1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/nfs/dir.c 4 * 5 * Copyright (C) 1992 Rick Sladkey 6 * 7 * nfs directory handling functions 8 * 9 * 10 Apr 1996 Added silly rename for unlink --okir 10 * 28 Sep 1996 Improved directory cache --okir 11 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de 12 * Re-implemented silly rename for unlink, newly implemented 13 * silly rename for nfs_rename() following the suggestions 14 * of Olaf Kirch (okir) found in this file. 15 * Following Linus comments on my original hack, this version 16 * depends only on the dcache stuff and doesn't touch the inode 17 * layer (iput() and friends). 18 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM 19 */ 20 21 #include <linux/compat.h> 22 #include <linux/module.h> 23 #include <linux/time.h> 24 #include <linux/errno.h> 25 #include <linux/stat.h> 26 #include <linux/fcntl.h> 27 #include <linux/string.h> 28 #include <linux/kernel.h> 29 #include <linux/slab.h> 30 #include <linux/mm.h> 31 #include <linux/sunrpc/clnt.h> 32 #include <linux/nfs_fs.h> 33 #include <linux/nfs_mount.h> 34 #include <linux/pagemap.h> 35 #include <linux/pagevec.h> 36 #include <linux/namei.h> 37 #include <linux/mount.h> 38 #include <linux/swap.h> 39 #include <linux/sched.h> 40 #include <linux/kmemleak.h> 41 #include <linux/xattr.h> 42 43 #include "delegation.h" 44 #include "iostat.h" 45 #include "internal.h" 46 #include "fscache.h" 47 48 #include "nfstrace.h" 49 50 /* #define NFS_DEBUG_VERBOSE 1 */ 51 52 static int nfs_opendir(struct inode *, struct file *); 53 static int nfs_closedir(struct inode *, struct file *); 54 static int nfs_readdir(struct file *, struct dir_context *); 55 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int); 56 static loff_t nfs_llseek_dir(struct file *, loff_t, int); 57 static void nfs_readdir_clear_array(struct page*); 58 59 const struct file_operations nfs_dir_operations = { 60 .llseek = nfs_llseek_dir, 61 .read = generic_read_dir, 62 .iterate_shared = nfs_readdir, 63 .open = nfs_opendir, 64 .release = nfs_closedir, 65 .fsync = nfs_fsync_dir, 66 }; 67 68 const struct address_space_operations nfs_dir_aops = { 69 .freepage = nfs_readdir_clear_array, 70 }; 71 72 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir) 73 { 74 struct nfs_inode *nfsi = NFS_I(dir); 75 struct nfs_open_dir_context *ctx; 76 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); 77 if (ctx != NULL) { 78 ctx->duped = 0; 79 ctx->attr_gencount = nfsi->attr_gencount; 80 ctx->dir_cookie = 0; 81 ctx->dup_cookie = 0; 82 ctx->page_index = 0; 83 spin_lock(&dir->i_lock); 84 if (list_empty(&nfsi->open_files) && 85 (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER)) 86 nfs_set_cache_invalid(dir, 87 NFS_INO_INVALID_DATA | 88 NFS_INO_REVAL_FORCED); 89 list_add(&ctx->list, &nfsi->open_files); 90 clear_bit(NFS_INO_FORCE_READDIR, &nfsi->flags); 91 spin_unlock(&dir->i_lock); 92 return ctx; 93 } 94 return ERR_PTR(-ENOMEM); 95 } 96 97 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx) 98 { 99 spin_lock(&dir->i_lock); 100 list_del(&ctx->list); 101 spin_unlock(&dir->i_lock); 102 kfree(ctx); 103 } 104 105 /* 106 * Open file 107 */ 108 static int 109 nfs_opendir(struct inode *inode, struct file *filp) 110 { 111 int res = 0; 112 struct nfs_open_dir_context *ctx; 113 114 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp); 115 116 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 117 118 ctx = alloc_nfs_open_dir_context(inode); 119 if (IS_ERR(ctx)) { 120 res = PTR_ERR(ctx); 121 goto out; 122 } 123 filp->private_data = ctx; 124 out: 125 return res; 126 } 127 128 static int 129 nfs_closedir(struct inode *inode, struct file *filp) 130 { 131 put_nfs_open_dir_context(file_inode(filp), filp->private_data); 132 return 0; 133 } 134 135 struct nfs_cache_array_entry { 136 u64 cookie; 137 u64 ino; 138 const char *name; 139 unsigned int name_len; 140 unsigned char d_type; 141 }; 142 143 struct nfs_cache_array { 144 u64 last_cookie; 145 unsigned int size; 146 unsigned char page_full : 1, 147 page_is_eof : 1, 148 cookies_are_ordered : 1; 149 struct nfs_cache_array_entry array[]; 150 }; 151 152 struct nfs_readdir_descriptor { 153 struct file *file; 154 struct page *page; 155 struct dir_context *ctx; 156 pgoff_t page_index; 157 u64 dir_cookie; 158 u64 last_cookie; 159 u64 dup_cookie; 160 loff_t current_index; 161 loff_t prev_index; 162 163 __be32 verf[NFS_DIR_VERIFIER_SIZE]; 164 unsigned long dir_verifier; 165 unsigned long timestamp; 166 unsigned long gencount; 167 unsigned long attr_gencount; 168 unsigned int cache_entry_index; 169 signed char duped; 170 bool plus; 171 bool eof; 172 }; 173 174 static void nfs_readdir_array_init(struct nfs_cache_array *array) 175 { 176 memset(array, 0, sizeof(struct nfs_cache_array)); 177 } 178 179 static void nfs_readdir_page_init_array(struct page *page, u64 last_cookie) 180 { 181 struct nfs_cache_array *array; 182 183 array = kmap_atomic(page); 184 nfs_readdir_array_init(array); 185 array->last_cookie = last_cookie; 186 array->cookies_are_ordered = 1; 187 kunmap_atomic(array); 188 } 189 190 /* 191 * we are freeing strings created by nfs_add_to_readdir_array() 192 */ 193 static 194 void nfs_readdir_clear_array(struct page *page) 195 { 196 struct nfs_cache_array *array; 197 int i; 198 199 array = kmap_atomic(page); 200 for (i = 0; i < array->size; i++) 201 kfree(array->array[i].name); 202 nfs_readdir_array_init(array); 203 kunmap_atomic(array); 204 } 205 206 static struct page * 207 nfs_readdir_page_array_alloc(u64 last_cookie, gfp_t gfp_flags) 208 { 209 struct page *page = alloc_page(gfp_flags); 210 if (page) 211 nfs_readdir_page_init_array(page, last_cookie); 212 return page; 213 } 214 215 static void nfs_readdir_page_array_free(struct page *page) 216 { 217 if (page) { 218 nfs_readdir_clear_array(page); 219 put_page(page); 220 } 221 } 222 223 static void nfs_readdir_array_set_eof(struct nfs_cache_array *array) 224 { 225 array->page_is_eof = 1; 226 array->page_full = 1; 227 } 228 229 static bool nfs_readdir_array_is_full(struct nfs_cache_array *array) 230 { 231 return array->page_full; 232 } 233 234 /* 235 * the caller is responsible for freeing qstr.name 236 * when called by nfs_readdir_add_to_array, the strings will be freed in 237 * nfs_clear_readdir_array() 238 */ 239 static const char *nfs_readdir_copy_name(const char *name, unsigned int len) 240 { 241 const char *ret = kmemdup_nul(name, len, GFP_KERNEL); 242 243 /* 244 * Avoid a kmemleak false positive. The pointer to the name is stored 245 * in a page cache page which kmemleak does not scan. 246 */ 247 if (ret != NULL) 248 kmemleak_not_leak(ret); 249 return ret; 250 } 251 252 /* 253 * Check that the next array entry lies entirely within the page bounds 254 */ 255 static int nfs_readdir_array_can_expand(struct nfs_cache_array *array) 256 { 257 struct nfs_cache_array_entry *cache_entry; 258 259 if (array->page_full) 260 return -ENOSPC; 261 cache_entry = &array->array[array->size + 1]; 262 if ((char *)cache_entry - (char *)array > PAGE_SIZE) { 263 array->page_full = 1; 264 return -ENOSPC; 265 } 266 return 0; 267 } 268 269 static 270 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page) 271 { 272 struct nfs_cache_array *array; 273 struct nfs_cache_array_entry *cache_entry; 274 const char *name; 275 int ret; 276 277 name = nfs_readdir_copy_name(entry->name, entry->len); 278 if (!name) 279 return -ENOMEM; 280 281 array = kmap_atomic(page); 282 ret = nfs_readdir_array_can_expand(array); 283 if (ret) { 284 kfree(name); 285 goto out; 286 } 287 288 cache_entry = &array->array[array->size]; 289 cache_entry->cookie = entry->prev_cookie; 290 cache_entry->ino = entry->ino; 291 cache_entry->d_type = entry->d_type; 292 cache_entry->name_len = entry->len; 293 cache_entry->name = name; 294 array->last_cookie = entry->cookie; 295 if (array->last_cookie <= cache_entry->cookie) 296 array->cookies_are_ordered = 0; 297 array->size++; 298 if (entry->eof != 0) 299 nfs_readdir_array_set_eof(array); 300 out: 301 kunmap_atomic(array); 302 return ret; 303 } 304 305 static struct page *nfs_readdir_page_get_locked(struct address_space *mapping, 306 pgoff_t index, u64 last_cookie) 307 { 308 struct page *page; 309 310 page = grab_cache_page(mapping, index); 311 if (page && !PageUptodate(page)) { 312 nfs_readdir_page_init_array(page, last_cookie); 313 if (invalidate_inode_pages2_range(mapping, index + 1, -1) < 0) 314 nfs_zap_mapping(mapping->host, mapping); 315 SetPageUptodate(page); 316 } 317 318 return page; 319 } 320 321 static u64 nfs_readdir_page_last_cookie(struct page *page) 322 { 323 struct nfs_cache_array *array; 324 u64 ret; 325 326 array = kmap_atomic(page); 327 ret = array->last_cookie; 328 kunmap_atomic(array); 329 return ret; 330 } 331 332 static bool nfs_readdir_page_needs_filling(struct page *page) 333 { 334 struct nfs_cache_array *array; 335 bool ret; 336 337 array = kmap_atomic(page); 338 ret = !nfs_readdir_array_is_full(array); 339 kunmap_atomic(array); 340 return ret; 341 } 342 343 static void nfs_readdir_page_set_eof(struct page *page) 344 { 345 struct nfs_cache_array *array; 346 347 array = kmap_atomic(page); 348 nfs_readdir_array_set_eof(array); 349 kunmap_atomic(array); 350 } 351 352 static void nfs_readdir_page_unlock_and_put(struct page *page) 353 { 354 unlock_page(page); 355 put_page(page); 356 } 357 358 static struct page *nfs_readdir_page_get_next(struct address_space *mapping, 359 pgoff_t index, u64 cookie) 360 { 361 struct page *page; 362 363 page = nfs_readdir_page_get_locked(mapping, index, cookie); 364 if (page) { 365 if (nfs_readdir_page_last_cookie(page) == cookie) 366 return page; 367 nfs_readdir_page_unlock_and_put(page); 368 } 369 return NULL; 370 } 371 372 static inline 373 int is_32bit_api(void) 374 { 375 #ifdef CONFIG_COMPAT 376 return in_compat_syscall(); 377 #else 378 return (BITS_PER_LONG == 32); 379 #endif 380 } 381 382 static 383 bool nfs_readdir_use_cookie(const struct file *filp) 384 { 385 if ((filp->f_mode & FMODE_32BITHASH) || 386 (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api())) 387 return false; 388 return true; 389 } 390 391 static int nfs_readdir_search_for_pos(struct nfs_cache_array *array, 392 struct nfs_readdir_descriptor *desc) 393 { 394 loff_t diff = desc->ctx->pos - desc->current_index; 395 unsigned int index; 396 397 if (diff < 0) 398 goto out_eof; 399 if (diff >= array->size) { 400 if (array->page_is_eof) 401 goto out_eof; 402 return -EAGAIN; 403 } 404 405 index = (unsigned int)diff; 406 desc->dir_cookie = array->array[index].cookie; 407 desc->cache_entry_index = index; 408 return 0; 409 out_eof: 410 desc->eof = true; 411 return -EBADCOOKIE; 412 } 413 414 static bool 415 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi) 416 { 417 if (nfsi->cache_validity & (NFS_INO_INVALID_CHANGE | 418 NFS_INO_INVALID_DATA)) 419 return false; 420 smp_rmb(); 421 return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags); 422 } 423 424 static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array, 425 u64 cookie) 426 { 427 if (!array->cookies_are_ordered) 428 return true; 429 /* Optimisation for monotonically increasing cookies */ 430 if (cookie >= array->last_cookie) 431 return false; 432 if (array->size && cookie < array->array[0].cookie) 433 return false; 434 return true; 435 } 436 437 static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, 438 struct nfs_readdir_descriptor *desc) 439 { 440 int i; 441 loff_t new_pos; 442 int status = -EAGAIN; 443 444 if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie)) 445 goto check_eof; 446 447 for (i = 0; i < array->size; i++) { 448 if (array->array[i].cookie == desc->dir_cookie) { 449 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file)); 450 451 new_pos = desc->current_index + i; 452 if (desc->attr_gencount != nfsi->attr_gencount || 453 !nfs_readdir_inode_mapping_valid(nfsi)) { 454 desc->duped = 0; 455 desc->attr_gencount = nfsi->attr_gencount; 456 } else if (new_pos < desc->prev_index) { 457 if (desc->duped > 0 458 && desc->dup_cookie == desc->dir_cookie) { 459 if (printk_ratelimit()) { 460 pr_notice("NFS: directory %pD2 contains a readdir loop." 461 "Please contact your server vendor. " 462 "The file: %s has duplicate cookie %llu\n", 463 desc->file, array->array[i].name, desc->dir_cookie); 464 } 465 status = -ELOOP; 466 goto out; 467 } 468 desc->dup_cookie = desc->dir_cookie; 469 desc->duped = -1; 470 } 471 if (nfs_readdir_use_cookie(desc->file)) 472 desc->ctx->pos = desc->dir_cookie; 473 else 474 desc->ctx->pos = new_pos; 475 desc->prev_index = new_pos; 476 desc->cache_entry_index = i; 477 return 0; 478 } 479 } 480 check_eof: 481 if (array->page_is_eof) { 482 status = -EBADCOOKIE; 483 if (desc->dir_cookie == array->last_cookie) 484 desc->eof = true; 485 } 486 out: 487 return status; 488 } 489 490 static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc) 491 { 492 struct nfs_cache_array *array; 493 int status; 494 495 array = kmap_atomic(desc->page); 496 497 if (desc->dir_cookie == 0) 498 status = nfs_readdir_search_for_pos(array, desc); 499 else 500 status = nfs_readdir_search_for_cookie(array, desc); 501 502 if (status == -EAGAIN) { 503 desc->last_cookie = array->last_cookie; 504 desc->current_index += array->size; 505 desc->page_index++; 506 } 507 kunmap_atomic(array); 508 return status; 509 } 510 511 /* Fill a page with xdr information before transferring to the cache page */ 512 static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc, 513 __be32 *verf, u64 cookie, 514 struct page **pages, size_t bufsize, 515 __be32 *verf_res) 516 { 517 struct inode *inode = file_inode(desc->file); 518 struct nfs_readdir_arg arg = { 519 .dentry = file_dentry(desc->file), 520 .cred = desc->file->f_cred, 521 .verf = verf, 522 .cookie = cookie, 523 .pages = pages, 524 .page_len = bufsize, 525 .plus = desc->plus, 526 }; 527 struct nfs_readdir_res res = { 528 .verf = verf_res, 529 }; 530 unsigned long timestamp, gencount; 531 int error; 532 533 again: 534 timestamp = jiffies; 535 gencount = nfs_inc_attr_generation_counter(); 536 desc->dir_verifier = nfs_save_change_attribute(inode); 537 error = NFS_PROTO(inode)->readdir(&arg, &res); 538 if (error < 0) { 539 /* We requested READDIRPLUS, but the server doesn't grok it */ 540 if (error == -ENOTSUPP && desc->plus) { 541 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS; 542 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 543 desc->plus = arg.plus = false; 544 goto again; 545 } 546 goto error; 547 } 548 desc->timestamp = timestamp; 549 desc->gencount = gencount; 550 error: 551 return error; 552 } 553 554 static int xdr_decode(struct nfs_readdir_descriptor *desc, 555 struct nfs_entry *entry, struct xdr_stream *xdr) 556 { 557 struct inode *inode = file_inode(desc->file); 558 int error; 559 560 error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus); 561 if (error) 562 return error; 563 entry->fattr->time_start = desc->timestamp; 564 entry->fattr->gencount = desc->gencount; 565 return 0; 566 } 567 568 /* Match file and dirent using either filehandle or fileid 569 * Note: caller is responsible for checking the fsid 570 */ 571 static 572 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry) 573 { 574 struct inode *inode; 575 struct nfs_inode *nfsi; 576 577 if (d_really_is_negative(dentry)) 578 return 0; 579 580 inode = d_inode(dentry); 581 if (is_bad_inode(inode) || NFS_STALE(inode)) 582 return 0; 583 584 nfsi = NFS_I(inode); 585 if (entry->fattr->fileid != nfsi->fileid) 586 return 0; 587 if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0) 588 return 0; 589 return 1; 590 } 591 592 static 593 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx) 594 { 595 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS)) 596 return false; 597 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags)) 598 return true; 599 if (ctx->pos == 0) 600 return true; 601 return false; 602 } 603 604 /* 605 * This function is called by the lookup and getattr code to request the 606 * use of readdirplus to accelerate any future lookups in the same 607 * directory. 608 */ 609 void nfs_advise_use_readdirplus(struct inode *dir) 610 { 611 struct nfs_inode *nfsi = NFS_I(dir); 612 613 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) && 614 !list_empty(&nfsi->open_files)) 615 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags); 616 } 617 618 /* 619 * This function is mainly for use by nfs_getattr(). 620 * 621 * If this is an 'ls -l', we want to force use of readdirplus. 622 * Do this by checking if there is an active file descriptor 623 * and calling nfs_advise_use_readdirplus, then forcing a 624 * cache flush. 625 */ 626 void nfs_force_use_readdirplus(struct inode *dir) 627 { 628 struct nfs_inode *nfsi = NFS_I(dir); 629 630 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) && 631 !list_empty(&nfsi->open_files)) { 632 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags); 633 set_bit(NFS_INO_FORCE_READDIR, &nfsi->flags); 634 } 635 } 636 637 static 638 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry, 639 unsigned long dir_verifier) 640 { 641 struct qstr filename = QSTR_INIT(entry->name, entry->len); 642 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 643 struct dentry *dentry; 644 struct dentry *alias; 645 struct inode *inode; 646 int status; 647 648 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID)) 649 return; 650 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID)) 651 return; 652 if (filename.len == 0) 653 return; 654 /* Validate that the name doesn't contain any illegal '\0' */ 655 if (strnlen(filename.name, filename.len) != filename.len) 656 return; 657 /* ...or '/' */ 658 if (strnchr(filename.name, filename.len, '/')) 659 return; 660 if (filename.name[0] == '.') { 661 if (filename.len == 1) 662 return; 663 if (filename.len == 2 && filename.name[1] == '.') 664 return; 665 } 666 filename.hash = full_name_hash(parent, filename.name, filename.len); 667 668 dentry = d_lookup(parent, &filename); 669 again: 670 if (!dentry) { 671 dentry = d_alloc_parallel(parent, &filename, &wq); 672 if (IS_ERR(dentry)) 673 return; 674 } 675 if (!d_in_lookup(dentry)) { 676 /* Is there a mountpoint here? If so, just exit */ 677 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid, 678 &entry->fattr->fsid)) 679 goto out; 680 if (nfs_same_file(dentry, entry)) { 681 if (!entry->fh->size) 682 goto out; 683 nfs_set_verifier(dentry, dir_verifier); 684 status = nfs_refresh_inode(d_inode(dentry), entry->fattr); 685 if (!status) 686 nfs_setsecurity(d_inode(dentry), entry->fattr); 687 goto out; 688 } else { 689 d_invalidate(dentry); 690 dput(dentry); 691 dentry = NULL; 692 goto again; 693 } 694 } 695 if (!entry->fh->size) { 696 d_lookup_done(dentry); 697 goto out; 698 } 699 700 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr); 701 alias = d_splice_alias(inode, dentry); 702 d_lookup_done(dentry); 703 if (alias) { 704 if (IS_ERR(alias)) 705 goto out; 706 dput(dentry); 707 dentry = alias; 708 } 709 nfs_set_verifier(dentry, dir_verifier); 710 out: 711 dput(dentry); 712 } 713 714 /* Perform conversion from xdr to cache array */ 715 static int nfs_readdir_page_filler(struct nfs_readdir_descriptor *desc, 716 struct nfs_entry *entry, 717 struct page **xdr_pages, 718 unsigned int buflen, 719 struct page **arrays, 720 size_t narrays) 721 { 722 struct address_space *mapping = desc->file->f_mapping; 723 struct xdr_stream stream; 724 struct xdr_buf buf; 725 struct page *scratch, *new, *page = *arrays; 726 int status; 727 728 scratch = alloc_page(GFP_KERNEL); 729 if (scratch == NULL) 730 return -ENOMEM; 731 732 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen); 733 xdr_set_scratch_page(&stream, scratch); 734 735 do { 736 if (entry->fattr->label) 737 entry->fattr->label->len = NFS4_MAXLABELLEN; 738 739 status = xdr_decode(desc, entry, &stream); 740 if (status != 0) 741 break; 742 743 if (desc->plus) 744 nfs_prime_dcache(file_dentry(desc->file), entry, 745 desc->dir_verifier); 746 747 status = nfs_readdir_add_to_array(entry, page); 748 if (status != -ENOSPC) 749 continue; 750 751 if (page->mapping != mapping) { 752 if (!--narrays) 753 break; 754 new = nfs_readdir_page_array_alloc(entry->prev_cookie, 755 GFP_KERNEL); 756 if (!new) 757 break; 758 arrays++; 759 *arrays = page = new; 760 } else { 761 new = nfs_readdir_page_get_next(mapping, 762 page->index + 1, 763 entry->prev_cookie); 764 if (!new) 765 break; 766 if (page != *arrays) 767 nfs_readdir_page_unlock_and_put(page); 768 page = new; 769 } 770 status = nfs_readdir_add_to_array(entry, page); 771 } while (!status && !entry->eof); 772 773 switch (status) { 774 case -EBADCOOKIE: 775 if (entry->eof) { 776 nfs_readdir_page_set_eof(page); 777 status = 0; 778 } 779 break; 780 case -ENOSPC: 781 case -EAGAIN: 782 status = 0; 783 break; 784 } 785 786 if (page != *arrays) 787 nfs_readdir_page_unlock_and_put(page); 788 789 put_page(scratch); 790 return status; 791 } 792 793 static void nfs_readdir_free_pages(struct page **pages, size_t npages) 794 { 795 while (npages--) 796 put_page(pages[npages]); 797 kfree(pages); 798 } 799 800 /* 801 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call 802 * to nfs_readdir_free_pages() 803 */ 804 static struct page **nfs_readdir_alloc_pages(size_t npages) 805 { 806 struct page **pages; 807 size_t i; 808 809 pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL); 810 if (!pages) 811 return NULL; 812 for (i = 0; i < npages; i++) { 813 struct page *page = alloc_page(GFP_KERNEL); 814 if (page == NULL) 815 goto out_freepages; 816 pages[i] = page; 817 } 818 return pages; 819 820 out_freepages: 821 nfs_readdir_free_pages(pages, i); 822 return NULL; 823 } 824 825 static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc, 826 __be32 *verf_arg, __be32 *verf_res, 827 struct page **arrays, size_t narrays) 828 { 829 struct page **pages; 830 struct page *page = *arrays; 831 struct nfs_entry *entry; 832 size_t array_size; 833 struct inode *inode = file_inode(desc->file); 834 size_t dtsize = NFS_SERVER(inode)->dtsize; 835 int status = -ENOMEM; 836 837 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 838 if (!entry) 839 return -ENOMEM; 840 entry->cookie = nfs_readdir_page_last_cookie(page); 841 entry->fh = nfs_alloc_fhandle(); 842 entry->fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode)); 843 entry->server = NFS_SERVER(inode); 844 if (entry->fh == NULL || entry->fattr == NULL) 845 goto out; 846 847 array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT; 848 pages = nfs_readdir_alloc_pages(array_size); 849 if (!pages) 850 goto out; 851 852 do { 853 unsigned int pglen; 854 status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie, 855 pages, dtsize, 856 verf_res); 857 if (status < 0) 858 break; 859 860 pglen = status; 861 if (pglen == 0) { 862 nfs_readdir_page_set_eof(page); 863 break; 864 } 865 866 verf_arg = verf_res; 867 868 status = nfs_readdir_page_filler(desc, entry, pages, pglen, 869 arrays, narrays); 870 } while (!status && nfs_readdir_page_needs_filling(page)); 871 872 nfs_readdir_free_pages(pages, array_size); 873 out: 874 nfs_free_fattr(entry->fattr); 875 nfs_free_fhandle(entry->fh); 876 kfree(entry); 877 return status; 878 } 879 880 static void nfs_readdir_page_put(struct nfs_readdir_descriptor *desc) 881 { 882 put_page(desc->page); 883 desc->page = NULL; 884 } 885 886 static void 887 nfs_readdir_page_unlock_and_put_cached(struct nfs_readdir_descriptor *desc) 888 { 889 unlock_page(desc->page); 890 nfs_readdir_page_put(desc); 891 } 892 893 static struct page * 894 nfs_readdir_page_get_cached(struct nfs_readdir_descriptor *desc) 895 { 896 return nfs_readdir_page_get_locked(desc->file->f_mapping, 897 desc->page_index, 898 desc->last_cookie); 899 } 900 901 /* 902 * Returns 0 if desc->dir_cookie was found on page desc->page_index 903 * and locks the page to prevent removal from the page cache. 904 */ 905 static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc) 906 { 907 struct inode *inode = file_inode(desc->file); 908 struct nfs_inode *nfsi = NFS_I(inode); 909 __be32 verf[NFS_DIR_VERIFIER_SIZE]; 910 int res; 911 912 desc->page = nfs_readdir_page_get_cached(desc); 913 if (!desc->page) 914 return -ENOMEM; 915 if (nfs_readdir_page_needs_filling(desc->page)) { 916 res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf, 917 &desc->page, 1); 918 if (res < 0) { 919 nfs_readdir_page_unlock_and_put_cached(desc); 920 if (res == -EBADCOOKIE || res == -ENOTSYNC) { 921 invalidate_inode_pages2(desc->file->f_mapping); 922 desc->page_index = 0; 923 return -EAGAIN; 924 } 925 return res; 926 } 927 /* 928 * Set the cookie verifier if the page cache was empty 929 */ 930 if (desc->page_index == 0) 931 memcpy(nfsi->cookieverf, verf, 932 sizeof(nfsi->cookieverf)); 933 } 934 res = nfs_readdir_search_array(desc); 935 if (res == 0) 936 return 0; 937 nfs_readdir_page_unlock_and_put_cached(desc); 938 return res; 939 } 940 941 static bool nfs_readdir_dont_search_cache(struct nfs_readdir_descriptor *desc) 942 { 943 struct address_space *mapping = desc->file->f_mapping; 944 struct inode *dir = file_inode(desc->file); 945 unsigned int dtsize = NFS_SERVER(dir)->dtsize; 946 loff_t size = i_size_read(dir); 947 948 /* 949 * Default to uncached readdir if the page cache is empty, and 950 * we're looking for a non-zero cookie in a large directory. 951 */ 952 return desc->dir_cookie != 0 && mapping->nrpages == 0 && size > dtsize; 953 } 954 955 /* Search for desc->dir_cookie from the beginning of the page cache */ 956 static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc) 957 { 958 int res; 959 960 if (nfs_readdir_dont_search_cache(desc)) 961 return -EBADCOOKIE; 962 963 do { 964 if (desc->page_index == 0) { 965 desc->current_index = 0; 966 desc->prev_index = 0; 967 desc->last_cookie = 0; 968 } 969 res = find_and_lock_cache_page(desc); 970 } while (res == -EAGAIN); 971 return res; 972 } 973 974 /* 975 * Once we've found the start of the dirent within a page: fill 'er up... 976 */ 977 static void nfs_do_filldir(struct nfs_readdir_descriptor *desc, 978 const __be32 *verf) 979 { 980 struct file *file = desc->file; 981 struct nfs_cache_array *array; 982 unsigned int i = 0; 983 984 array = kmap(desc->page); 985 for (i = desc->cache_entry_index; i < array->size; i++) { 986 struct nfs_cache_array_entry *ent; 987 988 ent = &array->array[i]; 989 if (!dir_emit(desc->ctx, ent->name, ent->name_len, 990 nfs_compat_user_ino64(ent->ino), ent->d_type)) { 991 desc->eof = true; 992 break; 993 } 994 memcpy(desc->verf, verf, sizeof(desc->verf)); 995 if (i < (array->size-1)) 996 desc->dir_cookie = array->array[i+1].cookie; 997 else 998 desc->dir_cookie = array->last_cookie; 999 if (nfs_readdir_use_cookie(file)) 1000 desc->ctx->pos = desc->dir_cookie; 1001 else 1002 desc->ctx->pos++; 1003 if (desc->duped != 0) 1004 desc->duped = 1; 1005 } 1006 if (array->page_is_eof) 1007 desc->eof = true; 1008 1009 kunmap(desc->page); 1010 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n", 1011 (unsigned long long)desc->dir_cookie); 1012 } 1013 1014 /* 1015 * If we cannot find a cookie in our cache, we suspect that this is 1016 * because it points to a deleted file, so we ask the server to return 1017 * whatever it thinks is the next entry. We then feed this to filldir. 1018 * If all goes well, we should then be able to find our way round the 1019 * cache on the next call to readdir_search_pagecache(); 1020 * 1021 * NOTE: we cannot add the anonymous page to the pagecache because 1022 * the data it contains might not be page aligned. Besides, 1023 * we should already have a complete representation of the 1024 * directory in the page cache by the time we get here. 1025 */ 1026 static int uncached_readdir(struct nfs_readdir_descriptor *desc) 1027 { 1028 struct page **arrays; 1029 size_t i, sz = 512; 1030 __be32 verf[NFS_DIR_VERIFIER_SIZE]; 1031 int status = -ENOMEM; 1032 1033 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n", 1034 (unsigned long long)desc->dir_cookie); 1035 1036 arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL); 1037 if (!arrays) 1038 goto out; 1039 arrays[0] = nfs_readdir_page_array_alloc(desc->dir_cookie, GFP_KERNEL); 1040 if (!arrays[0]) 1041 goto out; 1042 1043 desc->page_index = 0; 1044 desc->last_cookie = desc->dir_cookie; 1045 desc->duped = 0; 1046 1047 status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz); 1048 1049 for (i = 0; !desc->eof && i < sz && arrays[i]; i++) { 1050 desc->page = arrays[i]; 1051 nfs_do_filldir(desc, verf); 1052 } 1053 desc->page = NULL; 1054 1055 1056 for (i = 0; i < sz && arrays[i]; i++) 1057 nfs_readdir_page_array_free(arrays[i]); 1058 out: 1059 kfree(arrays); 1060 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status); 1061 return status; 1062 } 1063 1064 /* The file offset position represents the dirent entry number. A 1065 last cookie cache takes care of the common case of reading the 1066 whole directory. 1067 */ 1068 static int nfs_readdir(struct file *file, struct dir_context *ctx) 1069 { 1070 struct dentry *dentry = file_dentry(file); 1071 struct inode *inode = d_inode(dentry); 1072 struct nfs_inode *nfsi = NFS_I(inode); 1073 struct nfs_open_dir_context *dir_ctx = file->private_data; 1074 struct nfs_readdir_descriptor *desc; 1075 pgoff_t page_index; 1076 int res; 1077 1078 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n", 1079 file, (long long)ctx->pos); 1080 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS); 1081 1082 /* 1083 * ctx->pos points to the dirent entry number. 1084 * *desc->dir_cookie has the cookie for the next entry. We have 1085 * to either find the entry with the appropriate number or 1086 * revalidate the cookie. 1087 */ 1088 if (ctx->pos == 0 || nfs_attribute_cache_expired(inode)) { 1089 res = nfs_revalidate_mapping(inode, file->f_mapping); 1090 if (res < 0) 1091 goto out; 1092 } 1093 1094 res = -ENOMEM; 1095 desc = kzalloc(sizeof(*desc), GFP_KERNEL); 1096 if (!desc) 1097 goto out; 1098 desc->file = file; 1099 desc->ctx = ctx; 1100 desc->plus = nfs_use_readdirplus(inode, ctx); 1101 1102 spin_lock(&file->f_lock); 1103 desc->dir_cookie = dir_ctx->dir_cookie; 1104 desc->dup_cookie = dir_ctx->dup_cookie; 1105 desc->duped = dir_ctx->duped; 1106 page_index = dir_ctx->page_index; 1107 desc->attr_gencount = dir_ctx->attr_gencount; 1108 memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf)); 1109 spin_unlock(&file->f_lock); 1110 1111 if (test_and_clear_bit(NFS_INO_FORCE_READDIR, &nfsi->flags) && 1112 list_is_singular(&nfsi->open_files)) 1113 invalidate_mapping_pages(inode->i_mapping, page_index + 1, -1); 1114 1115 do { 1116 res = readdir_search_pagecache(desc); 1117 1118 if (res == -EBADCOOKIE) { 1119 res = 0; 1120 /* This means either end of directory */ 1121 if (desc->dir_cookie && !desc->eof) { 1122 /* Or that the server has 'lost' a cookie */ 1123 res = uncached_readdir(desc); 1124 if (res == 0) 1125 continue; 1126 if (res == -EBADCOOKIE || res == -ENOTSYNC) 1127 res = 0; 1128 } 1129 break; 1130 } 1131 if (res == -ETOOSMALL && desc->plus) { 1132 clear_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags); 1133 nfs_zap_caches(inode); 1134 desc->page_index = 0; 1135 desc->plus = false; 1136 desc->eof = false; 1137 continue; 1138 } 1139 if (res < 0) 1140 break; 1141 1142 nfs_do_filldir(desc, nfsi->cookieverf); 1143 nfs_readdir_page_unlock_and_put_cached(desc); 1144 } while (!desc->eof); 1145 1146 spin_lock(&file->f_lock); 1147 dir_ctx->dir_cookie = desc->dir_cookie; 1148 dir_ctx->dup_cookie = desc->dup_cookie; 1149 dir_ctx->duped = desc->duped; 1150 dir_ctx->attr_gencount = desc->attr_gencount; 1151 dir_ctx->page_index = desc->page_index; 1152 memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf)); 1153 spin_unlock(&file->f_lock); 1154 1155 kfree(desc); 1156 1157 out: 1158 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res); 1159 return res; 1160 } 1161 1162 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence) 1163 { 1164 struct nfs_open_dir_context *dir_ctx = filp->private_data; 1165 1166 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n", 1167 filp, offset, whence); 1168 1169 switch (whence) { 1170 default: 1171 return -EINVAL; 1172 case SEEK_SET: 1173 if (offset < 0) 1174 return -EINVAL; 1175 spin_lock(&filp->f_lock); 1176 break; 1177 case SEEK_CUR: 1178 if (offset == 0) 1179 return filp->f_pos; 1180 spin_lock(&filp->f_lock); 1181 offset += filp->f_pos; 1182 if (offset < 0) { 1183 spin_unlock(&filp->f_lock); 1184 return -EINVAL; 1185 } 1186 } 1187 if (offset != filp->f_pos) { 1188 filp->f_pos = offset; 1189 if (nfs_readdir_use_cookie(filp)) 1190 dir_ctx->dir_cookie = offset; 1191 else 1192 dir_ctx->dir_cookie = 0; 1193 if (offset == 0) 1194 memset(dir_ctx->verf, 0, sizeof(dir_ctx->verf)); 1195 dir_ctx->duped = 0; 1196 } 1197 spin_unlock(&filp->f_lock); 1198 return offset; 1199 } 1200 1201 /* 1202 * All directory operations under NFS are synchronous, so fsync() 1203 * is a dummy operation. 1204 */ 1205 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end, 1206 int datasync) 1207 { 1208 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync); 1209 1210 nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC); 1211 return 0; 1212 } 1213 1214 /** 1215 * nfs_force_lookup_revalidate - Mark the directory as having changed 1216 * @dir: pointer to directory inode 1217 * 1218 * This forces the revalidation code in nfs_lookup_revalidate() to do a 1219 * full lookup on all child dentries of 'dir' whenever a change occurs 1220 * on the server that might have invalidated our dcache. 1221 * 1222 * Note that we reserve bit '0' as a tag to let us know when a dentry 1223 * was revalidated while holding a delegation on its inode. 1224 * 1225 * The caller should be holding dir->i_lock 1226 */ 1227 void nfs_force_lookup_revalidate(struct inode *dir) 1228 { 1229 NFS_I(dir)->cache_change_attribute += 2; 1230 } 1231 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate); 1232 1233 /** 1234 * nfs_verify_change_attribute - Detects NFS remote directory changes 1235 * @dir: pointer to parent directory inode 1236 * @verf: previously saved change attribute 1237 * 1238 * Return "false" if the verifiers doesn't match the change attribute. 1239 * This would usually indicate that the directory contents have changed on 1240 * the server, and that any dentries need revalidating. 1241 */ 1242 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf) 1243 { 1244 return (verf & ~1UL) == nfs_save_change_attribute(dir); 1245 } 1246 1247 static void nfs_set_verifier_delegated(unsigned long *verf) 1248 { 1249 *verf |= 1UL; 1250 } 1251 1252 #if IS_ENABLED(CONFIG_NFS_V4) 1253 static void nfs_unset_verifier_delegated(unsigned long *verf) 1254 { 1255 *verf &= ~1UL; 1256 } 1257 #endif /* IS_ENABLED(CONFIG_NFS_V4) */ 1258 1259 static bool nfs_test_verifier_delegated(unsigned long verf) 1260 { 1261 return verf & 1; 1262 } 1263 1264 static bool nfs_verifier_is_delegated(struct dentry *dentry) 1265 { 1266 return nfs_test_verifier_delegated(dentry->d_time); 1267 } 1268 1269 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf) 1270 { 1271 struct inode *inode = d_inode(dentry); 1272 struct inode *dir = d_inode(dentry->d_parent); 1273 1274 if (!nfs_verify_change_attribute(dir, verf)) 1275 return; 1276 if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) 1277 nfs_set_verifier_delegated(&verf); 1278 dentry->d_time = verf; 1279 } 1280 1281 /** 1282 * nfs_set_verifier - save a parent directory verifier in the dentry 1283 * @dentry: pointer to dentry 1284 * @verf: verifier to save 1285 * 1286 * Saves the parent directory verifier in @dentry. If the inode has 1287 * a delegation, we also tag the dentry as having been revalidated 1288 * while holding a delegation so that we know we don't have to 1289 * look it up again after a directory change. 1290 */ 1291 void nfs_set_verifier(struct dentry *dentry, unsigned long verf) 1292 { 1293 1294 spin_lock(&dentry->d_lock); 1295 nfs_set_verifier_locked(dentry, verf); 1296 spin_unlock(&dentry->d_lock); 1297 } 1298 EXPORT_SYMBOL_GPL(nfs_set_verifier); 1299 1300 #if IS_ENABLED(CONFIG_NFS_V4) 1301 /** 1302 * nfs_clear_verifier_delegated - clear the dir verifier delegation tag 1303 * @inode: pointer to inode 1304 * 1305 * Iterates through the dentries in the inode alias list and clears 1306 * the tag used to indicate that the dentry has been revalidated 1307 * while holding a delegation. 1308 * This function is intended for use when the delegation is being 1309 * returned or revoked. 1310 */ 1311 void nfs_clear_verifier_delegated(struct inode *inode) 1312 { 1313 struct dentry *alias; 1314 1315 if (!inode) 1316 return; 1317 spin_lock(&inode->i_lock); 1318 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 1319 spin_lock(&alias->d_lock); 1320 nfs_unset_verifier_delegated(&alias->d_time); 1321 spin_unlock(&alias->d_lock); 1322 } 1323 spin_unlock(&inode->i_lock); 1324 } 1325 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated); 1326 #endif /* IS_ENABLED(CONFIG_NFS_V4) */ 1327 1328 static int nfs_dentry_verify_change(struct inode *dir, struct dentry *dentry) 1329 { 1330 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE) && 1331 d_really_is_negative(dentry)) 1332 return dentry->d_time == inode_peek_iversion_raw(dir); 1333 return nfs_verify_change_attribute(dir, dentry->d_time); 1334 } 1335 1336 /* 1337 * A check for whether or not the parent directory has changed. 1338 * In the case it has, we assume that the dentries are untrustworthy 1339 * and may need to be looked up again. 1340 * If rcu_walk prevents us from performing a full check, return 0. 1341 */ 1342 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry, 1343 int rcu_walk) 1344 { 1345 if (IS_ROOT(dentry)) 1346 return 1; 1347 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE) 1348 return 0; 1349 if (!nfs_dentry_verify_change(dir, dentry)) 1350 return 0; 1351 /* Revalidate nfsi->cache_change_attribute before we declare a match */ 1352 if (nfs_mapping_need_revalidate_inode(dir)) { 1353 if (rcu_walk) 1354 return 0; 1355 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0) 1356 return 0; 1357 } 1358 if (!nfs_dentry_verify_change(dir, dentry)) 1359 return 0; 1360 return 1; 1361 } 1362 1363 /* 1364 * Use intent information to check whether or not we're going to do 1365 * an O_EXCL create using this path component. 1366 */ 1367 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags) 1368 { 1369 if (NFS_PROTO(dir)->version == 2) 1370 return 0; 1371 return flags & LOOKUP_EXCL; 1372 } 1373 1374 /* 1375 * Inode and filehandle revalidation for lookups. 1376 * 1377 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL, 1378 * or if the intent information indicates that we're about to open this 1379 * particular file and the "nocto" mount flag is not set. 1380 * 1381 */ 1382 static 1383 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags) 1384 { 1385 struct nfs_server *server = NFS_SERVER(inode); 1386 int ret; 1387 1388 if (IS_AUTOMOUNT(inode)) 1389 return 0; 1390 1391 if (flags & LOOKUP_OPEN) { 1392 switch (inode->i_mode & S_IFMT) { 1393 case S_IFREG: 1394 /* A NFSv4 OPEN will revalidate later */ 1395 if (server->caps & NFS_CAP_ATOMIC_OPEN) 1396 goto out; 1397 fallthrough; 1398 case S_IFDIR: 1399 if (server->flags & NFS_MOUNT_NOCTO) 1400 break; 1401 /* NFS close-to-open cache consistency validation */ 1402 goto out_force; 1403 } 1404 } 1405 1406 /* VFS wants an on-the-wire revalidation */ 1407 if (flags & LOOKUP_REVAL) 1408 goto out_force; 1409 out: 1410 return (inode->i_nlink == 0) ? -ESTALE : 0; 1411 out_force: 1412 if (flags & LOOKUP_RCU) 1413 return -ECHILD; 1414 ret = __nfs_revalidate_inode(server, inode); 1415 if (ret != 0) 1416 return ret; 1417 goto out; 1418 } 1419 1420 static void nfs_mark_dir_for_revalidate(struct inode *inode) 1421 { 1422 spin_lock(&inode->i_lock); 1423 nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE); 1424 spin_unlock(&inode->i_lock); 1425 } 1426 1427 /* 1428 * We judge how long we want to trust negative 1429 * dentries by looking at the parent inode mtime. 1430 * 1431 * If parent mtime has changed, we revalidate, else we wait for a 1432 * period corresponding to the parent's attribute cache timeout value. 1433 * 1434 * If LOOKUP_RCU prevents us from performing a full check, return 1 1435 * suggesting a reval is needed. 1436 * 1437 * Note that when creating a new file, or looking up a rename target, 1438 * then it shouldn't be necessary to revalidate a negative dentry. 1439 */ 1440 static inline 1441 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry, 1442 unsigned int flags) 1443 { 1444 if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET)) 1445 return 0; 1446 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG) 1447 return 1; 1448 /* Case insensitive server? Revalidate negative dentries */ 1449 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE)) 1450 return 1; 1451 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU); 1452 } 1453 1454 static int 1455 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry, 1456 struct inode *inode, int error) 1457 { 1458 switch (error) { 1459 case 1: 1460 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n", 1461 __func__, dentry); 1462 return 1; 1463 case 0: 1464 /* 1465 * We can't d_drop the root of a disconnected tree: 1466 * its d_hash is on the s_anon list and d_drop() would hide 1467 * it from shrink_dcache_for_unmount(), leading to busy 1468 * inodes on unmount and further oopses. 1469 */ 1470 if (inode && IS_ROOT(dentry)) 1471 return 1; 1472 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n", 1473 __func__, dentry); 1474 return 0; 1475 } 1476 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n", 1477 __func__, dentry, error); 1478 return error; 1479 } 1480 1481 static int 1482 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry, 1483 unsigned int flags) 1484 { 1485 int ret = 1; 1486 if (nfs_neg_need_reval(dir, dentry, flags)) { 1487 if (flags & LOOKUP_RCU) 1488 return -ECHILD; 1489 ret = 0; 1490 } 1491 return nfs_lookup_revalidate_done(dir, dentry, NULL, ret); 1492 } 1493 1494 static int 1495 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry, 1496 struct inode *inode) 1497 { 1498 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1499 return nfs_lookup_revalidate_done(dir, dentry, inode, 1); 1500 } 1501 1502 static int 1503 nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry, 1504 struct inode *inode) 1505 { 1506 struct nfs_fh *fhandle; 1507 struct nfs_fattr *fattr; 1508 unsigned long dir_verifier; 1509 int ret; 1510 1511 ret = -ENOMEM; 1512 fhandle = nfs_alloc_fhandle(); 1513 fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode)); 1514 if (fhandle == NULL || fattr == NULL) 1515 goto out; 1516 1517 dir_verifier = nfs_save_change_attribute(dir); 1518 ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr); 1519 if (ret < 0) { 1520 switch (ret) { 1521 case -ESTALE: 1522 case -ENOENT: 1523 ret = 0; 1524 break; 1525 case -ETIMEDOUT: 1526 if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL) 1527 ret = 1; 1528 } 1529 goto out; 1530 } 1531 ret = 0; 1532 if (nfs_compare_fh(NFS_FH(inode), fhandle)) 1533 goto out; 1534 if (nfs_refresh_inode(inode, fattr) < 0) 1535 goto out; 1536 1537 nfs_setsecurity(inode, fattr); 1538 nfs_set_verifier(dentry, dir_verifier); 1539 1540 /* set a readdirplus hint that we had a cache miss */ 1541 nfs_force_use_readdirplus(dir); 1542 ret = 1; 1543 out: 1544 nfs_free_fattr(fattr); 1545 nfs_free_fhandle(fhandle); 1546 1547 /* 1548 * If the lookup failed despite the dentry change attribute being 1549 * a match, then we should revalidate the directory cache. 1550 */ 1551 if (!ret && nfs_dentry_verify_change(dir, dentry)) 1552 nfs_mark_dir_for_revalidate(dir); 1553 return nfs_lookup_revalidate_done(dir, dentry, inode, ret); 1554 } 1555 1556 /* 1557 * This is called every time the dcache has a lookup hit, 1558 * and we should check whether we can really trust that 1559 * lookup. 1560 * 1561 * NOTE! The hit can be a negative hit too, don't assume 1562 * we have an inode! 1563 * 1564 * If the parent directory is seen to have changed, we throw out the 1565 * cached dentry and do a new lookup. 1566 */ 1567 static int 1568 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry, 1569 unsigned int flags) 1570 { 1571 struct inode *inode; 1572 int error; 1573 1574 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE); 1575 inode = d_inode(dentry); 1576 1577 if (!inode) 1578 return nfs_lookup_revalidate_negative(dir, dentry, flags); 1579 1580 if (is_bad_inode(inode)) { 1581 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1582 __func__, dentry); 1583 goto out_bad; 1584 } 1585 1586 if (nfs_verifier_is_delegated(dentry)) 1587 return nfs_lookup_revalidate_delegated(dir, dentry, inode); 1588 1589 /* Force a full look up iff the parent directory has changed */ 1590 if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) && 1591 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) { 1592 error = nfs_lookup_verify_inode(inode, flags); 1593 if (error) { 1594 if (error == -ESTALE) 1595 nfs_mark_dir_for_revalidate(dir); 1596 goto out_bad; 1597 } 1598 nfs_advise_use_readdirplus(dir); 1599 goto out_valid; 1600 } 1601 1602 if (flags & LOOKUP_RCU) 1603 return -ECHILD; 1604 1605 if (NFS_STALE(inode)) 1606 goto out_bad; 1607 1608 trace_nfs_lookup_revalidate_enter(dir, dentry, flags); 1609 error = nfs_lookup_revalidate_dentry(dir, dentry, inode); 1610 trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error); 1611 return error; 1612 out_valid: 1613 return nfs_lookup_revalidate_done(dir, dentry, inode, 1); 1614 out_bad: 1615 if (flags & LOOKUP_RCU) 1616 return -ECHILD; 1617 return nfs_lookup_revalidate_done(dir, dentry, inode, 0); 1618 } 1619 1620 static int 1621 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags, 1622 int (*reval)(struct inode *, struct dentry *, unsigned int)) 1623 { 1624 struct dentry *parent; 1625 struct inode *dir; 1626 int ret; 1627 1628 if (flags & LOOKUP_RCU) { 1629 parent = READ_ONCE(dentry->d_parent); 1630 dir = d_inode_rcu(parent); 1631 if (!dir) 1632 return -ECHILD; 1633 ret = reval(dir, dentry, flags); 1634 if (parent != READ_ONCE(dentry->d_parent)) 1635 return -ECHILD; 1636 } else { 1637 parent = dget_parent(dentry); 1638 ret = reval(d_inode(parent), dentry, flags); 1639 dput(parent); 1640 } 1641 return ret; 1642 } 1643 1644 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1645 { 1646 return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate); 1647 } 1648 1649 /* 1650 * A weaker form of d_revalidate for revalidating just the d_inode(dentry) 1651 * when we don't really care about the dentry name. This is called when a 1652 * pathwalk ends on a dentry that was not found via a normal lookup in the 1653 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals). 1654 * 1655 * In this situation, we just want to verify that the inode itself is OK 1656 * since the dentry might have changed on the server. 1657 */ 1658 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags) 1659 { 1660 struct inode *inode = d_inode(dentry); 1661 int error = 0; 1662 1663 /* 1664 * I believe we can only get a negative dentry here in the case of a 1665 * procfs-style symlink. Just assume it's correct for now, but we may 1666 * eventually need to do something more here. 1667 */ 1668 if (!inode) { 1669 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n", 1670 __func__, dentry); 1671 return 1; 1672 } 1673 1674 if (is_bad_inode(inode)) { 1675 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1676 __func__, dentry); 1677 return 0; 1678 } 1679 1680 error = nfs_lookup_verify_inode(inode, flags); 1681 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n", 1682 __func__, inode->i_ino, error ? "invalid" : "valid"); 1683 return !error; 1684 } 1685 1686 /* 1687 * This is called from dput() when d_count is going to 0. 1688 */ 1689 static int nfs_dentry_delete(const struct dentry *dentry) 1690 { 1691 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n", 1692 dentry, dentry->d_flags); 1693 1694 /* Unhash any dentry with a stale inode */ 1695 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry))) 1696 return 1; 1697 1698 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1699 /* Unhash it, so that ->d_iput() would be called */ 1700 return 1; 1701 } 1702 if (!(dentry->d_sb->s_flags & SB_ACTIVE)) { 1703 /* Unhash it, so that ancestors of killed async unlink 1704 * files will be cleaned up during umount */ 1705 return 1; 1706 } 1707 return 0; 1708 1709 } 1710 1711 /* Ensure that we revalidate inode->i_nlink */ 1712 static void nfs_drop_nlink(struct inode *inode) 1713 { 1714 spin_lock(&inode->i_lock); 1715 /* drop the inode if we're reasonably sure this is the last link */ 1716 if (inode->i_nlink > 0) 1717 drop_nlink(inode); 1718 NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter(); 1719 nfs_set_cache_invalid( 1720 inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME | 1721 NFS_INO_INVALID_NLINK); 1722 spin_unlock(&inode->i_lock); 1723 } 1724 1725 /* 1726 * Called when the dentry loses inode. 1727 * We use it to clean up silly-renamed files. 1728 */ 1729 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode) 1730 { 1731 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1732 nfs_complete_unlink(dentry, inode); 1733 nfs_drop_nlink(inode); 1734 } 1735 iput(inode); 1736 } 1737 1738 static void nfs_d_release(struct dentry *dentry) 1739 { 1740 /* free cached devname value, if it survived that far */ 1741 if (unlikely(dentry->d_fsdata)) { 1742 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) 1743 WARN_ON(1); 1744 else 1745 kfree(dentry->d_fsdata); 1746 } 1747 } 1748 1749 const struct dentry_operations nfs_dentry_operations = { 1750 .d_revalidate = nfs_lookup_revalidate, 1751 .d_weak_revalidate = nfs_weak_revalidate, 1752 .d_delete = nfs_dentry_delete, 1753 .d_iput = nfs_dentry_iput, 1754 .d_automount = nfs_d_automount, 1755 .d_release = nfs_d_release, 1756 }; 1757 EXPORT_SYMBOL_GPL(nfs_dentry_operations); 1758 1759 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 1760 { 1761 struct dentry *res; 1762 struct inode *inode = NULL; 1763 struct nfs_fh *fhandle = NULL; 1764 struct nfs_fattr *fattr = NULL; 1765 unsigned long dir_verifier; 1766 int error; 1767 1768 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry); 1769 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP); 1770 1771 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen)) 1772 return ERR_PTR(-ENAMETOOLONG); 1773 1774 /* 1775 * If we're doing an exclusive create, optimize away the lookup 1776 * but don't hash the dentry. 1777 */ 1778 if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET) 1779 return NULL; 1780 1781 res = ERR_PTR(-ENOMEM); 1782 fhandle = nfs_alloc_fhandle(); 1783 fattr = nfs_alloc_fattr_with_label(NFS_SERVER(dir)); 1784 if (fhandle == NULL || fattr == NULL) 1785 goto out; 1786 1787 dir_verifier = nfs_save_change_attribute(dir); 1788 trace_nfs_lookup_enter(dir, dentry, flags); 1789 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr); 1790 if (error == -ENOENT) { 1791 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE)) 1792 dir_verifier = inode_peek_iversion_raw(dir); 1793 goto no_entry; 1794 } 1795 if (error < 0) { 1796 res = ERR_PTR(error); 1797 goto out; 1798 } 1799 inode = nfs_fhget(dentry->d_sb, fhandle, fattr); 1800 res = ERR_CAST(inode); 1801 if (IS_ERR(res)) 1802 goto out; 1803 1804 /* Notify readdir to use READDIRPLUS */ 1805 nfs_force_use_readdirplus(dir); 1806 1807 no_entry: 1808 res = d_splice_alias(inode, dentry); 1809 if (res != NULL) { 1810 if (IS_ERR(res)) 1811 goto out; 1812 dentry = res; 1813 } 1814 nfs_set_verifier(dentry, dir_verifier); 1815 out: 1816 trace_nfs_lookup_exit(dir, dentry, flags, PTR_ERR_OR_ZERO(res)); 1817 nfs_free_fattr(fattr); 1818 nfs_free_fhandle(fhandle); 1819 return res; 1820 } 1821 EXPORT_SYMBOL_GPL(nfs_lookup); 1822 1823 void nfs_d_prune_case_insensitive_aliases(struct inode *inode) 1824 { 1825 /* Case insensitive server? Revalidate dentries */ 1826 if (inode && nfs_server_capable(inode, NFS_CAP_CASE_INSENSITIVE)) 1827 d_prune_aliases(inode); 1828 } 1829 EXPORT_SYMBOL_GPL(nfs_d_prune_case_insensitive_aliases); 1830 1831 #if IS_ENABLED(CONFIG_NFS_V4) 1832 static int nfs4_lookup_revalidate(struct dentry *, unsigned int); 1833 1834 const struct dentry_operations nfs4_dentry_operations = { 1835 .d_revalidate = nfs4_lookup_revalidate, 1836 .d_weak_revalidate = nfs_weak_revalidate, 1837 .d_delete = nfs_dentry_delete, 1838 .d_iput = nfs_dentry_iput, 1839 .d_automount = nfs_d_automount, 1840 .d_release = nfs_d_release, 1841 }; 1842 EXPORT_SYMBOL_GPL(nfs4_dentry_operations); 1843 1844 static fmode_t flags_to_mode(int flags) 1845 { 1846 fmode_t res = (__force fmode_t)flags & FMODE_EXEC; 1847 if ((flags & O_ACCMODE) != O_WRONLY) 1848 res |= FMODE_READ; 1849 if ((flags & O_ACCMODE) != O_RDONLY) 1850 res |= FMODE_WRITE; 1851 return res; 1852 } 1853 1854 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp) 1855 { 1856 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp); 1857 } 1858 1859 static int do_open(struct inode *inode, struct file *filp) 1860 { 1861 nfs_fscache_open_file(inode, filp); 1862 return 0; 1863 } 1864 1865 static int nfs_finish_open(struct nfs_open_context *ctx, 1866 struct dentry *dentry, 1867 struct file *file, unsigned open_flags) 1868 { 1869 int err; 1870 1871 err = finish_open(file, dentry, do_open); 1872 if (err) 1873 goto out; 1874 if (S_ISREG(file->f_path.dentry->d_inode->i_mode)) 1875 nfs_file_set_open_context(file, ctx); 1876 else 1877 err = -EOPENSTALE; 1878 out: 1879 return err; 1880 } 1881 1882 int nfs_atomic_open(struct inode *dir, struct dentry *dentry, 1883 struct file *file, unsigned open_flags, 1884 umode_t mode) 1885 { 1886 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1887 struct nfs_open_context *ctx; 1888 struct dentry *res; 1889 struct iattr attr = { .ia_valid = ATTR_OPEN }; 1890 struct inode *inode; 1891 unsigned int lookup_flags = 0; 1892 unsigned long dir_verifier; 1893 bool switched = false; 1894 int created = 0; 1895 int err; 1896 1897 /* Expect a negative dentry */ 1898 BUG_ON(d_inode(dentry)); 1899 1900 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n", 1901 dir->i_sb->s_id, dir->i_ino, dentry); 1902 1903 err = nfs_check_flags(open_flags); 1904 if (err) 1905 return err; 1906 1907 /* NFS only supports OPEN on regular files */ 1908 if ((open_flags & O_DIRECTORY)) { 1909 if (!d_in_lookup(dentry)) { 1910 /* 1911 * Hashed negative dentry with O_DIRECTORY: dentry was 1912 * revalidated and is fine, no need to perform lookup 1913 * again 1914 */ 1915 return -ENOENT; 1916 } 1917 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY; 1918 goto no_open; 1919 } 1920 1921 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 1922 return -ENAMETOOLONG; 1923 1924 if (open_flags & O_CREAT) { 1925 struct nfs_server *server = NFS_SERVER(dir); 1926 1927 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK)) 1928 mode &= ~current_umask(); 1929 1930 attr.ia_valid |= ATTR_MODE; 1931 attr.ia_mode = mode; 1932 } 1933 if (open_flags & O_TRUNC) { 1934 attr.ia_valid |= ATTR_SIZE; 1935 attr.ia_size = 0; 1936 } 1937 1938 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) { 1939 d_drop(dentry); 1940 switched = true; 1941 dentry = d_alloc_parallel(dentry->d_parent, 1942 &dentry->d_name, &wq); 1943 if (IS_ERR(dentry)) 1944 return PTR_ERR(dentry); 1945 if (unlikely(!d_in_lookup(dentry))) 1946 return finish_no_open(file, dentry); 1947 } 1948 1949 ctx = create_nfs_open_context(dentry, open_flags, file); 1950 err = PTR_ERR(ctx); 1951 if (IS_ERR(ctx)) 1952 goto out; 1953 1954 trace_nfs_atomic_open_enter(dir, ctx, open_flags); 1955 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created); 1956 if (created) 1957 file->f_mode |= FMODE_CREATED; 1958 if (IS_ERR(inode)) { 1959 err = PTR_ERR(inode); 1960 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 1961 put_nfs_open_context(ctx); 1962 d_drop(dentry); 1963 switch (err) { 1964 case -ENOENT: 1965 d_splice_alias(NULL, dentry); 1966 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE)) 1967 dir_verifier = inode_peek_iversion_raw(dir); 1968 else 1969 dir_verifier = nfs_save_change_attribute(dir); 1970 nfs_set_verifier(dentry, dir_verifier); 1971 break; 1972 case -EISDIR: 1973 case -ENOTDIR: 1974 goto no_open; 1975 case -ELOOP: 1976 if (!(open_flags & O_NOFOLLOW)) 1977 goto no_open; 1978 break; 1979 /* case -EINVAL: */ 1980 default: 1981 break; 1982 } 1983 goto out; 1984 } 1985 1986 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags); 1987 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 1988 put_nfs_open_context(ctx); 1989 out: 1990 if (unlikely(switched)) { 1991 d_lookup_done(dentry); 1992 dput(dentry); 1993 } 1994 return err; 1995 1996 no_open: 1997 res = nfs_lookup(dir, dentry, lookup_flags); 1998 if (!res) { 1999 inode = d_inode(dentry); 2000 if ((lookup_flags & LOOKUP_DIRECTORY) && inode && 2001 !S_ISDIR(inode->i_mode)) 2002 res = ERR_PTR(-ENOTDIR); 2003 else if (inode && S_ISREG(inode->i_mode)) 2004 res = ERR_PTR(-EOPENSTALE); 2005 } else if (!IS_ERR(res)) { 2006 inode = d_inode(res); 2007 if ((lookup_flags & LOOKUP_DIRECTORY) && inode && 2008 !S_ISDIR(inode->i_mode)) { 2009 dput(res); 2010 res = ERR_PTR(-ENOTDIR); 2011 } else if (inode && S_ISREG(inode->i_mode)) { 2012 dput(res); 2013 res = ERR_PTR(-EOPENSTALE); 2014 } 2015 } 2016 if (switched) { 2017 d_lookup_done(dentry); 2018 if (!res) 2019 res = dentry; 2020 else 2021 dput(dentry); 2022 } 2023 if (IS_ERR(res)) 2024 return PTR_ERR(res); 2025 return finish_no_open(file, res); 2026 } 2027 EXPORT_SYMBOL_GPL(nfs_atomic_open); 2028 2029 static int 2030 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry, 2031 unsigned int flags) 2032 { 2033 struct inode *inode; 2034 2035 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY)) 2036 goto full_reval; 2037 if (d_mountpoint(dentry)) 2038 goto full_reval; 2039 2040 inode = d_inode(dentry); 2041 2042 /* We can't create new files in nfs_open_revalidate(), so we 2043 * optimize away revalidation of negative dentries. 2044 */ 2045 if (inode == NULL) 2046 goto full_reval; 2047 2048 if (nfs_verifier_is_delegated(dentry)) 2049 return nfs_lookup_revalidate_delegated(dir, dentry, inode); 2050 2051 /* NFS only supports OPEN on regular files */ 2052 if (!S_ISREG(inode->i_mode)) 2053 goto full_reval; 2054 2055 /* We cannot do exclusive creation on a positive dentry */ 2056 if (flags & (LOOKUP_EXCL | LOOKUP_REVAL)) 2057 goto reval_dentry; 2058 2059 /* Check if the directory changed */ 2060 if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) 2061 goto reval_dentry; 2062 2063 /* Let f_op->open() actually open (and revalidate) the file */ 2064 return 1; 2065 reval_dentry: 2066 if (flags & LOOKUP_RCU) 2067 return -ECHILD; 2068 return nfs_lookup_revalidate_dentry(dir, dentry, inode); 2069 2070 full_reval: 2071 return nfs_do_lookup_revalidate(dir, dentry, flags); 2072 } 2073 2074 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags) 2075 { 2076 return __nfs_lookup_revalidate(dentry, flags, 2077 nfs4_do_lookup_revalidate); 2078 } 2079 2080 #endif /* CONFIG_NFSV4 */ 2081 2082 struct dentry * 2083 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle, 2084 struct nfs_fattr *fattr) 2085 { 2086 struct dentry *parent = dget_parent(dentry); 2087 struct inode *dir = d_inode(parent); 2088 struct inode *inode; 2089 struct dentry *d; 2090 int error; 2091 2092 d_drop(dentry); 2093 2094 if (fhandle->size == 0) { 2095 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr); 2096 if (error) 2097 goto out_error; 2098 } 2099 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2100 if (!(fattr->valid & NFS_ATTR_FATTR)) { 2101 struct nfs_server *server = NFS_SB(dentry->d_sb); 2102 error = server->nfs_client->rpc_ops->getattr(server, fhandle, 2103 fattr, NULL); 2104 if (error < 0) 2105 goto out_error; 2106 } 2107 inode = nfs_fhget(dentry->d_sb, fhandle, fattr); 2108 d = d_splice_alias(inode, dentry); 2109 out: 2110 dput(parent); 2111 return d; 2112 out_error: 2113 d = ERR_PTR(error); 2114 goto out; 2115 } 2116 EXPORT_SYMBOL_GPL(nfs_add_or_obtain); 2117 2118 /* 2119 * Code common to create, mkdir, and mknod. 2120 */ 2121 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle, 2122 struct nfs_fattr *fattr) 2123 { 2124 struct dentry *d; 2125 2126 d = nfs_add_or_obtain(dentry, fhandle, fattr); 2127 if (IS_ERR(d)) 2128 return PTR_ERR(d); 2129 2130 /* Callers don't care */ 2131 dput(d); 2132 return 0; 2133 } 2134 EXPORT_SYMBOL_GPL(nfs_instantiate); 2135 2136 /* 2137 * Following a failed create operation, we drop the dentry rather 2138 * than retain a negative dentry. This avoids a problem in the event 2139 * that the operation succeeded on the server, but an error in the 2140 * reply path made it appear to have failed. 2141 */ 2142 int nfs_create(struct user_namespace *mnt_userns, struct inode *dir, 2143 struct dentry *dentry, umode_t mode, bool excl) 2144 { 2145 struct iattr attr; 2146 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT; 2147 int error; 2148 2149 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n", 2150 dir->i_sb->s_id, dir->i_ino, dentry); 2151 2152 attr.ia_mode = mode; 2153 attr.ia_valid = ATTR_MODE; 2154 2155 trace_nfs_create_enter(dir, dentry, open_flags); 2156 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags); 2157 trace_nfs_create_exit(dir, dentry, open_flags, error); 2158 if (error != 0) 2159 goto out_err; 2160 return 0; 2161 out_err: 2162 d_drop(dentry); 2163 return error; 2164 } 2165 EXPORT_SYMBOL_GPL(nfs_create); 2166 2167 /* 2168 * See comments for nfs_proc_create regarding failed operations. 2169 */ 2170 int 2171 nfs_mknod(struct user_namespace *mnt_userns, struct inode *dir, 2172 struct dentry *dentry, umode_t mode, dev_t rdev) 2173 { 2174 struct iattr attr; 2175 int status; 2176 2177 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n", 2178 dir->i_sb->s_id, dir->i_ino, dentry); 2179 2180 attr.ia_mode = mode; 2181 attr.ia_valid = ATTR_MODE; 2182 2183 trace_nfs_mknod_enter(dir, dentry); 2184 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev); 2185 trace_nfs_mknod_exit(dir, dentry, status); 2186 if (status != 0) 2187 goto out_err; 2188 return 0; 2189 out_err: 2190 d_drop(dentry); 2191 return status; 2192 } 2193 EXPORT_SYMBOL_GPL(nfs_mknod); 2194 2195 /* 2196 * See comments for nfs_proc_create regarding failed operations. 2197 */ 2198 int nfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir, 2199 struct dentry *dentry, umode_t mode) 2200 { 2201 struct iattr attr; 2202 int error; 2203 2204 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n", 2205 dir->i_sb->s_id, dir->i_ino, dentry); 2206 2207 attr.ia_valid = ATTR_MODE; 2208 attr.ia_mode = mode | S_IFDIR; 2209 2210 trace_nfs_mkdir_enter(dir, dentry); 2211 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr); 2212 trace_nfs_mkdir_exit(dir, dentry, error); 2213 if (error != 0) 2214 goto out_err; 2215 return 0; 2216 out_err: 2217 d_drop(dentry); 2218 return error; 2219 } 2220 EXPORT_SYMBOL_GPL(nfs_mkdir); 2221 2222 static void nfs_dentry_handle_enoent(struct dentry *dentry) 2223 { 2224 if (simple_positive(dentry)) 2225 d_delete(dentry); 2226 } 2227 2228 static void nfs_dentry_remove_handle_error(struct inode *dir, 2229 struct dentry *dentry, int error) 2230 { 2231 switch (error) { 2232 case -ENOENT: 2233 d_delete(dentry); 2234 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2235 break; 2236 case 0: 2237 nfs_d_prune_case_insensitive_aliases(d_inode(dentry)); 2238 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2239 } 2240 } 2241 2242 int nfs_rmdir(struct inode *dir, struct dentry *dentry) 2243 { 2244 int error; 2245 2246 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n", 2247 dir->i_sb->s_id, dir->i_ino, dentry); 2248 2249 trace_nfs_rmdir_enter(dir, dentry); 2250 if (d_really_is_positive(dentry)) { 2251 down_write(&NFS_I(d_inode(dentry))->rmdir_sem); 2252 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 2253 /* Ensure the VFS deletes this inode */ 2254 switch (error) { 2255 case 0: 2256 clear_nlink(d_inode(dentry)); 2257 break; 2258 case -ENOENT: 2259 nfs_dentry_handle_enoent(dentry); 2260 } 2261 up_write(&NFS_I(d_inode(dentry))->rmdir_sem); 2262 } else 2263 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 2264 nfs_dentry_remove_handle_error(dir, dentry, error); 2265 trace_nfs_rmdir_exit(dir, dentry, error); 2266 2267 return error; 2268 } 2269 EXPORT_SYMBOL_GPL(nfs_rmdir); 2270 2271 /* 2272 * Remove a file after making sure there are no pending writes, 2273 * and after checking that the file has only one user. 2274 * 2275 * We invalidate the attribute cache and free the inode prior to the operation 2276 * to avoid possible races if the server reuses the inode. 2277 */ 2278 static int nfs_safe_remove(struct dentry *dentry) 2279 { 2280 struct inode *dir = d_inode(dentry->d_parent); 2281 struct inode *inode = d_inode(dentry); 2282 int error = -EBUSY; 2283 2284 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry); 2285 2286 /* If the dentry was sillyrenamed, we simply call d_delete() */ 2287 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 2288 error = 0; 2289 goto out; 2290 } 2291 2292 trace_nfs_remove_enter(dir, dentry); 2293 if (inode != NULL) { 2294 error = NFS_PROTO(dir)->remove(dir, dentry); 2295 if (error == 0) 2296 nfs_drop_nlink(inode); 2297 } else 2298 error = NFS_PROTO(dir)->remove(dir, dentry); 2299 if (error == -ENOENT) 2300 nfs_dentry_handle_enoent(dentry); 2301 trace_nfs_remove_exit(dir, dentry, error); 2302 out: 2303 return error; 2304 } 2305 2306 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode 2307 * belongs to an active ".nfs..." file and we return -EBUSY. 2308 * 2309 * If sillyrename() returns 0, we do nothing, otherwise we unlink. 2310 */ 2311 int nfs_unlink(struct inode *dir, struct dentry *dentry) 2312 { 2313 int error; 2314 int need_rehash = 0; 2315 2316 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id, 2317 dir->i_ino, dentry); 2318 2319 trace_nfs_unlink_enter(dir, dentry); 2320 spin_lock(&dentry->d_lock); 2321 if (d_count(dentry) > 1) { 2322 spin_unlock(&dentry->d_lock); 2323 /* Start asynchronous writeout of the inode */ 2324 write_inode_now(d_inode(dentry), 0); 2325 error = nfs_sillyrename(dir, dentry); 2326 goto out; 2327 } 2328 if (!d_unhashed(dentry)) { 2329 __d_drop(dentry); 2330 need_rehash = 1; 2331 } 2332 spin_unlock(&dentry->d_lock); 2333 error = nfs_safe_remove(dentry); 2334 nfs_dentry_remove_handle_error(dir, dentry, error); 2335 if (need_rehash) 2336 d_rehash(dentry); 2337 out: 2338 trace_nfs_unlink_exit(dir, dentry, error); 2339 return error; 2340 } 2341 EXPORT_SYMBOL_GPL(nfs_unlink); 2342 2343 /* 2344 * To create a symbolic link, most file systems instantiate a new inode, 2345 * add a page to it containing the path, then write it out to the disk 2346 * using prepare_write/commit_write. 2347 * 2348 * Unfortunately the NFS client can't create the in-core inode first 2349 * because it needs a file handle to create an in-core inode (see 2350 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the 2351 * symlink request has completed on the server. 2352 * 2353 * So instead we allocate a raw page, copy the symname into it, then do 2354 * the SYMLINK request with the page as the buffer. If it succeeds, we 2355 * now have a new file handle and can instantiate an in-core NFS inode 2356 * and move the raw page into its mapping. 2357 */ 2358 int nfs_symlink(struct user_namespace *mnt_userns, struct inode *dir, 2359 struct dentry *dentry, const char *symname) 2360 { 2361 struct page *page; 2362 char *kaddr; 2363 struct iattr attr; 2364 unsigned int pathlen = strlen(symname); 2365 int error; 2366 2367 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id, 2368 dir->i_ino, dentry, symname); 2369 2370 if (pathlen > PAGE_SIZE) 2371 return -ENAMETOOLONG; 2372 2373 attr.ia_mode = S_IFLNK | S_IRWXUGO; 2374 attr.ia_valid = ATTR_MODE; 2375 2376 page = alloc_page(GFP_USER); 2377 if (!page) 2378 return -ENOMEM; 2379 2380 kaddr = page_address(page); 2381 memcpy(kaddr, symname, pathlen); 2382 if (pathlen < PAGE_SIZE) 2383 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen); 2384 2385 trace_nfs_symlink_enter(dir, dentry); 2386 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr); 2387 trace_nfs_symlink_exit(dir, dentry, error); 2388 if (error != 0) { 2389 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n", 2390 dir->i_sb->s_id, dir->i_ino, 2391 dentry, symname, error); 2392 d_drop(dentry); 2393 __free_page(page); 2394 return error; 2395 } 2396 2397 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2398 2399 /* 2400 * No big deal if we can't add this page to the page cache here. 2401 * READLINK will get the missing page from the server if needed. 2402 */ 2403 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0, 2404 GFP_KERNEL)) { 2405 SetPageUptodate(page); 2406 unlock_page(page); 2407 /* 2408 * add_to_page_cache_lru() grabs an extra page refcount. 2409 * Drop it here to avoid leaking this page later. 2410 */ 2411 put_page(page); 2412 } else 2413 __free_page(page); 2414 2415 return 0; 2416 } 2417 EXPORT_SYMBOL_GPL(nfs_symlink); 2418 2419 int 2420 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2421 { 2422 struct inode *inode = d_inode(old_dentry); 2423 int error; 2424 2425 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n", 2426 old_dentry, dentry); 2427 2428 trace_nfs_link_enter(inode, dir, dentry); 2429 d_drop(dentry); 2430 if (S_ISREG(inode->i_mode)) 2431 nfs_sync_inode(inode); 2432 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name); 2433 if (error == 0) { 2434 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2435 ihold(inode); 2436 d_add(dentry, inode); 2437 } 2438 trace_nfs_link_exit(inode, dir, dentry, error); 2439 return error; 2440 } 2441 EXPORT_SYMBOL_GPL(nfs_link); 2442 2443 /* 2444 * RENAME 2445 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a 2446 * different file handle for the same inode after a rename (e.g. when 2447 * moving to a different directory). A fail-safe method to do so would 2448 * be to look up old_dir/old_name, create a link to new_dir/new_name and 2449 * rename the old file using the sillyrename stuff. This way, the original 2450 * file in old_dir will go away when the last process iput()s the inode. 2451 * 2452 * FIXED. 2453 * 2454 * It actually works quite well. One needs to have the possibility for 2455 * at least one ".nfs..." file in each directory the file ever gets 2456 * moved or linked to which happens automagically with the new 2457 * implementation that only depends on the dcache stuff instead of 2458 * using the inode layer 2459 * 2460 * Unfortunately, things are a little more complicated than indicated 2461 * above. For a cross-directory move, we want to make sure we can get 2462 * rid of the old inode after the operation. This means there must be 2463 * no pending writes (if it's a file), and the use count must be 1. 2464 * If these conditions are met, we can drop the dentries before doing 2465 * the rename. 2466 */ 2467 int nfs_rename(struct user_namespace *mnt_userns, struct inode *old_dir, 2468 struct dentry *old_dentry, struct inode *new_dir, 2469 struct dentry *new_dentry, unsigned int flags) 2470 { 2471 struct inode *old_inode = d_inode(old_dentry); 2472 struct inode *new_inode = d_inode(new_dentry); 2473 struct dentry *dentry = NULL, *rehash = NULL; 2474 struct rpc_task *task; 2475 int error = -EBUSY; 2476 2477 if (flags) 2478 return -EINVAL; 2479 2480 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n", 2481 old_dentry, new_dentry, 2482 d_count(new_dentry)); 2483 2484 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry); 2485 /* 2486 * For non-directories, check whether the target is busy and if so, 2487 * make a copy of the dentry and then do a silly-rename. If the 2488 * silly-rename succeeds, the copied dentry is hashed and becomes 2489 * the new target. 2490 */ 2491 if (new_inode && !S_ISDIR(new_inode->i_mode)) { 2492 /* 2493 * To prevent any new references to the target during the 2494 * rename, we unhash the dentry in advance. 2495 */ 2496 if (!d_unhashed(new_dentry)) { 2497 d_drop(new_dentry); 2498 rehash = new_dentry; 2499 } 2500 2501 if (d_count(new_dentry) > 2) { 2502 int err; 2503 2504 /* copy the target dentry's name */ 2505 dentry = d_alloc(new_dentry->d_parent, 2506 &new_dentry->d_name); 2507 if (!dentry) 2508 goto out; 2509 2510 /* silly-rename the existing target ... */ 2511 err = nfs_sillyrename(new_dir, new_dentry); 2512 if (err) 2513 goto out; 2514 2515 new_dentry = dentry; 2516 rehash = NULL; 2517 new_inode = NULL; 2518 } 2519 } 2520 2521 if (S_ISREG(old_inode->i_mode)) 2522 nfs_sync_inode(old_inode); 2523 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL); 2524 if (IS_ERR(task)) { 2525 error = PTR_ERR(task); 2526 goto out; 2527 } 2528 2529 error = rpc_wait_for_completion_task(task); 2530 if (error != 0) { 2531 ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1; 2532 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */ 2533 smp_wmb(); 2534 } else 2535 error = task->tk_status; 2536 rpc_put_task(task); 2537 /* Ensure the inode attributes are revalidated */ 2538 if (error == 0) { 2539 spin_lock(&old_inode->i_lock); 2540 NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter(); 2541 nfs_set_cache_invalid(old_inode, NFS_INO_INVALID_CHANGE | 2542 NFS_INO_INVALID_CTIME | 2543 NFS_INO_REVAL_FORCED); 2544 spin_unlock(&old_inode->i_lock); 2545 } 2546 out: 2547 if (rehash) 2548 d_rehash(rehash); 2549 trace_nfs_rename_exit(old_dir, old_dentry, 2550 new_dir, new_dentry, error); 2551 if (!error) { 2552 if (new_inode != NULL) 2553 nfs_drop_nlink(new_inode); 2554 /* 2555 * The d_move() should be here instead of in an async RPC completion 2556 * handler because we need the proper locks to move the dentry. If 2557 * we're interrupted by a signal, the async RPC completion handler 2558 * should mark the directories for revalidation. 2559 */ 2560 d_move(old_dentry, new_dentry); 2561 nfs_set_verifier(old_dentry, 2562 nfs_save_change_attribute(new_dir)); 2563 } else if (error == -ENOENT) 2564 nfs_dentry_handle_enoent(old_dentry); 2565 2566 /* new dentry created? */ 2567 if (dentry) 2568 dput(dentry); 2569 return error; 2570 } 2571 EXPORT_SYMBOL_GPL(nfs_rename); 2572 2573 static DEFINE_SPINLOCK(nfs_access_lru_lock); 2574 static LIST_HEAD(nfs_access_lru_list); 2575 static atomic_long_t nfs_access_nr_entries; 2576 2577 static unsigned long nfs_access_max_cachesize = 4*1024*1024; 2578 module_param(nfs_access_max_cachesize, ulong, 0644); 2579 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length"); 2580 2581 static void nfs_access_free_entry(struct nfs_access_entry *entry) 2582 { 2583 put_group_info(entry->group_info); 2584 kfree_rcu(entry, rcu_head); 2585 smp_mb__before_atomic(); 2586 atomic_long_dec(&nfs_access_nr_entries); 2587 smp_mb__after_atomic(); 2588 } 2589 2590 static void nfs_access_free_list(struct list_head *head) 2591 { 2592 struct nfs_access_entry *cache; 2593 2594 while (!list_empty(head)) { 2595 cache = list_entry(head->next, struct nfs_access_entry, lru); 2596 list_del(&cache->lru); 2597 nfs_access_free_entry(cache); 2598 } 2599 } 2600 2601 static unsigned long 2602 nfs_do_access_cache_scan(unsigned int nr_to_scan) 2603 { 2604 LIST_HEAD(head); 2605 struct nfs_inode *nfsi, *next; 2606 struct nfs_access_entry *cache; 2607 long freed = 0; 2608 2609 spin_lock(&nfs_access_lru_lock); 2610 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) { 2611 struct inode *inode; 2612 2613 if (nr_to_scan-- == 0) 2614 break; 2615 inode = &nfsi->vfs_inode; 2616 spin_lock(&inode->i_lock); 2617 if (list_empty(&nfsi->access_cache_entry_lru)) 2618 goto remove_lru_entry; 2619 cache = list_entry(nfsi->access_cache_entry_lru.next, 2620 struct nfs_access_entry, lru); 2621 list_move(&cache->lru, &head); 2622 rb_erase(&cache->rb_node, &nfsi->access_cache); 2623 freed++; 2624 if (!list_empty(&nfsi->access_cache_entry_lru)) 2625 list_move_tail(&nfsi->access_cache_inode_lru, 2626 &nfs_access_lru_list); 2627 else { 2628 remove_lru_entry: 2629 list_del_init(&nfsi->access_cache_inode_lru); 2630 smp_mb__before_atomic(); 2631 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags); 2632 smp_mb__after_atomic(); 2633 } 2634 spin_unlock(&inode->i_lock); 2635 } 2636 spin_unlock(&nfs_access_lru_lock); 2637 nfs_access_free_list(&head); 2638 return freed; 2639 } 2640 2641 unsigned long 2642 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc) 2643 { 2644 int nr_to_scan = sc->nr_to_scan; 2645 gfp_t gfp_mask = sc->gfp_mask; 2646 2647 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL) 2648 return SHRINK_STOP; 2649 return nfs_do_access_cache_scan(nr_to_scan); 2650 } 2651 2652 2653 unsigned long 2654 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc) 2655 { 2656 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries)); 2657 } 2658 2659 static void 2660 nfs_access_cache_enforce_limit(void) 2661 { 2662 long nr_entries = atomic_long_read(&nfs_access_nr_entries); 2663 unsigned long diff; 2664 unsigned int nr_to_scan; 2665 2666 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize) 2667 return; 2668 nr_to_scan = 100; 2669 diff = nr_entries - nfs_access_max_cachesize; 2670 if (diff < nr_to_scan) 2671 nr_to_scan = diff; 2672 nfs_do_access_cache_scan(nr_to_scan); 2673 } 2674 2675 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head) 2676 { 2677 struct rb_root *root_node = &nfsi->access_cache; 2678 struct rb_node *n; 2679 struct nfs_access_entry *entry; 2680 2681 /* Unhook entries from the cache */ 2682 while ((n = rb_first(root_node)) != NULL) { 2683 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2684 rb_erase(n, root_node); 2685 list_move(&entry->lru, head); 2686 } 2687 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS; 2688 } 2689 2690 void nfs_access_zap_cache(struct inode *inode) 2691 { 2692 LIST_HEAD(head); 2693 2694 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0) 2695 return; 2696 /* Remove from global LRU init */ 2697 spin_lock(&nfs_access_lru_lock); 2698 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2699 list_del_init(&NFS_I(inode)->access_cache_inode_lru); 2700 2701 spin_lock(&inode->i_lock); 2702 __nfs_access_zap_cache(NFS_I(inode), &head); 2703 spin_unlock(&inode->i_lock); 2704 spin_unlock(&nfs_access_lru_lock); 2705 nfs_access_free_list(&head); 2706 } 2707 EXPORT_SYMBOL_GPL(nfs_access_zap_cache); 2708 2709 static int access_cmp(const struct cred *a, const struct nfs_access_entry *b) 2710 { 2711 struct group_info *ga, *gb; 2712 int g; 2713 2714 if (uid_lt(a->fsuid, b->fsuid)) 2715 return -1; 2716 if (uid_gt(a->fsuid, b->fsuid)) 2717 return 1; 2718 2719 if (gid_lt(a->fsgid, b->fsgid)) 2720 return -1; 2721 if (gid_gt(a->fsgid, b->fsgid)) 2722 return 1; 2723 2724 ga = a->group_info; 2725 gb = b->group_info; 2726 if (ga == gb) 2727 return 0; 2728 if (ga == NULL) 2729 return -1; 2730 if (gb == NULL) 2731 return 1; 2732 if (ga->ngroups < gb->ngroups) 2733 return -1; 2734 if (ga->ngroups > gb->ngroups) 2735 return 1; 2736 2737 for (g = 0; g < ga->ngroups; g++) { 2738 if (gid_lt(ga->gid[g], gb->gid[g])) 2739 return -1; 2740 if (gid_gt(ga->gid[g], gb->gid[g])) 2741 return 1; 2742 } 2743 return 0; 2744 } 2745 2746 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred) 2747 { 2748 struct rb_node *n = NFS_I(inode)->access_cache.rb_node; 2749 2750 while (n != NULL) { 2751 struct nfs_access_entry *entry = 2752 rb_entry(n, struct nfs_access_entry, rb_node); 2753 int cmp = access_cmp(cred, entry); 2754 2755 if (cmp < 0) 2756 n = n->rb_left; 2757 else if (cmp > 0) 2758 n = n->rb_right; 2759 else 2760 return entry; 2761 } 2762 return NULL; 2763 } 2764 2765 static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, u32 *mask, bool may_block) 2766 { 2767 struct nfs_inode *nfsi = NFS_I(inode); 2768 struct nfs_access_entry *cache; 2769 bool retry = true; 2770 int err; 2771 2772 spin_lock(&inode->i_lock); 2773 for(;;) { 2774 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2775 goto out_zap; 2776 cache = nfs_access_search_rbtree(inode, cred); 2777 err = -ENOENT; 2778 if (cache == NULL) 2779 goto out; 2780 /* Found an entry, is our attribute cache valid? */ 2781 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) 2782 break; 2783 if (!retry) 2784 break; 2785 err = -ECHILD; 2786 if (!may_block) 2787 goto out; 2788 spin_unlock(&inode->i_lock); 2789 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode); 2790 if (err) 2791 return err; 2792 spin_lock(&inode->i_lock); 2793 retry = false; 2794 } 2795 *mask = cache->mask; 2796 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru); 2797 err = 0; 2798 out: 2799 spin_unlock(&inode->i_lock); 2800 return err; 2801 out_zap: 2802 spin_unlock(&inode->i_lock); 2803 nfs_access_zap_cache(inode); 2804 return -ENOENT; 2805 } 2806 2807 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, u32 *mask) 2808 { 2809 /* Only check the most recently returned cache entry, 2810 * but do it without locking. 2811 */ 2812 struct nfs_inode *nfsi = NFS_I(inode); 2813 struct nfs_access_entry *cache; 2814 int err = -ECHILD; 2815 struct list_head *lh; 2816 2817 rcu_read_lock(); 2818 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2819 goto out; 2820 lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru)); 2821 cache = list_entry(lh, struct nfs_access_entry, lru); 2822 if (lh == &nfsi->access_cache_entry_lru || 2823 access_cmp(cred, cache) != 0) 2824 cache = NULL; 2825 if (cache == NULL) 2826 goto out; 2827 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) 2828 goto out; 2829 *mask = cache->mask; 2830 err = 0; 2831 out: 2832 rcu_read_unlock(); 2833 return err; 2834 } 2835 2836 int nfs_access_get_cached(struct inode *inode, const struct cred *cred, 2837 u32 *mask, bool may_block) 2838 { 2839 int status; 2840 2841 status = nfs_access_get_cached_rcu(inode, cred, mask); 2842 if (status != 0) 2843 status = nfs_access_get_cached_locked(inode, cred, mask, 2844 may_block); 2845 2846 return status; 2847 } 2848 EXPORT_SYMBOL_GPL(nfs_access_get_cached); 2849 2850 static void nfs_access_add_rbtree(struct inode *inode, 2851 struct nfs_access_entry *set, 2852 const struct cred *cred) 2853 { 2854 struct nfs_inode *nfsi = NFS_I(inode); 2855 struct rb_root *root_node = &nfsi->access_cache; 2856 struct rb_node **p = &root_node->rb_node; 2857 struct rb_node *parent = NULL; 2858 struct nfs_access_entry *entry; 2859 int cmp; 2860 2861 spin_lock(&inode->i_lock); 2862 while (*p != NULL) { 2863 parent = *p; 2864 entry = rb_entry(parent, struct nfs_access_entry, rb_node); 2865 cmp = access_cmp(cred, entry); 2866 2867 if (cmp < 0) 2868 p = &parent->rb_left; 2869 else if (cmp > 0) 2870 p = &parent->rb_right; 2871 else 2872 goto found; 2873 } 2874 rb_link_node(&set->rb_node, parent, p); 2875 rb_insert_color(&set->rb_node, root_node); 2876 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2877 spin_unlock(&inode->i_lock); 2878 return; 2879 found: 2880 rb_replace_node(parent, &set->rb_node, root_node); 2881 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2882 list_del(&entry->lru); 2883 spin_unlock(&inode->i_lock); 2884 nfs_access_free_entry(entry); 2885 } 2886 2887 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set, 2888 const struct cred *cred) 2889 { 2890 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL); 2891 if (cache == NULL) 2892 return; 2893 RB_CLEAR_NODE(&cache->rb_node); 2894 cache->fsuid = cred->fsuid; 2895 cache->fsgid = cred->fsgid; 2896 cache->group_info = get_group_info(cred->group_info); 2897 cache->mask = set->mask; 2898 2899 /* The above field assignments must be visible 2900 * before this item appears on the lru. We cannot easily 2901 * use rcu_assign_pointer, so just force the memory barrier. 2902 */ 2903 smp_wmb(); 2904 nfs_access_add_rbtree(inode, cache, cred); 2905 2906 /* Update accounting */ 2907 smp_mb__before_atomic(); 2908 atomic_long_inc(&nfs_access_nr_entries); 2909 smp_mb__after_atomic(); 2910 2911 /* Add inode to global LRU list */ 2912 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) { 2913 spin_lock(&nfs_access_lru_lock); 2914 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2915 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, 2916 &nfs_access_lru_list); 2917 spin_unlock(&nfs_access_lru_lock); 2918 } 2919 nfs_access_cache_enforce_limit(); 2920 } 2921 EXPORT_SYMBOL_GPL(nfs_access_add_cache); 2922 2923 #define NFS_MAY_READ (NFS_ACCESS_READ) 2924 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \ 2925 NFS_ACCESS_EXTEND | \ 2926 NFS_ACCESS_DELETE) 2927 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \ 2928 NFS_ACCESS_EXTEND) 2929 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE 2930 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP) 2931 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE) 2932 static int 2933 nfs_access_calc_mask(u32 access_result, umode_t umode) 2934 { 2935 int mask = 0; 2936 2937 if (access_result & NFS_MAY_READ) 2938 mask |= MAY_READ; 2939 if (S_ISDIR(umode)) { 2940 if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE) 2941 mask |= MAY_WRITE; 2942 if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP) 2943 mask |= MAY_EXEC; 2944 } else if (S_ISREG(umode)) { 2945 if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE) 2946 mask |= MAY_WRITE; 2947 if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE) 2948 mask |= MAY_EXEC; 2949 } else if (access_result & NFS_MAY_WRITE) 2950 mask |= MAY_WRITE; 2951 return mask; 2952 } 2953 2954 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result) 2955 { 2956 entry->mask = access_result; 2957 } 2958 EXPORT_SYMBOL_GPL(nfs_access_set_mask); 2959 2960 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask) 2961 { 2962 struct nfs_access_entry cache; 2963 bool may_block = (mask & MAY_NOT_BLOCK) == 0; 2964 int cache_mask = -1; 2965 int status; 2966 2967 trace_nfs_access_enter(inode); 2968 2969 status = nfs_access_get_cached(inode, cred, &cache.mask, may_block); 2970 if (status == 0) 2971 goto out_cached; 2972 2973 status = -ECHILD; 2974 if (!may_block) 2975 goto out; 2976 2977 /* 2978 * Determine which access bits we want to ask for... 2979 */ 2980 cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND; 2981 if (nfs_server_capable(inode, NFS_CAP_XATTR)) { 2982 cache.mask |= NFS_ACCESS_XAREAD | NFS_ACCESS_XAWRITE | 2983 NFS_ACCESS_XALIST; 2984 } 2985 if (S_ISDIR(inode->i_mode)) 2986 cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP; 2987 else 2988 cache.mask |= NFS_ACCESS_EXECUTE; 2989 status = NFS_PROTO(inode)->access(inode, &cache, cred); 2990 if (status != 0) { 2991 if (status == -ESTALE) { 2992 if (!S_ISDIR(inode->i_mode)) 2993 nfs_set_inode_stale(inode); 2994 else 2995 nfs_zap_caches(inode); 2996 } 2997 goto out; 2998 } 2999 nfs_access_add_cache(inode, &cache, cred); 3000 out_cached: 3001 cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode); 3002 if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0) 3003 status = -EACCES; 3004 out: 3005 trace_nfs_access_exit(inode, mask, cache_mask, status); 3006 return status; 3007 } 3008 3009 static int nfs_open_permission_mask(int openflags) 3010 { 3011 int mask = 0; 3012 3013 if (openflags & __FMODE_EXEC) { 3014 /* ONLY check exec rights */ 3015 mask = MAY_EXEC; 3016 } else { 3017 if ((openflags & O_ACCMODE) != O_WRONLY) 3018 mask |= MAY_READ; 3019 if ((openflags & O_ACCMODE) != O_RDONLY) 3020 mask |= MAY_WRITE; 3021 } 3022 3023 return mask; 3024 } 3025 3026 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags) 3027 { 3028 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags)); 3029 } 3030 EXPORT_SYMBOL_GPL(nfs_may_open); 3031 3032 static int nfs_execute_ok(struct inode *inode, int mask) 3033 { 3034 struct nfs_server *server = NFS_SERVER(inode); 3035 int ret = 0; 3036 3037 if (S_ISDIR(inode->i_mode)) 3038 return 0; 3039 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_MODE)) { 3040 if (mask & MAY_NOT_BLOCK) 3041 return -ECHILD; 3042 ret = __nfs_revalidate_inode(server, inode); 3043 } 3044 if (ret == 0 && !execute_ok(inode)) 3045 ret = -EACCES; 3046 return ret; 3047 } 3048 3049 int nfs_permission(struct user_namespace *mnt_userns, 3050 struct inode *inode, 3051 int mask) 3052 { 3053 const struct cred *cred = current_cred(); 3054 int res = 0; 3055 3056 nfs_inc_stats(inode, NFSIOS_VFSACCESS); 3057 3058 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 3059 goto out; 3060 /* Is this sys_access() ? */ 3061 if (mask & (MAY_ACCESS | MAY_CHDIR)) 3062 goto force_lookup; 3063 3064 switch (inode->i_mode & S_IFMT) { 3065 case S_IFLNK: 3066 goto out; 3067 case S_IFREG: 3068 if ((mask & MAY_OPEN) && 3069 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)) 3070 return 0; 3071 break; 3072 case S_IFDIR: 3073 /* 3074 * Optimize away all write operations, since the server 3075 * will check permissions when we perform the op. 3076 */ 3077 if ((mask & MAY_WRITE) && !(mask & MAY_READ)) 3078 goto out; 3079 } 3080 3081 force_lookup: 3082 if (!NFS_PROTO(inode)->access) 3083 goto out_notsup; 3084 3085 res = nfs_do_access(inode, cred, mask); 3086 out: 3087 if (!res && (mask & MAY_EXEC)) 3088 res = nfs_execute_ok(inode, mask); 3089 3090 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n", 3091 inode->i_sb->s_id, inode->i_ino, mask, res); 3092 return res; 3093 out_notsup: 3094 if (mask & MAY_NOT_BLOCK) 3095 return -ECHILD; 3096 3097 res = nfs_revalidate_inode(inode, NFS_INO_INVALID_MODE | 3098 NFS_INO_INVALID_OTHER); 3099 if (res == 0) 3100 res = generic_permission(&init_user_ns, inode, mask); 3101 goto out; 3102 } 3103 EXPORT_SYMBOL_GPL(nfs_permission); 3104