917  * Called when the dentry loses inode.
918  * We use it to clean up silly-renamed files.
919  */
920 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
921 {
922 	if (S_ISDIR(inode->i_mode))
923 		/* drop any readdir cache as it could easily be old */
924 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
925 
926 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
927 		drop_nlink(inode);
928 		nfs_complete_unlink(dentry, inode);
929 	}
930 	iput(inode);
931 }
932 
933 const struct dentry_operations nfs_dentry_operations = {
934 	.d_revalidate	= nfs_lookup_revalidate,
935 	.d_delete	= nfs_dentry_delete,
936 	.d_iput		= nfs_dentry_iput,
937 };
938 
939 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
940 {
941 	struct dentry *res;
942 	struct dentry *parent;
943 	struct inode *inode = NULL;
944 	struct nfs_fh *fhandle = NULL;
945 	struct nfs_fattr *fattr = NULL;
946 	int error;
947 
948 	dfprintk(VFS, "NFS: lookup(%s/%s)\n",
949 		dentry->d_parent->d_name.name, dentry->d_name.name);
950 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
951 
952 	res = ERR_PTR(-ENAMETOOLONG);
953 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
954 		goto out;
955 
956 	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
957 
958 	/*
959 	 * If we're doing an exclusive create, optimize away the lookup
960 	 * but don't hash the dentry.
961 	 */
962 	if (nfs_is_exclusive_create(dir, nd)) {
963 		d_instantiate(dentry, NULL);
964 		res = NULL;
965 		goto out;
966 	}
967 
968 	res = ERR_PTR(-ENOMEM);
969 	fhandle = nfs_alloc_fhandle();
970 	fattr = nfs_alloc_fattr();
971 	if (fhandle == NULL || fattr == NULL)
972 		goto out;
973 
974 	parent = dentry->d_parent;
975 	/* Protect against concurrent sillydeletes */
976 	nfs_block_sillyrename(parent);
977 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
978 	if (error == -ENOENT)
979 		goto no_entry;
980 	if (error < 0) {
981 		res = ERR_PTR(error);
982 		goto out_unblock_sillyrename;
983 	}
984 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
985 	res = (struct dentry *)inode;
986 	if (IS_ERR(res))
987 		goto out_unblock_sillyrename;
988 
989 no_entry:
990 	res = d_materialise_unique(dentry, inode);
991 	if (res != NULL) {
992 		if (IS_ERR(res))
993 			goto out_unblock_sillyrename;
994 		dentry = res;
995 	}
996 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
997 out_unblock_sillyrename:
998 	nfs_unblock_sillyrename(parent);
999 out:
1000 	nfs_free_fattr(fattr);
1001 	nfs_free_fhandle(fhandle);
1002 	return res;
1003 }
1004 
1005 #ifdef CONFIG_NFS_V4
1006 static int nfs_open_revalidate(struct dentry *, struct nameidata *);
1007 
1008 const struct dentry_operations nfs4_dentry_operations = {
1009 	.d_revalidate	= nfs_open_revalidate,
1010 	.d_delete	= nfs_dentry_delete,
1011 	.d_iput		= nfs_dentry_iput,
1012 };
1013 
1014 /*
1015  * Use intent information to determine whether we need to substitute
1016  * the NFSv4-style stateful OPEN for the LOOKUP call
1017  */
1018 static int is_atomic_open(struct nameidata *nd)
1019 {
1020 	if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
1021 		return 0;
1022 	/* NFS does not (yet) have a stateful open for directories */
1023 	if (nd->flags & LOOKUP_DIRECTORY)
1024 		return 0;
1025 	/* Are we trying to write to a read only partition? */
1026 	if (__mnt_is_readonly(nd->path.mnt) &&
1027 	    (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE)))
1028 		return 0;
1029 	return 1;
1030 }
1031 
1032 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
1033 {
1034 	struct dentry *res = NULL;
1035 	int error;
1036 
1037 	dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
1038 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1039 
1040 	/* Check that we are indeed trying to open this file */
1041 	if (!is_atomic_open(nd))
1042 		goto no_open;
1043 
1044 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
1045 		res = ERR_PTR(-ENAMETOOLONG);
1046 		goto out;
1047 	}
1048 	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1049 
1050 	/* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash
1051 	 * the dentry. */
1052 	if (nd->flags & LOOKUP_EXCL) {
1053 		d_instantiate(dentry, NULL);
1054 		goto out;
1055 	}
1056 
1057 	/* Open the file on the server */
1058 	res = nfs4_atomic_open(dir, dentry, nd);
1059 	if (IS_ERR(res)) {
1060 		error = PTR_ERR(res);
1061 		switch (error) {
1062 			/* Make a negative dentry */
1063 			case -ENOENT:
1064 				res = NULL;
1065 				goto out;
1066 			/* This turned out not to be a regular file */
1067 			case -EISDIR:
1068 			case -ENOTDIR:
1069 				goto no_open;
1070 			case -ELOOP:
1071 				if (!(nd->intent.open.flags & O_NOFOLLOW))
1072 					goto no_open;
1073 			/* case -EINVAL: */
1074 			default:
1075 				goto out;
1076 		}
1077 	} else if (res != NULL)
1078 		dentry = res;
1079 out:
1080 	return res;
1081 no_open:
1082 	return nfs_lookup(dir, dentry, nd);
1083 }
1084 
1085 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
1086 {
1087 	struct dentry *parent = NULL;
1088 	struct inode *inode = dentry->d_inode;
1089 	struct inode *dir;
1090 	int openflags, ret = 0;
1091 
1092 	if (!is_atomic_open(nd) || d_mountpoint(dentry))
1093 		goto no_open;
1094 	parent = dget_parent(dentry);
1095 	dir = parent->d_inode;
1096 	/* We can't create new files in nfs_open_revalidate(), so we
1097 	 * optimize away revalidation of negative dentries.
1098 	 */
1099 	if (inode == NULL) {
1100 		if (!nfs_neg_need_reval(dir, dentry, nd))
1101 			ret = 1;
1102 		goto out;
1103 	}
1104 
1105 	/* NFS only supports OPEN on regular files */
1106 	if (!S_ISREG(inode->i_mode))
1107 		goto no_open_dput;
1108 	openflags = nd->intent.open.flags;
1109 	/* We cannot do exclusive creation on a positive dentry */
1110 	if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1111 		goto no_open_dput;
1112 	/* We can't create new files, or truncate existing ones here */
1113 	openflags &= ~(O_CREAT|O_EXCL|O_TRUNC);
1114 
1115 	/*
1116 	 * Note: we're not holding inode->i_mutex and so may be racing with
1117 	 * operations that change the directory. We therefore save the
1118 	 * change attribute *before* we do the RPC call.
1119 	 */
1120 	ret = nfs4_open_revalidate(dir, dentry, openflags, nd);
1121 out:
1122 	dput(parent);
1123 	if (!ret)
1124 		d_drop(dentry);
1125 	return ret;
1126 no_open_dput:
1127 	dput(parent);
1128 no_open:
1129 	return nfs_lookup_revalidate(dentry, nd);
1130 }
1131 #endif /* CONFIG_NFSV4 */
1132 
1133 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc)
1134 {
1135 	struct dentry *parent = desc->file->f_path.dentry;
1136 	struct inode *dir = parent->d_inode;
1137 	struct nfs_entry *entry = desc->entry;
1138 	struct dentry *dentry, *alias;
1139 	struct qstr name = {
1140 		.name = entry->name,
1141 		.len = entry->len,
1142 	};
1143 	struct inode *inode;
1144 	unsigned long verf = nfs_save_change_attribute(dir);
1145 
1146 	switch (name.len) {
1147 		case 2:
1148 			if (name.name[0] == '.' && name.name[1] == '.')
1149 				return dget_parent(parent);
1150 			break;
1151 		case 1:
1152 			if (name.name[0] == '.')
1153 				return dget(parent);
1154 	}
1155 
1156 	spin_lock(&dir->i_lock);
1157 	if (NFS_I(dir)->cache_validity & NFS_INO_INVALID_DATA) {
1158 		spin_unlock(&dir->i_lock);
1159 		return NULL;
1160 	}
1161 	spin_unlock(&dir->i_lock);
1162 
1163 	name.hash = full_name_hash(name.name, name.len);
1164 	dentry = d_lookup(parent, &name);
1165 	if (dentry != NULL) {
1166 		/* Is this a positive dentry that matches the readdir info? */
1167 		if (dentry->d_inode != NULL &&
1168 				(NFS_FILEID(dentry->d_inode) == entry->ino ||
1169 				d_mountpoint(dentry))) {
1170 			if (!desc->plus || entry->fh->size == 0)
1171 				return dentry;
1172 			if (nfs_compare_fh(NFS_FH(dentry->d_inode),
1173 						entry->fh) == 0)
1174 				goto out_renew;
1175 		}
1176 		/* No, so d_drop to allow one to be created */
1177 		d_drop(dentry);
1178 		dput(dentry);
1179 	}
1180 	if (!desc->plus || !(entry->fattr->valid & NFS_ATTR_FATTR))
1181 		return NULL;
1182 	if (name.len > NFS_SERVER(dir)->namelen)
1183 		return NULL;
1184 	/* Note: caller is already holding the dir->i_mutex! */
1185 	dentry = d_alloc(parent, &name);
1186 	if (dentry == NULL)
1187 		return NULL;
1188 	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1189 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
1190 	if (IS_ERR(inode)) {
1191 		dput(dentry);
1192 		return NULL;
1193 	}
1194 
1195 	alias = d_materialise_unique(dentry, inode);
1196 	if (alias != NULL) {
1197 		dput(dentry);
1198 		if (IS_ERR(alias))
1199 			return NULL;
1200 		dentry = alias;
1201 	}
1202 
1203 out_renew:
1204 	nfs_set_verifier(dentry, verf);
1205 	return dentry;
1206 }
1207 
1208 /*
1209  * Code common to create, mkdir, and mknod.
1210  */
1211 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1212 				struct nfs_fattr *fattr)
1213 {
1214 	struct dentry *parent = dget_parent(dentry);
1215 	struct inode *dir = parent->d_inode;
1216 	struct inode *inode;
1217 	int error = -EACCES;
1218 
1219 	d_drop(dentry);
1220 
1221 	/* We may have been initialized further down */
1222 	if (dentry->d_inode)
1223 		goto out;
1224 	if (fhandle->size == 0) {
1225 		error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1226 		if (error)
1227 			goto out_error;
1228 	}
1229 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1230 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1231 		struct nfs_server *server = NFS_SB(dentry->d_sb);
1232 		error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1233 		if (error < 0)
1234 			goto out_error;
1235 	}
1236 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1237 	error = PTR_ERR(inode);
1238 	if (IS_ERR(inode))
1239 		goto out_error;
1240 	d_add(dentry, inode);
1241 out:
1242 	dput(parent);
1243 	return 0;
1244 out_error:
1245 	nfs_mark_for_revalidate(dir);
1246 	dput(parent);
1247 	return error;
1248 }
1249 
1250 /*
1251  * Following a failed create operation, we drop the dentry rather
1252  * than retain a negative dentry. This avoids a problem in the event
1253  * that the operation succeeded on the server, but an error in the
1254  * reply path made it appear to have failed.
1255  */
1256 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode,
1257 		struct nameidata *nd)
1258 {
1259 	struct iattr attr;
1260 	int error;
1261 	int open_flags = 0;
1262 
1263 	dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1264 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1265 
1266 	attr.ia_mode = mode;
1267 	attr.ia_valid = ATTR_MODE;
1268 
1269 	if ((nd->flags & LOOKUP_CREATE) != 0)
1270 		open_flags = nd->intent.open.flags;
1271 
1272 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, nd);
1273 	if (error != 0)
1274 		goto out_err;
1275 	return 0;
1276 out_err:
1277 	d_drop(dentry);
1278 	return error;
1279 }
1280 
1281 /*
1282  * See comments for nfs_proc_create regarding failed operations.
1283  */
1284 static int
1285 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev)
1286 {
1287 	struct iattr attr;
1288 	int status;
1289 
1290 	dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1291 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1292 
1293 	if (!new_valid_dev(rdev))
1294 		return -EINVAL;
1295 
1296 	attr.ia_mode = mode;
1297 	attr.ia_valid = ATTR_MODE;
1298 
1299 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1300 	if (status != 0)
1301 		goto out_err;
1302 	return 0;
1303 out_err:
1304 	d_drop(dentry);
1305 	return status;
1306 }
1307 
1308 /*
1309  * See comments for nfs_proc_create regarding failed operations.
1310  */
1311 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1312 {
1313 	struct iattr attr;
1314 	int error;
1315 
1316 	dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1317 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1318 
1319 	attr.ia_valid = ATTR_MODE;
1320 	attr.ia_mode = mode | S_IFDIR;
1321 
1322 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1323 	if (error != 0)
1324 		goto out_err;
1325 	return 0;
1326 out_err:
1327 	d_drop(dentry);
1328 	return error;
1329 }
1330 
1331 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1332 {
1333 	if (dentry->d_inode != NULL && !d_unhashed(dentry))
1334 		d_delete(dentry);
1335 }
1336 
1337 static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1338 {
1339 	int error;
1340 
1341 	dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1342 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1343 
1344 	error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1345 	/* Ensure the VFS deletes this inode */
1346 	if (error == 0 && dentry->d_inode != NULL)
1347 		clear_nlink(dentry->d_inode);
1348 	else if (error == -ENOENT)
1349 		nfs_dentry_handle_enoent(dentry);
1350 
1351 	return error;
1352 }
1353 
1354 static int nfs_sillyrename(struct inode *dir, struct dentry *dentry)
1355 {
1356 	static unsigned int sillycounter;
1357 	const int      fileidsize  = sizeof(NFS_FILEID(dentry->d_inode))*2;
1358 	const int      countersize = sizeof(sillycounter)*2;
1359 	const int      slen        = sizeof(".nfs")+fileidsize+countersize-1;
1360 	char           silly[slen+1];
1361 	struct qstr    qsilly;
1362 	struct dentry *sdentry;
1363 	int            error = -EIO;
1364 
1365 	dfprintk(VFS, "NFS: silly-rename(%s/%s, ct=%d)\n",
1366 		dentry->d_parent->d_name.name, dentry->d_name.name,
1367 		atomic_read(&dentry->d_count));
1368 	nfs_inc_stats(dir, NFSIOS_SILLYRENAME);
1369 
1370 	/*
1371 	 * We don't allow a dentry to be silly-renamed twice.
1372 	 */
1373 	error = -EBUSY;
1374 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1375 		goto out;
1376 
1377 	sprintf(silly, ".nfs%*.*Lx",
1378 		fileidsize, fileidsize,
1379 		(unsigned long long)NFS_FILEID(dentry->d_inode));
1380 
1381 	/* Return delegation in anticipation of the rename */
1382 	nfs_inode_return_delegation(dentry->d_inode);
1383 
1384 	sdentry = NULL;
1385 	do {
1386 		char *suffix = silly + slen - countersize;
1387 
1388 		dput(sdentry);
1389 		sillycounter++;
1390 		sprintf(suffix, "%*.*x", countersize, countersize, sillycounter);
1391 
1392 		dfprintk(VFS, "NFS: trying to rename %s to %s\n",
1393 				dentry->d_name.name, silly);
1394 
1395 		sdentry = lookup_one_len(silly, dentry->d_parent, slen);
1396 		/*
1397 		 * N.B. Better to return EBUSY here ... it could be
1398 		 * dangerous to delete the file while it's in use.
1399 		 */
1400 		if (IS_ERR(sdentry))
1401 			goto out;
1402 	} while(sdentry->d_inode != NULL); /* need negative lookup */
1403 
1404 	qsilly.name = silly;
1405 	qsilly.len  = strlen(silly);
1406 	if (dentry->d_inode) {
1407 		error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1408 				dir, &qsilly);
1409 		nfs_mark_for_revalidate(dentry->d_inode);
1410 	} else
1411 		error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1412 				dir, &qsilly);
1413 	if (!error) {
1414 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1415 		d_move(dentry, sdentry);
1416 		error = nfs_async_unlink(dir, dentry);
1417  		/* If we return 0 we don't unlink */
1418 	}
1419 	dput(sdentry);
1420 out:
1421 	return error;
1422 }
1423 
1424 /*
1425  * Remove a file after making sure there are no pending writes,
1426  * and after checking that the file has only one user.
1427  *
1428  * We invalidate the attribute cache and free the inode prior to the operation
1429  * to avoid possible races if the server reuses the inode.
1430  */
1431 static int nfs_safe_remove(struct dentry *dentry)
1432 {
1433 	struct inode *dir = dentry->d_parent->d_inode;
1434 	struct inode *inode = dentry->d_inode;
1435 	int error = -EBUSY;
1436 
1437 	dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1438 		dentry->d_parent->d_name.name, dentry->d_name.name);
1439 
1440 	/* If the dentry was sillyrenamed, we simply call d_delete() */
1441 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1442 		error = 0;
1443 		goto out;
1444 	}
1445 
1446 	if (inode != NULL) {
1447 		nfs_inode_return_delegation(inode);
1448 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1449 		/* The VFS may want to delete this inode */
1450 		if (error == 0)
1451 			nfs_drop_nlink(inode);
1452 		nfs_mark_for_revalidate(inode);
1453 	} else
1454 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1455 	if (error == -ENOENT)
1456 		nfs_dentry_handle_enoent(dentry);
1457 out:
1458 	return error;
1459 }
1460 
1461 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1462  *  belongs to an active ".nfs..." file and we return -EBUSY.
1463  *
1464  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1465  */
1466 static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1467 {
1468 	int error;
1469 	int need_rehash = 0;
1470 
1471 	dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1472 		dir->i_ino, dentry->d_name.name);
1473 
1474 	spin_lock(&dcache_lock);
1475 	spin_lock(&dentry->d_lock);
1476 	if (atomic_read(&dentry->d_count) > 1) {
1477 		spin_unlock(&dentry->d_lock);
1478 		spin_unlock(&dcache_lock);
1479 		/* Start asynchronous writeout of the inode */
1480 		write_inode_now(dentry->d_inode, 0);
1481 		error = nfs_sillyrename(dir, dentry);
1482 		return error;
1483 	}
1484 	if (!d_unhashed(dentry)) {
1485 		__d_drop(dentry);
1486 		need_rehash = 1;
1487 	}
1488 	spin_unlock(&dentry->d_lock);
1489 	spin_unlock(&dcache_lock);
1490 	error = nfs_safe_remove(dentry);
1491 	if (!error || error == -ENOENT) {
1492 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1493 	} else if (need_rehash)
1494 		d_rehash(dentry);
1495 	return error;
1496 }
1497 
1498 /*
1499  * To create a symbolic link, most file systems instantiate a new inode,
1500  * add a page to it containing the path, then write it out to the disk
1501  * using prepare_write/commit_write.
1502  *
1503  * Unfortunately the NFS client can't create the in-core inode first
1504  * because it needs a file handle to create an in-core inode (see
1505  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1506  * symlink request has completed on the server.
1507  *
1508  * So instead we allocate a raw page, copy the symname into it, then do
1509  * the SYMLINK request with the page as the buffer.  If it succeeds, we
1510  * now have a new file handle and can instantiate an in-core NFS inode
1511  * and move the raw page into its mapping.
1512  */
1513 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1514 {
1515 	struct pagevec lru_pvec;
1516 	struct page *page;
1517 	char *kaddr;
1518 	struct iattr attr;
1519 	unsigned int pathlen = strlen(symname);
1520 	int error;
1521 
1522 	dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1523 		dir->i_ino, dentry->d_name.name, symname);
1524 
1525 	if (pathlen > PAGE_SIZE)
1526 		return -ENAMETOOLONG;
1527 
1528 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
1529 	attr.ia_valid = ATTR_MODE;
1530 
1531 	page = alloc_page(GFP_HIGHUSER);
1532 	if (!page)
1533 		return -ENOMEM;
1534 
1535 	kaddr = kmap_atomic(page, KM_USER0);
1536 	memcpy(kaddr, symname, pathlen);
1537 	if (pathlen < PAGE_SIZE)
1538 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1539 	kunmap_atomic(kaddr, KM_USER0);
1540 
1541 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1542 	if (error != 0) {
1543 		dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1544 			dir->i_sb->s_id, dir->i_ino,
1545 			dentry->d_name.name, symname, error);
1546 		d_drop(dentry);
1547 		__free_page(page);
1548 		return error;
1549 	}
1550 
1551 	/*
1552 	 * No big deal if we can't add this page to the page cache here.
1553 	 * READLINK will get the missing page from the server if needed.
1554 	 */
1555 	pagevec_init(&lru_pvec, 0);
1556 	if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1557 							GFP_KERNEL)) {
1558 		pagevec_add(&lru_pvec, page);
1559 		pagevec_lru_add_file(&lru_pvec);
1560 		SetPageUptodate(page);
1561 		unlock_page(page);
1562 	} else
1563 		__free_page(page);
1564 
1565 	return 0;
1566 }
1567 
1568 static int
1569 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1570 {
1571 	struct inode *inode = old_dentry->d_inode;
1572 	int error;
1573 
1574 	dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1575 		old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1576 		dentry->d_parent->d_name.name, dentry->d_name.name);
1577 
1578 	nfs_inode_return_delegation(inode);
1579 
1580 	d_drop(dentry);
1581 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1582 	if (error == 0) {
1583 		atomic_inc(&inode->i_count);
1584 		d_add(dentry, inode);
1585 	}
1586 	return error;
1587 }
1588 
1589 /*
1590  * RENAME
1591  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1592  * different file handle for the same inode after a rename (e.g. when
1593  * moving to a different directory). A fail-safe method to do so would
1594  * be to look up old_dir/old_name, create a link to new_dir/new_name and
1595  * rename the old file using the sillyrename stuff. This way, the original
1596  * file in old_dir will go away when the last process iput()s the inode.
1597  *
1598  * FIXED.
1599  *
1600  * It actually works quite well. One needs to have the possibility for
1601  * at least one ".nfs..." file in each directory the file ever gets
1602  * moved or linked to which happens automagically with the new
1603  * implementation that only depends on the dcache stuff instead of
1604  * using the inode layer
1605  *
1606  * Unfortunately, things are a little more complicated than indicated
1607  * above. For a cross-directory move, we want to make sure we can get
1608  * rid of the old inode after the operation.  This means there must be
1609  * no pending writes (if it's a file), and the use count must be 1.
1610  * If these conditions are met, we can drop the dentries before doing
1611  * the rename.
1612  */
1613 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1614 		      struct inode *new_dir, struct dentry *new_dentry)
1615 {
1616 	struct inode *old_inode = old_dentry->d_inode;
1617 	struct inode *new_inode = new_dentry->d_inode;
1618 	struct dentry *dentry = NULL, *rehash = NULL;
1619 	int error = -EBUSY;
1620 
1621 	dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1622 		 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1623 		 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1624 		 atomic_read(&new_dentry->d_count));
1625 
1626 	/*
1627 	 * For non-directories, check whether the target is busy and if so,
1628 	 * make a copy of the dentry and then do a silly-rename. If the
1629 	 * silly-rename succeeds, the copied dentry is hashed and becomes
1630 	 * the new target.
1631 	 */
1632 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
1633 		/*
1634 		 * To prevent any new references to the target during the
1635 		 * rename, we unhash the dentry in advance.
1636 		 */
1637 		if (!d_unhashed(new_dentry)) {
1638 			d_drop(new_dentry);
1639 			rehash = new_dentry;
1640 		}
1641 
1642 		if (atomic_read(&new_dentry->d_count) > 2) {
1643 			int err;
1644 
1645 			/* copy the target dentry's name */
1646 			dentry = d_alloc(new_dentry->d_parent,
1647 					 &new_dentry->d_name);
1648 			if (!dentry)
1649 				goto out;
1650 
1651 			/* silly-rename the existing target ... */
1652 			err = nfs_sillyrename(new_dir, new_dentry);
1653 			if (err)
1654 				goto out;
1655 
1656 			new_dentry = dentry;
1657 			rehash = NULL;
1658 			new_inode = NULL;
1659 		}
1660 	}
1661 
1662 	nfs_inode_return_delegation(old_inode);
1663 	if (new_inode != NULL)
1664 		nfs_inode_return_delegation(new_inode);
1665 
1666 	error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1667 					   new_dir, &new_dentry->d_name);
1668 	nfs_mark_for_revalidate(old_inode);
1669 out:
1670 	if (rehash)
1671 		d_rehash(rehash);
1672 	if (!error) {
1673 		if (new_inode != NULL)
1674 			nfs_drop_nlink(new_inode);
1675 		d_move(old_dentry, new_dentry);
1676 		nfs_set_verifier(new_dentry,
1677 					nfs_save_change_attribute(new_dir));
1678 	} else if (error == -ENOENT)
1679 		nfs_dentry_handle_enoent(old_dentry);
1680 
1681 	/* new dentry created? */
1682 	if (dentry)
1683 		dput(dentry);
1684 	return error;
1685 }
1686 
1687 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1688 static LIST_HEAD(nfs_access_lru_list);
1689 static atomic_long_t nfs_access_nr_entries;
1690 
1691 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1692 {
1693 	put_rpccred(entry->cred);
1694 	kfree(entry);
1695 	smp_mb__before_atomic_dec();
1696 	atomic_long_dec(&nfs_access_nr_entries);
1697 	smp_mb__after_atomic_dec();
1698 }
1699 
1700 static void nfs_access_free_list(struct list_head *head)
1701 {
1702 	struct nfs_access_entry *cache;
1703 
1704 	while (!list_empty(head)) {
1705 		cache = list_entry(head->next, struct nfs_access_entry, lru);
1706 		list_del(&cache->lru);
1707 		nfs_access_free_entry(cache);
1708 	}
1709 }
1710 
1711 int nfs_access_cache_shrinker(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
1712 {
1713 	LIST_HEAD(head);
1714 	struct nfs_inode *nfsi;
1715 	struct nfs_access_entry *cache;
1716 
1717 	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
1718 		return (nr_to_scan == 0) ? 0 : -1;
1719 
1720 	spin_lock(&nfs_access_lru_lock);
1721 	list_for_each_entry(nfsi, &nfs_access_lru_list, access_cache_inode_lru) {
1722 		struct inode *inode;
1723 
1724 		if (nr_to_scan-- == 0)
1725 			break;
1726 		inode = &nfsi->vfs_inode;
1727 		spin_lock(&inode->i_lock);
1728 		if (list_empty(&nfsi->access_cache_entry_lru))
1729 			goto remove_lru_entry;
1730 		cache = list_entry(nfsi->access_cache_entry_lru.next,
1731 				struct nfs_access_entry, lru);
1732 		list_move(&cache->lru, &head);
1733 		rb_erase(&cache->rb_node, &nfsi->access_cache);
1734 		if (!list_empty(&nfsi->access_cache_entry_lru))
1735 			list_move_tail(&nfsi->access_cache_inode_lru,
1736 					&nfs_access_lru_list);
1737 		else {
1738 remove_lru_entry:
1739 			list_del_init(&nfsi->access_cache_inode_lru);
1740 			smp_mb__before_clear_bit();
1741 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
1742 			smp_mb__after_clear_bit();
1743 		}
1744 		spin_unlock(&inode->i_lock);
1745 	}
1746 	spin_unlock(&nfs_access_lru_lock);
1747 	nfs_access_free_list(&head);
1748 	return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
1749 }
1750 
1751 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
1752 {
1753 	struct rb_root *root_node = &nfsi->access_cache;
1754 	struct rb_node *n;
1755 	struct nfs_access_entry *entry;
1756 
1757 	/* Unhook entries from the cache */
1758 	while ((n = rb_first(root_node)) != NULL) {
1759 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
1760 		rb_erase(n, root_node);
1761 		list_move(&entry->lru, head);
1762 	}
1763 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
1764 }
1765 
1766 void nfs_access_zap_cache(struct inode *inode)
1767 {
1768 	LIST_HEAD(head);
1769 
1770 	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
1771 		return;
1772 	/* Remove from global LRU init */
1773 	spin_lock(&nfs_access_lru_lock);
1774 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
1775 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
1776 
1777 	spin_lock(&inode->i_lock);
1778 	__nfs_access_zap_cache(NFS_I(inode), &head);
1779 	spin_unlock(&inode->i_lock);
1780 	spin_unlock(&nfs_access_lru_lock);
1781 	nfs_access_free_list(&head);
1782 }
1783 
1784 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
1785 {
1786 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
1787 	struct nfs_access_entry *entry;
1788 
1789 	while (n != NULL) {
1790 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
1791 
1792 		if (cred < entry->cred)
1793 			n = n->rb_left;
1794 		else if (cred > entry->cred)
1795 			n = n->rb_right;
1796 		else
1797 			return entry;
1798 	}
1799 	return NULL;
1800 }
1801 
1802 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
1803 {
1804 	struct nfs_inode *nfsi = NFS_I(inode);
1805 	struct nfs_access_entry *cache;
1806 	int err = -ENOENT;
1807 
1808 	spin_lock(&inode->i_lock);
1809 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
1810 		goto out_zap;
1811 	cache = nfs_access_search_rbtree(inode, cred);
1812 	if (cache == NULL)
1813 		goto out;
1814 	if (!nfs_have_delegated_attributes(inode) &&
1815 	    !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
1816 		goto out_stale;
1817 	res->jiffies = cache->jiffies;
1818 	res->cred = cache->cred;
1819 	res->mask = cache->mask;
1820 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
1821 	err = 0;
1822 out:
1823 	spin_unlock(&inode->i_lock);
1824 	return err;
1825 out_stale:
1826 	rb_erase(&cache->rb_node, &nfsi->access_cache);
1827 	list_del(&cache->lru);
1828 	spin_unlock(&inode->i_lock);
1829 	nfs_access_free_entry(cache);
1830 	return -ENOENT;
1831 out_zap:
1832 	spin_unlock(&inode->i_lock);
1833 	nfs_access_zap_cache(inode);
1834 	return -ENOENT;
1835 }
1836 
1837 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
1838 {
1839 	struct nfs_inode *nfsi = NFS_I(inode);
1840 	struct rb_root *root_node = &nfsi->access_cache;
1841 	struct rb_node **p = &root_node->rb_node;
1842 	struct rb_node *parent = NULL;
1843 	struct nfs_access_entry *entry;
1844 
1845 	spin_lock(&inode->i_lock);
1846 	while (*p != NULL) {
1847 		parent = *p;
1848 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
1849 
1850 		if (set->cred < entry->cred)
1851 			p = &parent->rb_left;
1852 		else if (set->cred > entry->cred)
1853 			p = &parent->rb_right;
1854 		else
1855 			goto found;
1856 	}
1857 	rb_link_node(&set->rb_node, parent, p);
1858 	rb_insert_color(&set->rb_node, root_node);
1859 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1860 	spin_unlock(&inode->i_lock);
1861 	return;
1862 found:
1863 	rb_replace_node(parent, &set->rb_node, root_node);
1864 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1865 	list_del(&entry->lru);
1866 	spin_unlock(&inode->i_lock);
1867 	nfs_access_free_entry(entry);
1868 }
1869 
1870 static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
1871 {
1872 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
1873 	if (cache == NULL)
1874 		return;
1875 	RB_CLEAR_NODE(&cache->rb_node);
1876 	cache->jiffies = set->jiffies;
1877 	cache->cred = get_rpccred(set->cred);
1878 	cache->mask = set->mask;
1879 
1880 	nfs_access_add_rbtree(inode, cache);
1881 
1882 	/* Update accounting */
1883 	smp_mb__before_atomic_inc();
1884 	atomic_long_inc(&nfs_access_nr_entries);
1885 	smp_mb__after_atomic_inc();
1886 
1887 	/* Add inode to global LRU list */
1888 	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
1889 		spin_lock(&nfs_access_lru_lock);
1890 		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
1891 			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
1892 					&nfs_access_lru_list);
1893 		spin_unlock(&nfs_access_lru_lock);
1894 	}
1895 }
1896 
1897 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
1898 {
1899 	struct nfs_access_entry cache;
1900 	int status;
1901 
1902 	status = nfs_access_get_cached(inode, cred, &cache);
1903 	if (status == 0)
1904 		goto out;
1905 
1906 	/* Be clever: ask server to check for all possible rights */
1907 	cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
1908 	cache.cred = cred;
1909 	cache.jiffies = jiffies;
1910 	status = NFS_PROTO(inode)->access(inode, &cache);
1911 	if (status != 0) {
1912 		if (status == -ESTALE) {
1913 			nfs_zap_caches(inode);
1914 			if (!S_ISDIR(inode->i_mode))
1915 				set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
1916 		}
1917 		return status;
1918 	}
1919 	nfs_access_add_cache(inode, &cache);
1920 out:
1921 	if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
1922 		return 0;
1923 	return -EACCES;
1924 }
1925 
1926 static int nfs_open_permission_mask(int openflags)
1927 {
1928 	int mask = 0;
1929 
1930 	if (openflags & FMODE_READ)
1931 		mask |= MAY_READ;
1932 	if (openflags & FMODE_WRITE)
1933 		mask |= MAY_WRITE;
1934 	if (openflags & FMODE_EXEC)
1935 		mask |= MAY_EXEC;
1936 	return mask;
1937 }
1938 
1939 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
1940 {
1941 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
1942 }
1943 
1944 int nfs_permission(struct inode *inode, int mask)
1945 {
1946 	struct rpc_cred *cred;
1947 	int res = 0;
1948 
1949 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
1950 
1951 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
1952 		goto out;
1953 	/* Is this sys_access() ? */
1954 	if (mask & (MAY_ACCESS | MAY_CHDIR))
1955 		goto force_lookup;
1956 
1957 	switch (inode->i_mode & S_IFMT) {
1958 		case S_IFLNK:
1959 			goto out;
1960 		case S_IFREG:
1961 			/* NFSv4 has atomic_open... */
1962 			if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
1963 					&& (mask & MAY_OPEN)
1964 					&& !(mask & MAY_EXEC))
1965 				goto out;
1966 			break;
1967 		case S_IFDIR:
1968 			/*
1969 			 * Optimize away all write operations, since the server
1970 			 * will check permissions when we perform the op.
1971 			 */
1972 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
1973 				goto out;
1974 	}
1975 
1976 force_lookup:
1977 	if (!NFS_PROTO(inode)->access)
1978 		goto out_notsup;
1979 
1980 	cred = rpc_lookup_cred();
1981 	if (!IS_ERR(cred)) {
1982 		res = nfs_do_access(inode, cred, mask);
1983 		put_rpccred(cred);
1984 	} else
1985 		res = PTR_ERR(cred);
1986 out:
1987 	if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
1988 		res = -EACCES;
1989 
1990 	dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
1991 		inode->i_sb->s_id, inode->i_ino, mask, res);
1992 	return res;
1993 out_notsup:
1994 	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1995 	if (res == 0)
1996 		res = generic_permission(inode, mask, NULL);
1997 	goto out;
1998 }
1999 
2000 /*
2001  * Local variables:
2002  *  version-control: t
2003  *  kept-new-versions: 5
2004  * End:
2005  */
2006