xref: /openbmc/linux/fs/nfs/dir.c (revision ccfeb506)
1 /*
2  *  linux/fs/nfs/dir.c
3  *
4  *  Copyright (C) 1992  Rick Sladkey
5  *
6  *  nfs directory handling functions
7  *
8  * 10 Apr 1996	Added silly rename for unlink	--okir
9  * 28 Sep 1996	Improved directory cache --okir
10  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
11  *              Re-implemented silly rename for unlink, newly implemented
12  *              silly rename for nfs_rename() following the suggestions
13  *              of Olaf Kirch (okir) found in this file.
14  *              Following Linus comments on my original hack, this version
15  *              depends only on the dcache stuff and doesn't touch the inode
16  *              layer (iput() and friends).
17  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
18  */
19 
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/smp_lock.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 
37 #include "nfs4_fs.h"
38 #include "delegation.h"
39 #include "iostat.h"
40 
41 #define NFS_PARANOIA 1
42 /* #define NFS_DEBUG_VERBOSE 1 */
43 
44 static int nfs_opendir(struct inode *, struct file *);
45 static int nfs_readdir(struct file *, void *, filldir_t);
46 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
47 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *);
48 static int nfs_mkdir(struct inode *, struct dentry *, int);
49 static int nfs_rmdir(struct inode *, struct dentry *);
50 static int nfs_unlink(struct inode *, struct dentry *);
51 static int nfs_symlink(struct inode *, struct dentry *, const char *);
52 static int nfs_link(struct dentry *, struct inode *, struct dentry *);
53 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t);
54 static int nfs_rename(struct inode *, struct dentry *,
55 		      struct inode *, struct dentry *);
56 static int nfs_fsync_dir(struct file *, struct dentry *, int);
57 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
58 
59 const struct file_operations nfs_dir_operations = {
60 	.llseek		= nfs_llseek_dir,
61 	.read		= generic_read_dir,
62 	.readdir	= nfs_readdir,
63 	.open		= nfs_opendir,
64 	.release	= nfs_release,
65 	.fsync		= nfs_fsync_dir,
66 };
67 
68 struct inode_operations nfs_dir_inode_operations = {
69 	.create		= nfs_create,
70 	.lookup		= nfs_lookup,
71 	.link		= nfs_link,
72 	.unlink		= nfs_unlink,
73 	.symlink	= nfs_symlink,
74 	.mkdir		= nfs_mkdir,
75 	.rmdir		= nfs_rmdir,
76 	.mknod		= nfs_mknod,
77 	.rename		= nfs_rename,
78 	.permission	= nfs_permission,
79 	.getattr	= nfs_getattr,
80 	.setattr	= nfs_setattr,
81 };
82 
83 #ifdef CONFIG_NFS_V3
84 struct inode_operations nfs3_dir_inode_operations = {
85 	.create		= nfs_create,
86 	.lookup		= nfs_lookup,
87 	.link		= nfs_link,
88 	.unlink		= nfs_unlink,
89 	.symlink	= nfs_symlink,
90 	.mkdir		= nfs_mkdir,
91 	.rmdir		= nfs_rmdir,
92 	.mknod		= nfs_mknod,
93 	.rename		= nfs_rename,
94 	.permission	= nfs_permission,
95 	.getattr	= nfs_getattr,
96 	.setattr	= nfs_setattr,
97 	.listxattr	= nfs3_listxattr,
98 	.getxattr	= nfs3_getxattr,
99 	.setxattr	= nfs3_setxattr,
100 	.removexattr	= nfs3_removexattr,
101 };
102 #endif  /* CONFIG_NFS_V3 */
103 
104 #ifdef CONFIG_NFS_V4
105 
106 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
107 struct inode_operations nfs4_dir_inode_operations = {
108 	.create		= nfs_create,
109 	.lookup		= nfs_atomic_lookup,
110 	.link		= nfs_link,
111 	.unlink		= nfs_unlink,
112 	.symlink	= nfs_symlink,
113 	.mkdir		= nfs_mkdir,
114 	.rmdir		= nfs_rmdir,
115 	.mknod		= nfs_mknod,
116 	.rename		= nfs_rename,
117 	.permission	= nfs_permission,
118 	.getattr	= nfs_getattr,
119 	.setattr	= nfs_setattr,
120 	.getxattr       = nfs4_getxattr,
121 	.setxattr       = nfs4_setxattr,
122 	.listxattr      = nfs4_listxattr,
123 };
124 
125 #endif /* CONFIG_NFS_V4 */
126 
127 /*
128  * Open file
129  */
130 static int
131 nfs_opendir(struct inode *inode, struct file *filp)
132 {
133 	int res;
134 
135 	dfprintk(VFS, "NFS: opendir(%s/%ld)\n",
136 			inode->i_sb->s_id, inode->i_ino);
137 
138 	lock_kernel();
139 	/* Call generic open code in order to cache credentials */
140 	res = nfs_open(inode, filp);
141 	unlock_kernel();
142 	return res;
143 }
144 
145 typedef __be32 * (*decode_dirent_t)(__be32 *, struct nfs_entry *, int);
146 typedef struct {
147 	struct file	*file;
148 	struct page	*page;
149 	unsigned long	page_index;
150 	__be32		*ptr;
151 	u64		*dir_cookie;
152 	loff_t		current_index;
153 	struct nfs_entry *entry;
154 	decode_dirent_t	decode;
155 	int		plus;
156 	int		error;
157 } nfs_readdir_descriptor_t;
158 
159 /* Now we cache directories properly, by stuffing the dirent
160  * data directly in the page cache.
161  *
162  * Inode invalidation due to refresh etc. takes care of
163  * _everything_, no sloppy entry flushing logic, no extraneous
164  * copying, network direct to page cache, the way it was meant
165  * to be.
166  *
167  * NOTE: Dirent information verification is done always by the
168  *	 page-in of the RPC reply, nowhere else, this simplies
169  *	 things substantially.
170  */
171 static
172 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page *page)
173 {
174 	struct file	*file = desc->file;
175 	struct inode	*inode = file->f_path.dentry->d_inode;
176 	struct rpc_cred	*cred = nfs_file_cred(file);
177 	unsigned long	timestamp;
178 	int		error;
179 
180 	dfprintk(DIRCACHE, "NFS: %s: reading cookie %Lu into page %lu\n",
181 			__FUNCTION__, (long long)desc->entry->cookie,
182 			page->index);
183 
184  again:
185 	timestamp = jiffies;
186 	error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, desc->entry->cookie, page,
187 					  NFS_SERVER(inode)->dtsize, desc->plus);
188 	if (error < 0) {
189 		/* We requested READDIRPLUS, but the server doesn't grok it */
190 		if (error == -ENOTSUPP && desc->plus) {
191 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
192 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_FLAGS(inode));
193 			desc->plus = 0;
194 			goto again;
195 		}
196 		goto error;
197 	}
198 	SetPageUptodate(page);
199 	spin_lock(&inode->i_lock);
200 	NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATIME;
201 	spin_unlock(&inode->i_lock);
202 	/* Ensure consistent page alignment of the data.
203 	 * Note: assumes we have exclusive access to this mapping either
204 	 *	 through inode->i_mutex or some other mechanism.
205 	 */
206 	if (page->index == 0 && invalidate_inode_pages2_range(inode->i_mapping, PAGE_CACHE_SIZE, -1) < 0) {
207 		/* Should never happen */
208 		nfs_zap_mapping(inode, inode->i_mapping);
209 	}
210 	unlock_page(page);
211 	return 0;
212  error:
213 	SetPageError(page);
214 	unlock_page(page);
215 	nfs_zap_caches(inode);
216 	desc->error = error;
217 	return -EIO;
218 }
219 
220 static inline
221 int dir_decode(nfs_readdir_descriptor_t *desc)
222 {
223 	__be32	*p = desc->ptr;
224 	p = desc->decode(p, desc->entry, desc->plus);
225 	if (IS_ERR(p))
226 		return PTR_ERR(p);
227 	desc->ptr = p;
228 	return 0;
229 }
230 
231 static inline
232 void dir_page_release(nfs_readdir_descriptor_t *desc)
233 {
234 	kunmap(desc->page);
235 	page_cache_release(desc->page);
236 	desc->page = NULL;
237 	desc->ptr = NULL;
238 }
239 
240 /*
241  * Given a pointer to a buffer that has already been filled by a call
242  * to readdir, find the next entry with cookie '*desc->dir_cookie'.
243  *
244  * If the end of the buffer has been reached, return -EAGAIN, if not,
245  * return the offset within the buffer of the next entry to be
246  * read.
247  */
248 static inline
249 int find_dirent(nfs_readdir_descriptor_t *desc)
250 {
251 	struct nfs_entry *entry = desc->entry;
252 	int		loop_count = 0,
253 			status;
254 
255 	while((status = dir_decode(desc)) == 0) {
256 		dfprintk(DIRCACHE, "NFS: %s: examining cookie %Lu\n",
257 				__FUNCTION__, (unsigned long long)entry->cookie);
258 		if (entry->prev_cookie == *desc->dir_cookie)
259 			break;
260 		if (loop_count++ > 200) {
261 			loop_count = 0;
262 			schedule();
263 		}
264 	}
265 	return status;
266 }
267 
268 /*
269  * Given a pointer to a buffer that has already been filled by a call
270  * to readdir, find the entry at offset 'desc->file->f_pos'.
271  *
272  * If the end of the buffer has been reached, return -EAGAIN, if not,
273  * return the offset within the buffer of the next entry to be
274  * read.
275  */
276 static inline
277 int find_dirent_index(nfs_readdir_descriptor_t *desc)
278 {
279 	struct nfs_entry *entry = desc->entry;
280 	int		loop_count = 0,
281 			status;
282 
283 	for(;;) {
284 		status = dir_decode(desc);
285 		if (status)
286 			break;
287 
288 		dfprintk(DIRCACHE, "NFS: found cookie %Lu at index %Ld\n",
289 				(unsigned long long)entry->cookie, desc->current_index);
290 
291 		if (desc->file->f_pos == desc->current_index) {
292 			*desc->dir_cookie = entry->cookie;
293 			break;
294 		}
295 		desc->current_index++;
296 		if (loop_count++ > 200) {
297 			loop_count = 0;
298 			schedule();
299 		}
300 	}
301 	return status;
302 }
303 
304 /*
305  * Find the given page, and call find_dirent() or find_dirent_index in
306  * order to try to return the next entry.
307  */
308 static inline
309 int find_dirent_page(nfs_readdir_descriptor_t *desc)
310 {
311 	struct inode	*inode = desc->file->f_path.dentry->d_inode;
312 	struct page	*page;
313 	int		status;
314 
315 	dfprintk(DIRCACHE, "NFS: %s: searching page %ld for target %Lu\n",
316 			__FUNCTION__, desc->page_index,
317 			(long long) *desc->dir_cookie);
318 
319 	page = read_cache_page(inode->i_mapping, desc->page_index,
320 			       (filler_t *)nfs_readdir_filler, desc);
321 	if (IS_ERR(page)) {
322 		status = PTR_ERR(page);
323 		goto out;
324 	}
325 	if (!PageUptodate(page))
326 		goto read_error;
327 
328 	/* NOTE: Someone else may have changed the READDIRPLUS flag */
329 	desc->page = page;
330 	desc->ptr = kmap(page);		/* matching kunmap in nfs_do_filldir */
331 	if (*desc->dir_cookie != 0)
332 		status = find_dirent(desc);
333 	else
334 		status = find_dirent_index(desc);
335 	if (status < 0)
336 		dir_page_release(desc);
337  out:
338 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, status);
339 	return status;
340  read_error:
341 	page_cache_release(page);
342 	return -EIO;
343 }
344 
345 /*
346  * Recurse through the page cache pages, and return a
347  * filled nfs_entry structure of the next directory entry if possible.
348  *
349  * The target for the search is '*desc->dir_cookie' if non-0,
350  * 'desc->file->f_pos' otherwise
351  */
352 static inline
353 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
354 {
355 	int		loop_count = 0;
356 	int		res;
357 
358 	/* Always search-by-index from the beginning of the cache */
359 	if (*desc->dir_cookie == 0) {
360 		dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for offset %Ld\n",
361 				(long long)desc->file->f_pos);
362 		desc->page_index = 0;
363 		desc->entry->cookie = desc->entry->prev_cookie = 0;
364 		desc->entry->eof = 0;
365 		desc->current_index = 0;
366 	} else
367 		dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for cookie %Lu\n",
368 				(unsigned long long)*desc->dir_cookie);
369 
370 	for (;;) {
371 		res = find_dirent_page(desc);
372 		if (res != -EAGAIN)
373 			break;
374 		/* Align to beginning of next page */
375 		desc->page_index ++;
376 		if (loop_count++ > 200) {
377 			loop_count = 0;
378 			schedule();
379 		}
380 	}
381 
382 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, res);
383 	return res;
384 }
385 
386 static inline unsigned int dt_type(struct inode *inode)
387 {
388 	return (inode->i_mode >> 12) & 15;
389 }
390 
391 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc);
392 
393 /*
394  * Once we've found the start of the dirent within a page: fill 'er up...
395  */
396 static
397 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
398 		   filldir_t filldir)
399 {
400 	struct file	*file = desc->file;
401 	struct nfs_entry *entry = desc->entry;
402 	struct dentry	*dentry = NULL;
403 	unsigned long	fileid;
404 	int		loop_count = 0,
405 			res;
406 
407 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling starting @ cookie %Lu\n",
408 			(unsigned long long)entry->cookie);
409 
410 	for(;;) {
411 		unsigned d_type = DT_UNKNOWN;
412 		/* Note: entry->prev_cookie contains the cookie for
413 		 *	 retrieving the current dirent on the server */
414 		fileid = nfs_fileid_to_ino_t(entry->ino);
415 
416 		/* Get a dentry if we have one */
417 		if (dentry != NULL)
418 			dput(dentry);
419 		dentry = nfs_readdir_lookup(desc);
420 
421 		/* Use readdirplus info */
422 		if (dentry != NULL && dentry->d_inode != NULL) {
423 			d_type = dt_type(dentry->d_inode);
424 			fileid = dentry->d_inode->i_ino;
425 		}
426 
427 		res = filldir(dirent, entry->name, entry->len,
428 			      file->f_pos, fileid, d_type);
429 		if (res < 0)
430 			break;
431 		file->f_pos++;
432 		*desc->dir_cookie = entry->cookie;
433 		if (dir_decode(desc) != 0) {
434 			desc->page_index ++;
435 			break;
436 		}
437 		if (loop_count++ > 200) {
438 			loop_count = 0;
439 			schedule();
440 		}
441 	}
442 	dir_page_release(desc);
443 	if (dentry != NULL)
444 		dput(dentry);
445 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
446 			(unsigned long long)*desc->dir_cookie, res);
447 	return res;
448 }
449 
450 /*
451  * If we cannot find a cookie in our cache, we suspect that this is
452  * because it points to a deleted file, so we ask the server to return
453  * whatever it thinks is the next entry. We then feed this to filldir.
454  * If all goes well, we should then be able to find our way round the
455  * cache on the next call to readdir_search_pagecache();
456  *
457  * NOTE: we cannot add the anonymous page to the pagecache because
458  *	 the data it contains might not be page aligned. Besides,
459  *	 we should already have a complete representation of the
460  *	 directory in the page cache by the time we get here.
461  */
462 static inline
463 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
464 		     filldir_t filldir)
465 {
466 	struct file	*file = desc->file;
467 	struct inode	*inode = file->f_path.dentry->d_inode;
468 	struct rpc_cred	*cred = nfs_file_cred(file);
469 	struct page	*page = NULL;
470 	int		status;
471 
472 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
473 			(unsigned long long)*desc->dir_cookie);
474 
475 	page = alloc_page(GFP_HIGHUSER);
476 	if (!page) {
477 		status = -ENOMEM;
478 		goto out;
479 	}
480 	desc->error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, *desc->dir_cookie,
481 						page,
482 						NFS_SERVER(inode)->dtsize,
483 						desc->plus);
484 	spin_lock(&inode->i_lock);
485 	NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATIME;
486 	spin_unlock(&inode->i_lock);
487 	desc->page = page;
488 	desc->ptr = kmap(page);		/* matching kunmap in nfs_do_filldir */
489 	if (desc->error >= 0) {
490 		if ((status = dir_decode(desc)) == 0)
491 			desc->entry->prev_cookie = *desc->dir_cookie;
492 	} else
493 		status = -EIO;
494 	if (status < 0)
495 		goto out_release;
496 
497 	status = nfs_do_filldir(desc, dirent, filldir);
498 
499 	/* Reset read descriptor so it searches the page cache from
500 	 * the start upon the next call to readdir_search_pagecache() */
501 	desc->page_index = 0;
502 	desc->entry->cookie = desc->entry->prev_cookie = 0;
503 	desc->entry->eof = 0;
504  out:
505 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
506 			__FUNCTION__, status);
507 	return status;
508  out_release:
509 	dir_page_release(desc);
510 	goto out;
511 }
512 
513 /* The file offset position represents the dirent entry number.  A
514    last cookie cache takes care of the common case of reading the
515    whole directory.
516  */
517 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
518 {
519 	struct dentry	*dentry = filp->f_path.dentry;
520 	struct inode	*inode = dentry->d_inode;
521 	nfs_readdir_descriptor_t my_desc,
522 			*desc = &my_desc;
523 	struct nfs_entry my_entry;
524 	struct nfs_fh	 fh;
525 	struct nfs_fattr fattr;
526 	long		res;
527 
528 	dfprintk(VFS, "NFS: readdir(%s/%s) starting at cookie %Lu\n",
529 			dentry->d_parent->d_name.name, dentry->d_name.name,
530 			(long long)filp->f_pos);
531 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
532 
533 	lock_kernel();
534 
535 	res = nfs_revalidate_mapping_nolock(inode, filp->f_mapping);
536 	if (res < 0) {
537 		unlock_kernel();
538 		return res;
539 	}
540 
541 	/*
542 	 * filp->f_pos points to the dirent entry number.
543 	 * *desc->dir_cookie has the cookie for the next entry. We have
544 	 * to either find the entry with the appropriate number or
545 	 * revalidate the cookie.
546 	 */
547 	memset(desc, 0, sizeof(*desc));
548 
549 	desc->file = filp;
550 	desc->dir_cookie = &((struct nfs_open_context *)filp->private_data)->dir_cookie;
551 	desc->decode = NFS_PROTO(inode)->decode_dirent;
552 	desc->plus = NFS_USE_READDIRPLUS(inode);
553 
554 	my_entry.cookie = my_entry.prev_cookie = 0;
555 	my_entry.eof = 0;
556 	my_entry.fh = &fh;
557 	my_entry.fattr = &fattr;
558 	nfs_fattr_init(&fattr);
559 	desc->entry = &my_entry;
560 
561 	while(!desc->entry->eof) {
562 		res = readdir_search_pagecache(desc);
563 
564 		if (res == -EBADCOOKIE) {
565 			/* This means either end of directory */
566 			if (*desc->dir_cookie && desc->entry->cookie != *desc->dir_cookie) {
567 				/* Or that the server has 'lost' a cookie */
568 				res = uncached_readdir(desc, dirent, filldir);
569 				if (res >= 0)
570 					continue;
571 			}
572 			res = 0;
573 			break;
574 		}
575 		if (res == -ETOOSMALL && desc->plus) {
576 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_FLAGS(inode));
577 			nfs_zap_caches(inode);
578 			desc->plus = 0;
579 			desc->entry->eof = 0;
580 			continue;
581 		}
582 		if (res < 0)
583 			break;
584 
585 		res = nfs_do_filldir(desc, dirent, filldir);
586 		if (res < 0) {
587 			res = 0;
588 			break;
589 		}
590 	}
591 	unlock_kernel();
592 	if (res > 0)
593 		res = 0;
594 	dfprintk(VFS, "NFS: readdir(%s/%s) returns %ld\n",
595 			dentry->d_parent->d_name.name, dentry->d_name.name,
596 			res);
597 	return res;
598 }
599 
600 loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
601 {
602 	mutex_lock(&filp->f_path.dentry->d_inode->i_mutex);
603 	switch (origin) {
604 		case 1:
605 			offset += filp->f_pos;
606 		case 0:
607 			if (offset >= 0)
608 				break;
609 		default:
610 			offset = -EINVAL;
611 			goto out;
612 	}
613 	if (offset != filp->f_pos) {
614 		filp->f_pos = offset;
615 		((struct nfs_open_context *)filp->private_data)->dir_cookie = 0;
616 	}
617 out:
618 	mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex);
619 	return offset;
620 }
621 
622 /*
623  * All directory operations under NFS are synchronous, so fsync()
624  * is a dummy operation.
625  */
626 int nfs_fsync_dir(struct file *filp, struct dentry *dentry, int datasync)
627 {
628 	dfprintk(VFS, "NFS: fsync_dir(%s/%s) datasync %d\n",
629 			dentry->d_parent->d_name.name, dentry->d_name.name,
630 			datasync);
631 
632 	return 0;
633 }
634 
635 /*
636  * A check for whether or not the parent directory has changed.
637  * In the case it has, we assume that the dentries are untrustworthy
638  * and may need to be looked up again.
639  */
640 static inline int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
641 {
642 	if (IS_ROOT(dentry))
643 		return 1;
644 	if ((NFS_I(dir)->cache_validity & NFS_INO_INVALID_ATTR) != 0
645 			|| nfs_attribute_timeout(dir))
646 		return 0;
647 	return nfs_verify_change_attribute(dir, (unsigned long)dentry->d_fsdata);
648 }
649 
650 static inline void nfs_set_verifier(struct dentry * dentry, unsigned long verf)
651 {
652 	dentry->d_fsdata = (void *)verf;
653 }
654 
655 /*
656  * Whenever an NFS operation succeeds, we know that the dentry
657  * is valid, so we update the revalidation timestamp.
658  */
659 static inline void nfs_renew_times(struct dentry * dentry)
660 {
661 	dentry->d_time = jiffies;
662 }
663 
664 /*
665  * Return the intent data that applies to this particular path component
666  *
667  * Note that the current set of intents only apply to the very last
668  * component of the path.
669  * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
670  */
671 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, unsigned int mask)
672 {
673 	if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT))
674 		return 0;
675 	return nd->flags & mask;
676 }
677 
678 /*
679  * Inode and filehandle revalidation for lookups.
680  *
681  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
682  * or if the intent information indicates that we're about to open this
683  * particular file and the "nocto" mount flag is not set.
684  *
685  */
686 static inline
687 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
688 {
689 	struct nfs_server *server = NFS_SERVER(inode);
690 
691 	if (nd != NULL) {
692 		/* VFS wants an on-the-wire revalidation */
693 		if (nd->flags & LOOKUP_REVAL)
694 			goto out_force;
695 		/* This is an open(2) */
696 		if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
697 				!(server->flags & NFS_MOUNT_NOCTO) &&
698 				(S_ISREG(inode->i_mode) ||
699 				 S_ISDIR(inode->i_mode)))
700 			goto out_force;
701 	}
702 	return nfs_revalidate_inode(server, inode);
703 out_force:
704 	return __nfs_revalidate_inode(server, inode);
705 }
706 
707 /*
708  * We judge how long we want to trust negative
709  * dentries by looking at the parent inode mtime.
710  *
711  * If parent mtime has changed, we revalidate, else we wait for a
712  * period corresponding to the parent's attribute cache timeout value.
713  */
714 static inline
715 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
716 		       struct nameidata *nd)
717 {
718 	/* Don't revalidate a negative dentry if we're creating a new file */
719 	if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
720 		return 0;
721 	return !nfs_check_verifier(dir, dentry);
722 }
723 
724 /*
725  * This is called every time the dcache has a lookup hit,
726  * and we should check whether we can really trust that
727  * lookup.
728  *
729  * NOTE! The hit can be a negative hit too, don't assume
730  * we have an inode!
731  *
732  * If the parent directory is seen to have changed, we throw out the
733  * cached dentry and do a new lookup.
734  */
735 static int nfs_lookup_revalidate(struct dentry * dentry, struct nameidata *nd)
736 {
737 	struct inode *dir;
738 	struct inode *inode;
739 	struct dentry *parent;
740 	int error;
741 	struct nfs_fh fhandle;
742 	struct nfs_fattr fattr;
743 	unsigned long verifier;
744 
745 	parent = dget_parent(dentry);
746 	lock_kernel();
747 	dir = parent->d_inode;
748 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
749 	inode = dentry->d_inode;
750 
751 	if (!inode) {
752 		if (nfs_neg_need_reval(dir, dentry, nd))
753 			goto out_bad;
754 		goto out_valid;
755 	}
756 
757 	if (is_bad_inode(inode)) {
758 		dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
759 				__FUNCTION__, dentry->d_parent->d_name.name,
760 				dentry->d_name.name);
761 		goto out_bad;
762 	}
763 
764 	/* Revalidate parent directory attribute cache */
765 	if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
766 		goto out_zap_parent;
767 
768 	/* Force a full look up iff the parent directory has changed */
769 	if (nfs_check_verifier(dir, dentry)) {
770 		if (nfs_lookup_verify_inode(inode, nd))
771 			goto out_zap_parent;
772 		goto out_valid;
773 	}
774 
775 	if (NFS_STALE(inode))
776 		goto out_bad;
777 
778 	verifier = nfs_save_change_attribute(dir);
779 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
780 	if (error)
781 		goto out_bad;
782 	if (nfs_compare_fh(NFS_FH(inode), &fhandle))
783 		goto out_bad;
784 	if ((error = nfs_refresh_inode(inode, &fattr)) != 0)
785 		goto out_bad;
786 
787 	nfs_renew_times(dentry);
788 	nfs_set_verifier(dentry, verifier);
789  out_valid:
790 	unlock_kernel();
791 	dput(parent);
792 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
793 			__FUNCTION__, dentry->d_parent->d_name.name,
794 			dentry->d_name.name);
795 	return 1;
796 out_zap_parent:
797 	nfs_zap_caches(dir);
798  out_bad:
799 	NFS_CACHEINV(dir);
800 	if (inode && S_ISDIR(inode->i_mode)) {
801 		/* Purge readdir caches. */
802 		nfs_zap_caches(inode);
803 		/* If we have submounts, don't unhash ! */
804 		if (have_submounts(dentry))
805 			goto out_valid;
806 		shrink_dcache_parent(dentry);
807 	}
808 	d_drop(dentry);
809 	unlock_kernel();
810 	dput(parent);
811 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
812 			__FUNCTION__, dentry->d_parent->d_name.name,
813 			dentry->d_name.name);
814 	return 0;
815 }
816 
817 /*
818  * This is called from dput() when d_count is going to 0.
819  */
820 static int nfs_dentry_delete(struct dentry *dentry)
821 {
822 	dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
823 		dentry->d_parent->d_name.name, dentry->d_name.name,
824 		dentry->d_flags);
825 
826 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
827 		/* Unhash it, so that ->d_iput() would be called */
828 		return 1;
829 	}
830 	if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
831 		/* Unhash it, so that ancestors of killed async unlink
832 		 * files will be cleaned up during umount */
833 		return 1;
834 	}
835 	return 0;
836 
837 }
838 
839 /*
840  * Called when the dentry loses inode.
841  * We use it to clean up silly-renamed files.
842  */
843 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
844 {
845 	nfs_inode_return_delegation(inode);
846 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
847 		lock_kernel();
848 		drop_nlink(inode);
849 		nfs_complete_unlink(dentry);
850 		unlock_kernel();
851 	}
852 	/* When creating a negative dentry, we want to renew d_time */
853 	nfs_renew_times(dentry);
854 	iput(inode);
855 }
856 
857 struct dentry_operations nfs_dentry_operations = {
858 	.d_revalidate	= nfs_lookup_revalidate,
859 	.d_delete	= nfs_dentry_delete,
860 	.d_iput		= nfs_dentry_iput,
861 };
862 
863 /*
864  * Use intent information to check whether or not we're going to do
865  * an O_EXCL create using this path component.
866  */
867 static inline
868 int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
869 {
870 	if (NFS_PROTO(dir)->version == 2)
871 		return 0;
872 	if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_CREATE) == 0)
873 		return 0;
874 	return (nd->intent.open.flags & O_EXCL) != 0;
875 }
876 
877 static inline int nfs_reval_fsid(struct vfsmount *mnt, struct inode *dir,
878 				 struct nfs_fh *fh, struct nfs_fattr *fattr)
879 {
880 	struct nfs_server *server = NFS_SERVER(dir);
881 
882 	if (!nfs_fsid_equal(&server->fsid, &fattr->fsid))
883 		/* Revalidate fsid on root dir */
884 		return __nfs_revalidate_inode(server, mnt->mnt_root->d_inode);
885 	return 0;
886 }
887 
888 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
889 {
890 	struct dentry *res;
891 	struct inode *inode = NULL;
892 	int error;
893 	struct nfs_fh fhandle;
894 	struct nfs_fattr fattr;
895 
896 	dfprintk(VFS, "NFS: lookup(%s/%s)\n",
897 		dentry->d_parent->d_name.name, dentry->d_name.name);
898 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
899 
900 	res = ERR_PTR(-ENAMETOOLONG);
901 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
902 		goto out;
903 
904 	res = ERR_PTR(-ENOMEM);
905 	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
906 
907 	lock_kernel();
908 
909 	/*
910 	 * If we're doing an exclusive create, optimize away the lookup
911 	 * but don't hash the dentry.
912 	 */
913 	if (nfs_is_exclusive_create(dir, nd)) {
914 		d_instantiate(dentry, NULL);
915 		res = NULL;
916 		goto out_unlock;
917 	}
918 
919 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
920 	if (error == -ENOENT)
921 		goto no_entry;
922 	if (error < 0) {
923 		res = ERR_PTR(error);
924 		goto out_unlock;
925 	}
926 	error = nfs_reval_fsid(nd->mnt, dir, &fhandle, &fattr);
927 	if (error < 0) {
928 		res = ERR_PTR(error);
929 		goto out_unlock;
930 	}
931 	inode = nfs_fhget(dentry->d_sb, &fhandle, &fattr);
932 	res = (struct dentry *)inode;
933 	if (IS_ERR(res))
934 		goto out_unlock;
935 
936 no_entry:
937 	res = d_materialise_unique(dentry, inode);
938 	if (res != NULL) {
939 		struct dentry *parent;
940 		if (IS_ERR(res))
941 			goto out_unlock;
942 		/* Was a directory renamed! */
943 		parent = dget_parent(res);
944 		if (!IS_ROOT(parent))
945 			nfs_mark_for_revalidate(parent->d_inode);
946 		dput(parent);
947 		dentry = res;
948 	}
949 	nfs_renew_times(dentry);
950 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
951 out_unlock:
952 	unlock_kernel();
953 out:
954 	return res;
955 }
956 
957 #ifdef CONFIG_NFS_V4
958 static int nfs_open_revalidate(struct dentry *, struct nameidata *);
959 
960 struct dentry_operations nfs4_dentry_operations = {
961 	.d_revalidate	= nfs_open_revalidate,
962 	.d_delete	= nfs_dentry_delete,
963 	.d_iput		= nfs_dentry_iput,
964 };
965 
966 /*
967  * Use intent information to determine whether we need to substitute
968  * the NFSv4-style stateful OPEN for the LOOKUP call
969  */
970 static int is_atomic_open(struct inode *dir, struct nameidata *nd)
971 {
972 	if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
973 		return 0;
974 	/* NFS does not (yet) have a stateful open for directories */
975 	if (nd->flags & LOOKUP_DIRECTORY)
976 		return 0;
977 	/* Are we trying to write to a read only partition? */
978 	if (IS_RDONLY(dir) && (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE)))
979 		return 0;
980 	return 1;
981 }
982 
983 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
984 {
985 	struct dentry *res = NULL;
986 	int error;
987 
988 	dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
989 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
990 
991 	/* Check that we are indeed trying to open this file */
992 	if (!is_atomic_open(dir, nd))
993 		goto no_open;
994 
995 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
996 		res = ERR_PTR(-ENAMETOOLONG);
997 		goto out;
998 	}
999 	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1000 
1001 	/* Let vfs_create() deal with O_EXCL */
1002 	if (nd->intent.open.flags & O_EXCL) {
1003 		d_add(dentry, NULL);
1004 		goto out;
1005 	}
1006 
1007 	/* Open the file on the server */
1008 	lock_kernel();
1009 	/* Revalidate parent directory attribute cache */
1010 	error = nfs_revalidate_inode(NFS_SERVER(dir), dir);
1011 	if (error < 0) {
1012 		res = ERR_PTR(error);
1013 		unlock_kernel();
1014 		goto out;
1015 	}
1016 
1017 	if (nd->intent.open.flags & O_CREAT) {
1018 		nfs_begin_data_update(dir);
1019 		res = nfs4_atomic_open(dir, dentry, nd);
1020 		nfs_end_data_update(dir);
1021 	} else
1022 		res = nfs4_atomic_open(dir, dentry, nd);
1023 	unlock_kernel();
1024 	if (IS_ERR(res)) {
1025 		error = PTR_ERR(res);
1026 		switch (error) {
1027 			/* Make a negative dentry */
1028 			case -ENOENT:
1029 				res = NULL;
1030 				goto out;
1031 			/* This turned out not to be a regular file */
1032 			case -EISDIR:
1033 			case -ENOTDIR:
1034 				goto no_open;
1035 			case -ELOOP:
1036 				if (!(nd->intent.open.flags & O_NOFOLLOW))
1037 					goto no_open;
1038 			/* case -EINVAL: */
1039 			default:
1040 				goto out;
1041 		}
1042 	} else if (res != NULL)
1043 		dentry = res;
1044 	nfs_renew_times(dentry);
1045 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1046 out:
1047 	return res;
1048 no_open:
1049 	return nfs_lookup(dir, dentry, nd);
1050 }
1051 
1052 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
1053 {
1054 	struct dentry *parent = NULL;
1055 	struct inode *inode = dentry->d_inode;
1056 	struct inode *dir;
1057 	unsigned long verifier;
1058 	int openflags, ret = 0;
1059 
1060 	parent = dget_parent(dentry);
1061 	dir = parent->d_inode;
1062 	if (!is_atomic_open(dir, nd))
1063 		goto no_open;
1064 	/* We can't create new files in nfs_open_revalidate(), so we
1065 	 * optimize away revalidation of negative dentries.
1066 	 */
1067 	if (inode == NULL)
1068 		goto out;
1069 	/* NFS only supports OPEN on regular files */
1070 	if (!S_ISREG(inode->i_mode))
1071 		goto no_open;
1072 	openflags = nd->intent.open.flags;
1073 	/* We cannot do exclusive creation on a positive dentry */
1074 	if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1075 		goto no_open;
1076 	/* We can't create new files, or truncate existing ones here */
1077 	openflags &= ~(O_CREAT|O_TRUNC);
1078 
1079 	/*
1080 	 * Note: we're not holding inode->i_mutex and so may be racing with
1081 	 * operations that change the directory. We therefore save the
1082 	 * change attribute *before* we do the RPC call.
1083 	 */
1084 	lock_kernel();
1085 	verifier = nfs_save_change_attribute(dir);
1086 	ret = nfs4_open_revalidate(dir, dentry, openflags, nd);
1087 	if (!ret)
1088 		nfs_set_verifier(dentry, verifier);
1089 	unlock_kernel();
1090 out:
1091 	dput(parent);
1092 	if (!ret)
1093 		d_drop(dentry);
1094 	return ret;
1095 no_open:
1096 	dput(parent);
1097 	if (inode != NULL && nfs_have_delegation(inode, FMODE_READ))
1098 		return 1;
1099 	return nfs_lookup_revalidate(dentry, nd);
1100 }
1101 #endif /* CONFIG_NFSV4 */
1102 
1103 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc)
1104 {
1105 	struct dentry *parent = desc->file->f_path.dentry;
1106 	struct inode *dir = parent->d_inode;
1107 	struct nfs_entry *entry = desc->entry;
1108 	struct dentry *dentry, *alias;
1109 	struct qstr name = {
1110 		.name = entry->name,
1111 		.len = entry->len,
1112 	};
1113 	struct inode *inode;
1114 
1115 	switch (name.len) {
1116 		case 2:
1117 			if (name.name[0] == '.' && name.name[1] == '.')
1118 				return dget_parent(parent);
1119 			break;
1120 		case 1:
1121 			if (name.name[0] == '.')
1122 				return dget(parent);
1123 	}
1124 	name.hash = full_name_hash(name.name, name.len);
1125 	dentry = d_lookup(parent, &name);
1126 	if (dentry != NULL)
1127 		return dentry;
1128 	if (!desc->plus || !(entry->fattr->valid & NFS_ATTR_FATTR))
1129 		return NULL;
1130 	/* Note: caller is already holding the dir->i_mutex! */
1131 	dentry = d_alloc(parent, &name);
1132 	if (dentry == NULL)
1133 		return NULL;
1134 	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1135 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
1136 	if (IS_ERR(inode)) {
1137 		dput(dentry);
1138 		return NULL;
1139 	}
1140 
1141 	alias = d_materialise_unique(dentry, inode);
1142 	if (alias != NULL) {
1143 		dput(dentry);
1144 		if (IS_ERR(alias))
1145 			return NULL;
1146 		dentry = alias;
1147 	}
1148 
1149 	nfs_renew_times(dentry);
1150 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1151 	return dentry;
1152 }
1153 
1154 /*
1155  * Code common to create, mkdir, and mknod.
1156  */
1157 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1158 				struct nfs_fattr *fattr)
1159 {
1160 	struct inode *inode;
1161 	int error = -EACCES;
1162 
1163 	/* We may have been initialized further down */
1164 	if (dentry->d_inode)
1165 		return 0;
1166 	if (fhandle->size == 0) {
1167 		struct inode *dir = dentry->d_parent->d_inode;
1168 		error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1169 		if (error)
1170 			return error;
1171 	}
1172 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1173 		struct nfs_server *server = NFS_SB(dentry->d_sb);
1174 		error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1175 		if (error < 0)
1176 			return error;
1177 	}
1178 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1179 	error = PTR_ERR(inode);
1180 	if (IS_ERR(inode))
1181 		return error;
1182 	d_instantiate(dentry, inode);
1183 	if (d_unhashed(dentry))
1184 		d_rehash(dentry);
1185 	return 0;
1186 }
1187 
1188 /*
1189  * Following a failed create operation, we drop the dentry rather
1190  * than retain a negative dentry. This avoids a problem in the event
1191  * that the operation succeeded on the server, but an error in the
1192  * reply path made it appear to have failed.
1193  */
1194 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode,
1195 		struct nameidata *nd)
1196 {
1197 	struct iattr attr;
1198 	int error;
1199 	int open_flags = 0;
1200 
1201 	dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1202 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1203 
1204 	attr.ia_mode = mode;
1205 	attr.ia_valid = ATTR_MODE;
1206 
1207 	if (nd && (nd->flags & LOOKUP_CREATE))
1208 		open_flags = nd->intent.open.flags;
1209 
1210 	lock_kernel();
1211 	nfs_begin_data_update(dir);
1212 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, nd);
1213 	nfs_end_data_update(dir);
1214 	if (error != 0)
1215 		goto out_err;
1216 	nfs_renew_times(dentry);
1217 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1218 	unlock_kernel();
1219 	return 0;
1220 out_err:
1221 	unlock_kernel();
1222 	d_drop(dentry);
1223 	return error;
1224 }
1225 
1226 /*
1227  * See comments for nfs_proc_create regarding failed operations.
1228  */
1229 static int
1230 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev)
1231 {
1232 	struct iattr attr;
1233 	int status;
1234 
1235 	dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1236 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1237 
1238 	if (!new_valid_dev(rdev))
1239 		return -EINVAL;
1240 
1241 	attr.ia_mode = mode;
1242 	attr.ia_valid = ATTR_MODE;
1243 
1244 	lock_kernel();
1245 	nfs_begin_data_update(dir);
1246 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1247 	nfs_end_data_update(dir);
1248 	if (status != 0)
1249 		goto out_err;
1250 	nfs_renew_times(dentry);
1251 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1252 	unlock_kernel();
1253 	return 0;
1254 out_err:
1255 	unlock_kernel();
1256 	d_drop(dentry);
1257 	return status;
1258 }
1259 
1260 /*
1261  * See comments for nfs_proc_create regarding failed operations.
1262  */
1263 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1264 {
1265 	struct iattr attr;
1266 	int error;
1267 
1268 	dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1269 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1270 
1271 	attr.ia_valid = ATTR_MODE;
1272 	attr.ia_mode = mode | S_IFDIR;
1273 
1274 	lock_kernel();
1275 	nfs_begin_data_update(dir);
1276 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1277 	nfs_end_data_update(dir);
1278 	if (error != 0)
1279 		goto out_err;
1280 	nfs_renew_times(dentry);
1281 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1282 	unlock_kernel();
1283 	return 0;
1284 out_err:
1285 	d_drop(dentry);
1286 	unlock_kernel();
1287 	return error;
1288 }
1289 
1290 static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1291 {
1292 	int error;
1293 
1294 	dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1295 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1296 
1297 	lock_kernel();
1298 	nfs_begin_data_update(dir);
1299 	error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1300 	/* Ensure the VFS deletes this inode */
1301 	if (error == 0 && dentry->d_inode != NULL)
1302 		clear_nlink(dentry->d_inode);
1303 	nfs_end_data_update(dir);
1304 	unlock_kernel();
1305 
1306 	return error;
1307 }
1308 
1309 static int nfs_sillyrename(struct inode *dir, struct dentry *dentry)
1310 {
1311 	static unsigned int sillycounter;
1312 	const int      i_inosize  = sizeof(dir->i_ino)*2;
1313 	const int      countersize = sizeof(sillycounter)*2;
1314 	const int      slen       = sizeof(".nfs") + i_inosize + countersize - 1;
1315 	char           silly[slen+1];
1316 	struct qstr    qsilly;
1317 	struct dentry *sdentry;
1318 	int            error = -EIO;
1319 
1320 	dfprintk(VFS, "NFS: silly-rename(%s/%s, ct=%d)\n",
1321 		dentry->d_parent->d_name.name, dentry->d_name.name,
1322 		atomic_read(&dentry->d_count));
1323 	nfs_inc_stats(dir, NFSIOS_SILLYRENAME);
1324 
1325 #ifdef NFS_PARANOIA
1326 if (!dentry->d_inode)
1327 printk("NFS: silly-renaming %s/%s, negative dentry??\n",
1328 dentry->d_parent->d_name.name, dentry->d_name.name);
1329 #endif
1330 	/*
1331 	 * We don't allow a dentry to be silly-renamed twice.
1332 	 */
1333 	error = -EBUSY;
1334 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1335 		goto out;
1336 
1337 	sprintf(silly, ".nfs%*.*lx",
1338 		i_inosize, i_inosize, dentry->d_inode->i_ino);
1339 
1340 	/* Return delegation in anticipation of the rename */
1341 	nfs_inode_return_delegation(dentry->d_inode);
1342 
1343 	sdentry = NULL;
1344 	do {
1345 		char *suffix = silly + slen - countersize;
1346 
1347 		dput(sdentry);
1348 		sillycounter++;
1349 		sprintf(suffix, "%*.*x", countersize, countersize, sillycounter);
1350 
1351 		dfprintk(VFS, "NFS: trying to rename %s to %s\n",
1352 				dentry->d_name.name, silly);
1353 
1354 		sdentry = lookup_one_len(silly, dentry->d_parent, slen);
1355 		/*
1356 		 * N.B. Better to return EBUSY here ... it could be
1357 		 * dangerous to delete the file while it's in use.
1358 		 */
1359 		if (IS_ERR(sdentry))
1360 			goto out;
1361 	} while(sdentry->d_inode != NULL); /* need negative lookup */
1362 
1363 	qsilly.name = silly;
1364 	qsilly.len  = strlen(silly);
1365 	nfs_begin_data_update(dir);
1366 	if (dentry->d_inode) {
1367 		nfs_begin_data_update(dentry->d_inode);
1368 		error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1369 				dir, &qsilly);
1370 		nfs_mark_for_revalidate(dentry->d_inode);
1371 		nfs_end_data_update(dentry->d_inode);
1372 	} else
1373 		error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1374 				dir, &qsilly);
1375 	nfs_end_data_update(dir);
1376 	if (!error) {
1377 		nfs_renew_times(dentry);
1378 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1379 		d_move(dentry, sdentry);
1380 		error = nfs_async_unlink(dentry);
1381  		/* If we return 0 we don't unlink */
1382 	}
1383 	dput(sdentry);
1384 out:
1385 	return error;
1386 }
1387 
1388 /*
1389  * Remove a file after making sure there are no pending writes,
1390  * and after checking that the file has only one user.
1391  *
1392  * We invalidate the attribute cache and free the inode prior to the operation
1393  * to avoid possible races if the server reuses the inode.
1394  */
1395 static int nfs_safe_remove(struct dentry *dentry)
1396 {
1397 	struct inode *dir = dentry->d_parent->d_inode;
1398 	struct inode *inode = dentry->d_inode;
1399 	int error = -EBUSY;
1400 
1401 	dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1402 		dentry->d_parent->d_name.name, dentry->d_name.name);
1403 
1404 	/* If the dentry was sillyrenamed, we simply call d_delete() */
1405 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1406 		error = 0;
1407 		goto out;
1408 	}
1409 
1410 	nfs_begin_data_update(dir);
1411 	if (inode != NULL) {
1412 		nfs_inode_return_delegation(inode);
1413 		nfs_begin_data_update(inode);
1414 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1415 		/* The VFS may want to delete this inode */
1416 		if (error == 0)
1417 			drop_nlink(inode);
1418 		nfs_mark_for_revalidate(inode);
1419 		nfs_end_data_update(inode);
1420 	} else
1421 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1422 	nfs_end_data_update(dir);
1423 out:
1424 	return error;
1425 }
1426 
1427 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1428  *  belongs to an active ".nfs..." file and we return -EBUSY.
1429  *
1430  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1431  */
1432 static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1433 {
1434 	int error;
1435 	int need_rehash = 0;
1436 
1437 	dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1438 		dir->i_ino, dentry->d_name.name);
1439 
1440 	lock_kernel();
1441 	spin_lock(&dcache_lock);
1442 	spin_lock(&dentry->d_lock);
1443 	if (atomic_read(&dentry->d_count) > 1) {
1444 		spin_unlock(&dentry->d_lock);
1445 		spin_unlock(&dcache_lock);
1446 		/* Start asynchronous writeout of the inode */
1447 		write_inode_now(dentry->d_inode, 0);
1448 		error = nfs_sillyrename(dir, dentry);
1449 		unlock_kernel();
1450 		return error;
1451 	}
1452 	if (!d_unhashed(dentry)) {
1453 		__d_drop(dentry);
1454 		need_rehash = 1;
1455 	}
1456 	spin_unlock(&dentry->d_lock);
1457 	spin_unlock(&dcache_lock);
1458 	error = nfs_safe_remove(dentry);
1459 	if (!error) {
1460 		nfs_renew_times(dentry);
1461 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1462 	} else if (need_rehash)
1463 		d_rehash(dentry);
1464 	unlock_kernel();
1465 	return error;
1466 }
1467 
1468 /*
1469  * To create a symbolic link, most file systems instantiate a new inode,
1470  * add a page to it containing the path, then write it out to the disk
1471  * using prepare_write/commit_write.
1472  *
1473  * Unfortunately the NFS client can't create the in-core inode first
1474  * because it needs a file handle to create an in-core inode (see
1475  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1476  * symlink request has completed on the server.
1477  *
1478  * So instead we allocate a raw page, copy the symname into it, then do
1479  * the SYMLINK request with the page as the buffer.  If it succeeds, we
1480  * now have a new file handle and can instantiate an in-core NFS inode
1481  * and move the raw page into its mapping.
1482  */
1483 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1484 {
1485 	struct pagevec lru_pvec;
1486 	struct page *page;
1487 	char *kaddr;
1488 	struct iattr attr;
1489 	unsigned int pathlen = strlen(symname);
1490 	int error;
1491 
1492 	dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1493 		dir->i_ino, dentry->d_name.name, symname);
1494 
1495 	if (pathlen > PAGE_SIZE)
1496 		return -ENAMETOOLONG;
1497 
1498 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
1499 	attr.ia_valid = ATTR_MODE;
1500 
1501 	lock_kernel();
1502 
1503 	page = alloc_page(GFP_KERNEL);
1504 	if (!page) {
1505 		unlock_kernel();
1506 		return -ENOMEM;
1507 	}
1508 
1509 	kaddr = kmap_atomic(page, KM_USER0);
1510 	memcpy(kaddr, symname, pathlen);
1511 	if (pathlen < PAGE_SIZE)
1512 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1513 	kunmap_atomic(kaddr, KM_USER0);
1514 
1515 	nfs_begin_data_update(dir);
1516 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1517 	nfs_end_data_update(dir);
1518 	if (error != 0) {
1519 		dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1520 			dir->i_sb->s_id, dir->i_ino,
1521 			dentry->d_name.name, symname, error);
1522 		d_drop(dentry);
1523 		__free_page(page);
1524 		unlock_kernel();
1525 		return error;
1526 	}
1527 
1528 	/*
1529 	 * No big deal if we can't add this page to the page cache here.
1530 	 * READLINK will get the missing page from the server if needed.
1531 	 */
1532 	pagevec_init(&lru_pvec, 0);
1533 	if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1534 							GFP_KERNEL)) {
1535 		pagevec_add(&lru_pvec, page);
1536 		pagevec_lru_add(&lru_pvec);
1537 		SetPageUptodate(page);
1538 		unlock_page(page);
1539 	} else
1540 		__free_page(page);
1541 
1542 	unlock_kernel();
1543 	return 0;
1544 }
1545 
1546 static int
1547 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1548 {
1549 	struct inode *inode = old_dentry->d_inode;
1550 	int error;
1551 
1552 	dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1553 		old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1554 		dentry->d_parent->d_name.name, dentry->d_name.name);
1555 
1556 	lock_kernel();
1557 	nfs_begin_data_update(dir);
1558 	nfs_begin_data_update(inode);
1559 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1560 	if (error == 0) {
1561 		atomic_inc(&inode->i_count);
1562 		d_instantiate(dentry, inode);
1563 	}
1564 	nfs_end_data_update(inode);
1565 	nfs_end_data_update(dir);
1566 	unlock_kernel();
1567 	return error;
1568 }
1569 
1570 /*
1571  * RENAME
1572  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1573  * different file handle for the same inode after a rename (e.g. when
1574  * moving to a different directory). A fail-safe method to do so would
1575  * be to look up old_dir/old_name, create a link to new_dir/new_name and
1576  * rename the old file using the sillyrename stuff. This way, the original
1577  * file in old_dir will go away when the last process iput()s the inode.
1578  *
1579  * FIXED.
1580  *
1581  * It actually works quite well. One needs to have the possibility for
1582  * at least one ".nfs..." file in each directory the file ever gets
1583  * moved or linked to which happens automagically with the new
1584  * implementation that only depends on the dcache stuff instead of
1585  * using the inode layer
1586  *
1587  * Unfortunately, things are a little more complicated than indicated
1588  * above. For a cross-directory move, we want to make sure we can get
1589  * rid of the old inode after the operation.  This means there must be
1590  * no pending writes (if it's a file), and the use count must be 1.
1591  * If these conditions are met, we can drop the dentries before doing
1592  * the rename.
1593  */
1594 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1595 		      struct inode *new_dir, struct dentry *new_dentry)
1596 {
1597 	struct inode *old_inode = old_dentry->d_inode;
1598 	struct inode *new_inode = new_dentry->d_inode;
1599 	struct dentry *dentry = NULL, *rehash = NULL;
1600 	int error = -EBUSY;
1601 
1602 	/*
1603 	 * To prevent any new references to the target during the rename,
1604 	 * we unhash the dentry and free the inode in advance.
1605 	 */
1606 	lock_kernel();
1607 	if (!d_unhashed(new_dentry)) {
1608 		d_drop(new_dentry);
1609 		rehash = new_dentry;
1610 	}
1611 
1612 	dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1613 		 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1614 		 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1615 		 atomic_read(&new_dentry->d_count));
1616 
1617 	/*
1618 	 * First check whether the target is busy ... we can't
1619 	 * safely do _any_ rename if the target is in use.
1620 	 *
1621 	 * For files, make a copy of the dentry and then do a
1622 	 * silly-rename. If the silly-rename succeeds, the
1623 	 * copied dentry is hashed and becomes the new target.
1624 	 */
1625 	if (!new_inode)
1626 		goto go_ahead;
1627 	if (S_ISDIR(new_inode->i_mode)) {
1628 		error = -EISDIR;
1629 		if (!S_ISDIR(old_inode->i_mode))
1630 			goto out;
1631 	} else if (atomic_read(&new_dentry->d_count) > 2) {
1632 		int err;
1633 		/* copy the target dentry's name */
1634 		dentry = d_alloc(new_dentry->d_parent,
1635 				 &new_dentry->d_name);
1636 		if (!dentry)
1637 			goto out;
1638 
1639 		/* silly-rename the existing target ... */
1640 		err = nfs_sillyrename(new_dir, new_dentry);
1641 		if (!err) {
1642 			new_dentry = rehash = dentry;
1643 			new_inode = NULL;
1644 			/* instantiate the replacement target */
1645 			d_instantiate(new_dentry, NULL);
1646 		} else if (atomic_read(&new_dentry->d_count) > 1) {
1647 		/* dentry still busy? */
1648 #ifdef NFS_PARANOIA
1649 			printk("nfs_rename: target %s/%s busy, d_count=%d\n",
1650 			       new_dentry->d_parent->d_name.name,
1651 			       new_dentry->d_name.name,
1652 			       atomic_read(&new_dentry->d_count));
1653 #endif
1654 			goto out;
1655 		}
1656 	} else
1657 		drop_nlink(new_inode);
1658 
1659 go_ahead:
1660 	/*
1661 	 * ... prune child dentries and writebacks if needed.
1662 	 */
1663 	if (atomic_read(&old_dentry->d_count) > 1) {
1664 		nfs_wb_all(old_inode);
1665 		shrink_dcache_parent(old_dentry);
1666 	}
1667 	nfs_inode_return_delegation(old_inode);
1668 
1669 	if (new_inode != NULL) {
1670 		nfs_inode_return_delegation(new_inode);
1671 		d_delete(new_dentry);
1672 	}
1673 
1674 	nfs_begin_data_update(old_dir);
1675 	nfs_begin_data_update(new_dir);
1676 	nfs_begin_data_update(old_inode);
1677 	error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1678 					   new_dir, &new_dentry->d_name);
1679 	nfs_mark_for_revalidate(old_inode);
1680 	nfs_end_data_update(old_inode);
1681 	nfs_end_data_update(new_dir);
1682 	nfs_end_data_update(old_dir);
1683 out:
1684 	if (rehash)
1685 		d_rehash(rehash);
1686 	if (!error) {
1687 		d_move(old_dentry, new_dentry);
1688 		nfs_renew_times(new_dentry);
1689 		nfs_set_verifier(new_dentry, nfs_save_change_attribute(new_dir));
1690 	}
1691 
1692 	/* new dentry created? */
1693 	if (dentry)
1694 		dput(dentry);
1695 	unlock_kernel();
1696 	return error;
1697 }
1698 
1699 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1700 static LIST_HEAD(nfs_access_lru_list);
1701 static atomic_long_t nfs_access_nr_entries;
1702 
1703 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1704 {
1705 	put_rpccred(entry->cred);
1706 	kfree(entry);
1707 	smp_mb__before_atomic_dec();
1708 	atomic_long_dec(&nfs_access_nr_entries);
1709 	smp_mb__after_atomic_dec();
1710 }
1711 
1712 int nfs_access_cache_shrinker(int nr_to_scan, gfp_t gfp_mask)
1713 {
1714 	LIST_HEAD(head);
1715 	struct nfs_inode *nfsi;
1716 	struct nfs_access_entry *cache;
1717 
1718 	spin_lock(&nfs_access_lru_lock);
1719 restart:
1720 	list_for_each_entry(nfsi, &nfs_access_lru_list, access_cache_inode_lru) {
1721 		struct inode *inode;
1722 
1723 		if (nr_to_scan-- == 0)
1724 			break;
1725 		inode = igrab(&nfsi->vfs_inode);
1726 		if (inode == NULL)
1727 			continue;
1728 		spin_lock(&inode->i_lock);
1729 		if (list_empty(&nfsi->access_cache_entry_lru))
1730 			goto remove_lru_entry;
1731 		cache = list_entry(nfsi->access_cache_entry_lru.next,
1732 				struct nfs_access_entry, lru);
1733 		list_move(&cache->lru, &head);
1734 		rb_erase(&cache->rb_node, &nfsi->access_cache);
1735 		if (!list_empty(&nfsi->access_cache_entry_lru))
1736 			list_move_tail(&nfsi->access_cache_inode_lru,
1737 					&nfs_access_lru_list);
1738 		else {
1739 remove_lru_entry:
1740 			list_del_init(&nfsi->access_cache_inode_lru);
1741 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
1742 		}
1743 		spin_unlock(&inode->i_lock);
1744 		iput(inode);
1745 		goto restart;
1746 	}
1747 	spin_unlock(&nfs_access_lru_lock);
1748 	while (!list_empty(&head)) {
1749 		cache = list_entry(head.next, struct nfs_access_entry, lru);
1750 		list_del(&cache->lru);
1751 		nfs_access_free_entry(cache);
1752 	}
1753 	return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
1754 }
1755 
1756 static void __nfs_access_zap_cache(struct inode *inode)
1757 {
1758 	struct nfs_inode *nfsi = NFS_I(inode);
1759 	struct rb_root *root_node = &nfsi->access_cache;
1760 	struct rb_node *n, *dispose = NULL;
1761 	struct nfs_access_entry *entry;
1762 
1763 	/* Unhook entries from the cache */
1764 	while ((n = rb_first(root_node)) != NULL) {
1765 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
1766 		rb_erase(n, root_node);
1767 		list_del(&entry->lru);
1768 		n->rb_left = dispose;
1769 		dispose = n;
1770 	}
1771 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
1772 	spin_unlock(&inode->i_lock);
1773 
1774 	/* Now kill them all! */
1775 	while (dispose != NULL) {
1776 		n = dispose;
1777 		dispose = n->rb_left;
1778 		nfs_access_free_entry(rb_entry(n, struct nfs_access_entry, rb_node));
1779 	}
1780 }
1781 
1782 void nfs_access_zap_cache(struct inode *inode)
1783 {
1784 	/* Remove from global LRU init */
1785 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_FLAGS(inode))) {
1786 		spin_lock(&nfs_access_lru_lock);
1787 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
1788 		spin_unlock(&nfs_access_lru_lock);
1789 	}
1790 
1791 	spin_lock(&inode->i_lock);
1792 	/* This will release the spinlock */
1793 	__nfs_access_zap_cache(inode);
1794 }
1795 
1796 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
1797 {
1798 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
1799 	struct nfs_access_entry *entry;
1800 
1801 	while (n != NULL) {
1802 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
1803 
1804 		if (cred < entry->cred)
1805 			n = n->rb_left;
1806 		else if (cred > entry->cred)
1807 			n = n->rb_right;
1808 		else
1809 			return entry;
1810 	}
1811 	return NULL;
1812 }
1813 
1814 int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
1815 {
1816 	struct nfs_inode *nfsi = NFS_I(inode);
1817 	struct nfs_access_entry *cache;
1818 	int err = -ENOENT;
1819 
1820 	spin_lock(&inode->i_lock);
1821 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
1822 		goto out_zap;
1823 	cache = nfs_access_search_rbtree(inode, cred);
1824 	if (cache == NULL)
1825 		goto out;
1826 	if (time_after(jiffies, cache->jiffies + NFS_ATTRTIMEO(inode)))
1827 		goto out_stale;
1828 	res->jiffies = cache->jiffies;
1829 	res->cred = cache->cred;
1830 	res->mask = cache->mask;
1831 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
1832 	err = 0;
1833 out:
1834 	spin_unlock(&inode->i_lock);
1835 	return err;
1836 out_stale:
1837 	rb_erase(&cache->rb_node, &nfsi->access_cache);
1838 	list_del(&cache->lru);
1839 	spin_unlock(&inode->i_lock);
1840 	nfs_access_free_entry(cache);
1841 	return -ENOENT;
1842 out_zap:
1843 	/* This will release the spinlock */
1844 	__nfs_access_zap_cache(inode);
1845 	return -ENOENT;
1846 }
1847 
1848 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
1849 {
1850 	struct nfs_inode *nfsi = NFS_I(inode);
1851 	struct rb_root *root_node = &nfsi->access_cache;
1852 	struct rb_node **p = &root_node->rb_node;
1853 	struct rb_node *parent = NULL;
1854 	struct nfs_access_entry *entry;
1855 
1856 	spin_lock(&inode->i_lock);
1857 	while (*p != NULL) {
1858 		parent = *p;
1859 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
1860 
1861 		if (set->cred < entry->cred)
1862 			p = &parent->rb_left;
1863 		else if (set->cred > entry->cred)
1864 			p = &parent->rb_right;
1865 		else
1866 			goto found;
1867 	}
1868 	rb_link_node(&set->rb_node, parent, p);
1869 	rb_insert_color(&set->rb_node, root_node);
1870 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1871 	spin_unlock(&inode->i_lock);
1872 	return;
1873 found:
1874 	rb_replace_node(parent, &set->rb_node, root_node);
1875 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1876 	list_del(&entry->lru);
1877 	spin_unlock(&inode->i_lock);
1878 	nfs_access_free_entry(entry);
1879 }
1880 
1881 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
1882 {
1883 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
1884 	if (cache == NULL)
1885 		return;
1886 	RB_CLEAR_NODE(&cache->rb_node);
1887 	cache->jiffies = set->jiffies;
1888 	cache->cred = get_rpccred(set->cred);
1889 	cache->mask = set->mask;
1890 
1891 	nfs_access_add_rbtree(inode, cache);
1892 
1893 	/* Update accounting */
1894 	smp_mb__before_atomic_inc();
1895 	atomic_long_inc(&nfs_access_nr_entries);
1896 	smp_mb__after_atomic_inc();
1897 
1898 	/* Add inode to global LRU list */
1899 	if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_FLAGS(inode))) {
1900 		spin_lock(&nfs_access_lru_lock);
1901 		list_add_tail(&NFS_I(inode)->access_cache_inode_lru, &nfs_access_lru_list);
1902 		spin_unlock(&nfs_access_lru_lock);
1903 	}
1904 }
1905 
1906 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
1907 {
1908 	struct nfs_access_entry cache;
1909 	int status;
1910 
1911 	status = nfs_access_get_cached(inode, cred, &cache);
1912 	if (status == 0)
1913 		goto out;
1914 
1915 	/* Be clever: ask server to check for all possible rights */
1916 	cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
1917 	cache.cred = cred;
1918 	cache.jiffies = jiffies;
1919 	status = NFS_PROTO(inode)->access(inode, &cache);
1920 	if (status != 0)
1921 		return status;
1922 	nfs_access_add_cache(inode, &cache);
1923 out:
1924 	if ((cache.mask & mask) == mask)
1925 		return 0;
1926 	return -EACCES;
1927 }
1928 
1929 int nfs_permission(struct inode *inode, int mask, struct nameidata *nd)
1930 {
1931 	struct rpc_cred *cred;
1932 	int res = 0;
1933 
1934 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
1935 
1936 	if (mask == 0)
1937 		goto out;
1938 	/* Is this sys_access() ? */
1939 	if (nd != NULL && (nd->flags & LOOKUP_ACCESS))
1940 		goto force_lookup;
1941 
1942 	switch (inode->i_mode & S_IFMT) {
1943 		case S_IFLNK:
1944 			goto out;
1945 		case S_IFREG:
1946 			/* NFSv4 has atomic_open... */
1947 			if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
1948 					&& nd != NULL
1949 					&& (nd->flags & LOOKUP_OPEN))
1950 				goto out;
1951 			break;
1952 		case S_IFDIR:
1953 			/*
1954 			 * Optimize away all write operations, since the server
1955 			 * will check permissions when we perform the op.
1956 			 */
1957 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
1958 				goto out;
1959 	}
1960 
1961 force_lookup:
1962 	lock_kernel();
1963 
1964 	if (!NFS_PROTO(inode)->access)
1965 		goto out_notsup;
1966 
1967 	cred = rpcauth_lookupcred(NFS_CLIENT(inode)->cl_auth, 0);
1968 	if (!IS_ERR(cred)) {
1969 		res = nfs_do_access(inode, cred, mask);
1970 		put_rpccred(cred);
1971 	} else
1972 		res = PTR_ERR(cred);
1973 	unlock_kernel();
1974 out:
1975 	dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
1976 		inode->i_sb->s_id, inode->i_ino, mask, res);
1977 	return res;
1978 out_notsup:
1979 	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1980 	if (res == 0)
1981 		res = generic_permission(inode, mask, NULL);
1982 	unlock_kernel();
1983 	goto out;
1984 }
1985 
1986 /*
1987  * Local variables:
1988  *  version-control: t
1989  *  kept-new-versions: 5
1990  * End:
1991  */
1992