1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/nfs/dir.c 4 * 5 * Copyright (C) 1992 Rick Sladkey 6 * 7 * nfs directory handling functions 8 * 9 * 10 Apr 1996 Added silly rename for unlink --okir 10 * 28 Sep 1996 Improved directory cache --okir 11 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de 12 * Re-implemented silly rename for unlink, newly implemented 13 * silly rename for nfs_rename() following the suggestions 14 * of Olaf Kirch (okir) found in this file. 15 * Following Linus comments on my original hack, this version 16 * depends only on the dcache stuff and doesn't touch the inode 17 * layer (iput() and friends). 18 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM 19 */ 20 21 #include <linux/module.h> 22 #include <linux/time.h> 23 #include <linux/errno.h> 24 #include <linux/stat.h> 25 #include <linux/fcntl.h> 26 #include <linux/string.h> 27 #include <linux/kernel.h> 28 #include <linux/slab.h> 29 #include <linux/mm.h> 30 #include <linux/sunrpc/clnt.h> 31 #include <linux/nfs_fs.h> 32 #include <linux/nfs_mount.h> 33 #include <linux/pagemap.h> 34 #include <linux/pagevec.h> 35 #include <linux/namei.h> 36 #include <linux/mount.h> 37 #include <linux/swap.h> 38 #include <linux/sched.h> 39 #include <linux/kmemleak.h> 40 #include <linux/xattr.h> 41 42 #include "delegation.h" 43 #include "iostat.h" 44 #include "internal.h" 45 #include "fscache.h" 46 47 #include "nfstrace.h" 48 49 /* #define NFS_DEBUG_VERBOSE 1 */ 50 51 static int nfs_opendir(struct inode *, struct file *); 52 static int nfs_closedir(struct inode *, struct file *); 53 static int nfs_readdir(struct file *, struct dir_context *); 54 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int); 55 static loff_t nfs_llseek_dir(struct file *, loff_t, int); 56 static void nfs_readdir_clear_array(struct page*); 57 58 const struct file_operations nfs_dir_operations = { 59 .llseek = nfs_llseek_dir, 60 .read = generic_read_dir, 61 .iterate_shared = nfs_readdir, 62 .open = nfs_opendir, 63 .release = nfs_closedir, 64 .fsync = nfs_fsync_dir, 65 }; 66 67 const struct address_space_operations nfs_dir_aops = { 68 .freepage = nfs_readdir_clear_array, 69 }; 70 71 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, const struct cred *cred) 72 { 73 struct nfs_inode *nfsi = NFS_I(dir); 74 struct nfs_open_dir_context *ctx; 75 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); 76 if (ctx != NULL) { 77 ctx->duped = 0; 78 ctx->attr_gencount = nfsi->attr_gencount; 79 ctx->dir_cookie = 0; 80 ctx->dup_cookie = 0; 81 ctx->cred = get_cred(cred); 82 spin_lock(&dir->i_lock); 83 if (list_empty(&nfsi->open_files) && 84 (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER)) 85 nfsi->cache_validity |= NFS_INO_INVALID_DATA | 86 NFS_INO_REVAL_FORCED; 87 list_add(&ctx->list, &nfsi->open_files); 88 spin_unlock(&dir->i_lock); 89 return ctx; 90 } 91 return ERR_PTR(-ENOMEM); 92 } 93 94 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx) 95 { 96 spin_lock(&dir->i_lock); 97 list_del(&ctx->list); 98 spin_unlock(&dir->i_lock); 99 put_cred(ctx->cred); 100 kfree(ctx); 101 } 102 103 /* 104 * Open file 105 */ 106 static int 107 nfs_opendir(struct inode *inode, struct file *filp) 108 { 109 int res = 0; 110 struct nfs_open_dir_context *ctx; 111 112 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp); 113 114 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 115 116 ctx = alloc_nfs_open_dir_context(inode, current_cred()); 117 if (IS_ERR(ctx)) { 118 res = PTR_ERR(ctx); 119 goto out; 120 } 121 filp->private_data = ctx; 122 out: 123 return res; 124 } 125 126 static int 127 nfs_closedir(struct inode *inode, struct file *filp) 128 { 129 put_nfs_open_dir_context(file_inode(filp), filp->private_data); 130 return 0; 131 } 132 133 struct nfs_cache_array_entry { 134 u64 cookie; 135 u64 ino; 136 struct qstr string; 137 unsigned char d_type; 138 }; 139 140 struct nfs_cache_array { 141 int size; 142 int eof_index; 143 u64 last_cookie; 144 struct nfs_cache_array_entry array[]; 145 }; 146 147 typedef struct { 148 struct file *file; 149 struct page *page; 150 struct dir_context *ctx; 151 unsigned long page_index; 152 u64 *dir_cookie; 153 u64 last_cookie; 154 loff_t current_index; 155 loff_t prev_index; 156 157 unsigned long dir_verifier; 158 unsigned long timestamp; 159 unsigned long gencount; 160 unsigned int cache_entry_index; 161 bool plus; 162 bool eof; 163 } nfs_readdir_descriptor_t; 164 165 static 166 void nfs_readdir_init_array(struct page *page) 167 { 168 struct nfs_cache_array *array; 169 170 array = kmap_atomic(page); 171 memset(array, 0, sizeof(struct nfs_cache_array)); 172 array->eof_index = -1; 173 kunmap_atomic(array); 174 } 175 176 /* 177 * we are freeing strings created by nfs_add_to_readdir_array() 178 */ 179 static 180 void nfs_readdir_clear_array(struct page *page) 181 { 182 struct nfs_cache_array *array; 183 int i; 184 185 array = kmap_atomic(page); 186 for (i = 0; i < array->size; i++) 187 kfree(array->array[i].string.name); 188 array->size = 0; 189 kunmap_atomic(array); 190 } 191 192 /* 193 * the caller is responsible for freeing qstr.name 194 * when called by nfs_readdir_add_to_array, the strings will be freed in 195 * nfs_clear_readdir_array() 196 */ 197 static 198 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len) 199 { 200 string->len = len; 201 string->name = kmemdup_nul(name, len, GFP_KERNEL); 202 if (string->name == NULL) 203 return -ENOMEM; 204 /* 205 * Avoid a kmemleak false positive. The pointer to the name is stored 206 * in a page cache page which kmemleak does not scan. 207 */ 208 kmemleak_not_leak(string->name); 209 string->hash = full_name_hash(NULL, name, len); 210 return 0; 211 } 212 213 static 214 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page) 215 { 216 struct nfs_cache_array *array = kmap(page); 217 struct nfs_cache_array_entry *cache_entry; 218 int ret; 219 220 cache_entry = &array->array[array->size]; 221 222 /* Check that this entry lies within the page bounds */ 223 ret = -ENOSPC; 224 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE) 225 goto out; 226 227 cache_entry->cookie = entry->prev_cookie; 228 cache_entry->ino = entry->ino; 229 cache_entry->d_type = entry->d_type; 230 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len); 231 if (ret) 232 goto out; 233 array->last_cookie = entry->cookie; 234 array->size++; 235 if (entry->eof != 0) 236 array->eof_index = array->size; 237 out: 238 kunmap(page); 239 return ret; 240 } 241 242 static inline 243 int is_32bit_api(void) 244 { 245 #ifdef CONFIG_COMPAT 246 return in_compat_syscall(); 247 #else 248 return (BITS_PER_LONG == 32); 249 #endif 250 } 251 252 static 253 bool nfs_readdir_use_cookie(const struct file *filp) 254 { 255 if ((filp->f_mode & FMODE_32BITHASH) || 256 (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api())) 257 return false; 258 return true; 259 } 260 261 static 262 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 263 { 264 loff_t diff = desc->ctx->pos - desc->current_index; 265 unsigned int index; 266 267 if (diff < 0) 268 goto out_eof; 269 if (diff >= array->size) { 270 if (array->eof_index >= 0) 271 goto out_eof; 272 return -EAGAIN; 273 } 274 275 index = (unsigned int)diff; 276 *desc->dir_cookie = array->array[index].cookie; 277 desc->cache_entry_index = index; 278 return 0; 279 out_eof: 280 desc->eof = true; 281 return -EBADCOOKIE; 282 } 283 284 static bool 285 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi) 286 { 287 if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA)) 288 return false; 289 smp_rmb(); 290 return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags); 291 } 292 293 static 294 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 295 { 296 int i; 297 loff_t new_pos; 298 int status = -EAGAIN; 299 300 for (i = 0; i < array->size; i++) { 301 if (array->array[i].cookie == *desc->dir_cookie) { 302 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file)); 303 struct nfs_open_dir_context *ctx = desc->file->private_data; 304 305 new_pos = desc->current_index + i; 306 if (ctx->attr_gencount != nfsi->attr_gencount || 307 !nfs_readdir_inode_mapping_valid(nfsi)) { 308 ctx->duped = 0; 309 ctx->attr_gencount = nfsi->attr_gencount; 310 } else if (new_pos < desc->prev_index) { 311 if (ctx->duped > 0 312 && ctx->dup_cookie == *desc->dir_cookie) { 313 if (printk_ratelimit()) { 314 pr_notice("NFS: directory %pD2 contains a readdir loop." 315 "Please contact your server vendor. " 316 "The file: %.*s has duplicate cookie %llu\n", 317 desc->file, array->array[i].string.len, 318 array->array[i].string.name, *desc->dir_cookie); 319 } 320 status = -ELOOP; 321 goto out; 322 } 323 ctx->dup_cookie = *desc->dir_cookie; 324 ctx->duped = -1; 325 } 326 if (nfs_readdir_use_cookie(desc->file)) 327 desc->ctx->pos = *desc->dir_cookie; 328 else 329 desc->ctx->pos = new_pos; 330 desc->prev_index = new_pos; 331 desc->cache_entry_index = i; 332 return 0; 333 } 334 } 335 if (array->eof_index >= 0) { 336 status = -EBADCOOKIE; 337 if (*desc->dir_cookie == array->last_cookie) 338 desc->eof = true; 339 } 340 out: 341 return status; 342 } 343 344 static 345 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc) 346 { 347 struct nfs_cache_array *array; 348 int status; 349 350 array = kmap(desc->page); 351 352 if (*desc->dir_cookie == 0) 353 status = nfs_readdir_search_for_pos(array, desc); 354 else 355 status = nfs_readdir_search_for_cookie(array, desc); 356 357 if (status == -EAGAIN) { 358 desc->last_cookie = array->last_cookie; 359 desc->current_index += array->size; 360 desc->page_index++; 361 } 362 kunmap(desc->page); 363 return status; 364 } 365 366 /* Fill a page with xdr information before transferring to the cache page */ 367 static 368 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc, 369 struct nfs_entry *entry, struct file *file, struct inode *inode) 370 { 371 struct nfs_open_dir_context *ctx = file->private_data; 372 const struct cred *cred = ctx->cred; 373 unsigned long timestamp, gencount; 374 int error; 375 376 again: 377 timestamp = jiffies; 378 gencount = nfs_inc_attr_generation_counter(); 379 desc->dir_verifier = nfs_save_change_attribute(inode); 380 error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages, 381 NFS_SERVER(inode)->dtsize, desc->plus); 382 if (error < 0) { 383 /* We requested READDIRPLUS, but the server doesn't grok it */ 384 if (error == -ENOTSUPP && desc->plus) { 385 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS; 386 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 387 desc->plus = false; 388 goto again; 389 } 390 goto error; 391 } 392 desc->timestamp = timestamp; 393 desc->gencount = gencount; 394 error: 395 return error; 396 } 397 398 static int xdr_decode(nfs_readdir_descriptor_t *desc, 399 struct nfs_entry *entry, struct xdr_stream *xdr) 400 { 401 struct inode *inode = file_inode(desc->file); 402 int error; 403 404 error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus); 405 if (error) 406 return error; 407 entry->fattr->time_start = desc->timestamp; 408 entry->fattr->gencount = desc->gencount; 409 return 0; 410 } 411 412 /* Match file and dirent using either filehandle or fileid 413 * Note: caller is responsible for checking the fsid 414 */ 415 static 416 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry) 417 { 418 struct inode *inode; 419 struct nfs_inode *nfsi; 420 421 if (d_really_is_negative(dentry)) 422 return 0; 423 424 inode = d_inode(dentry); 425 if (is_bad_inode(inode) || NFS_STALE(inode)) 426 return 0; 427 428 nfsi = NFS_I(inode); 429 if (entry->fattr->fileid != nfsi->fileid) 430 return 0; 431 if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0) 432 return 0; 433 return 1; 434 } 435 436 static 437 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx) 438 { 439 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS)) 440 return false; 441 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags)) 442 return true; 443 if (ctx->pos == 0) 444 return true; 445 return false; 446 } 447 448 /* 449 * This function is called by the lookup and getattr code to request the 450 * use of readdirplus to accelerate any future lookups in the same 451 * directory. 452 */ 453 void nfs_advise_use_readdirplus(struct inode *dir) 454 { 455 struct nfs_inode *nfsi = NFS_I(dir); 456 457 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) && 458 !list_empty(&nfsi->open_files)) 459 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags); 460 } 461 462 /* 463 * This function is mainly for use by nfs_getattr(). 464 * 465 * If this is an 'ls -l', we want to force use of readdirplus. 466 * Do this by checking if there is an active file descriptor 467 * and calling nfs_advise_use_readdirplus, then forcing a 468 * cache flush. 469 */ 470 void nfs_force_use_readdirplus(struct inode *dir) 471 { 472 struct nfs_inode *nfsi = NFS_I(dir); 473 474 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) && 475 !list_empty(&nfsi->open_files)) { 476 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags); 477 invalidate_mapping_pages(dir->i_mapping, 478 nfsi->page_index + 1, -1); 479 } 480 } 481 482 static 483 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry, 484 unsigned long dir_verifier) 485 { 486 struct qstr filename = QSTR_INIT(entry->name, entry->len); 487 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 488 struct dentry *dentry; 489 struct dentry *alias; 490 struct inode *inode; 491 int status; 492 493 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID)) 494 return; 495 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID)) 496 return; 497 if (filename.len == 0) 498 return; 499 /* Validate that the name doesn't contain any illegal '\0' */ 500 if (strnlen(filename.name, filename.len) != filename.len) 501 return; 502 /* ...or '/' */ 503 if (strnchr(filename.name, filename.len, '/')) 504 return; 505 if (filename.name[0] == '.') { 506 if (filename.len == 1) 507 return; 508 if (filename.len == 2 && filename.name[1] == '.') 509 return; 510 } 511 filename.hash = full_name_hash(parent, filename.name, filename.len); 512 513 dentry = d_lookup(parent, &filename); 514 again: 515 if (!dentry) { 516 dentry = d_alloc_parallel(parent, &filename, &wq); 517 if (IS_ERR(dentry)) 518 return; 519 } 520 if (!d_in_lookup(dentry)) { 521 /* Is there a mountpoint here? If so, just exit */ 522 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid, 523 &entry->fattr->fsid)) 524 goto out; 525 if (nfs_same_file(dentry, entry)) { 526 if (!entry->fh->size) 527 goto out; 528 nfs_set_verifier(dentry, dir_verifier); 529 status = nfs_refresh_inode(d_inode(dentry), entry->fattr); 530 if (!status) 531 nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label); 532 goto out; 533 } else { 534 d_invalidate(dentry); 535 dput(dentry); 536 dentry = NULL; 537 goto again; 538 } 539 } 540 if (!entry->fh->size) { 541 d_lookup_done(dentry); 542 goto out; 543 } 544 545 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label); 546 alias = d_splice_alias(inode, dentry); 547 d_lookup_done(dentry); 548 if (alias) { 549 if (IS_ERR(alias)) 550 goto out; 551 dput(dentry); 552 dentry = alias; 553 } 554 nfs_set_verifier(dentry, dir_verifier); 555 out: 556 dput(dentry); 557 } 558 559 /* Perform conversion from xdr to cache array */ 560 static 561 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry, 562 struct page **xdr_pages, struct page *page, unsigned int buflen) 563 { 564 struct xdr_stream stream; 565 struct xdr_buf buf; 566 struct page *scratch; 567 struct nfs_cache_array *array; 568 unsigned int count = 0; 569 int status; 570 571 scratch = alloc_page(GFP_KERNEL); 572 if (scratch == NULL) 573 return -ENOMEM; 574 575 if (buflen == 0) 576 goto out_nopages; 577 578 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen); 579 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE); 580 581 do { 582 if (entry->label) 583 entry->label->len = NFS4_MAXLABELLEN; 584 585 status = xdr_decode(desc, entry, &stream); 586 if (status != 0) { 587 if (status == -EAGAIN) 588 status = 0; 589 break; 590 } 591 592 count++; 593 594 if (desc->plus) 595 nfs_prime_dcache(file_dentry(desc->file), entry, 596 desc->dir_verifier); 597 598 status = nfs_readdir_add_to_array(entry, page); 599 if (status != 0) 600 break; 601 } while (!entry->eof); 602 603 out_nopages: 604 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) { 605 array = kmap(page); 606 array->eof_index = array->size; 607 status = 0; 608 kunmap(page); 609 } 610 611 put_page(scratch); 612 return status; 613 } 614 615 static 616 void nfs_readdir_free_pages(struct page **pages, unsigned int npages) 617 { 618 unsigned int i; 619 for (i = 0; i < npages; i++) 620 put_page(pages[i]); 621 } 622 623 /* 624 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call 625 * to nfs_readdir_free_pages() 626 */ 627 static 628 int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages) 629 { 630 unsigned int i; 631 632 for (i = 0; i < npages; i++) { 633 struct page *page = alloc_page(GFP_KERNEL); 634 if (page == NULL) 635 goto out_freepages; 636 pages[i] = page; 637 } 638 return 0; 639 640 out_freepages: 641 nfs_readdir_free_pages(pages, i); 642 return -ENOMEM; 643 } 644 645 static 646 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode) 647 { 648 struct page *pages[NFS_MAX_READDIR_PAGES]; 649 struct nfs_entry entry; 650 struct file *file = desc->file; 651 struct nfs_cache_array *array; 652 int status = -ENOMEM; 653 unsigned int array_size = ARRAY_SIZE(pages); 654 655 nfs_readdir_init_array(page); 656 657 entry.prev_cookie = 0; 658 entry.cookie = desc->last_cookie; 659 entry.eof = 0; 660 entry.fh = nfs_alloc_fhandle(); 661 entry.fattr = nfs_alloc_fattr(); 662 entry.server = NFS_SERVER(inode); 663 if (entry.fh == NULL || entry.fattr == NULL) 664 goto out; 665 666 entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT); 667 if (IS_ERR(entry.label)) { 668 status = PTR_ERR(entry.label); 669 goto out; 670 } 671 672 array = kmap(page); 673 674 status = nfs_readdir_alloc_pages(pages, array_size); 675 if (status < 0) 676 goto out_release_array; 677 do { 678 unsigned int pglen; 679 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode); 680 681 if (status < 0) 682 break; 683 pglen = status; 684 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen); 685 if (status < 0) { 686 if (status == -ENOSPC) 687 status = 0; 688 break; 689 } 690 } while (array->eof_index < 0); 691 692 nfs_readdir_free_pages(pages, array_size); 693 out_release_array: 694 kunmap(page); 695 nfs4_label_free(entry.label); 696 out: 697 nfs_free_fattr(entry.fattr); 698 nfs_free_fhandle(entry.fh); 699 return status; 700 } 701 702 /* 703 * Now we cache directories properly, by converting xdr information 704 * to an array that can be used for lookups later. This results in 705 * fewer cache pages, since we can store more information on each page. 706 * We only need to convert from xdr once so future lookups are much simpler 707 */ 708 static 709 int nfs_readdir_filler(void *data, struct page* page) 710 { 711 nfs_readdir_descriptor_t *desc = data; 712 struct inode *inode = file_inode(desc->file); 713 int ret; 714 715 ret = nfs_readdir_xdr_to_array(desc, page, inode); 716 if (ret < 0) 717 goto error; 718 SetPageUptodate(page); 719 720 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) { 721 /* Should never happen */ 722 nfs_zap_mapping(inode, inode->i_mapping); 723 } 724 unlock_page(page); 725 return 0; 726 error: 727 nfs_readdir_clear_array(page); 728 unlock_page(page); 729 return ret; 730 } 731 732 static 733 void cache_page_release(nfs_readdir_descriptor_t *desc) 734 { 735 put_page(desc->page); 736 desc->page = NULL; 737 } 738 739 static 740 struct page *get_cache_page(nfs_readdir_descriptor_t *desc) 741 { 742 return read_cache_page(desc->file->f_mapping, desc->page_index, 743 nfs_readdir_filler, desc); 744 } 745 746 /* 747 * Returns 0 if desc->dir_cookie was found on page desc->page_index 748 * and locks the page to prevent removal from the page cache. 749 */ 750 static 751 int find_and_lock_cache_page(nfs_readdir_descriptor_t *desc) 752 { 753 struct inode *inode = file_inode(desc->file); 754 struct nfs_inode *nfsi = NFS_I(inode); 755 int res; 756 757 desc->page = get_cache_page(desc); 758 if (IS_ERR(desc->page)) 759 return PTR_ERR(desc->page); 760 res = lock_page_killable(desc->page); 761 if (res != 0) 762 goto error; 763 res = -EAGAIN; 764 if (desc->page->mapping != NULL) { 765 res = nfs_readdir_search_array(desc); 766 if (res == 0) { 767 nfsi->page_index = desc->page_index; 768 return 0; 769 } 770 } 771 unlock_page(desc->page); 772 error: 773 cache_page_release(desc); 774 return res; 775 } 776 777 /* Search for desc->dir_cookie from the beginning of the page cache */ 778 static inline 779 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc) 780 { 781 int res; 782 783 if (desc->page_index == 0) { 784 desc->current_index = 0; 785 desc->prev_index = 0; 786 desc->last_cookie = 0; 787 } 788 do { 789 res = find_and_lock_cache_page(desc); 790 } while (res == -EAGAIN); 791 return res; 792 } 793 794 /* 795 * Once we've found the start of the dirent within a page: fill 'er up... 796 */ 797 static 798 int nfs_do_filldir(nfs_readdir_descriptor_t *desc) 799 { 800 struct file *file = desc->file; 801 int i = 0; 802 int res = 0; 803 struct nfs_cache_array *array = NULL; 804 struct nfs_open_dir_context *ctx = file->private_data; 805 806 array = kmap(desc->page); 807 for (i = desc->cache_entry_index; i < array->size; i++) { 808 struct nfs_cache_array_entry *ent; 809 810 ent = &array->array[i]; 811 if (!dir_emit(desc->ctx, ent->string.name, ent->string.len, 812 nfs_compat_user_ino64(ent->ino), ent->d_type)) { 813 desc->eof = true; 814 break; 815 } 816 if (i < (array->size-1)) 817 *desc->dir_cookie = array->array[i+1].cookie; 818 else 819 *desc->dir_cookie = array->last_cookie; 820 if (nfs_readdir_use_cookie(file)) 821 desc->ctx->pos = *desc->dir_cookie; 822 else 823 desc->ctx->pos++; 824 if (ctx->duped != 0) 825 ctx->duped = 1; 826 } 827 if (array->eof_index >= 0) 828 desc->eof = true; 829 830 kunmap(desc->page); 831 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n", 832 (unsigned long long)*desc->dir_cookie, res); 833 return res; 834 } 835 836 /* 837 * If we cannot find a cookie in our cache, we suspect that this is 838 * because it points to a deleted file, so we ask the server to return 839 * whatever it thinks is the next entry. We then feed this to filldir. 840 * If all goes well, we should then be able to find our way round the 841 * cache on the next call to readdir_search_pagecache(); 842 * 843 * NOTE: we cannot add the anonymous page to the pagecache because 844 * the data it contains might not be page aligned. Besides, 845 * we should already have a complete representation of the 846 * directory in the page cache by the time we get here. 847 */ 848 static inline 849 int uncached_readdir(nfs_readdir_descriptor_t *desc) 850 { 851 struct page *page = NULL; 852 int status; 853 struct inode *inode = file_inode(desc->file); 854 struct nfs_open_dir_context *ctx = desc->file->private_data; 855 856 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n", 857 (unsigned long long)*desc->dir_cookie); 858 859 page = alloc_page(GFP_HIGHUSER); 860 if (!page) { 861 status = -ENOMEM; 862 goto out; 863 } 864 865 desc->page_index = 0; 866 desc->last_cookie = *desc->dir_cookie; 867 desc->page = page; 868 ctx->duped = 0; 869 870 status = nfs_readdir_xdr_to_array(desc, page, inode); 871 if (status < 0) 872 goto out_release; 873 874 status = nfs_do_filldir(desc); 875 876 out_release: 877 nfs_readdir_clear_array(desc->page); 878 cache_page_release(desc); 879 out: 880 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", 881 __func__, status); 882 return status; 883 } 884 885 /* The file offset position represents the dirent entry number. A 886 last cookie cache takes care of the common case of reading the 887 whole directory. 888 */ 889 static int nfs_readdir(struct file *file, struct dir_context *ctx) 890 { 891 struct dentry *dentry = file_dentry(file); 892 struct inode *inode = d_inode(dentry); 893 struct nfs_open_dir_context *dir_ctx = file->private_data; 894 nfs_readdir_descriptor_t my_desc = { 895 .file = file, 896 .ctx = ctx, 897 .dir_cookie = &dir_ctx->dir_cookie, 898 .plus = nfs_use_readdirplus(inode, ctx), 899 }, 900 *desc = &my_desc; 901 int res = 0; 902 903 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n", 904 file, (long long)ctx->pos); 905 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS); 906 907 /* 908 * ctx->pos points to the dirent entry number. 909 * *desc->dir_cookie has the cookie for the next entry. We have 910 * to either find the entry with the appropriate number or 911 * revalidate the cookie. 912 */ 913 if (ctx->pos == 0 || nfs_attribute_cache_expired(inode)) 914 res = nfs_revalidate_mapping(inode, file->f_mapping); 915 if (res < 0) 916 goto out; 917 918 do { 919 res = readdir_search_pagecache(desc); 920 921 if (res == -EBADCOOKIE) { 922 res = 0; 923 /* This means either end of directory */ 924 if (*desc->dir_cookie && !desc->eof) { 925 /* Or that the server has 'lost' a cookie */ 926 res = uncached_readdir(desc); 927 if (res == 0) 928 continue; 929 } 930 break; 931 } 932 if (res == -ETOOSMALL && desc->plus) { 933 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 934 nfs_zap_caches(inode); 935 desc->page_index = 0; 936 desc->plus = false; 937 desc->eof = false; 938 continue; 939 } 940 if (res < 0) 941 break; 942 943 res = nfs_do_filldir(desc); 944 unlock_page(desc->page); 945 cache_page_release(desc); 946 if (res < 0) 947 break; 948 } while (!desc->eof); 949 out: 950 if (res > 0) 951 res = 0; 952 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res); 953 return res; 954 } 955 956 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence) 957 { 958 struct nfs_open_dir_context *dir_ctx = filp->private_data; 959 960 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n", 961 filp, offset, whence); 962 963 switch (whence) { 964 default: 965 return -EINVAL; 966 case SEEK_SET: 967 if (offset < 0) 968 return -EINVAL; 969 spin_lock(&filp->f_lock); 970 break; 971 case SEEK_CUR: 972 if (offset == 0) 973 return filp->f_pos; 974 spin_lock(&filp->f_lock); 975 offset += filp->f_pos; 976 if (offset < 0) { 977 spin_unlock(&filp->f_lock); 978 return -EINVAL; 979 } 980 } 981 if (offset != filp->f_pos) { 982 filp->f_pos = offset; 983 if (nfs_readdir_use_cookie(filp)) 984 dir_ctx->dir_cookie = offset; 985 else 986 dir_ctx->dir_cookie = 0; 987 dir_ctx->duped = 0; 988 } 989 spin_unlock(&filp->f_lock); 990 return offset; 991 } 992 993 /* 994 * All directory operations under NFS are synchronous, so fsync() 995 * is a dummy operation. 996 */ 997 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end, 998 int datasync) 999 { 1000 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync); 1001 1002 nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC); 1003 return 0; 1004 } 1005 1006 /** 1007 * nfs_force_lookup_revalidate - Mark the directory as having changed 1008 * @dir: pointer to directory inode 1009 * 1010 * This forces the revalidation code in nfs_lookup_revalidate() to do a 1011 * full lookup on all child dentries of 'dir' whenever a change occurs 1012 * on the server that might have invalidated our dcache. 1013 * 1014 * Note that we reserve bit '0' as a tag to let us know when a dentry 1015 * was revalidated while holding a delegation on its inode. 1016 * 1017 * The caller should be holding dir->i_lock 1018 */ 1019 void nfs_force_lookup_revalidate(struct inode *dir) 1020 { 1021 NFS_I(dir)->cache_change_attribute += 2; 1022 } 1023 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate); 1024 1025 /** 1026 * nfs_verify_change_attribute - Detects NFS remote directory changes 1027 * @dir: pointer to parent directory inode 1028 * @verf: previously saved change attribute 1029 * 1030 * Return "false" if the verifiers doesn't match the change attribute. 1031 * This would usually indicate that the directory contents have changed on 1032 * the server, and that any dentries need revalidating. 1033 */ 1034 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf) 1035 { 1036 return (verf & ~1UL) == nfs_save_change_attribute(dir); 1037 } 1038 1039 static void nfs_set_verifier_delegated(unsigned long *verf) 1040 { 1041 *verf |= 1UL; 1042 } 1043 1044 #if IS_ENABLED(CONFIG_NFS_V4) 1045 static void nfs_unset_verifier_delegated(unsigned long *verf) 1046 { 1047 *verf &= ~1UL; 1048 } 1049 #endif /* IS_ENABLED(CONFIG_NFS_V4) */ 1050 1051 static bool nfs_test_verifier_delegated(unsigned long verf) 1052 { 1053 return verf & 1; 1054 } 1055 1056 static bool nfs_verifier_is_delegated(struct dentry *dentry) 1057 { 1058 return nfs_test_verifier_delegated(dentry->d_time); 1059 } 1060 1061 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf) 1062 { 1063 struct inode *inode = d_inode(dentry); 1064 1065 if (!nfs_verifier_is_delegated(dentry) && 1066 !nfs_verify_change_attribute(d_inode(dentry->d_parent), verf)) 1067 goto out; 1068 if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) 1069 nfs_set_verifier_delegated(&verf); 1070 out: 1071 dentry->d_time = verf; 1072 } 1073 1074 /** 1075 * nfs_set_verifier - save a parent directory verifier in the dentry 1076 * @dentry: pointer to dentry 1077 * @verf: verifier to save 1078 * 1079 * Saves the parent directory verifier in @dentry. If the inode has 1080 * a delegation, we also tag the dentry as having been revalidated 1081 * while holding a delegation so that we know we don't have to 1082 * look it up again after a directory change. 1083 */ 1084 void nfs_set_verifier(struct dentry *dentry, unsigned long verf) 1085 { 1086 1087 spin_lock(&dentry->d_lock); 1088 nfs_set_verifier_locked(dentry, verf); 1089 spin_unlock(&dentry->d_lock); 1090 } 1091 EXPORT_SYMBOL_GPL(nfs_set_verifier); 1092 1093 #if IS_ENABLED(CONFIG_NFS_V4) 1094 /** 1095 * nfs_clear_verifier_delegated - clear the dir verifier delegation tag 1096 * @inode: pointer to inode 1097 * 1098 * Iterates through the dentries in the inode alias list and clears 1099 * the tag used to indicate that the dentry has been revalidated 1100 * while holding a delegation. 1101 * This function is intended for use when the delegation is being 1102 * returned or revoked. 1103 */ 1104 void nfs_clear_verifier_delegated(struct inode *inode) 1105 { 1106 struct dentry *alias; 1107 1108 if (!inode) 1109 return; 1110 spin_lock(&inode->i_lock); 1111 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 1112 spin_lock(&alias->d_lock); 1113 nfs_unset_verifier_delegated(&alias->d_time); 1114 spin_unlock(&alias->d_lock); 1115 } 1116 spin_unlock(&inode->i_lock); 1117 } 1118 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated); 1119 #endif /* IS_ENABLED(CONFIG_NFS_V4) */ 1120 1121 /* 1122 * A check for whether or not the parent directory has changed. 1123 * In the case it has, we assume that the dentries are untrustworthy 1124 * and may need to be looked up again. 1125 * If rcu_walk prevents us from performing a full check, return 0. 1126 */ 1127 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry, 1128 int rcu_walk) 1129 { 1130 if (IS_ROOT(dentry)) 1131 return 1; 1132 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE) 1133 return 0; 1134 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 1135 return 0; 1136 /* Revalidate nfsi->cache_change_attribute before we declare a match */ 1137 if (nfs_mapping_need_revalidate_inode(dir)) { 1138 if (rcu_walk) 1139 return 0; 1140 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0) 1141 return 0; 1142 } 1143 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 1144 return 0; 1145 return 1; 1146 } 1147 1148 /* 1149 * Use intent information to check whether or not we're going to do 1150 * an O_EXCL create using this path component. 1151 */ 1152 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags) 1153 { 1154 if (NFS_PROTO(dir)->version == 2) 1155 return 0; 1156 return flags & LOOKUP_EXCL; 1157 } 1158 1159 /* 1160 * Inode and filehandle revalidation for lookups. 1161 * 1162 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL, 1163 * or if the intent information indicates that we're about to open this 1164 * particular file and the "nocto" mount flag is not set. 1165 * 1166 */ 1167 static 1168 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags) 1169 { 1170 struct nfs_server *server = NFS_SERVER(inode); 1171 int ret; 1172 1173 if (IS_AUTOMOUNT(inode)) 1174 return 0; 1175 1176 if (flags & LOOKUP_OPEN) { 1177 switch (inode->i_mode & S_IFMT) { 1178 case S_IFREG: 1179 /* A NFSv4 OPEN will revalidate later */ 1180 if (server->caps & NFS_CAP_ATOMIC_OPEN) 1181 goto out; 1182 fallthrough; 1183 case S_IFDIR: 1184 if (server->flags & NFS_MOUNT_NOCTO) 1185 break; 1186 /* NFS close-to-open cache consistency validation */ 1187 goto out_force; 1188 } 1189 } 1190 1191 /* VFS wants an on-the-wire revalidation */ 1192 if (flags & LOOKUP_REVAL) 1193 goto out_force; 1194 out: 1195 return (inode->i_nlink == 0) ? -ESTALE : 0; 1196 out_force: 1197 if (flags & LOOKUP_RCU) 1198 return -ECHILD; 1199 ret = __nfs_revalidate_inode(server, inode); 1200 if (ret != 0) 1201 return ret; 1202 goto out; 1203 } 1204 1205 /* 1206 * We judge how long we want to trust negative 1207 * dentries by looking at the parent inode mtime. 1208 * 1209 * If parent mtime has changed, we revalidate, else we wait for a 1210 * period corresponding to the parent's attribute cache timeout value. 1211 * 1212 * If LOOKUP_RCU prevents us from performing a full check, return 1 1213 * suggesting a reval is needed. 1214 * 1215 * Note that when creating a new file, or looking up a rename target, 1216 * then it shouldn't be necessary to revalidate a negative dentry. 1217 */ 1218 static inline 1219 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry, 1220 unsigned int flags) 1221 { 1222 if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET)) 1223 return 0; 1224 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG) 1225 return 1; 1226 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU); 1227 } 1228 1229 static int 1230 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry, 1231 struct inode *inode, int error) 1232 { 1233 switch (error) { 1234 case 1: 1235 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n", 1236 __func__, dentry); 1237 return 1; 1238 case 0: 1239 nfs_mark_for_revalidate(dir); 1240 if (inode && S_ISDIR(inode->i_mode)) { 1241 /* Purge readdir caches. */ 1242 nfs_zap_caches(inode); 1243 /* 1244 * We can't d_drop the root of a disconnected tree: 1245 * its d_hash is on the s_anon list and d_drop() would hide 1246 * it from shrink_dcache_for_unmount(), leading to busy 1247 * inodes on unmount and further oopses. 1248 */ 1249 if (IS_ROOT(dentry)) 1250 return 1; 1251 } 1252 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n", 1253 __func__, dentry); 1254 return 0; 1255 } 1256 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n", 1257 __func__, dentry, error); 1258 return error; 1259 } 1260 1261 static int 1262 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry, 1263 unsigned int flags) 1264 { 1265 int ret = 1; 1266 if (nfs_neg_need_reval(dir, dentry, flags)) { 1267 if (flags & LOOKUP_RCU) 1268 return -ECHILD; 1269 ret = 0; 1270 } 1271 return nfs_lookup_revalidate_done(dir, dentry, NULL, ret); 1272 } 1273 1274 static int 1275 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry, 1276 struct inode *inode) 1277 { 1278 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1279 return nfs_lookup_revalidate_done(dir, dentry, inode, 1); 1280 } 1281 1282 static int 1283 nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry, 1284 struct inode *inode) 1285 { 1286 struct nfs_fh *fhandle; 1287 struct nfs_fattr *fattr; 1288 struct nfs4_label *label; 1289 unsigned long dir_verifier; 1290 int ret; 1291 1292 ret = -ENOMEM; 1293 fhandle = nfs_alloc_fhandle(); 1294 fattr = nfs_alloc_fattr(); 1295 label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL); 1296 if (fhandle == NULL || fattr == NULL || IS_ERR(label)) 1297 goto out; 1298 1299 dir_verifier = nfs_save_change_attribute(dir); 1300 ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label); 1301 if (ret < 0) { 1302 switch (ret) { 1303 case -ESTALE: 1304 case -ENOENT: 1305 ret = 0; 1306 break; 1307 case -ETIMEDOUT: 1308 if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL) 1309 ret = 1; 1310 } 1311 goto out; 1312 } 1313 ret = 0; 1314 if (nfs_compare_fh(NFS_FH(inode), fhandle)) 1315 goto out; 1316 if (nfs_refresh_inode(inode, fattr) < 0) 1317 goto out; 1318 1319 nfs_setsecurity(inode, fattr, label); 1320 nfs_set_verifier(dentry, dir_verifier); 1321 1322 /* set a readdirplus hint that we had a cache miss */ 1323 nfs_force_use_readdirplus(dir); 1324 ret = 1; 1325 out: 1326 nfs_free_fattr(fattr); 1327 nfs_free_fhandle(fhandle); 1328 nfs4_label_free(label); 1329 return nfs_lookup_revalidate_done(dir, dentry, inode, ret); 1330 } 1331 1332 /* 1333 * This is called every time the dcache has a lookup hit, 1334 * and we should check whether we can really trust that 1335 * lookup. 1336 * 1337 * NOTE! The hit can be a negative hit too, don't assume 1338 * we have an inode! 1339 * 1340 * If the parent directory is seen to have changed, we throw out the 1341 * cached dentry and do a new lookup. 1342 */ 1343 static int 1344 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry, 1345 unsigned int flags) 1346 { 1347 struct inode *inode; 1348 int error; 1349 1350 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE); 1351 inode = d_inode(dentry); 1352 1353 if (!inode) 1354 return nfs_lookup_revalidate_negative(dir, dentry, flags); 1355 1356 if (is_bad_inode(inode)) { 1357 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1358 __func__, dentry); 1359 goto out_bad; 1360 } 1361 1362 if (nfs_verifier_is_delegated(dentry)) 1363 return nfs_lookup_revalidate_delegated(dir, dentry, inode); 1364 1365 /* Force a full look up iff the parent directory has changed */ 1366 if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) && 1367 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) { 1368 error = nfs_lookup_verify_inode(inode, flags); 1369 if (error) { 1370 if (error == -ESTALE) 1371 nfs_zap_caches(dir); 1372 goto out_bad; 1373 } 1374 nfs_advise_use_readdirplus(dir); 1375 goto out_valid; 1376 } 1377 1378 if (flags & LOOKUP_RCU) 1379 return -ECHILD; 1380 1381 if (NFS_STALE(inode)) 1382 goto out_bad; 1383 1384 trace_nfs_lookup_revalidate_enter(dir, dentry, flags); 1385 error = nfs_lookup_revalidate_dentry(dir, dentry, inode); 1386 trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error); 1387 return error; 1388 out_valid: 1389 return nfs_lookup_revalidate_done(dir, dentry, inode, 1); 1390 out_bad: 1391 if (flags & LOOKUP_RCU) 1392 return -ECHILD; 1393 return nfs_lookup_revalidate_done(dir, dentry, inode, 0); 1394 } 1395 1396 static int 1397 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags, 1398 int (*reval)(struct inode *, struct dentry *, unsigned int)) 1399 { 1400 struct dentry *parent; 1401 struct inode *dir; 1402 int ret; 1403 1404 if (flags & LOOKUP_RCU) { 1405 parent = READ_ONCE(dentry->d_parent); 1406 dir = d_inode_rcu(parent); 1407 if (!dir) 1408 return -ECHILD; 1409 ret = reval(dir, dentry, flags); 1410 if (parent != READ_ONCE(dentry->d_parent)) 1411 return -ECHILD; 1412 } else { 1413 parent = dget_parent(dentry); 1414 ret = reval(d_inode(parent), dentry, flags); 1415 dput(parent); 1416 } 1417 return ret; 1418 } 1419 1420 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1421 { 1422 return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate); 1423 } 1424 1425 /* 1426 * A weaker form of d_revalidate for revalidating just the d_inode(dentry) 1427 * when we don't really care about the dentry name. This is called when a 1428 * pathwalk ends on a dentry that was not found via a normal lookup in the 1429 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals). 1430 * 1431 * In this situation, we just want to verify that the inode itself is OK 1432 * since the dentry might have changed on the server. 1433 */ 1434 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags) 1435 { 1436 struct inode *inode = d_inode(dentry); 1437 int error = 0; 1438 1439 /* 1440 * I believe we can only get a negative dentry here in the case of a 1441 * procfs-style symlink. Just assume it's correct for now, but we may 1442 * eventually need to do something more here. 1443 */ 1444 if (!inode) { 1445 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n", 1446 __func__, dentry); 1447 return 1; 1448 } 1449 1450 if (is_bad_inode(inode)) { 1451 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1452 __func__, dentry); 1453 return 0; 1454 } 1455 1456 error = nfs_lookup_verify_inode(inode, flags); 1457 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n", 1458 __func__, inode->i_ino, error ? "invalid" : "valid"); 1459 return !error; 1460 } 1461 1462 /* 1463 * This is called from dput() when d_count is going to 0. 1464 */ 1465 static int nfs_dentry_delete(const struct dentry *dentry) 1466 { 1467 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n", 1468 dentry, dentry->d_flags); 1469 1470 /* Unhash any dentry with a stale inode */ 1471 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry))) 1472 return 1; 1473 1474 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1475 /* Unhash it, so that ->d_iput() would be called */ 1476 return 1; 1477 } 1478 if (!(dentry->d_sb->s_flags & SB_ACTIVE)) { 1479 /* Unhash it, so that ancestors of killed async unlink 1480 * files will be cleaned up during umount */ 1481 return 1; 1482 } 1483 return 0; 1484 1485 } 1486 1487 /* Ensure that we revalidate inode->i_nlink */ 1488 static void nfs_drop_nlink(struct inode *inode) 1489 { 1490 spin_lock(&inode->i_lock); 1491 /* drop the inode if we're reasonably sure this is the last link */ 1492 if (inode->i_nlink > 0) 1493 drop_nlink(inode); 1494 NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter(); 1495 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_CHANGE 1496 | NFS_INO_INVALID_CTIME 1497 | NFS_INO_INVALID_OTHER 1498 | NFS_INO_REVAL_FORCED; 1499 spin_unlock(&inode->i_lock); 1500 } 1501 1502 /* 1503 * Called when the dentry loses inode. 1504 * We use it to clean up silly-renamed files. 1505 */ 1506 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode) 1507 { 1508 if (S_ISDIR(inode->i_mode)) 1509 /* drop any readdir cache as it could easily be old */ 1510 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA; 1511 1512 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1513 nfs_complete_unlink(dentry, inode); 1514 nfs_drop_nlink(inode); 1515 } 1516 iput(inode); 1517 } 1518 1519 static void nfs_d_release(struct dentry *dentry) 1520 { 1521 /* free cached devname value, if it survived that far */ 1522 if (unlikely(dentry->d_fsdata)) { 1523 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) 1524 WARN_ON(1); 1525 else 1526 kfree(dentry->d_fsdata); 1527 } 1528 } 1529 1530 const struct dentry_operations nfs_dentry_operations = { 1531 .d_revalidate = nfs_lookup_revalidate, 1532 .d_weak_revalidate = nfs_weak_revalidate, 1533 .d_delete = nfs_dentry_delete, 1534 .d_iput = nfs_dentry_iput, 1535 .d_automount = nfs_d_automount, 1536 .d_release = nfs_d_release, 1537 }; 1538 EXPORT_SYMBOL_GPL(nfs_dentry_operations); 1539 1540 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 1541 { 1542 struct dentry *res; 1543 struct inode *inode = NULL; 1544 struct nfs_fh *fhandle = NULL; 1545 struct nfs_fattr *fattr = NULL; 1546 struct nfs4_label *label = NULL; 1547 unsigned long dir_verifier; 1548 int error; 1549 1550 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry); 1551 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP); 1552 1553 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen)) 1554 return ERR_PTR(-ENAMETOOLONG); 1555 1556 /* 1557 * If we're doing an exclusive create, optimize away the lookup 1558 * but don't hash the dentry. 1559 */ 1560 if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET) 1561 return NULL; 1562 1563 res = ERR_PTR(-ENOMEM); 1564 fhandle = nfs_alloc_fhandle(); 1565 fattr = nfs_alloc_fattr(); 1566 if (fhandle == NULL || fattr == NULL) 1567 goto out; 1568 1569 label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT); 1570 if (IS_ERR(label)) 1571 goto out; 1572 1573 dir_verifier = nfs_save_change_attribute(dir); 1574 trace_nfs_lookup_enter(dir, dentry, flags); 1575 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label); 1576 if (error == -ENOENT) 1577 goto no_entry; 1578 if (error < 0) { 1579 res = ERR_PTR(error); 1580 goto out_label; 1581 } 1582 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label); 1583 res = ERR_CAST(inode); 1584 if (IS_ERR(res)) 1585 goto out_label; 1586 1587 /* Notify readdir to use READDIRPLUS */ 1588 nfs_force_use_readdirplus(dir); 1589 1590 no_entry: 1591 res = d_splice_alias(inode, dentry); 1592 if (res != NULL) { 1593 if (IS_ERR(res)) 1594 goto out_label; 1595 dentry = res; 1596 } 1597 nfs_set_verifier(dentry, dir_verifier); 1598 out_label: 1599 trace_nfs_lookup_exit(dir, dentry, flags, error); 1600 nfs4_label_free(label); 1601 out: 1602 nfs_free_fattr(fattr); 1603 nfs_free_fhandle(fhandle); 1604 return res; 1605 } 1606 EXPORT_SYMBOL_GPL(nfs_lookup); 1607 1608 #if IS_ENABLED(CONFIG_NFS_V4) 1609 static int nfs4_lookup_revalidate(struct dentry *, unsigned int); 1610 1611 const struct dentry_operations nfs4_dentry_operations = { 1612 .d_revalidate = nfs4_lookup_revalidate, 1613 .d_weak_revalidate = nfs_weak_revalidate, 1614 .d_delete = nfs_dentry_delete, 1615 .d_iput = nfs_dentry_iput, 1616 .d_automount = nfs_d_automount, 1617 .d_release = nfs_d_release, 1618 }; 1619 EXPORT_SYMBOL_GPL(nfs4_dentry_operations); 1620 1621 static fmode_t flags_to_mode(int flags) 1622 { 1623 fmode_t res = (__force fmode_t)flags & FMODE_EXEC; 1624 if ((flags & O_ACCMODE) != O_WRONLY) 1625 res |= FMODE_READ; 1626 if ((flags & O_ACCMODE) != O_RDONLY) 1627 res |= FMODE_WRITE; 1628 return res; 1629 } 1630 1631 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp) 1632 { 1633 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp); 1634 } 1635 1636 static int do_open(struct inode *inode, struct file *filp) 1637 { 1638 nfs_fscache_open_file(inode, filp); 1639 return 0; 1640 } 1641 1642 static int nfs_finish_open(struct nfs_open_context *ctx, 1643 struct dentry *dentry, 1644 struct file *file, unsigned open_flags) 1645 { 1646 int err; 1647 1648 err = finish_open(file, dentry, do_open); 1649 if (err) 1650 goto out; 1651 if (S_ISREG(file->f_path.dentry->d_inode->i_mode)) 1652 nfs_file_set_open_context(file, ctx); 1653 else 1654 err = -EOPENSTALE; 1655 out: 1656 return err; 1657 } 1658 1659 int nfs_atomic_open(struct inode *dir, struct dentry *dentry, 1660 struct file *file, unsigned open_flags, 1661 umode_t mode) 1662 { 1663 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1664 struct nfs_open_context *ctx; 1665 struct dentry *res; 1666 struct iattr attr = { .ia_valid = ATTR_OPEN }; 1667 struct inode *inode; 1668 unsigned int lookup_flags = 0; 1669 bool switched = false; 1670 int created = 0; 1671 int err; 1672 1673 /* Expect a negative dentry */ 1674 BUG_ON(d_inode(dentry)); 1675 1676 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n", 1677 dir->i_sb->s_id, dir->i_ino, dentry); 1678 1679 err = nfs_check_flags(open_flags); 1680 if (err) 1681 return err; 1682 1683 /* NFS only supports OPEN on regular files */ 1684 if ((open_flags & O_DIRECTORY)) { 1685 if (!d_in_lookup(dentry)) { 1686 /* 1687 * Hashed negative dentry with O_DIRECTORY: dentry was 1688 * revalidated and is fine, no need to perform lookup 1689 * again 1690 */ 1691 return -ENOENT; 1692 } 1693 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY; 1694 goto no_open; 1695 } 1696 1697 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 1698 return -ENAMETOOLONG; 1699 1700 if (open_flags & O_CREAT) { 1701 struct nfs_server *server = NFS_SERVER(dir); 1702 1703 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK)) 1704 mode &= ~current_umask(); 1705 1706 attr.ia_valid |= ATTR_MODE; 1707 attr.ia_mode = mode; 1708 } 1709 if (open_flags & O_TRUNC) { 1710 attr.ia_valid |= ATTR_SIZE; 1711 attr.ia_size = 0; 1712 } 1713 1714 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) { 1715 d_drop(dentry); 1716 switched = true; 1717 dentry = d_alloc_parallel(dentry->d_parent, 1718 &dentry->d_name, &wq); 1719 if (IS_ERR(dentry)) 1720 return PTR_ERR(dentry); 1721 if (unlikely(!d_in_lookup(dentry))) 1722 return finish_no_open(file, dentry); 1723 } 1724 1725 ctx = create_nfs_open_context(dentry, open_flags, file); 1726 err = PTR_ERR(ctx); 1727 if (IS_ERR(ctx)) 1728 goto out; 1729 1730 trace_nfs_atomic_open_enter(dir, ctx, open_flags); 1731 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created); 1732 if (created) 1733 file->f_mode |= FMODE_CREATED; 1734 if (IS_ERR(inode)) { 1735 err = PTR_ERR(inode); 1736 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 1737 put_nfs_open_context(ctx); 1738 d_drop(dentry); 1739 switch (err) { 1740 case -ENOENT: 1741 d_splice_alias(NULL, dentry); 1742 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1743 break; 1744 case -EISDIR: 1745 case -ENOTDIR: 1746 goto no_open; 1747 case -ELOOP: 1748 if (!(open_flags & O_NOFOLLOW)) 1749 goto no_open; 1750 break; 1751 /* case -EINVAL: */ 1752 default: 1753 break; 1754 } 1755 goto out; 1756 } 1757 1758 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags); 1759 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 1760 put_nfs_open_context(ctx); 1761 out: 1762 if (unlikely(switched)) { 1763 d_lookup_done(dentry); 1764 dput(dentry); 1765 } 1766 return err; 1767 1768 no_open: 1769 res = nfs_lookup(dir, dentry, lookup_flags); 1770 if (switched) { 1771 d_lookup_done(dentry); 1772 if (!res) 1773 res = dentry; 1774 else 1775 dput(dentry); 1776 } 1777 if (IS_ERR(res)) 1778 return PTR_ERR(res); 1779 return finish_no_open(file, res); 1780 } 1781 EXPORT_SYMBOL_GPL(nfs_atomic_open); 1782 1783 static int 1784 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry, 1785 unsigned int flags) 1786 { 1787 struct inode *inode; 1788 1789 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY)) 1790 goto full_reval; 1791 if (d_mountpoint(dentry)) 1792 goto full_reval; 1793 1794 inode = d_inode(dentry); 1795 1796 /* We can't create new files in nfs_open_revalidate(), so we 1797 * optimize away revalidation of negative dentries. 1798 */ 1799 if (inode == NULL) 1800 goto full_reval; 1801 1802 if (nfs_verifier_is_delegated(dentry)) 1803 return nfs_lookup_revalidate_delegated(dir, dentry, inode); 1804 1805 /* NFS only supports OPEN on regular files */ 1806 if (!S_ISREG(inode->i_mode)) 1807 goto full_reval; 1808 1809 /* We cannot do exclusive creation on a positive dentry */ 1810 if (flags & (LOOKUP_EXCL | LOOKUP_REVAL)) 1811 goto reval_dentry; 1812 1813 /* Check if the directory changed */ 1814 if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) 1815 goto reval_dentry; 1816 1817 /* Let f_op->open() actually open (and revalidate) the file */ 1818 return 1; 1819 reval_dentry: 1820 if (flags & LOOKUP_RCU) 1821 return -ECHILD; 1822 return nfs_lookup_revalidate_dentry(dir, dentry, inode); 1823 1824 full_reval: 1825 return nfs_do_lookup_revalidate(dir, dentry, flags); 1826 } 1827 1828 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1829 { 1830 return __nfs_lookup_revalidate(dentry, flags, 1831 nfs4_do_lookup_revalidate); 1832 } 1833 1834 #endif /* CONFIG_NFSV4 */ 1835 1836 struct dentry * 1837 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle, 1838 struct nfs_fattr *fattr, 1839 struct nfs4_label *label) 1840 { 1841 struct dentry *parent = dget_parent(dentry); 1842 struct inode *dir = d_inode(parent); 1843 struct inode *inode; 1844 struct dentry *d; 1845 int error; 1846 1847 d_drop(dentry); 1848 1849 if (fhandle->size == 0) { 1850 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, NULL); 1851 if (error) 1852 goto out_error; 1853 } 1854 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1855 if (!(fattr->valid & NFS_ATTR_FATTR)) { 1856 struct nfs_server *server = NFS_SB(dentry->d_sb); 1857 error = server->nfs_client->rpc_ops->getattr(server, fhandle, 1858 fattr, NULL, NULL); 1859 if (error < 0) 1860 goto out_error; 1861 } 1862 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label); 1863 d = d_splice_alias(inode, dentry); 1864 out: 1865 dput(parent); 1866 return d; 1867 out_error: 1868 nfs_mark_for_revalidate(dir); 1869 d = ERR_PTR(error); 1870 goto out; 1871 } 1872 EXPORT_SYMBOL_GPL(nfs_add_or_obtain); 1873 1874 /* 1875 * Code common to create, mkdir, and mknod. 1876 */ 1877 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle, 1878 struct nfs_fattr *fattr, 1879 struct nfs4_label *label) 1880 { 1881 struct dentry *d; 1882 1883 d = nfs_add_or_obtain(dentry, fhandle, fattr, label); 1884 if (IS_ERR(d)) 1885 return PTR_ERR(d); 1886 1887 /* Callers don't care */ 1888 dput(d); 1889 return 0; 1890 } 1891 EXPORT_SYMBOL_GPL(nfs_instantiate); 1892 1893 /* 1894 * Following a failed create operation, we drop the dentry rather 1895 * than retain a negative dentry. This avoids a problem in the event 1896 * that the operation succeeded on the server, but an error in the 1897 * reply path made it appear to have failed. 1898 */ 1899 int nfs_create(struct inode *dir, struct dentry *dentry, 1900 umode_t mode, bool excl) 1901 { 1902 struct iattr attr; 1903 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT; 1904 int error; 1905 1906 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n", 1907 dir->i_sb->s_id, dir->i_ino, dentry); 1908 1909 attr.ia_mode = mode; 1910 attr.ia_valid = ATTR_MODE; 1911 1912 trace_nfs_create_enter(dir, dentry, open_flags); 1913 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags); 1914 trace_nfs_create_exit(dir, dentry, open_flags, error); 1915 if (error != 0) 1916 goto out_err; 1917 return 0; 1918 out_err: 1919 d_drop(dentry); 1920 return error; 1921 } 1922 EXPORT_SYMBOL_GPL(nfs_create); 1923 1924 /* 1925 * See comments for nfs_proc_create regarding failed operations. 1926 */ 1927 int 1928 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev) 1929 { 1930 struct iattr attr; 1931 int status; 1932 1933 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n", 1934 dir->i_sb->s_id, dir->i_ino, dentry); 1935 1936 attr.ia_mode = mode; 1937 attr.ia_valid = ATTR_MODE; 1938 1939 trace_nfs_mknod_enter(dir, dentry); 1940 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev); 1941 trace_nfs_mknod_exit(dir, dentry, status); 1942 if (status != 0) 1943 goto out_err; 1944 return 0; 1945 out_err: 1946 d_drop(dentry); 1947 return status; 1948 } 1949 EXPORT_SYMBOL_GPL(nfs_mknod); 1950 1951 /* 1952 * See comments for nfs_proc_create regarding failed operations. 1953 */ 1954 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1955 { 1956 struct iattr attr; 1957 int error; 1958 1959 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n", 1960 dir->i_sb->s_id, dir->i_ino, dentry); 1961 1962 attr.ia_valid = ATTR_MODE; 1963 attr.ia_mode = mode | S_IFDIR; 1964 1965 trace_nfs_mkdir_enter(dir, dentry); 1966 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr); 1967 trace_nfs_mkdir_exit(dir, dentry, error); 1968 if (error != 0) 1969 goto out_err; 1970 return 0; 1971 out_err: 1972 d_drop(dentry); 1973 return error; 1974 } 1975 EXPORT_SYMBOL_GPL(nfs_mkdir); 1976 1977 static void nfs_dentry_handle_enoent(struct dentry *dentry) 1978 { 1979 if (simple_positive(dentry)) 1980 d_delete(dentry); 1981 } 1982 1983 int nfs_rmdir(struct inode *dir, struct dentry *dentry) 1984 { 1985 int error; 1986 1987 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n", 1988 dir->i_sb->s_id, dir->i_ino, dentry); 1989 1990 trace_nfs_rmdir_enter(dir, dentry); 1991 if (d_really_is_positive(dentry)) { 1992 down_write(&NFS_I(d_inode(dentry))->rmdir_sem); 1993 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 1994 /* Ensure the VFS deletes this inode */ 1995 switch (error) { 1996 case 0: 1997 clear_nlink(d_inode(dentry)); 1998 break; 1999 case -ENOENT: 2000 nfs_dentry_handle_enoent(dentry); 2001 } 2002 up_write(&NFS_I(d_inode(dentry))->rmdir_sem); 2003 } else 2004 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 2005 trace_nfs_rmdir_exit(dir, dentry, error); 2006 2007 return error; 2008 } 2009 EXPORT_SYMBOL_GPL(nfs_rmdir); 2010 2011 /* 2012 * Remove a file after making sure there are no pending writes, 2013 * and after checking that the file has only one user. 2014 * 2015 * We invalidate the attribute cache and free the inode prior to the operation 2016 * to avoid possible races if the server reuses the inode. 2017 */ 2018 static int nfs_safe_remove(struct dentry *dentry) 2019 { 2020 struct inode *dir = d_inode(dentry->d_parent); 2021 struct inode *inode = d_inode(dentry); 2022 int error = -EBUSY; 2023 2024 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry); 2025 2026 /* If the dentry was sillyrenamed, we simply call d_delete() */ 2027 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 2028 error = 0; 2029 goto out; 2030 } 2031 2032 trace_nfs_remove_enter(dir, dentry); 2033 if (inode != NULL) { 2034 error = NFS_PROTO(dir)->remove(dir, dentry); 2035 if (error == 0) 2036 nfs_drop_nlink(inode); 2037 } else 2038 error = NFS_PROTO(dir)->remove(dir, dentry); 2039 if (error == -ENOENT) 2040 nfs_dentry_handle_enoent(dentry); 2041 trace_nfs_remove_exit(dir, dentry, error); 2042 out: 2043 return error; 2044 } 2045 2046 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode 2047 * belongs to an active ".nfs..." file and we return -EBUSY. 2048 * 2049 * If sillyrename() returns 0, we do nothing, otherwise we unlink. 2050 */ 2051 int nfs_unlink(struct inode *dir, struct dentry *dentry) 2052 { 2053 int error; 2054 int need_rehash = 0; 2055 2056 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id, 2057 dir->i_ino, dentry); 2058 2059 trace_nfs_unlink_enter(dir, dentry); 2060 spin_lock(&dentry->d_lock); 2061 if (d_count(dentry) > 1) { 2062 spin_unlock(&dentry->d_lock); 2063 /* Start asynchronous writeout of the inode */ 2064 write_inode_now(d_inode(dentry), 0); 2065 error = nfs_sillyrename(dir, dentry); 2066 goto out; 2067 } 2068 if (!d_unhashed(dentry)) { 2069 __d_drop(dentry); 2070 need_rehash = 1; 2071 } 2072 spin_unlock(&dentry->d_lock); 2073 error = nfs_safe_remove(dentry); 2074 if (!error || error == -ENOENT) { 2075 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2076 } else if (need_rehash) 2077 d_rehash(dentry); 2078 out: 2079 trace_nfs_unlink_exit(dir, dentry, error); 2080 return error; 2081 } 2082 EXPORT_SYMBOL_GPL(nfs_unlink); 2083 2084 /* 2085 * To create a symbolic link, most file systems instantiate a new inode, 2086 * add a page to it containing the path, then write it out to the disk 2087 * using prepare_write/commit_write. 2088 * 2089 * Unfortunately the NFS client can't create the in-core inode first 2090 * because it needs a file handle to create an in-core inode (see 2091 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the 2092 * symlink request has completed on the server. 2093 * 2094 * So instead we allocate a raw page, copy the symname into it, then do 2095 * the SYMLINK request with the page as the buffer. If it succeeds, we 2096 * now have a new file handle and can instantiate an in-core NFS inode 2097 * and move the raw page into its mapping. 2098 */ 2099 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 2100 { 2101 struct page *page; 2102 char *kaddr; 2103 struct iattr attr; 2104 unsigned int pathlen = strlen(symname); 2105 int error; 2106 2107 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id, 2108 dir->i_ino, dentry, symname); 2109 2110 if (pathlen > PAGE_SIZE) 2111 return -ENAMETOOLONG; 2112 2113 attr.ia_mode = S_IFLNK | S_IRWXUGO; 2114 attr.ia_valid = ATTR_MODE; 2115 2116 page = alloc_page(GFP_USER); 2117 if (!page) 2118 return -ENOMEM; 2119 2120 kaddr = page_address(page); 2121 memcpy(kaddr, symname, pathlen); 2122 if (pathlen < PAGE_SIZE) 2123 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen); 2124 2125 trace_nfs_symlink_enter(dir, dentry); 2126 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr); 2127 trace_nfs_symlink_exit(dir, dentry, error); 2128 if (error != 0) { 2129 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n", 2130 dir->i_sb->s_id, dir->i_ino, 2131 dentry, symname, error); 2132 d_drop(dentry); 2133 __free_page(page); 2134 return error; 2135 } 2136 2137 /* 2138 * No big deal if we can't add this page to the page cache here. 2139 * READLINK will get the missing page from the server if needed. 2140 */ 2141 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0, 2142 GFP_KERNEL)) { 2143 SetPageUptodate(page); 2144 unlock_page(page); 2145 /* 2146 * add_to_page_cache_lru() grabs an extra page refcount. 2147 * Drop it here to avoid leaking this page later. 2148 */ 2149 put_page(page); 2150 } else 2151 __free_page(page); 2152 2153 return 0; 2154 } 2155 EXPORT_SYMBOL_GPL(nfs_symlink); 2156 2157 int 2158 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2159 { 2160 struct inode *inode = d_inode(old_dentry); 2161 int error; 2162 2163 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n", 2164 old_dentry, dentry); 2165 2166 trace_nfs_link_enter(inode, dir, dentry); 2167 d_drop(dentry); 2168 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name); 2169 if (error == 0) { 2170 ihold(inode); 2171 d_add(dentry, inode); 2172 } 2173 trace_nfs_link_exit(inode, dir, dentry, error); 2174 return error; 2175 } 2176 EXPORT_SYMBOL_GPL(nfs_link); 2177 2178 /* 2179 * RENAME 2180 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a 2181 * different file handle for the same inode after a rename (e.g. when 2182 * moving to a different directory). A fail-safe method to do so would 2183 * be to look up old_dir/old_name, create a link to new_dir/new_name and 2184 * rename the old file using the sillyrename stuff. This way, the original 2185 * file in old_dir will go away when the last process iput()s the inode. 2186 * 2187 * FIXED. 2188 * 2189 * It actually works quite well. One needs to have the possibility for 2190 * at least one ".nfs..." file in each directory the file ever gets 2191 * moved or linked to which happens automagically with the new 2192 * implementation that only depends on the dcache stuff instead of 2193 * using the inode layer 2194 * 2195 * Unfortunately, things are a little more complicated than indicated 2196 * above. For a cross-directory move, we want to make sure we can get 2197 * rid of the old inode after the operation. This means there must be 2198 * no pending writes (if it's a file), and the use count must be 1. 2199 * If these conditions are met, we can drop the dentries before doing 2200 * the rename. 2201 */ 2202 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry, 2203 struct inode *new_dir, struct dentry *new_dentry, 2204 unsigned int flags) 2205 { 2206 struct inode *old_inode = d_inode(old_dentry); 2207 struct inode *new_inode = d_inode(new_dentry); 2208 struct dentry *dentry = NULL, *rehash = NULL; 2209 struct rpc_task *task; 2210 int error = -EBUSY; 2211 2212 if (flags) 2213 return -EINVAL; 2214 2215 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n", 2216 old_dentry, new_dentry, 2217 d_count(new_dentry)); 2218 2219 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry); 2220 /* 2221 * For non-directories, check whether the target is busy and if so, 2222 * make a copy of the dentry and then do a silly-rename. If the 2223 * silly-rename succeeds, the copied dentry is hashed and becomes 2224 * the new target. 2225 */ 2226 if (new_inode && !S_ISDIR(new_inode->i_mode)) { 2227 /* 2228 * To prevent any new references to the target during the 2229 * rename, we unhash the dentry in advance. 2230 */ 2231 if (!d_unhashed(new_dentry)) { 2232 d_drop(new_dentry); 2233 rehash = new_dentry; 2234 } 2235 2236 if (d_count(new_dentry) > 2) { 2237 int err; 2238 2239 /* copy the target dentry's name */ 2240 dentry = d_alloc(new_dentry->d_parent, 2241 &new_dentry->d_name); 2242 if (!dentry) 2243 goto out; 2244 2245 /* silly-rename the existing target ... */ 2246 err = nfs_sillyrename(new_dir, new_dentry); 2247 if (err) 2248 goto out; 2249 2250 new_dentry = dentry; 2251 rehash = NULL; 2252 new_inode = NULL; 2253 } 2254 } 2255 2256 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL); 2257 if (IS_ERR(task)) { 2258 error = PTR_ERR(task); 2259 goto out; 2260 } 2261 2262 error = rpc_wait_for_completion_task(task); 2263 if (error != 0) { 2264 ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1; 2265 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */ 2266 smp_wmb(); 2267 } else 2268 error = task->tk_status; 2269 rpc_put_task(task); 2270 /* Ensure the inode attributes are revalidated */ 2271 if (error == 0) { 2272 spin_lock(&old_inode->i_lock); 2273 NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter(); 2274 NFS_I(old_inode)->cache_validity |= NFS_INO_INVALID_CHANGE 2275 | NFS_INO_INVALID_CTIME 2276 | NFS_INO_REVAL_FORCED; 2277 spin_unlock(&old_inode->i_lock); 2278 } 2279 out: 2280 if (rehash) 2281 d_rehash(rehash); 2282 trace_nfs_rename_exit(old_dir, old_dentry, 2283 new_dir, new_dentry, error); 2284 if (!error) { 2285 if (new_inode != NULL) 2286 nfs_drop_nlink(new_inode); 2287 /* 2288 * The d_move() should be here instead of in an async RPC completion 2289 * handler because we need the proper locks to move the dentry. If 2290 * we're interrupted by a signal, the async RPC completion handler 2291 * should mark the directories for revalidation. 2292 */ 2293 d_move(old_dentry, new_dentry); 2294 nfs_set_verifier(old_dentry, 2295 nfs_save_change_attribute(new_dir)); 2296 } else if (error == -ENOENT) 2297 nfs_dentry_handle_enoent(old_dentry); 2298 2299 /* new dentry created? */ 2300 if (dentry) 2301 dput(dentry); 2302 return error; 2303 } 2304 EXPORT_SYMBOL_GPL(nfs_rename); 2305 2306 static DEFINE_SPINLOCK(nfs_access_lru_lock); 2307 static LIST_HEAD(nfs_access_lru_list); 2308 static atomic_long_t nfs_access_nr_entries; 2309 2310 static unsigned long nfs_access_max_cachesize = 4*1024*1024; 2311 module_param(nfs_access_max_cachesize, ulong, 0644); 2312 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length"); 2313 2314 static void nfs_access_free_entry(struct nfs_access_entry *entry) 2315 { 2316 put_cred(entry->cred); 2317 kfree_rcu(entry, rcu_head); 2318 smp_mb__before_atomic(); 2319 atomic_long_dec(&nfs_access_nr_entries); 2320 smp_mb__after_atomic(); 2321 } 2322 2323 static void nfs_access_free_list(struct list_head *head) 2324 { 2325 struct nfs_access_entry *cache; 2326 2327 while (!list_empty(head)) { 2328 cache = list_entry(head->next, struct nfs_access_entry, lru); 2329 list_del(&cache->lru); 2330 nfs_access_free_entry(cache); 2331 } 2332 } 2333 2334 static unsigned long 2335 nfs_do_access_cache_scan(unsigned int nr_to_scan) 2336 { 2337 LIST_HEAD(head); 2338 struct nfs_inode *nfsi, *next; 2339 struct nfs_access_entry *cache; 2340 long freed = 0; 2341 2342 spin_lock(&nfs_access_lru_lock); 2343 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) { 2344 struct inode *inode; 2345 2346 if (nr_to_scan-- == 0) 2347 break; 2348 inode = &nfsi->vfs_inode; 2349 spin_lock(&inode->i_lock); 2350 if (list_empty(&nfsi->access_cache_entry_lru)) 2351 goto remove_lru_entry; 2352 cache = list_entry(nfsi->access_cache_entry_lru.next, 2353 struct nfs_access_entry, lru); 2354 list_move(&cache->lru, &head); 2355 rb_erase(&cache->rb_node, &nfsi->access_cache); 2356 freed++; 2357 if (!list_empty(&nfsi->access_cache_entry_lru)) 2358 list_move_tail(&nfsi->access_cache_inode_lru, 2359 &nfs_access_lru_list); 2360 else { 2361 remove_lru_entry: 2362 list_del_init(&nfsi->access_cache_inode_lru); 2363 smp_mb__before_atomic(); 2364 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags); 2365 smp_mb__after_atomic(); 2366 } 2367 spin_unlock(&inode->i_lock); 2368 } 2369 spin_unlock(&nfs_access_lru_lock); 2370 nfs_access_free_list(&head); 2371 return freed; 2372 } 2373 2374 unsigned long 2375 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc) 2376 { 2377 int nr_to_scan = sc->nr_to_scan; 2378 gfp_t gfp_mask = sc->gfp_mask; 2379 2380 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL) 2381 return SHRINK_STOP; 2382 return nfs_do_access_cache_scan(nr_to_scan); 2383 } 2384 2385 2386 unsigned long 2387 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc) 2388 { 2389 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries)); 2390 } 2391 2392 static void 2393 nfs_access_cache_enforce_limit(void) 2394 { 2395 long nr_entries = atomic_long_read(&nfs_access_nr_entries); 2396 unsigned long diff; 2397 unsigned int nr_to_scan; 2398 2399 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize) 2400 return; 2401 nr_to_scan = 100; 2402 diff = nr_entries - nfs_access_max_cachesize; 2403 if (diff < nr_to_scan) 2404 nr_to_scan = diff; 2405 nfs_do_access_cache_scan(nr_to_scan); 2406 } 2407 2408 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head) 2409 { 2410 struct rb_root *root_node = &nfsi->access_cache; 2411 struct rb_node *n; 2412 struct nfs_access_entry *entry; 2413 2414 /* Unhook entries from the cache */ 2415 while ((n = rb_first(root_node)) != NULL) { 2416 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2417 rb_erase(n, root_node); 2418 list_move(&entry->lru, head); 2419 } 2420 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS; 2421 } 2422 2423 void nfs_access_zap_cache(struct inode *inode) 2424 { 2425 LIST_HEAD(head); 2426 2427 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0) 2428 return; 2429 /* Remove from global LRU init */ 2430 spin_lock(&nfs_access_lru_lock); 2431 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2432 list_del_init(&NFS_I(inode)->access_cache_inode_lru); 2433 2434 spin_lock(&inode->i_lock); 2435 __nfs_access_zap_cache(NFS_I(inode), &head); 2436 spin_unlock(&inode->i_lock); 2437 spin_unlock(&nfs_access_lru_lock); 2438 nfs_access_free_list(&head); 2439 } 2440 EXPORT_SYMBOL_GPL(nfs_access_zap_cache); 2441 2442 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred) 2443 { 2444 struct rb_node *n = NFS_I(inode)->access_cache.rb_node; 2445 2446 while (n != NULL) { 2447 struct nfs_access_entry *entry = 2448 rb_entry(n, struct nfs_access_entry, rb_node); 2449 int cmp = cred_fscmp(cred, entry->cred); 2450 2451 if (cmp < 0) 2452 n = n->rb_left; 2453 else if (cmp > 0) 2454 n = n->rb_right; 2455 else 2456 return entry; 2457 } 2458 return NULL; 2459 } 2460 2461 static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res, bool may_block) 2462 { 2463 struct nfs_inode *nfsi = NFS_I(inode); 2464 struct nfs_access_entry *cache; 2465 bool retry = true; 2466 int err; 2467 2468 spin_lock(&inode->i_lock); 2469 for(;;) { 2470 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2471 goto out_zap; 2472 cache = nfs_access_search_rbtree(inode, cred); 2473 err = -ENOENT; 2474 if (cache == NULL) 2475 goto out; 2476 /* Found an entry, is our attribute cache valid? */ 2477 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) 2478 break; 2479 if (!retry) 2480 break; 2481 err = -ECHILD; 2482 if (!may_block) 2483 goto out; 2484 spin_unlock(&inode->i_lock); 2485 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode); 2486 if (err) 2487 return err; 2488 spin_lock(&inode->i_lock); 2489 retry = false; 2490 } 2491 res->cred = cache->cred; 2492 res->mask = cache->mask; 2493 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru); 2494 err = 0; 2495 out: 2496 spin_unlock(&inode->i_lock); 2497 return err; 2498 out_zap: 2499 spin_unlock(&inode->i_lock); 2500 nfs_access_zap_cache(inode); 2501 return -ENOENT; 2502 } 2503 2504 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res) 2505 { 2506 /* Only check the most recently returned cache entry, 2507 * but do it without locking. 2508 */ 2509 struct nfs_inode *nfsi = NFS_I(inode); 2510 struct nfs_access_entry *cache; 2511 int err = -ECHILD; 2512 struct list_head *lh; 2513 2514 rcu_read_lock(); 2515 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2516 goto out; 2517 lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru)); 2518 cache = list_entry(lh, struct nfs_access_entry, lru); 2519 if (lh == &nfsi->access_cache_entry_lru || 2520 cred_fscmp(cred, cache->cred) != 0) 2521 cache = NULL; 2522 if (cache == NULL) 2523 goto out; 2524 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) 2525 goto out; 2526 res->cred = cache->cred; 2527 res->mask = cache->mask; 2528 err = 0; 2529 out: 2530 rcu_read_unlock(); 2531 return err; 2532 } 2533 2534 int nfs_access_get_cached(struct inode *inode, const struct cred *cred, struct 2535 nfs_access_entry *res, bool may_block) 2536 { 2537 int status; 2538 2539 status = nfs_access_get_cached_rcu(inode, cred, res); 2540 if (status != 0) 2541 status = nfs_access_get_cached_locked(inode, cred, res, 2542 may_block); 2543 2544 return status; 2545 } 2546 EXPORT_SYMBOL_GPL(nfs_access_get_cached); 2547 2548 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set) 2549 { 2550 struct nfs_inode *nfsi = NFS_I(inode); 2551 struct rb_root *root_node = &nfsi->access_cache; 2552 struct rb_node **p = &root_node->rb_node; 2553 struct rb_node *parent = NULL; 2554 struct nfs_access_entry *entry; 2555 int cmp; 2556 2557 spin_lock(&inode->i_lock); 2558 while (*p != NULL) { 2559 parent = *p; 2560 entry = rb_entry(parent, struct nfs_access_entry, rb_node); 2561 cmp = cred_fscmp(set->cred, entry->cred); 2562 2563 if (cmp < 0) 2564 p = &parent->rb_left; 2565 else if (cmp > 0) 2566 p = &parent->rb_right; 2567 else 2568 goto found; 2569 } 2570 rb_link_node(&set->rb_node, parent, p); 2571 rb_insert_color(&set->rb_node, root_node); 2572 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2573 spin_unlock(&inode->i_lock); 2574 return; 2575 found: 2576 rb_replace_node(parent, &set->rb_node, root_node); 2577 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2578 list_del(&entry->lru); 2579 spin_unlock(&inode->i_lock); 2580 nfs_access_free_entry(entry); 2581 } 2582 2583 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set) 2584 { 2585 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL); 2586 if (cache == NULL) 2587 return; 2588 RB_CLEAR_NODE(&cache->rb_node); 2589 cache->cred = get_cred(set->cred); 2590 cache->mask = set->mask; 2591 2592 /* The above field assignments must be visible 2593 * before this item appears on the lru. We cannot easily 2594 * use rcu_assign_pointer, so just force the memory barrier. 2595 */ 2596 smp_wmb(); 2597 nfs_access_add_rbtree(inode, cache); 2598 2599 /* Update accounting */ 2600 smp_mb__before_atomic(); 2601 atomic_long_inc(&nfs_access_nr_entries); 2602 smp_mb__after_atomic(); 2603 2604 /* Add inode to global LRU list */ 2605 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) { 2606 spin_lock(&nfs_access_lru_lock); 2607 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2608 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, 2609 &nfs_access_lru_list); 2610 spin_unlock(&nfs_access_lru_lock); 2611 } 2612 nfs_access_cache_enforce_limit(); 2613 } 2614 EXPORT_SYMBOL_GPL(nfs_access_add_cache); 2615 2616 #define NFS_MAY_READ (NFS_ACCESS_READ) 2617 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \ 2618 NFS_ACCESS_EXTEND | \ 2619 NFS_ACCESS_DELETE) 2620 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \ 2621 NFS_ACCESS_EXTEND) 2622 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE 2623 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP) 2624 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE) 2625 static int 2626 nfs_access_calc_mask(u32 access_result, umode_t umode) 2627 { 2628 int mask = 0; 2629 2630 if (access_result & NFS_MAY_READ) 2631 mask |= MAY_READ; 2632 if (S_ISDIR(umode)) { 2633 if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE) 2634 mask |= MAY_WRITE; 2635 if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP) 2636 mask |= MAY_EXEC; 2637 } else if (S_ISREG(umode)) { 2638 if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE) 2639 mask |= MAY_WRITE; 2640 if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE) 2641 mask |= MAY_EXEC; 2642 } else if (access_result & NFS_MAY_WRITE) 2643 mask |= MAY_WRITE; 2644 return mask; 2645 } 2646 2647 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result) 2648 { 2649 entry->mask = access_result; 2650 } 2651 EXPORT_SYMBOL_GPL(nfs_access_set_mask); 2652 2653 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask) 2654 { 2655 struct nfs_access_entry cache; 2656 bool may_block = (mask & MAY_NOT_BLOCK) == 0; 2657 int cache_mask = -1; 2658 int status; 2659 2660 trace_nfs_access_enter(inode); 2661 2662 status = nfs_access_get_cached(inode, cred, &cache, may_block); 2663 if (status == 0) 2664 goto out_cached; 2665 2666 status = -ECHILD; 2667 if (!may_block) 2668 goto out; 2669 2670 /* 2671 * Determine which access bits we want to ask for... 2672 */ 2673 cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND; 2674 if (nfs_server_capable(inode, NFS_CAP_XATTR)) { 2675 cache.mask |= NFS_ACCESS_XAREAD | NFS_ACCESS_XAWRITE | 2676 NFS_ACCESS_XALIST; 2677 } 2678 if (S_ISDIR(inode->i_mode)) 2679 cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP; 2680 else 2681 cache.mask |= NFS_ACCESS_EXECUTE; 2682 cache.cred = cred; 2683 status = NFS_PROTO(inode)->access(inode, &cache); 2684 if (status != 0) { 2685 if (status == -ESTALE) { 2686 if (!S_ISDIR(inode->i_mode)) 2687 nfs_set_inode_stale(inode); 2688 else 2689 nfs_zap_caches(inode); 2690 } 2691 goto out; 2692 } 2693 nfs_access_add_cache(inode, &cache); 2694 out_cached: 2695 cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode); 2696 if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0) 2697 status = -EACCES; 2698 out: 2699 trace_nfs_access_exit(inode, mask, cache_mask, status); 2700 return status; 2701 } 2702 2703 static int nfs_open_permission_mask(int openflags) 2704 { 2705 int mask = 0; 2706 2707 if (openflags & __FMODE_EXEC) { 2708 /* ONLY check exec rights */ 2709 mask = MAY_EXEC; 2710 } else { 2711 if ((openflags & O_ACCMODE) != O_WRONLY) 2712 mask |= MAY_READ; 2713 if ((openflags & O_ACCMODE) != O_RDONLY) 2714 mask |= MAY_WRITE; 2715 } 2716 2717 return mask; 2718 } 2719 2720 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags) 2721 { 2722 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags)); 2723 } 2724 EXPORT_SYMBOL_GPL(nfs_may_open); 2725 2726 static int nfs_execute_ok(struct inode *inode, int mask) 2727 { 2728 struct nfs_server *server = NFS_SERVER(inode); 2729 int ret = 0; 2730 2731 if (S_ISDIR(inode->i_mode)) 2732 return 0; 2733 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_OTHER)) { 2734 if (mask & MAY_NOT_BLOCK) 2735 return -ECHILD; 2736 ret = __nfs_revalidate_inode(server, inode); 2737 } 2738 if (ret == 0 && !execute_ok(inode)) 2739 ret = -EACCES; 2740 return ret; 2741 } 2742 2743 int nfs_permission(struct inode *inode, int mask) 2744 { 2745 const struct cred *cred = current_cred(); 2746 int res = 0; 2747 2748 nfs_inc_stats(inode, NFSIOS_VFSACCESS); 2749 2750 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 2751 goto out; 2752 /* Is this sys_access() ? */ 2753 if (mask & (MAY_ACCESS | MAY_CHDIR)) 2754 goto force_lookup; 2755 2756 switch (inode->i_mode & S_IFMT) { 2757 case S_IFLNK: 2758 goto out; 2759 case S_IFREG: 2760 if ((mask & MAY_OPEN) && 2761 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)) 2762 return 0; 2763 break; 2764 case S_IFDIR: 2765 /* 2766 * Optimize away all write operations, since the server 2767 * will check permissions when we perform the op. 2768 */ 2769 if ((mask & MAY_WRITE) && !(mask & MAY_READ)) 2770 goto out; 2771 } 2772 2773 force_lookup: 2774 if (!NFS_PROTO(inode)->access) 2775 goto out_notsup; 2776 2777 res = nfs_do_access(inode, cred, mask); 2778 out: 2779 if (!res && (mask & MAY_EXEC)) 2780 res = nfs_execute_ok(inode, mask); 2781 2782 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n", 2783 inode->i_sb->s_id, inode->i_ino, mask, res); 2784 return res; 2785 out_notsup: 2786 if (mask & MAY_NOT_BLOCK) 2787 return -ECHILD; 2788 2789 res = nfs_revalidate_inode(NFS_SERVER(inode), inode); 2790 if (res == 0) 2791 res = generic_permission(inode, mask); 2792 goto out; 2793 } 2794 EXPORT_SYMBOL_GPL(nfs_permission); 2795 2796 /* 2797 * Local variables: 2798 * version-control: t 2799 * kept-new-versions: 5 2800 * End: 2801 */ 2802